Sample records for fluid dynamic gauging

  1. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  2. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  3. On the equivalence among stress tensors in a gauge-fluid system

    NASA Astrophysics Data System (ADS)

    Mitra, Arpan Krishna; Banerjee, Rabin; Ghosh, Subir

    2017-12-01

    In this paper, we bring out the subtleties involved in the study of a first-order relativistic field theory with auxiliary field variables playing an essential role. In particular, we discuss the nonisentropic Eulerian (or Hamiltonian) fluid model. Interactions are introduced by coupling the fluid to a dynamical Maxwell (U(1)) gauge field. This dynamical nature of the gauge field is crucial in showing the equivalence, on the physical subspace, of the stress tensor derived from two definitions, i.e. the canonical (Noether) one and the symmetric one. In the conventional equal-time formalism, we have shown that the generators of the space-time transformations obtained from these two definitions agree modulo the Gauss constraint. This equivalence in the physical sector has been achieved only because of the dynamical nature of the gauge fields. Subsequently, we have explicitly demonstrated the validity of the Schwinger condition. A detailed analysis of the model in lightcone formalism has also been done where several interesting features are revealed.

  4. Design, development and manufacture of a breadboard radio frequency mass gauging system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.

  5. A Computational Fluid-Dynamics Assessment of the Improved Performance of Aerodynamic Rain Gauges

    NASA Astrophysics Data System (ADS)

    Colli, Matteo; Pollock, Michael; Stagnaro, Mattia; Lanza, Luca G.; Dutton, Mark; O'Connell, Enda

    2018-02-01

    The airflow surrounding any catching-type rain gauge when impacted by wind is deformed by the presence of the gauge body, resulting in the acceleration of wind above the orifice of the gauge, which deflects raindrops and snowflakes away from the collector (the wind-induced undercatch). The method of mounting a gauge with the collector at or below the level of the ground, or the use of windshields to mitigate this effect, is often not practicable. The physical shape of a gauge has a significant impact on its collection efficiency. In this study, we show that appropriate "aerodynamic" shapes are able to reduce the deformation of the airflow, which can reduce undercatch. We have employed computational fluid-dynamic simulations to evaluate the time-averaged airflow realized around "aerodynamic" rain gauge shapes when impacted by wind. Terms of comparison are provided by the results obtained for two standard "conventional" rain gauge shapes. The simulations have been run for different wind speeds and are based on a time-averaged Reynolds-Averaged Navier-Stokes model. The shape of the aerodynamic gauges is shown to have a positive impact on the time-averaged airflow patterns observed around the orifice compared to the conventional shapes. Furthermore, the turbulent air velocity fields for the aerodynamic shapes present "recirculating" structures, which may improve the particle-catching capabilities of the gauge collector.

  6. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  7. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; St. Cyr, William; Rahman, Shamim; McVay, Gregory; Van Dyke, David; Mitchell, William; Langford, Lester

    2004-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method may be of two types: foil and fiber-optic. Four foil gauges (full bridge) are mounted on each of the tank-supporting legs. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. One or more fiber-optic gauges may be used instead of the foil gauges. The resolution of the fiber-optic and foil gauges is approximately the same, but the fiber-optic gauges are immune to EMI (electromagnetic interference), are linear with respect to temperature over their entire dynamic range (as defined by the behavior of the sample), and measure thermally induced deformations as predictable signals. Conversely, long term testing has demonstrated that the foil gauges exhibit an erratic behavior whenever subjected to direct sun radiation (even if protected with a rubberized cover). Henceforth, for deployment in outdoor conditions, fiber-optic gauges are the only option if one is to rely on the system for an extended period of time when a recalibration procedure may not be acceptable. A set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 micro-strain) that occurred during filling and emptying of the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. However, the reliability of the foil gauges over a few hours was not acceptable. Therefore, the foil sensor system is acceptable for use only in controlled environments (complete shade, or indoors).

  8. CYBER 200 Applications Seminar

    NASA Technical Reports Server (NTRS)

    Gary, J. P. (Compiler)

    1984-01-01

    Applications suited for the CYBER 200 digital computer are discussed. Various areas of application including meteorology, algorithms, fluid dynamics, monte carlo methods, petroleum, electronic circuit simulation, biochemistry, lattice gauge theory, economics and ray tracing are discussed.

  9. Comparison of 20-, 23-, and 25-gauge air infusion forces.

    PubMed

    Machado, Leonardo Martins; Magalhães, Octaviano; Maia, Mauricio; Rodrigues, Eduardo B; Farah, Michel Eid; Ismail, Kamal A R; Molon, Leandro; Oliveira, Danilo A

    2011-11-01

    To determine and compare 20-, 23-, and 25-gauge retinal infusion air jet impact pressure (force per unit area) in an experimental setting. Experimental laboratory investigation. Infusion cannulas were connected to a compressed air system. A controlled valve mechanism was used to obtain increasing levels of infusion pressure. Each infusion tube was positioned in front of a manual transducer to measure force. Impact pressure was calculated using known formulas in fluid dynamics. The 20-gauge infusion jet showed similar impact pressure values compared with the 23-gauge infusion jet. Both showed higher levels than the 25-gauge infusion jet. This was because of the smaller jet force for the 25-gauge system. In this experimental study, both the 23- and the 20-gauge air infusion jet showed higher impact pressure values compared with the 25-gauge air infusion jet. This could be of concern regarding air infusion during 23-gauge vitrectomy since retinal damage has been shown in standard-gauge surgeries.

  10. Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Haddad, George

    2007-01-01

    This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant

  11. "Zero-Mass" Noninvasive Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2009-01-01

    Extremely lightweight, compact, noninvasive, rugged, relatively inexpensive strain-gauge transducers have been developed for use in measuring pressures of fluids in tubes. These gauges were originally intended for measuring pressures of spacecraft-propulsion fluids, but they are also attractive for use in numerous terrestrial applications especially those involving fluids that are extremely chemically reactive, fluids that must be isolated for hygienic purposes, fluids that must be allowed to flow without obstruction, and fluid-containing tubes exposed to severe environments. A basic pressure transducer of this type comprises one or more pair(s) of thin-film strain gauges integral with a tube that contains the fluid of interest. Following established strain-gauge practice, the gauges in each pair are connected into opposite arms of a Wheatstone bridge (see figure). Typically, each pressure transducer includes one pair (the active pair) of strain gauges for measuring the hoop stress proportional to the pressure of the fluid in the tube and another pair (the dummy pair) of strain gauges that are nominally unstrained: The dummy gauges are mounted on a substrate that is made of the same material as that of the tube. The substrate is welded to the tube at only one spot so that stresses and strains are not coupled from the tube into the substrate. The dummy strain gauges measure neutral strains (basically, strains associated with thermal expansion), so that the neutral-strain contribution can be subtracted out of the final gauge reading.

  12. Balancing anisotropic curvature with gauge fields in a class of shear-free cosmological models

    NASA Astrophysics Data System (ADS)

    Thorsrud, Mikjel

    2018-05-01

    We present a complete list of general relativistic shear-free solutions in a class of anisotropic, spatially homogeneous and orthogonal cosmological models containing a collection of n independent p-form gauge fields, where p\\in\\{0, 1, 2, 3\\} , in addition to standard ΛCDM matter fields modelled as perfect fluids. Here a (collection of) gauge field(s) balances anisotropic spatial curvature on the right-hand side of the shear propagation equation. The result is a class of solutions dynamically equivalent to standard FLRW cosmologies, with an effective curvature constant Keff that depends both on spatial curvature and the energy density of the gauge field(s). In the case of a single gauge field (n  =  1) we show that the only spacetimes that admit such solutions are the LRS Bianchi type III, Bianchi type VI0 and Kantowski–Sachs metric, which are dynamically equivalent to open (Keff<0 ), flat (Keff=0 ) and closed (Keff>0 ) FLRW models, respectively. With a collection of gauge fields (n  >  1) also Bianchi type II admits a shear-free solution (Keff>0 ). We identify the LRS Bianchi type III solution to be the unique shear-free solution with a gauge field Hamiltonian bounded from below in the entire class of models.

  13. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  14. Design Models and Model Based Design in Fluid Flow With Application to Micro Air Vehicles

    DTIC Science & Technology

    2009-03-12

    system is dynamically essential for the dynamic representation of transients. Initial validation, in [2], used the laminar cylinder wake as a...conceptually equivalnt harmonic balancing representations (e.g., for Helicopter blades ). A by-product of [J6] is a first systematic framework for...both rapid prototyping and implementation. Wake attenuation is achieved by symmetrizing the two shear layers, using a single pressure gauge: Pulsed

  15. Pretest predictions of surface strain and fluid pressures in mercury targets undergoing thermal shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taleyarkhan, R.P.; Kim, S.H.; Haines, J.

    The authors provide a perspective overview of pretest modeling and analysis work related to thermal shock effects in spallation neutron source targets that were designed for conducting thermal shock experiments at the Los Alamos Neutron Science Center (LANSCE). Data to be derived are to be used for benchmarking computational tools as well as to assess the efficacy of optical gauges for monitoring dynamic fluid pressures and phenomena such as the onset of cavitation.

  16. Fracton-Elasticity Duality

    NASA Astrophysics Data System (ADS)

    Pretko, Michael; Radzihovsky, Leo

    2018-05-01

    Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.

  17. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling.

    PubMed

    Du, Xing; Qu, Fangshu; Liang, Heng; Li, Kai; Chang, Haiqing; Li, Guibai

    2016-05-01

    In this study, the cake buildup of TiO2 fine particles in the presence of humid acid (HA) and cake layer controlling during ultrafiltration (UF) were investigated. Specifically, we measured the cake thickness using fluid dynamic gauging (FDG) method under various solution conditions, including TiO2 concentration (0.1-0.5 g/L), HA concentration (0-5 mg/L, total organic carbon (TOC)), and pH values (e.g., 4, 6 and 10), and calculated the shear stress distribution induced by stirring using computational fluid dynamics (CFD) to analyze the cake layer controlling conditions, including the operation flux (50-200 L m(-2) h(-1)) and TiO2 concentration (0.1-0.5 g/L). It was found that lower TiO2/HA concentration ratio could lead to exceedingly severe membrane fouling because of the formation of a relatively denser cake layer by filling the voids of cake layer with HA, and pH was essential for cake layer formation owing to the net repulsion between particles. Additionally, it was observed that shear stress was rewarding for mitigating cake growth under lower operation flux as a result of sufficient back-transport forces, and exhibited an excellent performance on cake layer controlling in lower TiO2 concentrations due to slight interaction forces on the vicinity of membrane.

  18. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. Strain-Gauge Measurement of Weight of Fluid in a Tank

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge; SaintCyr, William; Rahman, Shamim; McVay, Gregory; VanDyke, David; Mitchell, William; Langford, Lester

    2003-01-01

    A method of determining the amount of fluid in a tank is based on measurement of strains induced in tank supports by the weight of the fluid. Unlike most prior methods, this method is nonintrusive: there is no need to insert instrumentation in the tank and, hence, no need to run wires, cables, or tubes through the tank wall. Also unlike most prior methods, this method is applicable even if the fluid in the tank is at supercritical pressure and temperature, because it does not depend on the presence of a liquid/gas interface (as in liquid-level-measuring methods). The strain gauges used in this method are of two types: foil and fiber-optic. Four foil gauges and one or more fiber-optic gauges are mounted on each of the tank-supporting legs. An additional fiber-optic gauge is mounted on an object, made of the same material as that of the tank-supporting legs, that is not subjected to any mechanical load. The reading obtained by the additional fiber-optic gauge is used to compensate for apparent strains caused by changes in temperature. The signals from the foil and fiber-optic gauges are conditioned, then digitized for input to a computer. As the tank is filled or emptied, the deformation in each leg increases or decreases, respectively. Measured deformations of all legs are added to obtain a composite deformation indicative of the change in weight of the tank plus fluid. An initial calibration is performed by recording data at two points (usually, empty and full) for which the mass or weight of fluid is known. It is assumed that the deformations are elastic, so that the line passing through the two points can be used as a calibration curve of mass (or weight) of fluid versus deformation. At the time of reporting the information for this article, a set of foil gauges had been tested on the supports of a 500-gallon (1,900-liter) tank. The gauges were found to be capable of measuring the deformations (up to 22 microstrain) that occurred during filling and emptying the tank. The fluid masses calculated from the gauge readings were found to be accurate within 4.5 percent. It has been estimated that once the fiber-optic gauges are put into operation, it should be possible to determine fluid masses with 3 percent or less. It may be possible to increase accuracy further by increasing the signal-to-noise ratio through the use of more deformable tank supporting legs.

  20. Molecular simulation of simple fluids and polymers in nanoconfinement

    NASA Astrophysics Data System (ADS)

    Rasmussen, Christopher John

    Prediction of phase behavior and transport properties of simple fluids and polymers confined to nanoscale pores is important to a wide range of chemical and biochemical engineering processes. A practical approach to investigate nanoscale systems is molecular simulation, specifically Monte Carlo (MC) methods. One of the most challenging problems is the need to calculate chemical potentials in simulated phases. Through the seminal work of Widom, practitioners have a powerful method for calculating chemical potentials. Yet, this method fails for dense and inhomogeneous systems, as well as for complex molecules such as polymers. In this dissertation, the gauge cell MC method, which had previously been successfully applied to confined simple fluids, was employed and extended to investigate nanoscale fluids in several key areas. Firstly, the process of cavitation (the formation and growth of bubbles) during desorption of fluids from nanopores was investigated. The dependence of cavitation pressure on pore size was determined with gauge cell MC calculations of the nucleation barriers correlated with experimental data. Additional computational studies elucidated the role of surface defects and pore connectivity in the formation of cavitation bubbles. Secondly, the gauge cell method was extended to polymers. The method was verified against the literature results and found significantly more efficient. It was used to examine adsorption of polymers in nanopores. These results were applied to model the dynamics of translocation, the act of a polymer threading through a small opening, which is implicated in drug packaging and delivery, and DNA sequencing. Translocation dynamics was studied as diffusion along the free energy landscape. Thirdly, we show how computer simulation of polymer adsorption could shed light on the specifics of polymer chromatography, which is a key tool for the analysis and purification of polymers. The quality of separation depends on the physico-chemical mechanisms of polymer/pore interaction. We considered liquid chromatography at critical conditions, and calculated the dependence of the partition coefficient on chain length. Finally, solvent-gradient chromatography was modeled using a statistical model of polymer adsorption. A model for predicting separation of complex polymers (with functional groups or copolymers) was developed for practical use in chromatographic separations.

  1. An Experimental Study of the Dynamics of an Unsteady Turbulent Boundary Layer.

    DTIC Science & Technology

    1982-12-01

    honeycomb combination into the screen box. The screen box is made of plexiglas, and the screens are made of stainless steel wire (24 gauge, 70% porosity...port plug was modified to accommodate at its cen- ter a stainless steel stem with a disk on the end toward the inside of the tunnel. The stem is spring...necessay and Identify by block nomber) * turbulent boundary layers fluid dynamics free stream velocity A B r R CT si royy.rs ebb it ,imseesa nd ideiiit

  2. An in vitro comparison of fluid leakage after dural puncture with Atraucan, Sprotte, Whitacre, and Quincke needles.

    PubMed

    Morrison, L M; McCrae, A F; Foo, I; Scott, D B; Wildsmith, J A

    1996-01-01

    The study was designed to evaluate the influence of needle size and design on the rate of leakage following dural puncture. An in vitro model and fresh human lumbar dura were used to examine the rate of fluid leakage after puncture with Sprotte (24-gauge and 26-gauge), Atraucan (24-gauge and 26-gauge), Quincke (26-gauge and 29-gauge), and Whitacre (22-gauge and 25-gauge) needles. The study confirmed that finer-gauge needles tend to produce less leakage and that traditional Quincke pattern bevels result in greater leakage than pencil-point designs of the same diameter. The comparably low leakage rate produced by the Atraucan, a new needle with a terminal opening, suggests that this needle is worthy of further clinical evaluation.

  3. Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Kreppel, Samantha

    A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.

  4. Field theory of hyperfluid

    NASA Astrophysics Data System (ADS)

    Ariki, Taketo

    2018-02-01

    A hyperfluid model is constructed on the basis of its action entirely free from external constraints, regarding the hyperfluid as a self-consistent classical field. Intrinsic hypermomentum is no longer a supplemental variable given by external constraints, but arises purely from the diffeomorphism covariance of dynamical field. The field-theoretic approach allows natural classification of a hyperfluid on the basis of its symmetry group and corresponding homogeneous space; scalar, spinor, vector, and tensor fluids are introduced as simple examples. Apart from phenomenological constraints, the theory predicts the hypermomentum exchange of fluid via field-theoretic interactions of various classes; fluid–fluid interactions, minimal and non-minimal SU(n) -gauge couplings, and coupling with metric-affine gravity are all successfully formulated within the classical regime.

  5. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  6. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  7. Three-Dimensional Thermal Boundary Layer Corrections for Circular Heat Flux Gauges Mounted in a Flat Plate with a Surface Temperature Discontinuity

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Haddad, G. F.; Chen, R.-H.

    2006-01-01

    Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.

  8. The role of Weyl symmetry in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Diles, Saulo

    2018-04-01

    This article is dedicated to the analysis of Weyl symmetry in the context of relativistic hydrodynamics. Here is discussed how this symmetry is properly implemented using the prescription of minimal coupling: ∂ → ∂ + ωA. It is shown that this prescription has no problem to deal with curvature since it gives the correct expressions for the commutator of covariant derivatives. In hydrodynamics, Weyl gauge connection emerges from the degrees of freedom of the fluid: it is a combination of the expansion and entropy gradient. The remaining degrees of freedom, shear, vorticity and the metric tensor, are see in this context as charged fields under the Weyl gauge connection. The gauge nature of the connection provides natural dynamics to it via equations of motion analogous to the Maxwell equations for electromagnetism. As a consequence, a charge for the Weyl connection is defined and the notion of local charge is analyzed generating the conservation law for the Weyl charge.

  9. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  10. Performance and Scalability of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.

  11. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots

    NASA Astrophysics Data System (ADS)

    Kholodenko, Arkady L.

    2016-08-01

    Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang-Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric-magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada's results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].

  12. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  13. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  14. Adding gauge fields to Kaplan's fermions

    NASA Astrophysics Data System (ADS)

    Blum, T.; Kärkkäinen, Leo

    1994-04-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.

  15. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  16. Quantum gravity in the Southern Cone Conference. Proceedings. Conference, Bariloche (Argentina), 7 - 10 Jan 1998.

    NASA Astrophysics Data System (ADS)

    1999-04-01

    The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.

  17. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.

    PubMed

    Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon

    2015-05-01

    To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.

  18. In-line pressure within a HOTLINE® Fluid Warmer, under various flow conditions.

    PubMed

    Higashi, Midoriko; Yamaura, Ken; Matsubara, Yukie; Fukudome, Takuya; Hoka, Sumio

    2015-04-01

    Roller pump infusion devices are widely used for rapid infusion, and may be combined with separate warming devices. There may be instances however, where the pressures generated by the roller pump may not be compatible with the warming device. We assessed a commonly used roller pump in combination with a HOTLINE® Fluid Warmer, and found that it could generate pressures exceeding the HOTLINE® manufacturers specifications. This was of concern because the HOTLINE® manufacturer guideline states that not for use with pressure devices generating over 300 mmHg. Pressure greater than 300 mmHg may compromise the integrity of the HOTLINE® Fluid Warming Set. The aim of this study was to compare in-line pressure within a HOTLINE® Fluid Warmer at different infusion rates of a roller pump using various sizes of intravenous cannulae. The rapid infusion system comprised a 500 mL-normal saline bag, roller pump type infusion device, HOTLINE® Fluid Warmer (blood and fluid warmer system), and six different sizes of intravenous cannulae. In-line pressure was measured proximal to the HOTLINE® (pre-warmer) and proximal to the cannula (post-warmer), at flow rate of 50-160 mL/min. The in-line pressures increased significantly with increasing flow rate. The pre-warmer pressures exceeded 300 mmHg when the flow rate was ≥120 mL/min with 20-gauge, 48 mm length cannula, 130 with 20-gauge, 25 mm cannula, and 160 mL/min with 18-gauge, 48 mm cannula. However, they were <300 mmHg at any flow rates with 18-gauge, 30 mm cannula and 16-gauge cannulae. The post-warmer pressures exceeded 300 mmHg at the flow rate of 140 mL/min with 20-gauge, 48 mm cannula, and 160 mL/min with 20-gauge, 25 mm cannula, while they were <300 mmHg at any flow rates with 18 and 16-gauge cannulae. The in-line pressure within a HOTLINE® could exceed 300 mmHg, depending on the flow rate and size and length of cannula. It is important to pay attention to the size and length of cannulae and flow rate to keep the maximum in-line pressure<300 mmHg when a roller pump type infusion device is used.

  19. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. Particle momentum effects from the detonation of heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Frost, D. L.; Ornthanalai, C.; Zarei, Z.; Tanguay, V.; Zhang, F.

    2007-06-01

    Detonation of a spherical high explosive charge containing solid particles generates a high-speed two-phase flow comprised of a decaying spherical air blast wave together with a rapidly expanding cloud of particles. The particle momentum effects associated with this two-phase flow have been investigated experimentally and numerically for a heterogeneous explosive consisting of a packed bed of inert particles saturated with a liquid explosive. Experimentally, the dispersion of the particles was tracked using flash radiography and high-speed photography. A particle streak gauge was developed to measure the rate of arrival of the particles at various locations. Using a cantilever gauge and a free-piston impulse gauge, it was found that the particle momentum flux provided the primary contribution of the multiphase flow to the near-field impulse applied to a nearby small structure. The qualitative features of the interaction between a particle and the flow field are illustrated using simple models for the particle motion and blast wave dynamics. A more realistic Eulerian two-fluid model for the gas-particle flow and a finite-element model for the structural response of the cantilever gauge are then used to determine the relative contributions of the gas and particles to the loading.

  1. Convertible socket for pressure gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissell, R.D.

    1990-01-01

    This patent describes a pressure gauge having a case in which is disposed a Bourdon tube and a base socket connected to the Bourdon tube for placing the tube in pressure communication with a fluid pressure source. Base socket has a rearward face and a bottom face with respect to the gauge adjacent openings defined through the case and an internal passage communication with the tube. It includes means for connecting a source of fluid pressure to the socket selectively through one of the case openings to the bottom face or the rearward face.

  2. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  3. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE PAGES

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  4. How Well do we Measure Precipitation? 'Wind-Induced Undercatch' Revisited

    NASA Astrophysics Data System (ADS)

    Pollock, M.; Colli, M.; Dutton, M.; O'Donnell, G. M.; Wilkinson, M.; Black, A.; Kilsby, C. G.; Quinn, P. F.; Lanza, L. G.; Stagnaro, M.; O'Connell, P. E.

    2016-12-01

    Data from precipitation gauges are critical for flood forecasting and flood risk management; radar calibration and numerical weather prediction models; and water resource management and hydrological modelling. They are often considered to provide the most accurate practicable measure of precipitation at a point in space and time, but remain subject to considerable errors. Inaccuracies in measurements are compounded in modelling applications by producing potentially misleading or incorrect results; it is therefore of utmost importance to understand uncertainty in observations. All precipitation gauges mounted above the ground surface present an obstruction to the prevailing wind. This causes an acceleration of wind above the orifice of a gauge resulting in what is commonly referred to as `wind-induced undercatch'. This is where precipitation is deflected away from the orifice and lands 'downstream' of the area represented by the gauge measurement, which reduces its collection efficiency (CE). The physical shape of a gauge bears a significant impact on its CE. Computational Fluid Dynamic (CFD) simulations are used to investigate how different shapes of precipitation gauge are affected by the wind. The CFD modelling is supported by high-resolution field measurements at several exposed `Hydro-Met' research stations in the UK. These sites are occupied by a range of precipitation gauges, scrutinised in the CFD analysis, which have different shapes and are mounted at varying heights. The wind-induced undercatch present within a number of large UK storms, which is not captured by operational gauge networks in the UK, is quantified and presented in this study. The combination of results from CFD modelling and the field studies show that gauge shape and mounting height significantly affect the extent of the `undercatching'. `Aerodynamic' gauges following a `champagne flute' or a `funnel' profile were demonstrated by both to have significant advantages over conventional gauge shapes, in terms of improving the CE.

  5. Computational Fluid Dynamics: Algorithms and Supercomputers

    DTIC Science & Technology

    1988-03-01

    1985. 1.2. Pulliam, T., and Steger, J. , Implicit Finite Difference Simulations of Three Dimensional Compressible Flow, AIAA Journal , Vol. 18, No. 2...approaches infinity, assuming N is bounded. The question as to actual performance when M is finite and N varies, is a different matter. (Note: the CYBER...PARTICLE-IN-CELL 9i% 3.b7 j.48 WEATHER FORECAST 98% 3.77 3.55 SEISMIC MIGRATION 98% 3.85 3.45 MONTE CARLO 99% 3.85 3.75 LATTICE GAUGE 100% 4.00 3.77

  6. Filtrates and Residues: Measuring the Atomic or Molecular Mass of a Gas with a Tire Gauge and a Butane Lighter Fluid Can.

    ERIC Educational Resources Information Center

    Bodner, George M.; Magginnis, Lenard J.

    1985-01-01

    Describes the use of an inexpensive apparatus (based on a butane lighter fluid can and a standard tire pressure gauge) in measuring the atomic/molecular mass of an unknown gas and in demonstrating the mass of air or the dependence of pressure on the mass of a gas. (JN)

  7. Gauge theory for finite-dimensional dynamical systems.

    PubMed

    Gurfil, Pini

    2007-06-01

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently "disordered" flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differential equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.

  8. Gauge theory for finite-dimensional dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-06-15

    Gauge theory is a well-established concept in quantum physics, electrodynamics, and cosmology. This concept has recently proliferated into new areas, such as mechanics and astrodynamics. In this paper, we discuss a few applications of gauge theory in finite-dimensional dynamical systems. We focus on the concept of rescriptive gauge symmetry, which is, in essence, rescaling of an independent variable. We show that a simple gauge transformation of multiple harmonic oscillators driven by chaotic processes can render an apparently ''disordered'' flow into a regular dynamical process, and that there exists a strong connection between gauge transformations and reduction theory of ordinary differentialmore » equations. Throughout the discussion, we demonstrate the main ideas by considering examples from diverse fields, including quantum mechanics, chemistry, rigid-body dynamics, and information theory.« less

  9. A numerical relativity scheme for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Daverio, David; Dirian, Yves; Mitsou, Ermis

    2017-12-01

    Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3  +  1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.

  10. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    NASA Astrophysics Data System (ADS)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  11. Canonical transformation path to gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Muench, J.; Vasak, D.; Kirsch, J.; Hanauske, M.; Stoecker, H.

    2017-06-01

    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the "free" gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics" Hamiltonian is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields—this is beyond the Einstein-Hilbert theory of general relativity.

  12. Optical mass gauge sensor having an energy per unit area of illumination detection

    NASA Technical Reports Server (NTRS)

    Justak, John F. (Inventor)

    2000-01-01

    An optical mass gauge sensor is disclosed comprising a vessel having an interior surface which reflects radiant energy at a wavelength at least partially absorbed by a fluid contained within the vessel, an illuminating device for introducing radiant energy at such wavelength into the vessel interior, and, a detector for measuring the energy per unit area of illumination within the vessel created by the radiant energy which is not absorbed by the fluid.

  13. A Tour Through Shape Dynamic Black Holes

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel

    Shape dynamics is a classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Despite these differences, shape dynamics and general relativity generically predict the same dynamics--there exist gauge-fixings of each theory that ensure agreement with the other. However, these gauge-fixing conditions are not necessarily globally well-defined and it is therefore possible to find solutions of the shape dynamics equations of motion that agree with general relativity on some open neighborhoods, but which have different global structures. In particular, the black hole solutions of the two theories disagree globally. Understanding these novel "shape dynamic black holes" is the primary goal of this thesis.

  14. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.

  15. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  16. Assessing the Impact of Germination and Sporulation Conditions on the Adhesion of Bacillus Spores to Glass and Stainless Steel by Fluid Dynamic Gauging

    PubMed Central

    Xu Zhou, Ke; Li, Nan; Christie, Graham

    2017-01-01

    Abstract The adhesion of spores of 3 Bacillus species with distinctive morphologies to stainless steel and borosilicate glass was studied using the fluid dynamic gauging technique. Marked differences were observed between different species of spores, and also between spores of the same species prepared under different sporulation conditions. Spores of the food‐borne pathogen B. cereus were demonstrated to be capable of withstanding shear stresses greater than 1500 Pa when adhered to stainless steel, in contrast to spores of Bacillus subtilis and Bacillus megaterium, which detached in response to lower shear stress. An extended DLVO model was shown to be capable of predicting the relative differences in spore adhesion between spores of different species and different culture conditions, but did not predict absolute values of force of adhesion well. Applying the model to germinating spores showed a significant reduction in adhesion force shortly after triggering germination, indicating a potential strategy to achieve enhanced removal of spores from surfaces in response to shear stress, such as during cleaning‐in‐place procedures. Practical Application Spore‐forming bacteria are a concern to the food industry because they have the potential to cause food‐borne illness and product spoilage, while being strongly adhesive to processing surfaces and resistant to cleaning‐in‐place procedures. This work is of significance to the food processors and manufacturers because it offers insight to the properties of spore adhesion and identifies a potential strategy to facilitate the removal of spores during cleaning procedures. PMID:29125641

  17. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  18. Fluid management in the optimization of space construction

    NASA Technical Reports Server (NTRS)

    Snyder, Howard

    1990-01-01

    Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.

  19. Post-Newtonian celestial dynamics in cosmology: Field equations

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2013-02-01

    Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are formulated in terms of the field variables which play a role of generalized coordinates in the Lagrangian formalism. It allows us to implement the powerful methods of variational calculus to derive the gauge-invariant field equations of the post-Newtonian celestial mechanics of an isolated astronomical system in an expanding universe. These equations generalize the field equations of the post-Newtonian theory in asymptotically flat spacetime by taking into account the cosmological effects explicitly and in a self-consistent manner without assuming the principle of liner superposition of the fields or a vacuole model of the isolated system, etc. The field equations for matter dynamic variables and gravitational field perturbations are coupled in the most general case of an arbitrary equation of state of matter of the background universe. We introduce a new cosmological gauge which generalizes the de Donder (harmonic) gauge of the post-Newtonian theory in asymptotically flat spacetime. This gauge significantly simplifies the gravitational field equations and allows one to find out the approximations where the field equations can be fully decoupled and solved analytically. The residual gauge freedom is explored and the residual gauge transformations are formulated in the form of the wave equations for the gauge functions. We demonstrate how the cosmological effects interfere with the local system and affect the local distribution of matter of the isolated system and its orbital dynamics. Finally, we worked out the precise mathematical definition of the Newtonian limit for an isolated system residing on the cosmological manifold. The results of the present paper can be useful in the Solar System for calculating more precise ephemerides of the Solar System bodies on extremely long time intervals, in galactic astronomy to study the dynamics of clusters of galaxies, and in gravitational wave astronomy for discussing the impact of cosmology on generation and propagation of gravitational waves emitted by coalescing binaries and/or merging galactic nuclei.

  20. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    DOE PAGES

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; ...

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  1. Quantum droplets of light in the presence of synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Wilson, Kali; Westerberg, Niclas; Valiente, Manuel; Duncan, Callum; Wright, Ewan; Ohberg, Patrik; Faccio, Daniele

    2017-04-01

    Recently, quantum droplets have been demonstrated in dipolar Bose-Einstein condensates, where the long range (nonlocal) attractive interaction is counterbalanced by a local repulsive interaction. In this work, we investigate the formation of quantum droplets in a two-dimensional nonlocal fluid of light. Fluids of light allow us to control the geometry of the system, and thus introduce vorticity which in turn creates an artificial magnetic field for the quantum droplet. In a quantum fluid of light, the photons comprising the fluid are treated as a gas of interacting Bose-particles, where the nonlocal interaction comes from the nonlinearity inherent in the material, in our case an attractive third-order thermo-optical nonlinearity. In contrast to matter-wave droplets, photon fluid droplets are not stabilised by local particle-particle scattering, but from the quantum pressure itself, i.e., a balance between diffraction and the nonlocal nonlinearity. We will present a numerical and analytical investigation of the ground state of these droplets and of their subsequent dynamics under the influence of a self-induced artificial magnetic field, and discuss experimental work with the possibility to include artificial gauge interactions between droplets.

  2. Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Khadekar, G. S.; Avachar, G. R.

    2007-03-01

    Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.

  3. Globe stability during simulated vitrectomy with valved and non-valved trocar cannulas

    PubMed Central

    Abulon, Dina Joy; Charles, Martin; Charles, Daniel E

    2015-01-01

    Purpose To compare the effects of valved and non-valved cannulas on intraocular pressure (IOP), fluid leakage, and vitreous incarceration during simulated vitrectomy. Methods Three-port pars plana incisions were generated in six rubber eyes using 23-, 25-, and 27-gauge valved and non-valved trocar cannulas. The models were filled with air and IOP was measured. Similar procedures were followed for 36 acrylic eyes filled with saline solution. Vitreous incarceration was analyzed in eleven rabbit and twelve porcine cadaver eyes. Results In the air-filled model, IOP loss was 89%–94% when two non-valved cannulas were unoccupied versus 1%–5% when two valved cannulas were unoccupied. In the fluid-filled model, with non-valved cannulas, IOP dropped while fluid leaked from the open ports. With two open ports, the IOP dropped to 20%–30% of set infusion pressure, regardless of infusion pressure and IOP compensation. The IOP was maintained in valved cannulas when one or two ports were left open, regardless of IOP compensation settings. There was no or minimal fluid leakage through open ports at any infusion pressure. Direct microscopic analysis of rabbit eyes showed that vitreous incarceration was significantly greater with 23-gauge non-valved than valved cannulas (P<0.005), and endoscopy of porcine eyes showed that vitreous incarceration was significantly greater with 23-gauge (P<0.05) and 27-gauge (P<0.05) non-valved cannulas. External observation of rabbit eyes showed vitreous prolapse through non-valved, but not valved, cannulas. Conclusion Valved cannulas surpassed non-valved cannulas in maintaining IOP, preventing fluid leakage, and reducing vitreous incarceration during simulated vitrectomy. PMID:26445520

  4. The origin of and conditions for clustering in fluids with competing interactions

    NASA Astrophysics Data System (ADS)

    Jadrich, Ryan; Bollinger, Jonathan; Truskett, Thomas

    2015-03-01

    Fluids with competing short-range attractions and long-range repulsions exhibit a rich phase behavior characterized by intermediate range order (IRO), as quantified via the static structure factor. This phase behavior includes cluster formation depending upon density-controlled packing effects and the magnitude and range of the attractive and repulsive interactions. Such model systems mimic (to zeroth order) screened, charge-stabilized, aqueous colloidal dispersions of, e.g., proteins. We employ molecular dynamics simulations and integral equation theory to elucidate a more fundamental microscopic explanation for IRO-driven clustering. A simple criterion is identified that indicates when dynamic, amorphous clustering emerges in a polydisperse system, namely when the Ornstein-Zernike thermal correlation length in the system exceeds the repulsive potential tail range. Remarkably, this criterion also appears tightly correlated to crystalline cluster formation in a monodisperse system. Our new gauge is compared to another phenomenological condition for clustering which is when the IRO peak magnitude exceeds ~ 2.7. Ramifications of crystalline versus amorphous clustering are discussed and potential ways of using our new measure in experiment are put forward.

  5. Experimental and Numerical Investigation of Reduced Gravity Fluid Slosh Dynamics for the Characterization of Cryogenic Launch and Space Vehicle Propellants

    NASA Technical Reports Server (NTRS)

    Walls, Laurie K.; Kirk, Daniel; deLuis, Kavier; Haberbusch, Mark S.

    2011-01-01

    As space programs increasingly investigate various options for long duration space missions the accurate prediction of propellant behavior over long periods of time in microgravity environment has become increasingly imperative. This has driven the development of a detailed, physics-based understanding of slosh behavior of cryogenic propellants over a range of conditions and environments that are relevant for rocket and space storage applications. Recent advancements in computational fluid dynamics (CFD) models and hardware capabilities have enabled the modeling of complex fluid behavior in microgravity environment. Historically, launch vehicles with moderate duration upper stage coast periods have contained very limited instrumentation to quantify propellant stratification and boil-off in these environments, thus the ability to benchmark these complex computational models is of great consequence. To benchmark enhanced CFD models, recent work focuses on establishing an extensive experimental database of liquid slosh under a wide range of relevant conditions. In addition, a mass gauging system specifically designed to provide high fidelity measurements for both liquid stratification and liquid/ullage position in a micro-gravity environment has been developed. This pUblication will summarize the various experimental programs established to produce this comprehensive database and unique flight measurement techniques.

  6. A UK portrait of wind-induced undercatch in rainfall measurement

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Quinn, Paul; O'Donnell, Greg; Colli, Matteo; Dutton, Mark; Black, Andrew; Wilkinson, Mark; Kilsby, Chris; Stagnaro, Mattia; Lanza, Luca; O'Connell, Enda

    2017-04-01

    Rainfall is vital to life; civilisation depends upon it. Changing local and regional rainfall regimes toward more intense storm events (e.g. in the UK), increases the existing challenge of accurately measuring and modelling rainfall. Data from rain gauges, often considered to provide the most accurate practicable measure of precipitation at a point in space in time, play a critical role. They are used for, inter alia, flood forecasting and flood risk management; radar calibration and numerical weather prediction models; urban planning and drainage; and water resource management and hydrological modelling. Despite the key importance of these measurements, they remain susceptible to fundamental sources of systematic error which are often not considered when rainfall data are used. Inaccuracies in measurements are compounded in modelling applications by producing potentially misleading or incorrect results; it is therefore of great importance to understand and present uncertainty in observations. Standard practice is to mount rain gauges above the ground surface. This configuration obstructs the prevailing wind which causes an acceleration of airflow above the orifice. Precipitation is deflected away from the orifice and lands 'downstream' of the area represented by the gauge measurement, reducing its collection efficiency (CE). This phenomenon is commonly referred to as 'wind-induced undercatch'. The physical shape of a gauge bears a significant impact on its CE. Computational Fluid Dynamics (CFD) simulations are used to investigate how different shapes of precipitation gauge are affected by the wind. CFD modelling is supported by high-resolution field measurements at several exposed 'Hydro-Met' research stations in the UK. These sites are occupied by rain gauges which are scrutinised in the CFD analyses. The reference measurements at all sites are made within a WMO reference pit, where the rain gauge is mounted with its orifice at ground level and surrounded by an appropriate grid structure. 'Undercatch' exhibited within UK storms, not captured by operational gauge networks in the UK, is quantified and presented in this study. Results from CFD modelling and the field studies show that gauge shape and mounting height significantly affect the extent of the undercatch. 'Aerodynamic' gauges following a 'champagne flute' or a 'funnel' profile were demonstrated by both to have significant advantages over conventional gauge shapes, in terms of improving the CE. This study presents the latest analyses, and proposes the possible extent of rainfall underestimation within the UK, with particular reference to its hydrology.

  7. Nonintegrable semidiscrete Hirota equation: gauge-equivalent structures and dynamical properties.

    PubMed

    Ma, Li-Yuan; Zhu, Zuo-Nong

    2014-09-01

    In this paper, we investigate nonintegrable semidiscrete Hirota equations, including the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation. We focus on the topics on gauge-equivalent structures and dynamical behaviors for the two nonintegrable semidiscrete equations. By using the concept of the prescribed discrete curvature, we show that, under the discrete gauge transformations, the nonintegrable semidiscrete Hirota(-) equation and the nonintegrable semidiscrete Hirota(+) equation are, respectively, gauge equivalent to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We prove that the two discrete gauge transformations are reversible. We study the dynamical properties for the two nonintegrable semidiscrete Hirota equations. The exact spatial period solutions of the two nonintegrable semidiscrete Hirota equations are obtained through the constructions of period orbits of the stationary discrete Hirota equations. We discuss the topic regarding whether the spatial period property of the solution to the nonintegrable semidiscrete Hirota equation is preserved to that of the corresponding gauge-equivalent nonintegrable semidiscrete equations under the action of discrete gauge transformation. By using the gauge equivalent, we obtain the exact solutions to the nonintegrable generalized semidiscrete modified Heisenberg ferromagnet equation and the nonintegrable generalized semidiscrete Heisenberg ferromagnet equation. We also give the numerical simulations for the stationary discrete Hirota equations. We find that their dynamics are much richer than the ones of stationary discrete nonlinear Schrödinger equations.

  8. Analysis of Fluid Gauge Sensor for Zero or Microgravity Conditions using Finite Element Method

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Doiron, Terence a.

    2007-01-01

    In this paper the Finite Element Method (FEM) is presented for mass/volume gauging of a fluid in a tank subjected to zero or microgravity conditions. In this approach first mutual capacitances between electrodes embedded inside the tank are measured. Assuming the medium properties the mutual capacitances are also estimated using FEM approach. Using proper non-linear optimization the assumed properties are updated by minimizing the mean square error between estimated and measured capacitances values. Numerical results are presented to validate the present approach.

  9. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  10. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  11. Distributed dynamic strain measurement using long-gauge FBG and DTR3 interrogator based on delayed transmission/reflection ratiometric reflectometry

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2013-09-01

    In this paper, we reveal characteristics of static and dynamic distributed strain measurement using a long-gauge fiber Bragg grating (FBG) and a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme. The DTR3 scheme has capability of detecting distributed strain using the long-gauge FBG with 50-cm spatial resolution. Additionally, dynamic strain measurement can be achieved using this technique in 100-Hz sampling rate. We evaluated strain sensing characteristics of the long-gauge FBG attached on 2.5-m aluminum bar by a four-point bending equipment. Experimental results showed that the DTR3 using the long-gauge FBG could detect distributed strain in static tests and resonance frequency of structure in free vibration tests. As a result, it is suggested that the DTR3 scheme using the longgauge FBG is attractive to structural health monitoring (SHM) as dynamic deformation detection of a few and tensmeters structure such as the airplane wing and the helicopter blade.

  12. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholodenko, Arkady L., E-mail: string@clemson.edu

    2016-08-15

    Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang–Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric–magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada’s results by carefully analyzing and classifying all dynamicallymore » generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].« less

  13. Fluid-gravity model for the chiral magnetic effect.

    PubMed

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2011-05-27

    We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society

  14. Bianchi cosmologies with p-form gauge fields

    NASA Astrophysics Data System (ADS)

    Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel

    2018-05-01

    In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.

  15. Probe Without Moving Parts Measures Flow Angle

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake

    2003-01-01

    The measurement of local flow angle is critical in many fluid-dynamic applications, including the aerodynamic flight testing of new aircraft and flight systems. Flight researchers at NASA Dryden Flight Research Center have recently developed, flight-tested, and patented the force-based flow-angle probe (FLAP), a novel, force-based instrument for the measurement of local flow direction. Containing no moving parts, the FLAP may provide greater simplicity, improved accuracy, and increased measurement access, relative to conventional moving vane-type flow-angle probes. Forces in the FLAP can be measured by various techniques, including those that involve conventional strain gauges (based on electrical resistance) and those that involve more advanced strain gauges (based on optical fibers). A correlation is used to convert force-measurement data to the local flow angle. The use of fiber optics will enable the construction of a miniature FLAP, leading to the possibility of flow measurement in very small or confined regions. This may also enable the tufting of a surface with miniature FLAPs, capable of quantitative flow-angle measurements, similar to attaching yarn tufts for qualitative measurements. The prototype FLAP was a small, aerodynamically shaped, low-aspect-ratio fin about 2 in. (approximately equal to 5 cm) long, 1 in. (approximately equal to 2.5 cm) wide, and 0.125 in. (approximately equal to 0.3 cm) thick (see Figure 1). The prototype FLAP included simple electrical-resistance strain gauges for measuring forces. Four strain gauges were mounted on the FLAP; two on the upper surface and two on the lower surface. The gauges were connected to form a full Wheatstone bridge, configured as a bending bridge. In preparation for a flight test, the prototype FLAP was mounted on the airdata boom of a flight-test fixture (FTF) on the NASA Dryden F-15B flight research airplane.

  16. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    NASA Astrophysics Data System (ADS)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  17. Dynamic Force Measurement with Strain Gauges

    ERIC Educational Resources Information Center

    Lee, Bruce E.

    1974-01-01

    Discusses the use of four strain gauges, a Wheatstone bridge, and an oscilloscope to measure forces dynamically. Included is an example of determining the centripetal force of a pendulum in a general physics laboratory. (CC)

  18. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  20. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  1. Augmentation of the cooling capacity of refrigerated fluid by minimizing heat gain of the fluid using a simple method of cold insulation.

    PubMed

    Lee, Byung Kook; Jeung, Kyung Woon; Lee, Seung Cheol; Min, Yong Il; Ryu, Hyun Ho; Kim, Mu Jin; Lee, Hyoung Youn; Heo, Tag

    2010-06-01

    This study was undertaken to determine how rapidly refrigerated fluids gain heat during bolus infusion and to determine whether the refrigerated fluids could be kept cold by a simple cold-insulation method. One liter of refrigerated fluid was run through either a 16-gauge catheter (16G(-) and 16G(+) groups) or an 18-gauge catheter (18G(-) and 18G(+) groups) while monitoring the temperature in the fluid bag and the outflow site. In the 16G(+) and the 18G(+) groups, the fluid bag was placed with an ice pack inside an insulating sleeve during the fluid run. In the 16G(-) and the 18G(-) groups, the outflow temperature increased to 10-12 degrees C during the fluid run. Meanwhile, outflow temperatures in the 16G(+) and the 18G(+) groups remained below 4.6 and 6.8 degrees C, respectively. The temperatures differed significantly between the 16G(-) and the 16G(+) groups (p < 0.001) and between the 18G(-) and the 18G(+) groups (p < 0.001), respectively. Substantial heat gain occurred in the refrigerated fluid even during the relatively short duration of bolus infusion. The heat gain could, however, be easily minimized by cold insulation of the fluid bag. (c) 2010 by the Society for Academic Emergency Medicine.

  2. Hydrodynamics of strongly coupled non-conformal fluids from gauge/gravity duality

    NASA Astrophysics Data System (ADS)

    Springer, Todd

    2009-08-01

    The subject of relativistic hydrodynamics is explored using the tools of gauge/gravity duality. A brief literature review of AdS/CFT and gauge/gravity duality is presented first. This is followed by a pedagogical introduction to the use of these methods in determining hydrodynamic dispersion relations, w(q), of perturbations in a strongly coupled fluid. Shear and sound mode perturbations are examined in a special class of gravity duals: those where the matter supporting the metric is scalar in nature. Analytical solutions (to order q^4 and q^3 respectively) for the shear and sound mode dispersion relations are presented for a subset of these backgrounds. The work presented here is based on previous publications by the same author, though some previously unpublished results are also included. In particular, the subleading term in the shear mode dispersion relation is analyzed using the AdS/CFT correspondence without any reference to the black hole membrane paradigm.

  3. Gauge symmetry and constraints structure for topologically massive AdS gravity: a symplectic viewpoint

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar; Escalante, Alberto

    2018-05-01

    By applying the Faddeev-Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant Λ , elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate the quantization bracket structure (generalized Faddeev-Jackiw brackets) for the dynamic variables and confirm that the number of physical degrees of freedom is one. This approach provides an alternative to explore the dynamical content of massive gravity models.

  4. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns observed in the vicinity of the collector, compared to the standard gauge shapes. Both the air velocity and the turbulent kinetic energy fields present structures that may improve the interception of particles by the aerodynamic gauge collector. To provide empirical validation, a field-based experimental campaign was undertaken at four UK research stations to compare the results of aerodynamic and conventional gauges, mounted in juxtaposition. The reference measurement is recorded using a rain gauge pit, as specified by the WMO. The results appear to demonstrate how the effect of the wind on rainfall measurements is influenced by the gauge shape and the mounting height. Significant undercatch is observed compared to the reference measurement. Aerodynamic gauges mounted on the ground catch more rainfall than juxtaposed straight-sided gauges, in most instances. This appears to provide some preliminary validation of the CFD model. The indication that an aerodynamic profile improves the gauge catching capability could be confirmed by tracking the hydrometeor trajectories with a Lagrangian method, based on the available set of airflows; and investigating time-dependent aerodynamic features by means of dedicated CFD simulations. Furthermore, wind-tunnel tests could be carried out to provide more robust physical validation of the CFD model.

  5. Spinal anaesthesia for caesarean section: comparison of 22-gauge and 25-gauge Whitacre needles with 26-gauge Quincke needles.

    PubMed

    Shutt, L E; Valentine, S J; Wee, M Y; Page, R J; Prosser, A; Thomas, T A

    1992-12-01

    We have studied 150 women undergoing elective Caesarean section under spinal anaesthesia. They were allocated randomly to have a 22-gauge Whitacre, a 25-gauge Whitacre or a 26-gauge Quincke needle inserted into the lumbar subarachnoid space. The groups were compared for ease of insertion, number of attempted needle insertions before identification of cerebrospinal fluid, quality of subsequent analgesia and incidence of postoperative complications. There were differences between groups, but they did not reach statistical significance. Postdural puncture headache (PDPH) was experienced by one mother in the 22-gauge Whitacre group, none in the 25-gauge Whitacre group and five in the 26-gauge Quincke group. Five of the six PDPH occurred after a single successful needle insertion. Seven of the 15 mothers in whom more than two needle insertions were made experienced backache, compared with 12 of the 129 receiving two or less (P < 0.001). We conclude that the use of 22- and 25-gauge Whitacre needles in elective Caesarean section patients is associated with a low incidence of PDPH and that postoperative backache is more likely when more than two attempts are made to insert a spinal needle.

  6. Closed-string tachyon condensation and the worldsheet super-higgs effect.

    PubMed

    Horava, Petr; Keeler, Cynthia A

    2008-02-08

    Alternative gauge choices for worldsheet supersymmetry can elucidate dynamical phenomena obscured in the usual superconformal gauge. In the particular example of the tachyonic E8 heterotic string, we use a judicious gauge choice to show that the process of closed-string tachyon condensation can be understood in terms of a worldsheet super-Higgs effect. The worldsheet gravitino assimilates the goldstino and becomes a dynamical propagating field. Conformal, but not superconformal, invariance is maintained throughout.

  7. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    NASA Astrophysics Data System (ADS)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  8. Parametric Dynamic Load Prediction of a Narrow Gauge Rocket Sled

    DTIC Science & Technology

    2006-12-01

    Monorail λ Compared to Sled Tests.......................................................... 11 Figure 2.1 Application of Vertical λ to a Narrow Gauge sled...Three distinct sled configurations are used: monorail , dual rail wide gauge, and dual rail narrow gauge. Of the three, the narrow gauge...weight and the resulting value was termed λ. Monorail λ factor loading was first documented by Mixon (1971) where a few measured data points were

  9. Experimental Study of Airfoil Trailing Edge Noise: Instrumentation, Methodology and Initial Results. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Manley, M. B.

    1980-01-01

    The mechanisms of aerodynamic noise generation at the trailing edge of an airfoil is investigated. Instrumentation was designed, a miniature semiconductor strain-gauge pressure transducer and associated electronic amplifier circuitry were designed and tested and digital signal analysis techniques applied to gain insight into the relationship between the dynamic pressure close to the trailing edge and the sound in the acoustic far-field. Attempts are made to verify some trailing-edge noise generation characteristics as theoretically predicted by several contemporary acousticians. It is found that the noise detected in the far-field is comprised of the sum of many uncorrelated emissions radiating from the vicinity of the trailing edge. These emissions appear to be the result of acoustic energy radiation which has been converted by the trailing-edge noise mechanism from the dynamic fluid energy of independent streamwise 'strips' of the turbulent boundary layer flow.

  10. Gravitational wave-Gauge field oscillations

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.; Maksimova, N. A.

    2016-09-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multidimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  11. Radio Frequency Mass Gauging of Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Vaden, Karl R.; Herlacher, Michael D.; Buchanan, David A.; VanDresar, Neil T.

    2007-01-01

    A combined experimental and computer simulation effort was conducted to measure radio frequency (RF) tank resonance modes in a dewar partially filled with liquid oxygen, and compare the measurements with numerical simulations. The goal of the effort was to demonstrate that computer simulations of a tank's electromagnetic eigenmodes can be used to accurately predict ground-based measurements, thereby providing a computational tool for predicting tank modes in a low-gravity environment. Matching the measured resonant frequencies of several tank modes with computer simulations can be used to gauge the amount of liquid in a tank, thus providing a possible method to gauge cryogenic propellant tanks in low-gravity. Using a handheld RF spectrum analyzer and a small antenna in a 46 liter capacity dewar for experimental measurements, we have verified that the four lowest transverse magnetic eigenmodes can be accurately predicted as a function of liquid oxygen fill level using computer simulations. The input to the computer simulations consisted of tank dimensions, and the dielectric constant of the fluid. Without using any adjustable parameters, the calculated and measured frequencies agree such that the liquid oxygen fill level was gauged to within 2 percent full scale uncertainty. These results demonstrate the utility of using electromagnetic simulations to form the basis of an RF mass gauging technology with the power to simulate tank resonance frequencies from arbitrary fluid configurations.

  12. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    NASA Astrophysics Data System (ADS)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  13. Mass gap in the weak coupling limit of (2 +1 )-dimensional SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Anishetty, Ramesh; Sreeraj, T. P.

    2018-04-01

    We develop the dual description of (2 +1 )-dimensional SU(2) lattice gauge theory as interacting "Abelian-like" electric loops by using Schwinger bosons. "Point splitting" of the lattice enables us to construct explicit Hilbert space for the gauge invariant theory which in turn makes dynamics more transparent. Using path integral representation in phase space, the interacting closed loop dynamics is analyzed in the weak coupling limit to get the mass gap.

  14. Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly***

    NASA Astrophysics Data System (ADS)

    Megías, Eugenio; Pena-Benitez, Francisco

    2014-03-01

    We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed. Talk given by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2009-07908, FPA2011-25948), Spanish MICINN Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Comunidad de Madrid HEP-HACOS S2009/ESP-1473, Spanish MINECO's Centro de Excelencia Severo Ochoa Program (SEV-2012-0234, SEV-2012-0249), and the Juan de la Cierva Program.

  15. Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Aida

    As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.

  16. A simple model of low-scale direct gauge mediation

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Shirman, Yuri; Terning, John

    2007-05-01

    We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a μ-term, while the B-term arises at two-loop order resulting in a moderately large tan β. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC.

  17. Constrained dynamics of two interacting relativistic particles in the Faddeev-Jackiw symplectic framework

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tzompantzi, Omar

    2018-05-01

    The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.

  18. Unraveling strong dynamics with the fifth dimension

    NASA Astrophysics Data System (ADS)

    Batell, Brian Thomas

    Theories with strong gauge dynamics, such as quantum chromodynamics and technicolor, have evaded analytic solutions despite more than thirty years of efforts on the part of elementary particle theorists. Holography refers to methods inspired by the AdS/CFT correspondence in string theory to understand gauge theories in the nonperturbative regime using extra dimensions. The studies presented in this thesis describe new applications of holography to models of electroweak symmetry breaking and quantum chromodynamics. The four-dimensional holographic description of the Randall-Sundrum model, or warped extra dimension, is a theory of electroweak symmetry breaking with strong gauge dynamics, similar to technicolor or composite Higgs theories. A new tool, the holographic basis, is presented that allows one to quantitatively characterize the mixing between the elementary and composite states in the holographic theory. An exploration of localized gauge fields in the Randall-Sundrum framework is detailed, focusing on both theoretical and phenomenological issues. The holographic dual interpretation of localized gauge bosons is also derived. Bottom-up holographic approaches to quantum chromodynamics, referred to as AdS/QCD, describe the observed properties of mesons reasonably well. In models with a soft infrared wall, Regge trajectories for high radial and spin states can also be obtained. A dynamical soft-wall AdS/QCD model is described, and the implications for top-down string constructions are discussed.

  19. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  20. Spherically symmetric Einstein-aether perfect fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Alan A.; Latta, Joey; Leon, Genly

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less

  1. Dynamics of hard sphere colloidal dispersions

    NASA Technical Reports Server (NTRS)

    Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.

    1994-01-01

    Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.

  2. Appearance of gauge structure in simple dynamical systems

    NASA Technical Reports Server (NTRS)

    Wilczek, F.; Zee, A.

    1984-01-01

    By generalizing a construction of Berry and Simon, it is shown that non-Abelian gauge fields arise in the adiabatic development of simple quantum mechanical systems. Characteristics of the gauge fields are related to energy splittings, which may be observable in real systems. Similar phenomena are found for suitable classical systems.

  3. Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing

    NASA Astrophysics Data System (ADS)

    Colli, M.; Lanza, L. G.; La Barbera, P.; Chan, P. W.

    2014-07-01

    The contribution of any single uncertainty factor in the resulting performance of infield rain gauge measurements still has to be comprehensively assessed due to the high number of real world error sources involved, such as the intrinsic variability of rainfall intensity (RI), wind effects, wetting losses, the ambient temperature, etc. In recent years the World Meteorological Organization (WMO) addressed these issues by fostering dedicated investigations, which revealed further difficulties in assessing the actual reference rainfall intensity in the field. This work reports on an extensive assessment of the OTT Pluvio2 weighing gauge accuracy when measuring rainfall intensity under laboratory dynamic conditions (time varying reference flow rates). The results obtained from the weighing rain gauge (WG) were also compared with a MTX tipping-bucket rain gauge (TBR) under the same test conditions. Tests were carried out by simulating various artificial precipitation events, with unsteady rainfall intensity, using a suitable dynamic rainfall generator. Real world rainfall data measured by an Ogawa catching-type drop counter at a field test site located within the Hong Kong International Airport (HKIA) were used as a reference for the artificial rain generation system. Results demonstrate that the differences observed between the laboratory and field performance of catching-type gauges are only partially attributable to the weather and operational conditions in the field. The dynamics of real world precipitation events is responsible for a large part of the measurement errors, which can be accurately assessed in the laboratory under controlled environmental conditions. This allows for new testing methodologies and the development of instruments with enhanced performance in the field.

  4. Higgsed Gauge-flation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-01

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. We work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ < 2, where γ = g 2 ψ 2/ H 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density fluctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wave spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at inflationary energy scales well below the GUT scale.

  5. Generators of dynamical symmetries and the correct gauge transformation in the Landau level problem: use of pseudomomentum and pseudo-angular momentum

    NASA Astrophysics Data System (ADS)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2016-11-01

    Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.

  6. A new method for automated dynamic calibration of tipping-bucket rain gauges

    USGS Publications Warehouse

    Humphrey, M.D.; Istok, J.D.; Lee, J.Y.; Hevesi, J.A.; Flint, A.L.

    1997-01-01

    Existing methods for dynamic calibration of tipping-bucket rain gauges (TBRs) can be time consuming and labor intensive. A new automated dynamic calibration system has been developed to calibrate TBRs with minimal effort. The system consists of a programmable pump, datalogger, digital balance, and computer. Calibration is performed in two steps: 1) pump calibration and 2) rain gauge calibration. Pump calibration ensures precise control of water flow rates delivered to the rain gauge funnel; rain gauge calibration ensures precise conversion of bucket tip times to actual rainfall rates. Calibration of the pump and one rain gauge for 10 selected pump rates typically requires about 8 h. Data files generated during rain gauge calibration are used to compute rainfall intensities and amounts from a record of bucket tip times collected in the field. The system was tested using 5 types of commercial TBRs (15.2-, 20.3-, and 30.5-cm diameters; 0.1-, 0.2-, and 1.0-mm resolutions) and using 14 TBRs of a single type (20.3-cm diameter; 0.1-mm resolution). Ten pump rates ranging from 3 to 154 mL min-1 were used to calibrate the TBRs and represented rainfall rates between 6 and 254 mm h-1 depending on the rain gauge diameter. All pump calibration results were very linear with R2 values greater than 0.99. All rain gauges exhibited large nonlinear underestimation errors (between 5% and 29%) that decreased with increasing rain gauge resolution and increased with increasing rainfall rate, especially for rates greater than 50 mm h-1. Calibration curves of bucket tip time against the reciprocal of the true pump rate for all rain gauges also were linear with R2 values of 0.99. Calibration data for the 14 rain gauges of the same type were very similar, as indicated by slope values that were within 14% of each other and ranged from about 367 to 417 s mm h-1. The developed system can calibrate TBRs efficiently, accurately, and virtually unattended and could be modified for use with other rain gauge designs. The system is now in routine use to calibrate TBRs in a large rainfall collection network at Yucca Mountain, Nevada.

  7. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  8. Large-Scale Physical Models of Thermal Remediation of DNAPL Source Zones in Aquitards

    DTIC Science & Technology

    2009-05-01

    pressure at the bottom of the tank. The higher pressure is reflected in higher measured water levels in external gauges . Figure 63: 3D Cross...than atmospheric. This higher pressure can raise the apparent water level in a sight gauge or external overflow and can even drive more fluid through...the water table. All met or exceeded their goals. Typical turnkey unit costs (including design, permitting, fabrication, mobilization, drilling

  9. Mass quantity gauging by RF mode analysis

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Ellerbruch, D.; Cruz, J. E.; Stokes, R. W.; Luft, P. E.; Peterson, R. G.; Hiester, A. E.

    1973-01-01

    Work done to date is reported concerning Radio Frequency Mass Quantity Gauging. Experimental apparatus has been designed and tested which measures the resonant frequencies of a tank in the time domain. These frequencies correspond to the total mass of fluid within the tank. Experimental results are discussed for nitrogen and hydrogen in normal gravity both in the supercritical state and also in the two phase (liquid-gas) region. Theoretical discussions for more general cases are given.

  10. Holographic anyonic superfluidity

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2013-10-01

    Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.

  11. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  12. Higgsed Gauge-flation

    DOE PAGES

    Adshead, Peter; Sfakianakis, Evangelos I.

    2017-08-29

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  13. Higgsed Gauge-flation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adshead, Peter; Sfakianakis, Evangelos I.

    We study a variant of Gauge-flation where the gauge symmetry is spontaneously broken by a Higgs sector. Here, we work in the Stueckelberg limit and demonstrate that the dynamics remain (catastrophically) unstable for cases where the gauge field masses satisfy γ< 2, where γ= g 2 2=ψH 2, g is the gauge coupling, ψ is the gauge field vacuum expectation value, and H is the Hubble rate. We compute the spectrum of density uctuations and gravitational waves, and show that the model can produce observationally viable spectra. The background gauge field texture violates parity, resulting in a chiral gravitational wavemore » spectrum. This arises due to an exponential enhancement of one polarization of the spin-2 fluctuation of the gauge field. Higgsed Gauge-flation can produce observable gravitational waves at in inflationary energy scales well below the GUT scale.« less

  14. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  15. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    PubMed

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  16. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  17. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  18. Gauge fields at finite temperatures—"Thermo field dynamics" and the KMS condition and their extension to gauge theories

    NASA Astrophysics Data System (ADS)

    Ojima, Izumi

    1981-11-01

    "Thermo field dynamics," allowing the Feynman diagram method to be applied to real-time causal Green's functions at finite temperatures ( not temperature Green's functions with imaginary times) expressed in the form of "vacuum" expectation values, is reconsidered in light of its connection with the algebraic formulation of statical machanics based upon the KMS condition. On the basis of so-obtained general basic formulae, the formalism is extended to the case of gauge theories, where the subsidiary condition specifying physical states, the notion of observables, and the structure of the physical subspace at finite temperatures are clarified.

  19. How can we probe the atom mass currents induced by synthetic gauge fields?

    NASA Astrophysics Data System (ADS)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  20. In Situ Space Gas Dynamic Measurements by the ROSINA Comet Pressure Sensor COPS Onboard Rosetta Spacecraft

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; Altwegg, Kathrin; Fiethe, Björn; Gasc, Sébastien; Rubin, Martin

    2015-04-01

    Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The COmet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux. The combination of these two gauges makes COPS capable to derive the gas dynamics (velocity and temperature) at the location of the spacecraft. Over several months Rosetta has been carrying out a close study of comet 67P/Churyumov-Gerasimenko. In early August 2014 COPS detected the faint and expanding atmosphere of the comet while it was still outside of 3.5 AU from the Sun. We will present ROSINA COPS observations of the evolution and gas dynamics of the cometary coma following these first observations until spring 2015. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.

  1. Patterns of symmetry breaking in chiral QCD

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  2. Living without supersymmetry—the conformal alternative and a dynamical Higgs boson

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2017-11-01

    We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.

  3. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  4. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  5. Continuous-spin mixed-symmetry fields in AdS(5)

    NASA Astrophysics Data System (ADS)

    Metsaev, R. R.

    2018-05-01

    Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.

  6. Dynamical Chern-Simons Theory in the Brillouin Zone

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng

    Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.

  7. Distributed strain measurement based on long-gauge FBG and delayed transmission/reflection ratiometric reflectometry for dynamic structural deformation monitoring.

    PubMed

    Nishiyama, Michiko; Igawa, Hirotaka; Kasai, Tokio; Watanabe, Naoyuki

    2015-02-10

    In this paper, we propose a delayed transmission/reflection ratiometric reflectometry (DTR(3)) scheme using a long-gauge fiber Bragg grating (FBG), which can be used for dynamic structural deformation monitoring of structures of between a few to tens of meters in length, such as airplane wings and helicopter blades. FBG sensors used for multipoint sensing generally employ wavelength division multiplexing techniques utilizing several Bragg central wavelengths; by contrast, the DTR(3) interrogator uses a continuous pulse array based on a pseudorandom number code and a long-gauge FBG utilizing a single Bragg wavelength and composed of simple hardware devices. The DTR(3) scheme can detect distributed strain at a 50 cm spatial resolution using a long-gauge FBG with a 100 Hz sampling rate. We evaluated the strain sensing characteristics of the long-gauge FBG when attached to a 2.5 m aluminum bar and a 5.5 m helicopter blade model, determining these structure natural frequencies in free vibration tests and their distributed strain characteristics in static tests.

  8. Towards a method to characterize temporary groundwater dynamics during droughts

    NASA Astrophysics Data System (ADS)

    Heudorfer, Benedikt; Stahl, Kerstin

    2016-04-01

    In order to improve our understanding of the complex mechanisms involved in the development, propagation and termination of drought events, a major challenge is to grasp the role of groundwater systems. Research on how groundwater responds to meteorological drought events (i.e. short-term climate anomalies) is still limited. Part of the problem is that there is as yet no generic method to characterize the response of different groundwater systems to extreme climate anomalies. In order to explore possibilities for such a methodology, we evaluate two statistical approaches to characterize groundwater dynamics on short time scales by applying them on observed groundwater head data from different pre- and peri-mountainous groundwater systems in humid central Europe (Germany). The first method is based on the coefficient of variation in moving windows of various lengths, the second method is based on streamflow recession characteristics applied on groundwater data. With these methods, the gauges behavior during low head events and its response to precipitation was explored. Findings regarding the behavior of the gauges make it possible to distinguish between gauges with a dominance of cyclic patterns, and gauges with a dominance of patterns on seasonal or event scale (commonly referred to as slow/fast responding gauges, respectively). While some clues on what factors that might control these patterns are present, the specific controls are general unclear for the gauges in this study. However as the key conclusion stands the question if the variety of manifestations of groundwater dynamics, as they occur in real systems, is subsumable with one unique method. Further studies on the topic are in progress.

  9. Offset shock mounted recorder carrier including overpressure gauge protector and balance joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, D.K.

    1990-12-25

    This patent describes a recorder carrier adapted to be included within a well tool. The carrier adapted to include at least one recorder, the recorder being movable within the recorder carrier when the carrier includes the recorder, the well tool adapted to be disposed in a borehole containing well annulus fluid, the recorder carrier adapted to receive well fluid from a formation in the borehole. It comprises overpressure protection means for preventing the well fluid from entering the recorder carrier when a pressure of the well fluid is greater than a predetermined amount above a pressure of the well annulusmore » fluid thereby protecting the recorder from the pressure of the well fluid.« less

  10. Large tensor non-Gaussianity from axion-gauge field dynamics

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-05-01

    We show that an inflation model in which a spectator axion field is coupled to an S U (2 ) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, Bh, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by Bh/Ph2=O (10 )×ΩA-1 , where ΩA is a fraction of the energy density in the gauge field and Ph is the power spectrum of gravitational waves produced by the gauge field.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in SU(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadronmore » spectrum, including dynamical chiral symmetry breaking. In conclusion, the hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly-interacting constituent quarks.« less

  12. Centre vortex removal restores chiral symmetry

    NASA Astrophysics Data System (ADS)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-12-01

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in {SU}(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadron spectrum, including dynamical chiral symmetry breaking. The hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly interacting constituent quarks.

  13. Centre vortex removal restores chiral symmetry

    DOE PAGES

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek B.

    2017-11-15

    The influence of centre vortices on dynamical chiral symmetry breaking is investigated through the light hadron spectrum on the lattice. Recent studies of the quark propagator and other quantities have provided evidence that centre vortices are the fundamental objects underpinning dynamical chiral symmetry breaking in SU(3) gauge theory. For the first time, we use the chiral overlap fermion action to study the low-lying hadron spectrum on lattice ensembles consisting of Monte Carlo, vortex-removed, and vortex-projected gauge fields. We find that gauge field configurations consisting solely of smoothed centre vortices are capable of reproducing all the salient features of the hadronmore » spectrum, including dynamical chiral symmetry breaking. In conclusion, the hadron spectrum on vortex-removed fields shows clear signals of chiral symmetry restoration at light values of the bare quark mass, while at heavy masses the spectrum is consistent with a theory of weakly-interacting constituent quarks.« less

  14. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  15. Ultrasound-guided approach to the cervical articular process joints in horses: a validation of the technique in cadavers.

    PubMed

    Purefoy Johnson, Jessica; Stack, John David; Rowan, Conor; Handel, Ian; O'Leary, John Mark

    2017-05-22

    To compare accuracy of the ultrasound-guided craniodorsal (CrD) approach with the dorsal (D) approach to the cervical articular process joints, and to evaluate the effect of the transducer, needle gauge, and operator experience. Cervical articular process joints from 14 cadaveric neck specimens were injected using either a D or CrD approach, a linear (13 MHx) or microconvex transducer (10 MHz), and an 18 or 20 gauge needle, by an experienced or inexperienced operator. Injectate consisted of an iodinated contrast material solution. Time taken for injection, number of redirects, and retrieval of synovial fluid were recorded. Accuracy was assessed using a scoring system for contrast seen on computed tomography (CT). The successful performance of intra-articular injections of contrast detected by CT using the D (61/68) and CrD (57/64) approaches was comparable. No significant effect of approach, transducer or needle gauge was observed on injection accuracy, time taken to perform injection, or number of redirects. The 18 gauge needle had a positive correlation with retrieval of synovial fluid. A positive learning curve was observed for the inexperienced operator. Both approaches to the cervical articular process joints were highly accurate. Ultrasound-guided injection of the cervical articular process joints is an easily-learnt technique for an inexperienced veterinarian. Either approach may be employed in the field with a high level of accuracy, using widely available equipment.

  16. A laboratory evaluation of the influence of weighing gauges performance on extreme events statistics

    NASA Astrophysics Data System (ADS)

    Colli, Matteo; Lanza, Luca

    2014-05-01

    The effects of inaccurate ground based rainfall measurements on the information derived from rain records is yet not much documented in the literature. La Barbera et al. (2002) investigated the propagation of the systematic mechanic errors of tipping bucket type rain gauges (TBR) into the most common statistics of rainfall extremes, e.g. in the assessment of the return period T (or the related non-exceedance probability) of short-duration/high intensity events. Colli et al. (2012) and Lanza et al. (2012) extended the analysis to a 22-years long precipitation data set obtained from a virtual weighing type gauge (WG). The artificial WG time series was obtained basing on real precipitation data measured at the meteo-station of the University of Genova and modelling the weighing gauge output as a linear dynamic system. This approximation was previously validated with dedicated laboratory experiments and is based on the evidence that the accuracy of WG measurements under real world/time varying rainfall conditions is mainly affected by the dynamic response of the gauge (as revealed during the last WMO Field Intercomparison of Rainfall Intensity Gauges). The investigation is now completed by analyzing actual measurements performed by two common weighing gauges, the OTT Pluvio2 load-cell gauge and the GEONOR T-200 vibrating-wire gauge, since both these instruments demonstrated very good performance under previous constant flow rate calibration efforts. A laboratory dynamic rainfall generation system has been arranged and validated in order to simulate a number of precipitation events with variable reference intensities. Such artificial events were generated basing on real world rainfall intensity (RI) records obtained from the meteo-station of the University of Genova so that the statistical structure of the time series is preserved. The influence of the WG RI measurements accuracy on the associated extreme events statistics is analyzed by comparing the original intensity-duration-frequency (IDF) curves with those obtained from the measuring of the simulated rain events. References: Colli, M., L.G. Lanza, and P. La Barbera, (2012). Weighing gauges measurement errors and the design rainfall for urban scale applications, 9th International Workshop On Precipitation In Urban Areas, 6-9 December, 2012, St. Moritz, Switzerland Lanza, L.G., M. Colli, and P. La Barbera (2012). On the influence of rain gauge performance on extreme events statistics: the case of weighing gauges, EGU General Assembly 2012, April 22th, Wien, Austria La Barbera, P., L.G. Lanza, and L. Stagi, (2002). Influence of systematic mechanical errors of tipping-bucket rain gauges on the statistics of rainfall extremes. Water Sci. Techn., 45(2), 1-9.

  17. Experimental and theoretical developments in the Mochi project

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Vereen, Keon; Lavine, Eric Sander; Carroll, Evan; Card, Alexander; Azuara-Rosales, Manuel; Quinley, Morgan; Yun, Gunsu

    2015-11-01

    The Mochi project investigates the interaction between magnetic fields and plasma flows in cylindrical and toroidal geometries. The configuration is designed to tailor the radial electric field profile with three annular electrodes and allow for shear helical flows in magnetized plasma jets or merging spheromaks. First plasma has been achieved and characterization is in progress with images, magnetic probes, an energy analyzer, an interferometer, a fast ion gauge, and optical and RF spectroscopy. Vector tomography of ion Doppler spectroscopy is progressing with the design of the custom fiber bundle and implementation of the numerical code. The first experiments are investigating the coupling of sausage and kink instabilities, comparing measurements to a new stability criterion and a numerical stability code. A new canonical field theory has been developed to help interpret the dynamics of plasma self-organization. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, that dynamical equations can be re-formulated as a form of Maxwell's equations, and that helicity is conserved only when density gradients are shallow. This work is supported by US DOE Grant DE-SC0010340.

  18. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  19. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m2q~, m2l~ due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m2q~ and m2l~ can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed.

  20. Conformal completion of the standard model with a fourth generation

    NASA Astrophysics Data System (ADS)

    Ho, Chiu Man; Hung, Pham Q.; Kephart, Thomas W.

    2012-06-01

    We study dynamical electroweak symmetry breaking with a fourth generation within the Z n orbifolded AdS 5 ⊗ S 5 framework. A realistic Z 7 example is discussed. The initial theory reduces dynamically, due to the induced condensates, to a four-family trinification near a TeV-scale conformal fixed point where the gauge hierarchy problem does not exist. We predict new gauge bosons and bifundamental fermions and scalars accessible by the LHC.

  1. Fault Gauge Numerical Simulation : Dynamic Rupture Propagation and Local Energy Partitioning

    NASA Astrophysics Data System (ADS)

    Mollon, G.

    2017-12-01

    In this communication, we present dynamic simulations of the local (centimetric) behaviour of a fault filled with a granular gauge submitted to dynamic rupture. The numerical tool (Fig. 1) combines classical Discrete Element Modelling (albeit with the ability to deal with arbitrary grain shapes) for the simualtion of the gauge, and continuous modelling for the simulation of the acoustic waves emission and propagation. In a first part, the model is applied to the simulation of steady-state shearing of the fault under remote displacement boudary conditions, in order to observe the shear accomodation at the interface (R1 cracks, localization, wear, etc.). It also makes it possible to fit to desired values the Rate and State Friction properties of the granular gauge by adapting the contact laws between grains. Such simulations provide quantitative insight in the steady-state energy partitionning between fracture, friction and acoustic emissions as a function of the shear rate. In a second part, the model is submitted to dynamic rupture. For that purpose, the fault is elastically preloaded just below rupture, and a displacement pulse is applied at one end of the sample (and on only one side of the fault). This allows to observe the propagation of the instability along the fault and the interplay between this propagation and the local granular phenomena. Energy partitionning is then observed both in space and time.

  2. Higgs mechanism and the added-mass effect.

    PubMed

    Krishnaswami, Govind S; Phatak, Sachin S

    2015-04-08

    In the Higgs mechanism, mediators of the weak force acquire masses by interacting with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linearly related to its acceleration, via an added-mass tensor. We uncover a striking physical analogy between the two effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of gauge symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the scalar vacuum manifold. The new viewpoint is illustrated with numerous examples, and raises interesting questions, notably on the fluid analogues of the broken symmetry and Higgs particle, and the field-theoretic analogue of the added mass of a composite body.

  3. Nonpolynomial Lagrangian approach to regular black holes

    NASA Astrophysics Data System (ADS)

    Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio

    We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.

  4. Advances in synthetic gauge fields for light through dynamic modulation

    NASA Astrophysics Data System (ADS)

    Hey, Daniel; Li, Enbang

    2018-04-01

    Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.

  5. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  6. Advances in synthetic gauge fields for light through dynamic modulation.

    PubMed

    Hey, Daniel; Li, Enbang

    2018-04-01

    Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.

  7. Advances in synthetic gauge fields for light through dynamic modulation

    PubMed Central

    Li, Enbang

    2018-01-01

    Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions. PMID:29765688

  8. Dynamic Assembly, Assessment, Assurance, and Adaptation via Heterogeneous Software Connectors

    DTIC Science & Technology

    2004-10-01

    Versioning Connectors (MVC) Representative of runtime monitoring gauges are multiversioning gauges, which monitor and analyze different versions of...multiple versions of the same component must be merged by the connector before they are forwarded to their target components. The multiversioning

  9. On the wind-induced undercatch in rainfall measurement using CFD-based simulations

    NASA Astrophysics Data System (ADS)

    Colli, Matteo; Lanza, Luca

    2016-04-01

    The reliability of liquid atmospheric precipitation measurements is a basic requirement since rainfall data represent the fundamental input variables of many scientific applications (hydrologic models, weather forecasting data assimilation, climate change studies, calibration of weather radar, etc.). The scientific community and the National Meteorological Services worldwide are facing the issue of improving the accuracy of precipitation measurements, with an increased focus on retrieving the information at a high temporal resolution. The rainfall intensity is indeed fundamental information for the precise quantification of the markedly time-varying behavior of precipitation events. Environmental conditions have a relevant impact on the rain collection/sensing efficiency. Among other effects, wind is recognized as a major source of underestimation since it reduces the collection efficiency of the catching-type gauges (Nespor and Sevruk, 1999), the most common type of instruments used worldwide in the national observation networks. The collection efficiency is usually obtained by comparing the rainfall amounts measured by the gauge with the reference, which was defined by EN-13798 standard (CEN, 2002) as a gauge placed below the ground level inside a pit. A lot of scatter can be observed for a given wind speed, which is mainly caused by comparability issues among the tested gauges. An additional source of uncertainty is the drops size distribution (DSD) of the rain, which varies on an event-by-event basis. The goal of this study is to understand the role of the physical characteristics of precipitation particles on the wind-induced rainfall underestimation observed for catching-type gauges. To address this issue, a detailed analysis of the flow field in the vicinity of the gauge is conducted using time-averaged computational fluid dynamics (CFD) simulations (Colli et al., 2015). Using a Lagrangian model, which accounts for the hydrodynamic behavior of liquid particles in the atmosphere, droplets trajectories are calculated to obtain the collection efficiency associated with different drop size distribution and varying the wind speed. The main benefit of investigating this error by means of CFD simulations is the possibility to single out the prevailing environmental factors from the instrumental performance of the gauges under analysis. The preliminary analysis shows the variations in the catch efficiency due to the horizontal wind speeds and the DSD. Overall, this study contributes to a better understanding of the environmental sources of uncertainty in rainfall measurements. References: Colli, M., R. Rasmussen, J. M. Theriault, L. G. Lanza, C. B. Baker & J. Kochendorfer (2015) An Improved Trajectory Model to Evaluate the Collection Performance of Snow Gauges. Journal of Applied Meteorology and Climatology, 54, 1826-1836 Nespor, V. and Sevruk, B. (1999). Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Ocean. Tech, 16(4), 450-464. CEN (2002). EN 13798:2002 Hydrometry - Specification for a reference raingauge pit. European Committee for Standardization.

  10. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  11. Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel J.; /Stanford U., Dept. Phys.; Green, Daniel

    2008-08-15

    In conventional models of gauge-mediated supersymmetry breaking, the lightest supersymmetric particle (LSP) is invariably the gravitino. However, if the supersymmetry breaking sector is strongly coupled, conformal sequestering may raise the mass of the gravitino relative to the remaining soft supersymmetry-breaking masses. In this letter, we demonstrate that such conformal dynamics in gauge-mediated theories may give rise to satisfactory neutralino dark matter while simultaneously solving the flavor and {mu}/B{mu} problems.

  12. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  13. On whole Abelian model dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics orientedmore » through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.« less

  14. Toward electroweak scale cold dark matter with local dark gauge symmetry and beyond the DM EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Pyungwon, E-mail: pko@kias.re.kr

    2016-06-21

    In this talk, I describe a class of electroweak (EW) scale dark matter (DM) models where its stability or longevity are the results of underlying dark gauge symmetries: stable due to unbroken local dark gauge symmetry or topology, or long-lived due to the accidental global symmetry of dark gauge theories. Compared with the usual phenomenological dark matter models (including DM EFT or simplified DM models), DM models with local dark gauge symmetries include dark gauge bosons, dark Higgs bosons and sometimes excited dark matter. And dynamics among these fields are completely fixed by local gauge principle. The idea of singletmore » portals including the Higgs portal can thermalize these hidden sector dark matter very efficiently, so that these DM could be easily thermal DM. I also discuss the limitation of the usual DM effective field theory or simplified DM models without the full SM gauge symmetry, and emphasize the importance of the full SM gauge symmetry and renormalizability especially for collider searches for DM.« less

  15. Nonrelativistic fluids on scale covariant Newton-Cartan backgrounds

    NASA Astrophysics Data System (ADS)

    Mitra, Arpita

    2017-12-01

    The nonrelativistic covariant framework for fields is extended to investigate fields and fluids on scale covariant curved backgrounds. The scale covariant Newton-Cartan background is constructed using the localization of space-time symmetries of nonrelativistic fields in flat space. Following this, we provide a Weyl covariant formalism which can be used to study scale invariant fluids. By considering ideal fluids as an example, we describe its thermodynamic and hydrodynamic properties and explicitly demonstrate that it satisfies the local second law of thermodynamics. As a further application, we consider the low energy description of Hall fluids. Specifically, we find that the gauge fields for scale transformations lead to corrections of the Wen-Zee and Berry phase terms contained in the effective action.

  16. Strongly coupled gauge theories: What can lattice calculations teach us?

    NASA Astrophysics Data System (ADS)

    Hasenfratz, A.; Brower, R. C.; Rebbi, C.; Weinberg, E.; Witzel, O.

    2017-12-01

    The dynamical origin of electroweak symmetry breaking is an open question with many possible theoretical explanations. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction form one class of candidate models. Due to increased statistics, LHC run II will further constrain the phenomenologically viable models in the near future. In the meanwhile it is important to understand the general properties and specific features of the different competing models. In this work we discuss many-flavor gauge-fermion systems that contain both massless (light) and massive fermions. The former provide Goldstone bosons and trigger electroweak symmetry breaking, while the latter indirectly influence the infrared dynamics. Numerical results reveal that such systems can exhibit a light 0++ isosinglet scalar, well separated from the rest of the spectrum. Further, when we set the scale via the vev of electroweak symmetry breaking, we predict a 2 TeV vector resonance which could be a generic feature of SU(3) gauge theories.

  17. Two-dimensional lattice gauge theories with superconducting quantum circuits

    PubMed Central

    Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.

    2014-01-01

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676

  18. Reference Gauging System for a Small-Scale Liquid Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    VanDresar, Neil T.; Siegwarth, James D.

    2003-01-01

    A system to accurately weigh the fluid contents of a small-scale liquid hydrogen test tank has been experimentally verified. It is intended for use as a reference or benchmark system when testing lowgravity liquid quantity gauging concepts in the terrestrial environment. The reference gauging system has shown a repeatable measurement accuracy of better than 0.5 percent of the full tank liquid weight. With further refinement, the system accuracy can be improved to within 0.10 percent of full scale. This report describes the weighing system design, calibration, and operational results. Suggestions are given for further refinement of the system. An example is given to illustrate additional sources of uncertainty when mass measurements are converted to volume equivalents. Specifications of the companion test tank and its multi-layer insulation system are provided.

  19. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    NASA Astrophysics Data System (ADS)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.

  20. Medium generated gap in gravity and a 3D gauge theory

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  1. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  2. Estimating relative sea-level rise and submergence potential at a coastal wetland

    USGS Publications Warehouse

    Cahoon, Donald R.

    2015-01-01

    A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.

  3. Evaluation and comparison of nasal airway flow patterns among three subjects from Caucasian, Chinese and Indian ethnic groups using computational fluid dynamics simulation.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Wang, De Yun

    2011-01-31

    Nasal airflow is one of the most important determinants for nasal physiology. During the long evolution of human beings, different races have developed their own attributes of nasal morphologies which result in variations of nasal airflow patterns and nasal functions. This study evaluated and compared the effects of differences of nasal morphology among three healthy male subjects from Caucasian, Chinese and Indian ethnic groups on nasal airflow patterns using computational fluid dynamics simulation. By examining the anterior nasal airway, the nasal indices and the nostril shapes of the three subjects were found to be similar to nasal cavities of respective ethnic groups. Computed tomography images of these three subjects were obtained to reconstruct 3-dimensional models of nasal cavities. To retain the flow characteristics around the nasal vestibules, a 40 mm-radius semi sphere was assembled around the human face for the prescription of zero ambient gauge pressure. The results show that more airflow tends to pass through the middle passage of the nasal airway in the Caucasian model, and through the inferior portion in the Indian model. The Indian model was found with extremely low flow flux flowing through the olfactory region. The sizes of vortexes near the anterior cavity were found to be correlated with the angles between the upper nasal valve wall and the anterior head of the nasal cavity. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Relativistic Hamiltonian dynamics for N point particles

    NASA Astrophysics Data System (ADS)

    King, M. J.

    1980-08-01

    The theory is quantized canonically to give a relativistic quantum mechanics for N particles. The existence of such a theory has been in doubt since the proof of the No-interaction theorem. However, such a theory does exist and was generalized. This dynamics is expressed in terms of N + 1 pairs of canonical fourvectors (center-of-momentum variables or CMV). A gauge independent reduction due to N + 3 first class kinematic constraints leads to a 6N + 2 dimensional minimum kinematic phase space, K. The kinematics and dynamics of particles with intrinsic spin were also considered. To this end known constraint techniques were generalized to make use of graded Lie algebras. The (Poincare) invariant Hamiltonian is specified in terms of the gauge invarient variables of K. The covariant worldline variables of each particle were found to be gauge dependent. As such they will usually not satisfy a canonical algebra. An exception exists for free particles. The No-interaction theorem therefore is not violated.

  5. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  6. Fluid-driven cracks in an elastic matrix in the toughness-dominated limit

    PubMed Central

    Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie

    2016-01-01

    The dynamics of fluid-driven cracks in an elastic matrix is studied experimentally. We report the crack radius R(t) as a function of time, as well as the crack shapes w(r,t) as a function of space and time. A dimensionless parameter, the pressure ratio Δpf/Δpv, is identified to gauge the relative importance between the toughness (Δpf) and viscous (Δpv) effects. In our previous paper (Lai et al. 2015 Proc. R. Soc. A 471, 20150255. (doi:10.1098/rspa.2015.0255)), we investigated the viscous limit experimentally when the toughness-related stresses are negligible for the crack propagation. In this paper, the experimental parameters, i.e. Young’s modulus E of the gelatin, viscosity μ of the fracturing liquid and the injection flow rate Q, were chosen so that the viscous effects in the flow are negligible compared with the toughness effects, i.e. Δpf/Δpv≫1. In this limit, the crack dynamics can be described by the toughness-dominated scaling laws, which give the crack radius R(t)∝t2/5 and the half maximum crack thickness W(t)∝t1/5. The experimental results are in good agreement with the predictions of the toughness scaling laws: the experimental data for crack radius R(t) for a wide range of parameters (E,μ,Q) collapse after being rescaled by the toughness scaling laws, and the rescaled crack shapes w(r,t) also collapse to a dimensionless shape, which demonstrates the self-similarity of the crack shape. The appropriate choice of the viscous or toughness scaling laws is important to accurately describe the crack dynamics. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597782

  7. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Poovuttikul, Napat

    2018-05-01

    In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.

  8. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2006-12-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is a-1 ˜ 1.7GeV and the spatial volume is about (1.9fm)3 . Despite the small volume, the ratio of the isovector vector and axial charges gA /gV and that of structure function moments x u-d / x u- d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a-1 ˜ 1.6GeV and the spatial volume is about (3.0fm)3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios gA /gV and x u-d / x u- d are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d1 , though yet to be renormalized, appears small in both sets.

  9. Uncertainty in hydrological signatures for gauged and ungauged catchments

    NASA Astrophysics Data System (ADS)

    Westerberg, Ida K.; Wagener, Thorsten; Coxon, Gemma; McMillan, Hilary K.; Castellarin, Attilio; Montanari, Alberto; Freer, Jim

    2016-03-01

    Reliable information about hydrological behavior is needed for water-resource management and scientific investigations. Hydrological signatures quantify catchment behavior as index values, and can be predicted for ungauged catchments using a regionalization procedure. The prediction reliability is affected by data uncertainties for the gauged catchments used in prediction and by uncertainties in the regionalization procedure. We quantified signature uncertainty stemming from discharge data uncertainty for 43 UK catchments and propagated these uncertainties in signature regionalization, while accounting for regionalization uncertainty with a weighted-pooling-group approach. Discharge uncertainty was estimated using Monte Carlo sampling of multiple feasible rating curves. For each sampled rating curve, a discharge time series was calculated and used in deriving the gauged signature uncertainty distribution. We found that the gauged uncertainty varied with signature type, local measurement conditions and catchment behavior, with the highest uncertainties (median relative uncertainty ±30-40% across all catchments) for signatures measuring high- and low-flow magnitude and dynamics. Our regionalization method allowed assessing the role and relative magnitudes of the gauged and regionalized uncertainty sources in shaping the signature uncertainty distributions predicted for catchments treated as ungauged. We found that (1) if the gauged uncertainties were neglected there was a clear risk of overconditioning the regionalization inference, e.g., by attributing catchment differences resulting from gauged uncertainty to differences in catchment behavior, and (2) uncertainty in the regionalization results was lower for signatures measuring flow distribution (e.g., mean flow) than flow dynamics (e.g., autocorrelation), and for average flows (and then high flows) compared to low flows.

  10. Time evolution of linearized gauge field fluctuations on a real-time lattice

    NASA Astrophysics Data System (ADS)

    Kurkela, A.; Lappi, T.; Peuron, J.

    2016-12-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law.

  11. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  12. Fluid management in space construction

    NASA Technical Reports Server (NTRS)

    Snyder, Howard

    1989-01-01

    The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.

  13. Electrically tunable artificial gauge potential for polaritons

    PubMed Central

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-01-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton–polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons. PMID:28230047

  14. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  15. Hamiltonian approach to second order gauge invariant cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  16. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    NASA Astrophysics Data System (ADS)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  17. Infrared fixed point of SU(2) gauge theory with six flavors

    NASA Astrophysics Data System (ADS)

    Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara

    2018-06-01

    We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.

  18. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.

    2010-01-01

    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that the Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank harare, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for the small discrepancies. These correction factors are multiplied to the modes at all fill levels. By comparing several measured modes with the simulations, it is possible to accurately gauge the amount of propellant in the tank. An advantage of the RFMG approach of applying computer simulations and a pattern-matching algorithm is that the

  19. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  20. Multiscale solvers and systematic upscaling in computational physics

    NASA Astrophysics Data System (ADS)

    Brandt, A.

    2005-07-01

    Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).

  1. Aeroheating Characteristics for a Two-Stage-To-Orbit Concept During Separation at Mach 6

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2005-01-01

    An experimental study was conducted to determine the proximity aeroheating characteristics for a two-stage-to-orbit concept in close proximity in the NASA Langley 20-Inch Mach 6 Air Tunnel. A new hybrid discrete thin-film resistance gauge technique was evaluated in this study and used to measure experimental interference heating levels between the booster and the orbiter at a constant freestream Reynolds number of 8.25 x 10(exp 6)/m and a variety of separation and axial offset distances. It was found that, as the orbiter separates from the booster and the booster falls away, the windward centerline heating increased on the orbiter by as much as 13-times over the baseline, single model heating distribution, and on the booster by as much as 6-times. The aeroheating database developed can be used for computational fluid dynamic code validation.

  2. Skyrmions from Instantons inside Domain Walls

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David

    2005-12-01

    Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-Abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the world volume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as domain wall Skyrmions.

  3. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    PubMed

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  4. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  5. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  6. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  7. The extent of wind-induced undercatch in the UK winter storms of 2015

    NASA Astrophysics Data System (ADS)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda; Lanza, Luca

    2016-04-01

    The most widely used device for measuring rainfall is the rain gauge, of which the tipping bucket (TBR) is the most prevalent type. Rain gauges are considered by many to be the most accurate method currently available. The data they produce are used in flood-forecasting and flood risk management, water resource management, hydrological modelling and evaluating impacts on climate change; to name but a few. Rain gauges may provide the most accurate measurement of rainfall at a point in space and time, but they are subject to errors - and some gauges are more prone than others. The most significant error is the 'wind-induced undercatch'. This is caused by the gauge itself contributing to an acceleration of the wind speed near the orifice, which disturbs and distorts the airflow. The trajectories of precipitation particles are affected, resulting in an undercatch. Results from Computational Fluid Dynamics (CFD) simulations, presented herein, describe in detail the physical processes contributing to this. High resolution field measurements of rainfall and wind are collected at four field research stations in the UK. Each site is equipped with juxtaposed rain gauges with different funnel profiles, in addition to a WMO reference pit rain gauge measurement. These data describe the rainfall measurement uncertainty. The sites were selected to represent the prevalent rainfall regimes observed in the UK. Two research stations are on the west coast; which is prone to frontal weather systems and storms swept in from the Atlantic, often enhanced by orography. Two are located in the east. Rural lowland and upland areas are represented, both in the west and the east. Urban sites will also have significant undercatch problems but are outside the scope of this study. Data from the four research stations are analysed for the 2015 winter storms which caused devastating flooding in the west of the UK, particularly Cumbria and the Scottish Borders, where two of the sites are located. An assessment of the effect of wind on the rainfall catch during these large storm events is presented for each research station. Based on a reference pit rain gauge, the undercatch for these events is calculated. The difference in rainfall catch between several types of rain gauge mounted at variable heights is also investigated. This work aims to demonstrate the importance of improving the accuracy of rainfall measurements, and to emphasise the need to provide an assessment of the measurement uncertainty. A knowledge gap exists in the understanding of precisely how physical phenomena are contributing to wind-induced undercatch. For instance, a priori, the effect of the wind on the rainfall catch will change depending upon the dimensions of the rain droplets. Rainfall 'type' and rainfall intensity may be able to inform corrections, but rigorous multi-variate statistical analysis of high resolution measurements will be key to the success of these procedures. As the spatio-temporal distribution of rainfall can be highly variable, and each measurement location is different; it is a challenging undertaking to understand and pin down the fundamental processes responsible for the wind-induced undercatch.

  8. Incidence of tissue coring with the 25-gauge Quincke and Whitacre spinal needles.

    PubMed

    Campbell, D C; Douglas, M J; Taylor, G

    1996-01-01

    Tissue cores, implanted into the subarachnoid space during subarachnoid injections, can develop into intraspinal lumbar epidermoid tumors. The availability of smaller needles has made spinal anesthesia more popular. Therefore, this prospective, randomized, blinded study was undertaken to determine whether tissue coring occurs with two of the currently used 25-gauge spinal needles. Fifteen 25-gauge Quincke and seventeen 25-gauge Whitacre spinal needles, in which cerebrospinal fluid (CSF) was not identified and the local anesthetic solution not injected, were obtained from adult male patients undergoing spinal anesthesia. The needles were then evaluated by a pathologist following randomization with similar sterile, unused spinal needles. Twenty additional needles, ten of each type, in which CSF was identified and through which local anesthetic was injected, were also randomized with similar sterile, unused spinal needles and examined. Tissue cores were identified in 12 of the 15 Quincke and 7 of the 17 Whitacre spinal needles in which CSF was not identified (P < .05). Of the 20 needles in which CSF was identified and local anesthetic injected, no tissue cores were identified in the 10 Whitacre needles and only one small tissue core was identified in the 10 Quincke needles. All the tissue cores were identified as fat tissue. The 25-gauge Quincke and 25-gauge Whitacre spinal needles currently used in anesthesia can produce tissue coring.

  9. RRM3 Fluid Management Device

    NASA Technical Reports Server (NTRS)

    Barfknecht, P.; Benson, D.; Boyle, R.; DeLee, C.; DiPirro, M.; Francis, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; hide

    2015-01-01

    The current development progress of the fluid management device (FMD) for the Robotic Resupply Mission 3 (RRM3) cryogen source Dewar is described. RRM3 is an on-orbit cryogenic transfer experiment payload for the International Space Station. The fluid management device is a key component of the source Dewar to ensure the ullage bubble is located away from the outlet during transfer. The FMD also facilitates demonstration of radio frequency mass gauging within the source Dewar. The preliminary design of the RRM3 FMD is a number of concentric cones of Mylar which maximizes the volume of liquid in contact with the FMD in the source Dewar. This paper describes the design of the fluid management device and progress of hardware development

  10. Compressible fluids with Maxwell-type equations, the minimal coupling with electromagnetic field and the Stefan–Boltzmann law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Albert C.R., E-mail: albert@fisica.ufjf.br; Takakura, Flavio I., E-mail: takakura@fisica.ufjf.br; Abreu, Everton M.C., E-mail: evertonabreu@ufrrj.br

    In this work we have obtained a higher-derivative Lagrangian for a charged fluid coupled with the electromagnetic fluid and the Dirac’s constraints analysis was discussed. A set of first-class constraints fixed by noncovariant gauge condition were obtained. The path integral formalism was used to obtain the partition function for the corresponding higher-derivative Hamiltonian and the Faddeev–Popov ansatz was used to construct an effective Lagrangian. Through the partition function, a Stefan–Boltzmann type law was obtained. - Highlights: • Higher-derivative Lagrangian for a charged fluid. • Electromagnetic coupling and Dirac’s constraint analysis. • Partition function through path integral formalism. • Stefan–Boltzmann-kind lawmore » through the partition function.« less

  11. The first law of black hole mechanics for fields with internal gauge freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2017-02-01

    We derive the first law of black hole mechanics for physical theories based on a local, covariant and gauge-invariant Lagrangian where the dynamical fields transform non-trivially under the action of some internal gauge transformations. The theories of interest include General Relativity formulated in terms of tetrads, Einstein-Yang-Mills theory and Einstein-Dirac theory. Since the dynamical fields of these theories have some internal gauge freedom, we argue that there is no natural group action of diffeomorphisms of spacetime on such dynamical fields. In general, such fields cannot even be represented as smooth, globally well-defined tensor fields on spacetime. Consequently the derivation of the first law by Iyer and Wald cannot be used directly. Nevertheless, we show how such theories can be formulated on a principal bundle and that there is a natural action of automorphisms of the bundle on the fields. These bundle automorphisms encode both spacetime diffeomorphisms and internal gauge transformations. Using this reformulation we define the Noether charge associated to an infinitesimal automorphism and the corresponding notion of stationarity and axisymmetry of the dynamical fields. We first show that we can define certain potentials and charges at the horizon of a black hole so that the potentials are constant on the bifurcate Killing horizon, giving a generalised zeroth law for bifurcate Killing horizons. We further identify the gravitational potential and perturbed charge as the temperature and perturbed entropy of the black hole which gives an explicit formula for the perturbed entropy analogous to the Wald entropy formula. We then obtain a general first law of black hole mechanics for such theories. The first law relates the perturbed Hamiltonians at spatial infinity and the horizon, and the horizon contributions take the form of a ‘potential times perturbed charge’ term. We also comment on the ambiguities in defining a prescription for the total entropy for black holes.

  12. Reconciling Streamflow Uncertainty Estimation and River Bed Morphology Dynamics. Insights from a Probabilistic Assessment of Streamflow Uncertainties Using a Reliability Diagram

    NASA Astrophysics Data System (ADS)

    Morlot, T.; Mathevet, T.; Perret, C.; Favre Pugin, A. C.

    2014-12-01

    Streamflow uncertainty estimation has recently received a large attention in the literature. A dynamic rating curve assessment method has been introduced (Morlot et al., 2014). This dynamic method allows to compute a rating curve for each gauging and a continuous streamflow time-series, while calculating streamflow uncertainties. Streamflow uncertainty takes into account many sources of uncertainty (water level, rating curve interpolation and extrapolation, gauging aging, etc.) and produces an estimated distribution of streamflow for each days. In order to caracterise streamflow uncertainty, a probabilistic framework has been applied on a large sample of hydrometric stations of the Division Technique Générale (DTG) of Électricité de France (EDF) hydrometric network (>250 stations) in France. A reliability diagram (Wilks, 1995) has been constructed for some stations, based on the streamflow distribution estimated for a given day and compared to a real streamflow observation estimated via a gauging. To build a reliability diagram, we computed the probability of an observed streamflow (gauging), given the streamflow distribution. Then, the reliability diagram allows to check that the distribution of probabilities of non-exceedance of the gaugings follows a uniform law (i.e., quantiles should be equipropables). Given the shape of the reliability diagram, the probabilistic calibration is caracterised (underdispersion, overdispersion, bias) (Thyer et al., 2009). In this paper, we present case studies where reliability diagrams have different statistical properties for different periods. Compared to our knowledge of river bed morphology dynamic of these hydrometric stations, we show how reliability diagram gives us invaluable information on river bed movements, like a continuous digging or backfilling of the hydraulic control due to erosion or sedimentation processes. Hence, the careful analysis of reliability diagrams allows to reconcile statistics and long-term river bed morphology processes. This knowledge improves our real-time management of hydrometric stations, given a better caracterisation of erosion/sedimentation processes and the stability of hydrometric station hydraulic control.

  13. Strong dynamics and lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S ≳ 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S ≳ 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.

  14. Recent studies of float and stall curves in controlled-clearance deadweight testers with a simple piston.

    PubMed

    Newhall, D H; Ogawa, I; Zilberstein, V

    1979-08-01

    The effect of piston rotation speed and fluid viscosity on the performance of free-piston gauges with a controlled clearance was studied as part of an experimental program aiming at the better evaluation of pressure by these primary pressure standards. Calculated effective area is shown to be greatly influenced by both speed of rotation and choice of a fluid. An optimum rpm resulting in the smallest possible uncertainty in effective area should be determined experimentally for each fluid and pressure range involved. When all the pertinent parameters are properly selected an appreciable improvement in accuracy can be achieved.

  15. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    NASA Astrophysics Data System (ADS)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  16. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, H.

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one doesmore » not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}« less

  17. In Situ Space Gas Dynamic Measurements by the ROSINA Comet Pressure Sensor COPS on the Rosetta Spacecraft

    NASA Astrophysics Data System (ADS)

    Tzou, C. Y.; Altwegg, K.; Fiethe, B.; Gasc, S.; Rubin, M.

    2014-12-01

    Rosetta is part of the cornerstone missions executed by the European Space Agency. It is the first space mission to orbit and also land on a comet. Starting in August 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics at the location of the spacecraft. We performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal up to 2 km/s. We expect that COPS will be able to detect the faint and expanding atmosphere of comet 67P/Churyumov-Gerasimenko as early as August 2014 when the comet is still farther than 3 AU from the Sun. We will present the first ROSINA COPS observations of the gas dynamics around the comet together with the corresponding laboratory measurements required for the interpretation of these data. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.

  18. Postdural puncture headache: a randomized prospective comparison of the 24 gauge Sprotte and the 27 gauge Quincke needles in young patients.

    PubMed

    Wiesel, S; Tessler, M J; Easdown, L J

    1993-07-01

    This study was designed to compare the frequency of postdural puncture headaches (PDPH) using the 24 gauge Sprotte and the 27 gauge Quincke spinal needles in a population of patients less than 45 yr of age undergoing spinal anaesthesia for non-obstetrical surgery. Patients were randomly assigned to receive spinal anaesthesia with either the 24 gauge Sprotte spinal needle (n = 46) or the 27 gauge Quincke spinal needle (n = 47). Patients were interviewed on either postoperative day one or two and on postoperative day three. A PDPH was defined as a headache involving the occipital or frontal areas that is made worse when assuming either the sitting or standing position. Ninety-three patients were included in the analysis of data. The overall incidence of PDPH was 14% (13 of 93), and no difference was found between the Sprotte (15.2%) and Quincke (12.8%) needles. The distribution of the PDPHs by severity was not different between the two groups. None of the 13 patients with PDPHs required on epidural blood patch for relief of symptoms. Both the Sprotte needle and the Quincke needles were judged as easy to use and both required the same number of attempts in order to locate cerebrospinal fluid (first attempt successful: 73.9% versus 66%). Neither patient satisfaction nor the acceptability of spinal anaesthesia for a future procedure was adversely affected by the occurrence of a PDPH. The results of this study suggest that the risk of PDPH after spinal anaesthesia in young patients is similar using either the 24 gauge Sprotte or the 27 gauge Quincke spinal needle.

  19. To gauge or not to gauge?

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Milekhin, Alexey

    2018-04-01

    The D0 brane, or BFSS, matrix model is a quantum mechanical theory with an interesting gravity dual. We consider a variant of this model where we treat the SU( N) symmetry as a global symmetry, rather than as a gauge symmetry. This variant contains new non-singlet states. We consider the impact of these new states on its gravity dual. We argue that the gravity dual is essentially the same as the one for the original matrix model. The non-singlet states have higher energy at strong coupling and are therefore dynamically suppressed.

  20. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  1. Rescriptive and Descriptive Gauge Symmetry in Finite-Dimensional Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurfil, Pini

    2007-02-07

    Gauge theories in physics constitute a fundamental tool for modeling interactions among electromagnetic, weak and strong forces. They have been used in a myriad of fields, ranging from sub-atomic physics to cosmology. The basic mathematical tool generating the gauge theories is that of symmetry, i.e. a redundancy in the description of the system. Although symmetries have long been recognized as a fundamental tool for solving ordinary differential equations, they have not been formally categorized as gauge theories. In this paper, we show how simple systems described by ordinary differential equations are prone to exhibit gauge symmetry, and discuss a fewmore » practical applications of this approach. In particular, we utilize the notion of gauge symmetry to question some common engineering misconceptions of chaotic and stochastic phenomena, and show that seemingly 'disordered' (deterministic) or 'random' (stochastic) behaviors can be 'ordered'. This brings into play the notion of observation; we show that temporal observations may be misleading when used for chaos detection. From a practical standpoint, we use gauge symmetry to considerably mitigate the numerical truncation error of numerical integrations.« less

  2. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    NASA Astrophysics Data System (ADS)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  3. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  4. The Resolvent Algebra of Non-relativistic Bose Fields: Observables, Dynamics and States

    NASA Astrophysics Data System (ADS)

    Buchholz, Detlev

    2018-05-01

    The structure of the gauge invariant (particle number preserving) C*-algebra generated by the resolvents of a non-relativistic Bose field is analyzed. It is shown to form a dense subalgebra of the bounded inverse limit of a directed system of approximately finite dimensional C*-algebras. Based on this observation, it is proven that the closure of the gauge invariant algebra is stable under the dynamics induced by Hamiltonians involving pair potentials. These facts allow to proceed to a description of interacting Bosons in terms of C*-dynamical systems. It is outlined how the present approach leads to simplifications in the construction of infinite bosonic states and sheds new light on topics in many body theory.

  5. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  6. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  7. Slit-lamp technique of draining interface fluid following Descemet's stripping endothelial keratoplasty.

    PubMed

    Srinivasan, Sathish; Rootman, David S

    2007-09-01

    To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.

  8. Ideal walking dynamics via a gauged NJL model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  9. Ideal walking dynamics via a gauged NJL model

    DOE PAGES

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-07-25

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  10. Phenomenology of strongly coupled chiral gauge theories

    DOE PAGES

    Bai, Yang; Berger, Joshua; Osborne, James; ...

    2016-11-25

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less

  11. Expected load spectra of prototype Francis turbines in low-load operation using numerical simulations and site measurements

    NASA Astrophysics Data System (ADS)

    Eichhorn, M.; Taruffi, A.; Bauer, C.

    2017-04-01

    The operators of hydropower plants are forced to extend the existing operating ranges of their hydraulic machines to remain competitive on the energy market due to the rising amount of wind and solar power. Faster response times and a higher flexibility towards part- and low-load conditions enable a better electric grid control and assure therefore an economic operation of the power plant. The occurring disadvantage is a higher dynamic excitation of affected machine components, especially Francis turbine runners, due to pressure pulsations induced by unsteady flow phenomena (e.g. draft tube vortex ropes). Therefore, fatigue analysis becomes more important even in the design phase of the hydraulic machines to evaluate the static and dynamic load in different operating conditions and to reduce maintenance costs. An approach including a one-way coupled fluid-structure interaction has been already developed using unsteady CFD simulations and transient FEM computations. This is now applied on two Francis turbines with different specific speeds and power ranges, to obtain the load spectra of both machines. The results are compared to strain gauge measurements on the according Francis turbines to validate the overall procedure.

  12. Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1974-01-01

    The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.

  13. Utility of percutaneous joint aspiration and synovial biopsy in identifying culture-positive infected hip arthroplasty.

    PubMed

    Cross, M Connor; Kransdorf, Mark J; Chivers, F Spencer; Lorans, Roxanne; Roberts, Catherine C; Schwartz, Adam J; Beauchamp, Christopher P

    2014-02-01

    Percutaneous synovial biopsy has recently been reported to have a high diagnostic value in the preoperative identification of periprosthetic infection of the hip. We report our experience with this technique in the evaluation of patients undergoing revision hip arthroplasty, comparing results of preoperative synovial biopsy with joint aspiration in identifying an infected hip arthroplasty by bacteriological analysis. We retrospectively reviewed the results of the 110 most recent revision hip arthroplasties in which preoperative synovial biopsy and joint aspiration were both performed. Revision surgery for these patients occurred during the period from September 2005 to March 2012. Using this study group, results from preoperative cultures were compared with preoperative laboratory studies and the results of intraoperative cultures. Synovial aspiration was done using an 18- or 20-gauge spinal needle. Synovial biopsy was done coaxially following aspiration using a 22-gauge Chiba needle or 21-gauge Sure-Cut needle. Standard microbiological analysis was performed on preoperative synovial fluid aspirate and synovial biopsy. Intraoperative tissue biopsy bacteriological analysis results at surgical revision were accepted as the "gold standard" for the presence or absence of infection. Seventeen of 110 (15 %) of patients had intraoperative culture-positive periprosthetic infection. Of these 17 cases, there were ten cases where either the synovial fluid aspiration and/or the synovial biopsy were true positive (sensitivity of 59 %, specificity of 100 %, positive predictive value of 100 % and accuracy of 94 %). There were seven cases where aspiration and biopsy results were both falsely negative, but no false-positive results. Similar results were found for synovial fluid aspiration alone. The results of synovial biopsy alone resulted in the identification of seven infected joints with no false-positive result (sensitivity of 41 %, specificity of 100 %, positive predictive value of 100 %, and accuracy of 91 %). Standard microbiological analyses performed on percutaneous synovial biopsy specimen during the preoperative evaluation of patients undergoing revision hip arthroplasty did not improve detection of culture-positive periprosthetic infection as compared to synovial fluid aspiration alone.

  14. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.

  15. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    USDA-ARS?s Scientific Manuscript database

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm.h-1 to 250 mm.h-1) and three di...

  16. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIN H.-W.; OHTA, S.

    2006-10-02

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments {sub u-d}/{submore » {Delta}u-{Delta}d} are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a{sup -1} {approx} 1.6GeV and the spatial volume is about (3.0fm){sup 3}. Even with preliminary statistics of 25-30 gauge configurations, the ratios g{sub A}/g{sub V} and {sub u-d}/{sub {Delta}u-{Delta}d} are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d{sub 1}, though yet to be renormalized, appears small in both sets.« less

  17. Study on dynamic response measurement of the submarine pipeline by full-term FBG sensors.

    PubMed

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement.

  18. Study on Dynamic Response Measurement of the Submarine Pipeline by Full-Term FBG Sensors

    PubMed Central

    Zhou, Jinghai; Sun, Li; Li, Hongnan

    2014-01-01

    The field of structural health monitoring is concerned with accurately and reliably assessing the integrity of a given structure to reduce ownership costs, increase operational lifetime, and improve safety. In structural health monitoring systems, fiber Bragg grating (FBG) is a promising measurement technology for its superior ability of explosion proof, immunity to electromagnetic interference, and high accuracy. This paper is a study on the dynamic characteristics of fiber Bragg grating (FBG) sensors applied to a submarine pipeline, as well as an experimental investigation on a laboratory model of the pipeline. The dynamic response of a submarine pipeline under seismic excitation is a coupled vibration of liquid and solid interaction. FBG sensors and strain gauges are used to monitor the dynamic response of a submarine pipeline model under a variety of dynamic loading conditions and the maximum working frequency of an FBG strain sensor is calculated according to its dynamic strain responses. Based on the theoretical and experimental results, it can be concluded that FBG sensor is superior to strain gauge and satisfies the demand of dynamic strain measurement. PMID:24971391

  19. Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyanovsky, D.; Brahm, D.; Holman, R.

    1996-07-01

    We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective potential in the one-loop approximation is complex for {ital all} {ital values} of the order parameter between the maximum and the minimummore » of the tree level potential, both at zero and nonzero temperatures. The imaginary part is related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities may play a role in nonequilibrium processes {ital inside} the nucleating bubbles if the transition is first order. {copyright} {ital 1996 The American Physical Society.}« less

  20. Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Niarchos, Vasilis

    2018-05-01

    We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that correspond to various phases, obtaining a better understanding of three-dimensional bosonization and dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to magnetic "squark" condensation. In string theory, they correspond to open string tachyon condensation and brane reconnection. We also discuss other phases where the magnetic `squark' is massive. Finally, we briefly comment on the case of unitary gauge groups.

  1. Strain and dynamic measurements using fiber optic sensors embedded into graphite/epoxy tubes

    NASA Technical Reports Server (NTRS)

    Dehart, D. W.; Doederlein, T.; Koury, J.; Rogowski, R. S.; Heyman, J. S.; Holben, M. S., Jr.

    1989-01-01

    Graphite/epoxy tubes were fabricated with embedded optical fibers to evaluate the feasibility of monitoring strains with a fiber optic technique. Resistance strain gauges were attached to the tubes to measure strain at four locations along the tube for comparison with the fiber optic sensors. Both static and dynamic strain measurements were made with excellent agreement between the embedded fiber optic strain sensor and the strain gauges. Strain measurements of 10(exp -7) can be detected with the optical phase locked loop (OPLL) system using optical fiber. Because of their light weight, compatibility with composites, immunity to electromagnetic interference, and based on the static and dynamic results obtained, fiber optic sensors embedded in composites may be useful as the sensing component of smart structures.

  2. Programmable superpositions of Ising configurations

    NASA Astrophysics Data System (ADS)

    Sieberer, Lukas M.; Lechner, Wolfgang

    2018-05-01

    We present a framework to prepare superpositions of bit strings, i.e., many-body spin configurations, with deterministic programmable probabilities. The spin configurations are encoded in the degenerate ground states of the lattice-gauge representation of an all-to-all connected Ising spin glass. The ground-state manifold is invariant under variations of the gauge degrees of freedom, which take the form of four-body parity constraints. Our framework makes use of these degrees of freedom by individually tuning them to dynamically prepare programmable superpositions. The dynamics combines an adiabatic protocol with controlled diabatic transitions. We derive an effective model that allows one to determine the control parameters efficiently even for large system sizes.

  3. Local conditions separating expansion from collapse in spherically symmetric models with anisotropic pressures

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Le Delliou, Morgan; Mena, Filipe C.

    2013-08-01

    We investigate spherically symmetric spacetimes with an anisotropic fluid and discuss the existence and stability of a separating shell dividing expanding and collapsing regions. We resort to a 3+1 splitting and obtain gauge invariant conditions relating intrinsic spacetime quantities to properties of the matter source. We find that the separating shell is defined by a generalization of the Tolman-Oppenheimer-Volkoff equilibrium condition. The latter establishes a balance between the pressure gradients, both isotropic and anisotropic, and the strength of the fields induced by the Misner-Sharp mass inside the separating shell and by the pressure fluxes. This defines a local equilibrium condition, but conveys also a nonlocal character given the definition of the Misner-Sharp mass. By the same token, it is also a generalized thermodynamical equation of state as usually interpreted for the perfect fluid case, which now has the novel feature of involving both the isotropic and the anisotropic stresses. We have cast the governing equations in terms of local, gauge invariant quantities that are revealing of the role played by the anisotropic pressures and inhomogeneous electric part of the Weyl tensor. We analyze a particular solution with dust and radiation that provides an illustration of our conditions. In addition, our gauge invariant formalism not only encompasses the cracking process from Herrera and co-workers but also reveals transparently the interplay and importance of the shear and of the anisotropic stresses.

  4. Dynamic rating curve assessment for hydrometric stations and computation of the associated uncertainties: Quality and station management indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine; Jalbert, Jonathan

    2014-09-01

    A rating curve is used to indirectly estimate the discharge in rivers based on water level measurements. The discharge values obtained from a rating curve include uncertainties related to the direct stage-discharge measurements (gaugings) used to build the curves, the quality of fit of the curve to these measurements and the constant changes in the river bed morphology. Moreover, the uncertainty of discharges estimated from a rating curve increases with the “age” of the rating curve. The level of uncertainty at a given point in time is therefore particularly difficult to assess. A “dynamic” method has been developed to compute rating curves while calculating associated uncertainties, thus making it possible to regenerate streamflow data with uncertainty estimates. The method is based on historical gaugings at hydrometric stations. A rating curve is computed for each gauging and a model of the uncertainty is fitted for each of them. The model of uncertainty takes into account the uncertainties in the measurement of the water level, the quality of fit of the curve, the uncertainty of gaugings and the increase of the uncertainty of discharge estimates with the age of the rating curve computed with a variographic analysis (Jalbert et al., 2011). The presented dynamic method can answer important questions in the field of hydrometry such as “How many gaugings a year are required to produce streamflow data with an average uncertainty of X%?” and “When and in what range of water flow rates should these gaugings be carried out?”. The Rocherousse hydrometric station (France, Haute-Durance watershed, 946 [km2]) is used as an example throughout the paper. Others stations are used to illustrate certain points.

  5. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    NASA Astrophysics Data System (ADS)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  6. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  7. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  8. Laboratory Gas Dynamic Measurements of the Comet Pressure Sensor COPS on the Rosetta Spacecraft

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; Altwegg, Kathrin; Gasc, Sébastien; Rubin, Martin

    2014-05-01

    Rosetta is part of the cornerstone missions executed by the European Space Agency (ESA). It is the first space mission to orbit and also land on a comet. By the end of July 2014 Rosetta will be able to carry out a close study of comet 67P/Churyumov-Gerasimenko. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) is one of the core payloads on board of the Rosetta spacecraft [Balsiger et al, 2007]. ROSINA's main objective is to determine the major atmospheric and ionospheric composition in the coma and to investigate the gas dynamics around the comet. ROSINA consists of two mass spectrometers and a pressure sensor. The Comet Pressure Sensor (COPS) is not only a pressure sensor but also plays the role of a safety instrument for Rosetta by providing high-density alerts to the other payload instruments. It includes two gauges: the "nude gauge" measures total neutral density in the coma and the "ram gauge" measures the dynamic pressure of the cometary gas flux to obtain the bulk velocity of the neutral gas. The combination of these two gauges makes COPS capable to derive the gas dynamics in the coma. We recently performed laboratory gas dynamic measurements with the identical flight-spare instrument of COPS. Using the Calibration System for The Mass Spectrometer Instrument ROSINA (CASYMIR) we produce neutral gas beams to model cometary gas jets with velocities from thermal to 2 km/s. For COPS calibration we measure gas beams with different incident angles to derive the velocity and the temperature of the gas using different mixtures expected at the comet. We demonstrate that COPS will be ready for the prime mission and it will be fascinating to compare COPS measurements with numerous observation results and computer models starting in summer 2014 to gain new insights into the gas dynamics around a comet. Reference: Balsiger, H. et al.: ROSINA-Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Science Reviews, Vol. 128, 745-801, 2007.

  9. Dynamically enriched topological orders in driven two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Morimoto, Takahiro

    2017-04-01

    Time-periodic driving of a quantum system can enable new dynamical topological phases of matter that could not exist in thermal equilibrium. We investigate two related classes of dynamical topological phenomena in 2D systems: Floquet symmetry-protected topological phases (FSPTs) and Floquet enriched topological orders (FETs). By constructing solvable lattice models for a complete set of 2D bosonic FSPT phases, we show that bosonic FSPTs can be understood as topological pumps which deposit loops of 1D SPT chains onto the boundary during each driving cycle, which protects a nontrivial edge state by dynamically tuning the edge to a self-dual point poised between the 1D SPT and trivial phases of the edge. By coupling these FSPT models to dynamical gauge fields, we construct solvable models of FET orders in which anyon excitations are dynamically transmuted into topologically distinct anyon types during each driving period. These bosonic FSPT and gauged FSPT models are classified by group cohomology methods. In addition, we also construct examples of "beyond cohomology" FET orders, which can be viewed as topological pumps of 1D topological chains formed of emergent anyonic quasiparticles.

  10. On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media

    DTIC Science & Technology

    2015-06-16

    fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown

  11. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  12. Wave fluctuations in the system with some Yang-Mills condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, G., E-mail: zhoraprox@yandex.ru; Pasechnik, R., E-mail: Roman.Pasechnik@thep.lu.se; Vereshkov, G., E-mail: gveresh@gmail.com

    2016-12-15

    Self-consistent dynamics of non-homogeneous fluctuations and homogeneous and isotropic condensate of Yang–Mills fields was investigated in zero, linear and quasilinear approximations over the wave modes in the framework of N = 4 supersymmetric model in Hamilton gauge in quasiclassical theory. The models with SU(2), SU(3) and SU(4) gauge groups were considered. Particle production effect and effect of generation of longitudinal oscillations were obtained.

  13. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges.

    PubMed

    Valentín, David; Presas, Alexandre; Bossio, Matias; Egusquiza, Mònica; Egusquiza, Eduard; Valero, Carme

    2018-01-10

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.

  14. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges

    PubMed Central

    Presas, Alexandre; Bossio, Matias; Egusquiza, Eduard; Valero, Carme

    2018-01-01

    Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions. PMID:29320422

  15. Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow

    NASA Astrophysics Data System (ADS)

    Borup, Morten; Grum, Morten; Linde, Jens Jørgen; Mikkelsen, Peter Steen

    2016-08-01

    Numerous studies have shown that radar rainfall estimates need to be adjusted against rain gauge measurements in order to be useful for hydrological modelling. In the current study we investigate if adjustment can improve radar rainfall estimates to the point where they can be used for modelling overflows from urban drainage systems, and we furthermore investigate the importance of the aggregation period of the adjustment scheme. This is done by continuously adjusting X-band radar data based on the previous 5-30 min of rain data recorded by multiple rain gauges and propagating the rainfall estimates through a hydraulic urban drainage model. The model is built entirely from physical data, without any calibration, to avoid bias towards any specific type of rainfall estimate. The performance is assessed by comparing measured and modelled water levels at a weir downstream of a highly impermeable, well defined, 64 ha urban catchment, for nine overflow generating rain events. The dynamically adjusted radar data perform best when the aggregation period is as small as 10-20 min, in which case it performs much better than static adjusted radar data and data from rain gauges situated 2-3 km away.

  16. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  17. Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing

    NASA Astrophysics Data System (ADS)

    Blais, Bruno; Lassaigne, Manon; Goniva, Christoph; Fradette, Louis; Bertrand, François

    2016-08-01

    Although viscous solid-liquid mixing plays a key role in the industry, the vast majority of the literature on the mixing of suspensions is centered around the turbulent regime of operation. However, the laminar and transitional regimes face considerable challenges. In particular, it is important to know the minimum impeller speed (Njs) that guarantees the suspension of all particles. In addition, local information on the flow patterns is necessary to evaluate the quality of mixing and identify the presence of dead zones. Multiphase computational fluid dynamics (CFD) is a powerful tool that can be used to gain insight into local and macroscopic properties of mixing processes. Among the variety of numerical models available in the literature, which are reviewed in this work, unresolved CFD-DEM, which combines CFD for the fluid phase with the discrete element method (DEM) for the solid particles, is an interesting approach due to its accurate prediction of the granular dynamics and its capability to simulate large amounts of particles. In this work, the unresolved CFD-DEM method is extended to viscous solid-liquid flows. Different solid-liquid momentum coupling strategies, along with their stability criteria, are investigated and their accuracies are compared. Furthermore, it is shown that an additional sub-grid viscosity model is necessary to ensure the correct rheology of the suspensions. The proposed model is used to study solid-liquid mixing in a stirred tank equipped with a pitched blade turbine. It is validated qualitatively by comparing the particle distribution against experimental observations, and quantitatively by compairing the fraction of suspended solids with results obtained via the pressure gauge technique.

  18. Local Seismicity Recorded by ChilePEPPER: Implications for Dynamic Accretionary Prism Response and Long-term Prism Evolution

    NASA Astrophysics Data System (ADS)

    de Moor, A.; Trehu, A. M.; Tryon, M. D.

    2015-12-01

    To investigate the dynamic response of the outer accretionary wedge updip from the patch of greatest slip during the Mw8.8 2010 Maule earthquake, 10 Ocean Bottom Seismometers (OBS) were deployed from May 2012 to March 2013 in a small array with an inter-instrument spacing of ~12 km . Nine instruments were recovered, with 4 recording data on 3 intermediate-band 3-component seismometers and a differential pressure gauge and 5 recording data from absolute pressure gauges. [note: All instruments were also equipped with a fluid flow meter sensitive to flow rates as low as 0.0001 cm/yr in or out of the sediments. However, no flow signal was detected.] Here we present hypocenters for 569 local events that have S-P times less than 17 seconds (i.e. within ~125 km of the array) using hand-picked arrival times and a 1D velocity model derived from a 2D seismic refraction profile through the region (Moscoso et al 2011, EPSL). We analyze the distribution of seismicity in the context of published slip models, ChilePEPPER high-resolution seismic reflection data, critical taper analysis done by Cubas et al 2013 (EPSL), and offshore gravity data. The data show distinct segmentation within the outer prism. The northern section of the study area is characterized by a lack of seismicity, accretion of nearly all incoming sediment and a prism at critical taper. In contrast, abundant seismicity, significant sediment underthrusting at the deformation front and a prism below critical taper angle characterize the southern part of the study area. Both coseismic slip and post-rupture local seismicity can be related to density anomalies within the upper plate as revealed by free air gravity data corrected for the effects of bathymetry and the subducting plate. [ChilePEPPER - Project Evaluating Prism Post-Earthquake Response

  19. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  20. Higgs mechanism in higher-rank symmetric U(1) gauge theories

    NASA Astrophysics Data System (ADS)

    Bulmash, Daniel; Barkeshli, Maissam

    2018-06-01

    We use the Higgs mechanism to investigate connections between higher-rank symmetric U(1 ) gauge theories and gapped fracton phases. We define two classes of rank-2 symmetric U(1 ) gauge theories: the (m ,n ) scalar and vector charge theories, for integer m and n , which respect the symmetry of the square (cubic) lattice in two (three) spatial dimensions. We further provide local lattice rotor models whose low-energy dynamics are described by these theories. We then describe in detail the Higgs phases obtained when the U(1 ) gauge symmetry is spontaneously broken to a discrete subgroup. A subset of the scalar charge theories indeed have X-cube fracton order as their Higgs phase, although we find that this can only occur if the continuum higher-rank gauge theory breaks continuous spatial rotational symmetry. However, not all higher-rank gauge theories have fractonic Higgs phases; other Higgs phases possess conventional topological order. Nevertheless, they yield interesting novel exactly solvable models of conventional topological order, somewhat reminiscent of the color code models in both two and three spatial dimensions. We also investigate phase transitions in these models and find a possible direct phase transition between four copies of Z2 gauge theory in three spatial dimensions and X-cube fracton order.

  1. Hyperunified field theory and gravitational gauge-geometry duality

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang

    2018-01-01

    A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.

  2. Sharing of Tank Information

    NASA Technical Reports Server (NTRS)

    Tamminga, Joshua D.

    2011-01-01

    Test Rationale -- Attempt to Address 10% vs. 25+% effects of crater penetration on full scale titanium alloy tanks and comparison to plate tests Utilize Baseline Burst Pressure versus HVI impacted vessels as gauge of effects Examine craters (post test) to determine penetration characteristics on a fluid filled vessel versus plate tests. Examine crater effects leading to vessel failure (if any).

  3. Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  4. Explanatory Item Response Modeling of Children's Change on a Dynamic Test of Analogical Reasoning

    ERIC Educational Resources Information Center

    Stevenson, Claire E.; Hickendorff, Marian; Resing, Wilma C. M.; Heiser, Willem J.; de Boeck, Paul A. L.

    2013-01-01

    Dynamic testing is an assessment method in which training is incorporated into the procedure with the aim of gauging cognitive potential. Large individual differences are present in children's ability to profit from training in analogical reasoning. The aim of this experiment was to investigate sources of these differences on a dynamic test of…

  5. A gauge-theoretic approach to gravity.

    PubMed

    Krasnov, Kirill

    2012-08-08

    Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.

  6. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousineau, Emily; Bennion, Kevin; Devoto, Douglas

    Thermal management for electric motors is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. The transition to more electrically dominant propulsion systems leads to higher-power duty cycles for electric-drive systems. Thermal constraints place significant limitations on how electric motors ultimately perform. As thermal management improves, there will be a direct trade-off among motor performance, efficiency, cost, and the sizing of electric motors to operate within the thermal constraints. During the development of thermal finite element analysis models and computational fluid dynamics models for electric motors, it was found that there was a lackmore » of open literature detailing the thermal properties of key materials common in electric motors that are significant in terms of heat removal. The lack of available literature, coupled with the strong interest from industry in the passive-stack thermal measurement results, led to experiments to characterize the thermal contact resistance between motor laminations. We examined four lamination materials, including the commonly used 26 gauge and 29 gauge M19 materials, the HF10 and Arnon 7 materials. These latter two materials are thinner and reduce eddy currents responsible for core losses. We measured the thermal conductivity of the lamination materials and the thermal contact resistance between laminations in a stack, as well as investigated factors affecting contact resistance between laminations such as the contact pressure and surface finish. Lamination property data will be provided and we also develop a model to estimate the through-stack thermal conductivity for materials beyond those that were directly tested in this work. For example, at a clamping pressure of 138 kPa, the 29 gauge M19 material has a through-stack thermal conductivity of 1.68 W/m-K, and the contact resistance between laminations was measured to be 193 mm^2-K/W. The measured bulk thermal conductivity for the M19 29 gauge material is 21.0 W/m-K. Density and specific heat were measured to be 7450 kg/m^3 and 463 J/kg-K, respectively. These results are helping, and will continue to help engineers and researchers in the design and development of motors.« less

  7. Evidence of ghost suppression in gluon mass scale dynamics

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Figueiredo, C. T.; Papavassiliou, J.

    2018-03-01

    In this work we study the impact that the ghost sector of pure Yang-Mills theories may have on the generation of a dynamical gauge boson mass scale, which hinges on the appearance of massless poles in the fundamental vertices of the theory, and the subsequent realization of the well-known Schwinger mechanism. The process responsible for the formation of such structures is itself dynamical in nature, and is governed by a set of Bethe-Salpeter type of integral equations. While in previous studies the presence of massless poles was assumed to be exclusively associated with the background-gauge three-gluon vertex, in the present analysis we allow them to appear also in the corresponding ghost-gluon vertex. The full analysis of the resulting Bethe-Salpeter system reveals that the contribution of the poles associated with the ghost-gluon vertex are particularly suppressed, their sole discernible effect being a slight modification in the running of the gluon mass scale, for momenta larger than a few GeV. In addition, we examine the behavior of the (background-gauge) ghost-gluon vertex in the limit of vanishing ghost momentum, and derive the corresponding version of Taylor's theorem. These considerations, together with a suitable Ansatz, permit us the full reconstruction of the pole sector of the two vertices involved.

  8. From 6D superconformal field theories to dynamic gauged linear sigma models

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2017-09-01

    Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.

  9. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  10. A Dutch Perspective on Coastal Louisiana Flood Risk Reduction and Landscape Stabilization

    DTIC Science & Technology

    2007-07-13

    shelf sand development. Journal of Sedimentary Petrology , 58 (6): 932-949. Roberts, HH, 1997. Dynamic changes of the Holocene Mississippi River delta...2004). The background rate of subsidence of the north central Gulf Coast can be established from the Pensacola, Florida, tide gauge , which is situated in...millimetre per year. The tide gauge record at Grand Isle, Louisiana (Figure 39B), located in the central Mississippi delta that undergoes rapid, compaction

  11. Holographic Scaling and Dynamical Gauge Effects in Disordered Atomic Gases

    NASA Astrophysics Data System (ADS)

    Gemelke, Nathan

    2016-05-01

    Quantum systems with strong disorder, and those far from equilibrium or interacting with a thermal reservior, present unique challenges in a range of physical contexts, from non-relativistic condensed-matter settings, such as in study of localization phenomena, to relativistic cosmology and the study of fundamental interactions. Recently, two related concepts, that of the entropy of entanglement, and the controversial suggestion of entropic emergent gravity, have shed insight on several long-standing questions along these lines, suggesting that strongly disordered systems with causal barriers (either relativistic or those with Lieb-Robinson-like bounds) can be understood using holographic principles in combination with the equivalence between quantum vacuua thermal baths via the Unruh effect. I will discuss a range of experiments performed within a strong, topologically disordered medium for neutral atoms which simultaneously introduces quenched disorder for spin and mass transport, and provides simple mechanisms for open coupling to various types of dissipative baths. Under conditions in which a subset of quantum states are continuously decoupled from the thermal bath, dark state effects lead to slow light phenomena mimicking gravitational lensing in general relativity in a characterizable table-top disordered medium. Non-equilibrium steady-states are observed in direct analogy with the evaporation of gravitational singularities, and we observe scaling behaviors that can be directly connected to holographic measures of the information contained in disorder. Finally, I will show how a dynamic-gauge-field picture of this and similar systems can lead to a natural description of non-equilibrium and disordered phenomena, and how it provides some advantages over the Harris and Luck criteria for describing critical phenomena. Connections between out-of-equilibrium dynamics and some long-unresolved issues concerning the existence of a gauge-boson mass gap in certain Yang-Mills models will also be discussed, as will dynamic gauge effects in experimental many-body systems. This work was supported by NSF Award Number 1068570, and a Grant from the Charles E. Kaufman Foundation.

  12. Non-Abelian S-term dark energy and inflation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  13. A note on local BRST cohomology of Yang-Mills type theories with free Abelian factors

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas

    2018-05-01

    We extend previous work on antifield dependent local Becchi-Rouet-Stora-Tyutin (BRST) cohomology for matter coupled gauge theories of Yang-Mills type to the case of gauge groups that involve free Abelian factors. More precisely, we first investigate in a model independent way how the dynamics enters the computation of the cohomology for a general class of Lagrangians in general spacetime dimensions. We then discuss explicit solutions in the case of specific models. Our analysis has implications for the structure of characteristic cohomology and for consistent deformations of the classical models, as well as for divergences/counterterms and for gauge anomalies that may appear during perturbative quantization.

  14. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  15. Unification and new particles at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkani-Hamed, Nima; D’Agnolo, Raffaele Tito; Low, Matthew

    Precision gauge coupling uni cation is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this study we enumerate new gauge sectors which are compatible with uni cation, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and con ne quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned andmore » minimally split supersymmetry, the con ning dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.« less

  16. Status of a minimal composite Higgs theory

    NASA Astrophysics Data System (ADS)

    Fodor, Zoltan; Holland, Kieran; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2017-12-01

    We analyze three sets of gauge ensembles in our extended physics program of a particularly important BSM gauge theory with a fermion doublet in the two-index symmetric (sextet) representation of the SU(3) BSM color gauge group. Our investigations include chiral symmetry breaking (χSB) in the p-regime and 𝜖-regime, the mass of the composite 0++ scalar, resonance spectroscopy, new physics from gauge anomaly constraints, and the role of stable sextet BSM baryons with Electroweak interactions in dark matter searches. Important new goals include studies of the 0++ scalar entangled with Goldstone dynamics in the p-regime and the 𝜖-regime, the resonance spectrum with particular attention to emerging LHC signals, like recent hints for diphoton excess at 750 GeV or diboson anomalies in the 2 TeV range. All results reported here are preliminary before journal publication including some post-conference material for the discussion.

  17. Unification and new particles at the LHC

    DOE PAGES

    Arkani-Hamed, Nima; D’Agnolo, Raffaele Tito; Low, Matthew; ...

    2016-11-14

    Precision gauge coupling uni cation is one of the primary quantitative successes of low energy or split supersymmetry. Preserving this success puts severe restrictions on possible matter and gauge sectors that might appear at collider-accessible energies. In this study we enumerate new gauge sectors which are compatible with uni cation, consisting of horizontal gauge groups acting on vector-like matter charged under the Standard Model. Interestingly, almost all of these theories are in the supersymmetric conformal window at high energies and con ne quickly after the superpartners are decoupled. For a range of scalar masses compatible with both moderately tuned andmore » minimally split supersymmetry, the con ning dynamics happen at the multi-TeV scale, leading to a spectrum of multiple spin-0 and spin-1 resonances accessible to the LHC, with unusual quantum numbers and striking decay patterns.« less

  18. Random Dynamics

    NASA Astrophysics Data System (ADS)

    Bennett, D. L.; Brene, N.; Nielsen, H. B.

    1987-01-01

    The goal of random dynamics is the derivation of the laws of Nature as we know them (standard model) from inessential assumptions. The inessential assumptions made here are expressed as sets of general models at extremely high energies: gauge glass and spacetime foam. Both sets of models lead tentatively to the standard model.

  19. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  20. Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction

    DTIC Science & Technology

    2012-09-01

    fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as

  1. The deconfining phase transition in and out of equilibrium

    NASA Astrophysics Data System (ADS)

    Bazavov, Oleksiy

    Recent experiments carried out at the Relativistic Heavy Ion Collider at the Brookhaven National Laboratory provide strong evidence that a matter can be driven from a confined, low-temperature phase, observed in our every day world into a deconfined high-temperature phase of liberated quarks and gluons. The equilibrium and dynamical properties of the deconfining phase transition are thus of great theoretical interest, since they also provide an information about the first femtoseconds of the evolution of our Universe, when the hot primordial soup while cooling has undergone a chain of phase transitions. The aspects of the deconfining phase transition studied in this work include: the dynamics of the SU(3) gauge theory after the heating quench (which models rapid heating in the heavy-ion collisions), equilibrium properties of the phase transition in the SU(3) gauge theory with boundaries at low temperature (small volumes at RHIC suggest that boundary effects cannot be neglected and periodic boundary conditions normally used in lattice simulations do not correspond to the experimental situation), and a study of the order of the transition in U(1) gauge theory.

  2. Infrared singularities in Landau gauge Yang-Mills theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkofer, Reinhard; Huber, Markus Q.; Schwenzer, Kai

    2010-05-15

    We present a more detailed picture of the infrared regime of Landau-gauge Yang-Mills theory. This is done within a novel framework that allows one to take into account the influence of finite scales within an infrared power counting analysis. We find that there are two qualitatively different infrared fixed points of the full system of Dyson-Schwinger equations. The first extends the known scaling solution, where the ghost dynamics is dominant and gluon propagation is strongly suppressed. It features in addition to the strong divergences of gluonic vertex functions in the previously considered uniform scaling limit, when all external momenta tendmore » to zero, also weaker kinematic divergences, when only some of the external momenta vanish. The second solution represents the recently proposed decoupling scenario where the gluons become massive and the ghosts remain bare. In this case we find that none of the vertex functions is enhanced, so that the infrared dynamics is entirely suppressed. Our analysis also provides a strict argument why the Landau-gauge gluon dressing function cannot be infrared divergent.« less

  3. U(1) Wilson lattice gauge theories in digital quantum simulators

    NASA Astrophysics Data System (ADS)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  4. Confinement, holonomy, and correlated instanton-dyon ensemble: SU(2) Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Lopez-Ruiz, Miguel Angel; Jiang, Yin; Liao, Jinfeng

    2018-03-01

    The mechanism of confinement in Yang-Mills theories remains a challenge to our understanding of nonperturbative gauge dynamics. While it is widely perceived that confinement may arise from chromomagnetically charged gauge configurations with nontrivial topology, it is not clear what types of configurations could do that and how, in pure Yang-Mills and QCD-like (nonsupersymmetric) theories. Recently, a promising approach has emerged, based on statistical ensembles of dyons/anti-dyons that are constituents of instanton/anti-instanton solutions with nontrivial holonomy where the holonomy plays a vital role as an effective "Higgsing" mechanism. We report a thorough numerical investigation of the confinement dynamics in S U (2 ) Yang-Mills theory by constructing such a statistical ensemble of correlated instanton-dyons.

  5. Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters

    NASA Astrophysics Data System (ADS)

    Nii, Keita

    2018-05-01

    We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.

  6. Phase structure of completely asymptotically free SU(Nc) models with quarks and scalar quarks

    NASA Astrophysics Data System (ADS)

    Hansen, F. F.; Janowski, T.; Langæble, K.; Mann, R. B.; Sannino, F.; Steele, T. G.; Wang, Z. W.

    2018-03-01

    We determine the phase diagram of completely asymptotically free SU (Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  7. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-01

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  8. Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging.

    PubMed

    Chu, Po-Chun; Chai, Wen-Yen; Tsai, Chih-Hung; Kang, Shih-Tsung; Yeh, Chih-Kuang; Liu, Hao-Li

    2016-09-15

    Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did not fully explore correlations of pharmacodynamic/pharmacokinetic behaviors. Recently, the cavitation index (CI) has been derived to serve as an indicator of microbubble-ultrasound stable cavitation, and may also serve as a valid indicator to gauge the level of FUS-induced BBB opening. This study investigates the feasibility of gauging FUS-induced BBB opened level via the two indexes, MI and CI, through dynamic contrast-enhanced (DCE)-MRI analysis as well as passive cavitation detection (PCD) analysis. Pharmacodynamic/pharmacokinetic parameters derived from DCE-MRI were characterized to identify the scale of FUS-induced BBB opening. Our results demonstrated that DCE-MRI can successfully access pharmacodynamic/pharmacokinetic BBB-opened behavior, and was highly correlated both with MI and CI, implying the feasibility in using these two indices to gauge the scale of FUS-induced BBB opening. The proposed finding may facilitate the design toward using focused ultrasound as a safe and reliable noninvasive CNS drug delivery.

  9. The priority of internal symmetries in particle physics

    NASA Astrophysics Data System (ADS)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  10. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  11. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 2; RSRM Full Scale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The purpose of the RSRM Nozzle Slag Ejection Precursor Test is to investigate the effect that slag ejection from the RSRM nozzle has on the chamber pressure and trust of the SRB's. In past firings of the Reusable Solid Rocket Motor (RSRM) both static test and flight motors have shown small pressure perturbations occurring primarily between 65 and 80 seconds. A joint NASA/Thiokol team investigation concluded that the cause of the pressure perturbations was the periodic ingestion and ejection of molten aluminum oxide slag from the cavity around the submerged nozzle nose which tends to trap and collect individual aluminum oxide droplets from the approach flow. The conclusions of the team were supported by numerous data and observations from special tests including high speed photographic films, real time radiography, plume calorimeters, accelerometers, strain gauges, nozzle TVC system force gauges, and motor pressure and thrust data. A simplistic slag ballistics model was formulated to relate a given pressure perturbation to a required slag quantity. Also, a cold flow model using air and water was developed to provide data on the relationship between the slag flow rate and the chamber pressure increase. Both the motor and the cold flow model exhibited low frequency oscillations in conjunction with periods of slag ejection. Motor and model frequencies were related to scaling parameters. The data indicate that there is a periodicity to the slag entrainment and ejection phenomena which is possibly related to organized oscillations from instabilities in the dividing streamline shear layer which impinges on the underneath surface of the nozzle.

  12. Car and Parrinello meet Green and Kubo: simulating atomic heat transport from equilibrium ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baroni, Stefano

    Modern simulation methods based on electronic-structure theory have long been deemed unfit to compute heat transport coefficients within the Green-Kubo formalism. This is so because the quantum-mechanical energy density from which the heat flux is derived is inherently ill defined, thus allegedly hampering the use of the Green-Kubo formula. While this objection would actually apply to classical systems as well, I will demonstrate that the thermal conductivity is indeed independent of the specific microscopic expression for the energy density and current from which it is derived. This fact results from a kind of gauge invariance stemming from energy conservation and extensivity, which I will illustrate numerically for a classical Lennard-Jones fluid. I will then introduce an expression for the adiabatic energy flux, derived within density-functional theory, that allows simulating atomic heat transport using equilibrium ab initio molecular dynamics. The resulting methodology is demonstrated by comparing results from ab-initio and classical molecular-dynamics simulations of a model liquid-Argon system, for which accurate inter-atomic potentials are derived by the force-matching method, and applied to compute the thermal conductivity of heavy water at ambient conditions. The problem of evaluating transport coefficients along with their accuracy from relatively short trajectories is finally addressed and discussed with a few representative examples. Partially funded by the European Union through the MaX Centre of Excellence (Grant No. 676598).

  13. Needleless connectors substantially reduce flow of crystalloid and red blood cells during rapid infusion.

    PubMed

    Lehn, Robert A; Gross, Jeffrey B; McIsaac, Joseph H; Gipson, Keith E

    2015-04-01

    Although needleless connectors (NC) are frequently used in the perioperative setting, the potential of modern NCs to slow delivery of IV fluids has not been thoroughly studied. We examined flow characteristics of 5 NC models during pressurized delivery of crystalloid and banked red blood cells from a Level 1 warmer through various IV catheters. Crystalloid flow rates were reduced by 29% to 85% from control in catheters >18 gauge, while red blood cell flow reductions ranged from 22% to 76% in these catheters (all P < 0.0050). We suggest that practitioners consider eliminating NCs when large IV catheters are inserted for rapid fluid administration.

  14. The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    DOE PAGES

    Argyres, Philip C.; Uensal, Mithat

    2012-08-10

    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less

  15. Gyro-gauge-independent formulation of the guiding-center reduction to arbitrary order in the Larmor radius

    NASA Astrophysics Data System (ADS)

    de Guillebon, L.; Vittot, M.

    2013-10-01

    Guiding-center reduction is studied using gyro-gauge-independent coordinates. The Lagrangian 1-form of charged particle dynamics is Lie transformed without introducing a gyro-gauge, but using directly the unit vector of the component of the velocity perpendicular to the magnetic field as the coordinate corresponding to Larmor gyration. The reduction is shown to provide a maximal reduction for the Lagrangian and to work for all orders in the Larmor radius, following exactly the same procedure as when working with the standard gauge-dependent coordinate. The gauge-dependence is removed from the coordinate system by using a constrained variable for the gyro-angle. The closed 1-form dθ is replaced by a more general non-closed 1-form, which is equal to dθ in the gauge-dependent case. The gauge vector is replaced by a more general connection in the definition of the gradient, which behaves as a covariant derivative, in perfect agreement with the circle-bundle picture. This explains some results of previous works, whose gauge-independent expressions did not correspond to gauge fixing but did indeed correspond to connection fixing. In addition, some general results are obtained for the guiding-center reduction. The expansion is polynomial in the cotangent of the pitch-angle as an effect of the structure of the Lagrangian, preserved by Lie derivatives. The induction for the reduction is shown to rely on the inversion of a matrix, which is the same for all orders higher than three. It is inverted and explicit induction relations are obtained to go to an arbitrary order in the perturbation expansion. The Hamiltonian and symplectic representations of the guiding-center reduction are recovered, but conditions for the symplectic representation at each order are emphasized.

  16. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...

  17. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  18. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  19. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  20. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1

    NASA Technical Reports Server (NTRS)

    Williams, Robert W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  1. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  2. Doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group

    NASA Astrophysics Data System (ADS)

    Caspar, S.; Mesterházy, D.; Olesen, T. Z.; Vlasii, N. D.; Wiese, U.-J.

    2016-11-01

    We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group G in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm phase, which is manifested in the doubled theory in terms of a nontrivial ground-state degeneracy on a single cross. We discuss several examples of these doubled theories with different gauge groups including the cyclic group Z(k) ⊂ U(1) , the symmetric group S3 ⊂ O(2) , the binary dihedral (or quaternion) group D¯2 ⊂ SU(2) , and the finite group Δ(27) ⊂ SU(3) . In each case the spectrum of the single-cross electric Hamiltonian is determined exactly. We examine the nature of the low-lying excited states in the full Hilbert space, and emphasize the role of the center symmetry for the confinement of charges. Whether the investigated doubled models admit a non-Abelian topological state which allows for fault-tolerant quantum computation will be addressed in a future publication.

  3. A gauge-theoretic approach to gravity

    PubMed Central

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  4. Tank gauging apparatus and method

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1990-01-01

    An apparatus for gauging the amount of liquid in a container of liquid and gas under low or zero gravity net conditions includes an accumulator and appropriate connector apparatus for communicating gas between the accumulator and the container. In one form of the invention, gas is removed from the container and compressed into the accumulator. The pressure and temperature of the fluid in the container is measured before and after removal of the gas; the pressure and temperature of the gas in the accumulator is measured before and after compression of the gas into the accumulator from the container. These pressure and temperature measurements are used to determine the volume of gas in the container, whereby the volume of the liquid in the container can be determined from the difference between the known volume of the container and the volume of gas in the container. Gas from the accumulator may be communicated into the container in a similar process as a verification of the gauging of the liquid volume, or as an independent process for determining the volume of liquid in the container.

  5. Tank gauging apparatus and method

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1991-01-01

    Apparatus for gauging the amount of liquid in a container of liquid and gas under flow or zero gravity net conditions includes an accumulator and appropriate connector apparatus for communicating gas between the accumulator and the container. In one form of the invention, gas is removed from the container and compressed into the accumulator. The pressure and temperature of the fluid in the container is measured before and after removal of the gas; the pressure and temperature of gas in the accumulator is measured before and after compression of the gas into the accumulator from the container. These pressure and temperature measurements are used in determining the volume of gas in the container, whereby the volume of liquid in the container can be determined from the difference between the known volume of the container and the volume of gas in the container. Gas from the accumulator may be communicated into the container in a similar process as a verification of the gauging of the liquid volume, or as an independent process for determining the volume of liquid in the container.

  6. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    NASA Astrophysics Data System (ADS)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  7. Cosmological constant is a conserved charge

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Dmitry; Hajian, Kamal

    2018-06-01

    Cosmological constant can always be considered as the on-shell value of a top form in gravitational theories. The top form is the field strength of a gauge field, and the theory enjoys a gauge symmetry. We show that cosmological constant is the charge of the global part of the gauge symmetry, and is conserved irrespective of the dynamics of the metric and other fields. In addition, we introduce its conjugate chemical potential, and prove the generalized first law of thermodynamics which includes variation of cosmological constant as a conserved charge. We discuss how our new term in the first law is related to the volume–pressure term. In parallel with the seminal Wald entropy, this analysis suggests that pressure can also be considered as a conserved charge.

  8. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  9. Chaos in the gauge/gravity correspondence

    NASA Astrophysics Data System (ADS)

    Pando Zayas, Leopoldo A.; Terrero-Escalante, César A.

    2010-09-01

    We study the motion of a string in the background of the Schwarzschild black hole in AdS 5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.

  10. Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade

    DTIC Science & Technology

    2016-11-01

    turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis

  11. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  12. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  13. Marina di Ravenna Tide Gauge (Italy): rescue of the initial 23 years of data (1873-1896)

    NASA Astrophysics Data System (ADS)

    Bruni, S.; Zerbini, S.; Raicich, F.; Errico, M.; Santi, E.

    2017-12-01

    The tide gauge of Marina di Ravenna, formerly Porto Corsini, Italy, has been first installed in August 1873, but its oldest records, currently available through public archives, only date back to 1896. We found historical documents reporting that the earlier data should have been preserved in the historical archives of the Istituto Geografico Militare (IGM), Florence, Italy. Even if we did not find the original tidal charts in the IGM archives, we were able to retrieve six hand-written volumes reporting the readings of the high and low waters for the period 1873-1922. These volumes and the relevant documents contain important information which allowed clarifying existing doubts on the tide gauge reference levels and constants. The 1873-1922 data were digitized, the quality was assessed as well as the reference to a common datum. With the addition of these initial 23 years of data (1873-1896), the time series of the Marina di Ravenna tide gauge spans now 144 years. The area of Marina di Ravenna was and is affected by subsidence, due to both natural and anthropogenic causes. The effects of human activities started to be noticeable since the 1920s, when the area was interested by reclamation works; during the 60s and 70s, ground-fluid extraction was responsible for subsidence rates up to several cm/year. The newly retrieved records are then particularly valuable for assessing the local sea-level trend in a period when only natural subsidence was affecting the tide-gauge observations.

  14. Numerical Study of the Cerebro-Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

    DTIC Science & Technology

    2001-10-25

    THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

  15. Dynamic rating curve assessment in hydrometric stations and calculation of the associated uncertainties : Quality and monitoring indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine

    2013-04-01

    Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow

  16. Finite BRST-BFV transformations for dynamical systems with second-class constraints

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.

    2015-06-01

    We study finite field-dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.

  17. Exploration of a Dynamic Merging Scheme for Precipitation Estimation over a Small Urban Catchment

    NASA Astrophysics Data System (ADS)

    Al-Azerji, Sherien; Rico-Ramirez, Miguel, ,, Dr.; Han, Dawei, ,, Prof.

    2016-04-01

    The accuracy of quantitative precipitation estimation is of significant importance for urban areas due to the potentially damaging consequences that can result from pluvial flooding. Improved accuracy could be accomplished by merging rain gauge measurements with weather radar data through different merging methods. Several factors may affect the accuracy of the merged data, and the gauge density used for merging is one of the most important. However, if there are no gauges inside the research area, then a gauge network outside the research area can be used for the merging. Generally speaking, the denser the rain gauge network is, the better the merging results that can be achieved. However, in practice, the rain gauge network around the research area is fixed, and the research question is about the optimal merging area. The hypothesis is that if the merging area is too small, there are fewer gauges for merging and thus the result would be poor. If the merging area is too large, gauges far away from the research area can be included in merging. However, due to their large distances, those gauges far away from the research area provide little relevant information to the study and may even introduce noise in merging. Therefore, an optimal merging area that produces the best merged rainfall estimation in the research area could exist. To test this hypothesis, the distance from the centre of the research area and the number of merging gauges around the research area were gradually increased and merging with a new domain of radar data was then performed. The performance of the new merging scheme was compared with a gridded interpolated rainfall from four experimental rain gauges installed inside the research area for validation. The result of this analysis shows that there is indeed an optimum distance from the centre of research area and consequently an optimum number of rain gauges that produce the best merged rainfall data inside the research area. This study is of important and practical value for estimating rainfall in an urban catchment (when there are no gauges available inside the catchment) by merging weather radar with rain gauge data from outside of the catchment. This has not been reported in any literature before now.

  18. Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung, E-mail: hr@kasi.re.kr, E-mail: jchan@knu.ac.kr, E-mail: park.chan.gyung@gmail.com

    2015-12-01

    We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as thatmore » of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.« less

  19. Relativistic Fluid Dynamics Far From Local Equilibrium

    NASA Astrophysics Data System (ADS)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  20. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viennot, David

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less

  1. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  2. SO(3) "Nuclear Physics" with ultracold Gases

    NASA Astrophysics Data System (ADS)

    Rico, E.; Dalmonte, M.; Zoller, P.; Banerjee, D.; Bögli, M.; Stebler, P.; Wiese, U.-J.

    2018-06-01

    An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an SO(3) lattice gauge theory as a toy model for QCD. We show that this model is accessible to state-of-the-art quantum simulation experiments with ultracold atoms in an optical lattice. First, we demonstrate that our model shares characteristic many-body features with QCD, such as the spontaneous breakdown of chiral symmetry, its restoration at finite baryon density, as well as the existence of few-body bound states. Then we show that in the one-dimensional case, the dynamics in the gauge invariant sector can be encoded as a spin S = 3/2 Heisenberg model, i.e., as quantum magnetism, which has a natural realization with bosonic mixtures in optical lattices, and thus sheds light on the connection between non-Abelian gauge theories and quantum magnetism.

  3. Going Beyond QCD in Lattice Gauge Theory

    NASA Astrophysics Data System (ADS)

    Fleming, G. T.

    2011-01-01

    Strongly coupled gauge theories (SCGT's) have been studied theoretically for many decades using numerous techniques. The obvious motivation for these efforts stemmed from a desire to understand the source of the strong nuclear force: Quantum Chromo-dynamics (QCD). Guided by experimental results, theorists generally consider QCD to be a well-understood SCGT. Unfortunately, it is not clear how to extend the lessons learned from QCD to other SCGT's. Particularly urgent motivators for new studies of other SCGT's are the ongoing searches for physics beyond the standard model (BSM) at the Large Hadron Collider (LHC) and the Tevatron. Lattice gauge theory (LGT) is a technique for systematically-improvable calculations in many SCGT's. It has become the standard for non-perturbative calculations in QCD and it is widely believed that it may be useful for study of other SCGT's in the realm of BSM physics. We will discuss the prospects and potential pitfalls for these LGT studies, focusing primarily on the flavor dependence of SU(3) gauge theory.

  4. Novel symmetries in Weyl-invariant gravity with massive gauge field

    NASA Astrophysics Data System (ADS)

    Abhinav, K.; Shukla, A.; Panigrahi, P. K.

    2016-11-01

    The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stückelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stückelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity.

  5. Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Konstantinos; Lazarides, George; Wagstaff, Jacques M.

    2012-02-01

    It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly red despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97-0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.

  6. Instantons, quivers and noncommutative Donaldson-Thomas theory

    NASA Astrophysics Data System (ADS)

    Cirafici, Michele; Sinkovics, Annamaria; Szabo, Richard J.

    2011-12-01

    We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.

  7. Unsteady flow of a thixotropic or antithixotropic fluid

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Pritchard, David; Croudace, Andrew

    2016-11-01

    We describe a general formulation of the governing equations for the unsteady, axisymmetric flow of a thixotropic or antithixotropic fluid in a channel of slowly varying width. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter; they extend and generalise the corresponding results for steady, two-dimensional flow obtained recently by Pritchard, Wilson and McArdle. The magnitudes of temporal and advective thixotropic effects are gauged by naturally defined temporal and advective Deborah numbers. To gain insight into the complicated behaviour of the flow, we explore regimes in which these thixotropic effects first appear at first order in powers of the small aspect ratio. We present illustrative analytical and semi-analytical solutions for particular choices of the constitutive and kinetic laws, including a purely viscous Moore-Mewis-Wagner model and a regularised viscoplastic Hou\\vska model. Partly supported by a United Kingdom EPSRC DTA Studentship and Leverhulme Trust Research Fellowship RF-2013-355.

  8. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  9. M-theory through the looking glass: Tachyon condensation in the E8 heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horava, Petr; Horava, Petr; Keeler, Cynthia A.

    2007-09-20

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing -- connecting the two E_8 boundaries by a throat -- are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E_8 gauge group and a singlet tachyon. We then use worldsheet methods to studymore » the tachyon condensation in the NSR formulation of this model, and show that it induces a worldsheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for worldsheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the worldsheet gravitino assimilates the goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R_\\xi gauges, and note the importance of logarithmic CFT in the context of tachyon condensation.« less

  10. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Geoffrey

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  11. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  12. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  13. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  14. Dynamically SUSY breaking SQCD on F-theory seven-branes

    NASA Astrophysics Data System (ADS)

    Buchbinder, Evgeny I.

    2008-09-01

    We study how dynamically breaking SQCD can be obtained on two intersecting seven-branes in F-theory. In the mechanism which we present in this paper one of the seven-branes is responsible for producing the low-energy gauge group and the other one is for generating vector bundle moduli. The fundamental matter charged under the gauge group is localized on the intersection. The mass of the matter fields is controlled by the vector bundle moduli. The analysis of under what conditions a sufficient number of the fundamental flavors becomes light turns out to be equivalent to the analysis of non-perturbative superpotentials for vector bundle moduli in Heterotic M-theory. We give an example in which we present an explicit equation in the moduli space whose zero locus corresponds to the fundamental fields becoming light. This allows us to provide a local F-theory realization of massive Script N = 1, SU(Nc) SQCD in the free magnetic range which dynamically breaks supersymmetry.

  15. Nambu mechanism of dynamical symmetry breaking by the top quark

    NASA Astrophysics Data System (ADS)

    Pham, Xuan-Yem

    1990-05-01

    It may be possible that the gauge symmetry breaking of the standard electroweak interactions is not due to the elementary scalar Higgs fields but has a dynamic origin intimately involving the top quark. A prototype of this dynamical scenario is the Nambu and Jona-Lasinio model in which both the top quark and the gauge bosons become massive by some strong attractive nonlinear interactions similar to the gap energy produced in BCS superconductivity. Self-consistent equations for the charged Goldstone boson and for the vector meson are used to get an upper bound for the top quark mass. In the bubble approximation of keeping only fermion loops, we obtain an equation relating the top quark mass to the W boson one; from the top mass is found to be around 84 GeV. Its typical dominant decay mode t→W+s then follows. Also discussed are distinctive signatures of the scalar overlinett bound state identified as the physical Higgs particle whose mass is twice that of the top quark.

  16. COMPARING PERIPHERAL VITRECTOMY UNDER AIR AND FLUID INFUSION FOR PRIMARY RHEGMATOGENOUS RETINAL DETACHMENT.

    PubMed

    Erdogan, Gurkan; Unlu, Cihan; Karasu, Bugra; Kardes, Esra; Ergin, Ahmet

    2016-07-01

    To evaluate the efficacy and safety of peripheral vitrectomy under air infusion in comparison with fluid infusion in patients undergoing 23-gauge pars plana vitrectomy for primary rhegmatogenous retinal detachment. A total of 80 eyes of 80 patients with primary rhegmatogenous retinal detachment were enrolled into the study. Forty cases underwent peripheral vitrectomy under air infusion (air group), and a control group of equal number underwent peripheral vitrectomy under fluid infusion (fluid group). Peripheral iatrogenic retinal breaks during peripheral vitrectomy, postoperative visual acuities, and retinal redetachment rates were compared. The number of eyes with peripheral iatrogenic retinal breaks in air group during peripheral vitrectomy was statistically comparable with that in fluid group (1/40 and 4/40, 2.5% and 10%, respectively; P = 0.16). Scleral depression was necessitated in 7 of 40 cases (17.5%) during the operation in the air group. There were no statistically significant differences between the groups in means of postoperative visual acuity and retinal redetachment (P = 0.18 and P = 1.0, respectively). Peripheral vitrectomy under air infusion for primary rhegmatogenous retinal detachment revealed comparable results with fluid infusion in terms of intraoperative and postoperative complications and surgical outcomes.

  17. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  18. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  19. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  20. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  1. F*** Yeah Fluid Dynamics: Lessons from online outreach

    NASA Astrophysics Data System (ADS)

    Sharp, Nicole

    2013-11-01

    The fluid dynamics education outreach blog FYFD features photos, videos, and research along with concise, accessible explanations of phenomena every weekday. Over the past three years, the blog has attracted an audience of roughly 200,000 online followers. Reader survey results indicate that over half of the blog's audience works or studies in non-fluids fields. Twenty-nine percent of all survey respondents indicate that FYFD has been a positive influence on their desire to pursue fluid dynamics in their education or career. Of these positively influenced readers, over two-thirds have high-school or undergraduate-level education, indicating a significant audience of potential future fluid dynamicists. This talk will utilize a mixture of reader metrics, web analytics, and anecdotal evidence to discuss what makes science outreach successful and how we, as a community, can benefit from promoting fluid dynamics to a wider audience. http://tinyurl.com/azjjgj2

  2. A Two-Axis Direct Fluid Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.

    2010-01-01

    This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.

  3. Witten index for noncompact dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Joo; Yi, Piljin

    2016-06-01

    Among gauged dynamics motivated by string theory, we find many with gapless asymptotic directions. Although the natural boundary condition for ground states is L 2, one often turns on chemical potentials or supersymmetric mass terms to regulate the infrared issues, instead, and computes the twisted partition function. We point out how this procedure generically fails to capture physical L 2 Witten index with often misleading results. We also explore how, nevertheless, the Witten index is sometimes intricately embedded in such twisted partition functions. For d = 1 theories with gapless continuum sector from gauge multiplets, such as non-primitive quivers and pure Yang-Mills, a further subtlety exists, leading to fractional expressions. Quite unexpectedly, however, the integral L 2 Witten index can be extracted directly and easily from the twisted partition function of such theories. This phenomenon is tied to the notion of the rational invariant that appears naturally in the wall-crossing formulae, and offers a general mechanism of reading off Witten index directly from the twisted partition function. Along the way, we correct early numerical results for some of mathcal{N} = 4 , 8 , 16 pure Yang-Mills quantum mechanics, and count threshold bound states for general gauge groups beyond SU( N ).

  4. Chern-Simons improved Hamiltonians for strings in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara

    2016-07-01

    In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.

  5. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  6. Realizing and characterizing chiral photon flow in a circuit quantum electrodynamics necklace.

    PubMed

    Wang, Yan-Pu; Wang, Wei; Xue, Zheng-Yuan; Yang, Wan-Li; Hu, Yong; Wu, Ying

    2015-02-10

    Gauge theory plays the central role in modern physics. Here we propose a scheme of implementing artificial Abelian gauge fields via the parametric conversion method in a necklace of superconducting transmission line resonators (TLRs) coupled by superconducting quantum interference devices (SQUIDs). The motivation is to synthesize an extremely strong effective magnetic field for charge-neutral bosons which can hardly be achieved in conventional solid-state systems. The dynamic modulations of the SQUIDs can induce effective magnetic fields for the microwave photons in the TLR necklace through the generation of the nontrivial hopping phases of the photon hopping between neighboring TLRs. To demonstrate the synthetic magnetic field, we study the realization and detection of the chiral photon flow dynamics in this architecture under the influence of decoherence. Taking the advantages of its simplicity and flexibility, this parametric scheme is feasible with state-of-the-art technology and may pave an alternative way for investigating the gauge theories with superconducting quantum circuits. We further propose a quantitative measure for the chiral property of the photon flow. Beyond the level of qualitative description, the dependence of the chiral flow on external pumping parameters and cavity decay is characterized.

  7. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  8. Chiral Dark Sector.

    PubMed

    Co, Raymond T; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-10

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  9. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE PAGES

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; ...

    2018-02-07

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  10. Nonlinear forecasting analysis of inflation-deflation patterns of an active caldera (Campi Flegrei, Italy)

    USGS Publications Warehouse

    Cortini, M.; Barton, C.C.

    1993-01-01

    The ground level in Pozzuoli, Italy, at the center of the Campi Flegrei caldera, has been monitored by tide gauges. Previous work suggests that the dynamics of the Campi Flegrei system, as reconstructed from the tide gauge record, is chaotic and low dimensional. According to this suggestion, in spite of the complexity of the system, at a time scale of days the ground motion is driven by a deterministic mechanism with few degrees of freedom; however, the interactions of the system may never be describable in full detail. New analysis of the tide gauge record using Nonlinear Forecasting, confirms low-dimensional chaos in the ground elevation record at Campi Flegrei and suggests that Nonlinear Forecasting could be a useful tool in volcanic surveillance. -from Authors

  11. Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges

    NASA Astrophysics Data System (ADS)

    Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.

    2018-03-01

    The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.

  12. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. As a result, potential applications of the LCAO based scheme in the context ofmore » extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.« less

  13. Multigrid Methods for the Computation of Propagators in Gauge Fields

    NASA Astrophysics Data System (ADS)

    Kalkreuter, Thomas

    Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

  14. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  15. Heavy-lifting of gauge theories by cosmic inflation

    NASA Astrophysics Data System (ADS)

    Kumar, Soubhik; Sundrum, Raman

    2018-05-01

    Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a "heavy-lifting" mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.

  16. Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.

    2017-04-01

    The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.

  17. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  18. Automated Static Culture System Cell Module Mixing Protocol and Computational Fluid Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,

    2004-01-01

    This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.

  19. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  20. Direct mechanical torque sensor for model wind turbines

    NASA Astrophysics Data System (ADS)

    Kang, Hyung Suk; Meneveau, Charles

    2010-10-01

    A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.

  1. Radio frequency tank eigenmode sensor for propellant quantity gauging

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A. (Inventor)

    2013-01-01

    A method for measuring the quantity of fluid in a tank may include the steps of selecting a match between a measured set of electromagnetic eigenfrequencies and a simulated plurality of sets of electromagnetic eigenfrequencies using a matching algorithm, wherein the match is one simulated set of electromagnetic eigenfrequencies from the simulated plurality of sets of electromagnetic eigenfrequencies, and determining the fill level of the tank based upon the match.

  2. Shipboard Fluid System Diagnostics Using Non-Intrusive Load Monitoring

    DTIC Science & Technology

    2007-06-01

    brute.s(3).data; tDPP = brute.s(3).time; FL = brute.s(4).data; tFL = brute.s(4).time; RM = brute.s(5).data; tRM = brute.s(5).time; DPF = brute.s...s’, max(tP1), files(n).name)); ylabel(’Power’); axis tight grid on; subplot(4,1,2); plot( tDPP , DPP, tDPF, DPF) ylabel(’DP Gauges’); axis

  3. Hydrodynamic Response of a Composite Structure in an Arctic Environment

    DTIC Science & Technology

    2015-06-01

    the navy’s first ship constructed entirely of composite materials. The 24-meter long ship is built from carbon fiber reinforced epoxy. The ship is...allowed for repeatable experimentation. Strain gauges were attached to critical locations of the composite plate towed through the tank . Both plate...SUBJECT TERMS Tow Tank , Fluid Structure Interaction, FSI, Composite Material, E-Glass, ANSYS, Hull Shape, CFX, Arctic. 15. NUMBER OF PAGES 131

  4. Vacuum structure and gravitational bags produced by metric-independent space-time volume-form dynamics

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2015-07-01

    We propose a new class of gravity-matter theories, describing R + R2 gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space-time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root -F2 of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space-time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term X, with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” φ. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) φ = const and a nonzero gauge field vacuum -F2≠0, which corresponds to a charge confining phase; (ii) X = const (“kinetic vacuum”) and ordinary gauge field vacuum -F2 = 0 which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) X = const (“kinetic vacuum”) and a nonzero gauge field vacuum -F2≠0, which again corresponds to a charge confining phase. In all three cases, the space-time metric is de Sitter or Schwarzschild-de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner-Nordström-de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.

  5. Simultaneous Multiple-Location Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  6. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  7. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  8. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  9. Extended Reissner-Nordström solutions sourced by dynamical torsion

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.; Valcarcel, Jorge Gigante

    2018-04-01

    We find a new exact vacuum solution in the framework of the Poincaré Gauge field theory with massive torsion. In this model, torsion operates as an independent field and introduces corrections to the vacuum structure present in General Relativity. The new static and spherically symmetric configuration shows a Reissner-Nordström-like geometry characterized by a spin charge. It extends the known massless torsion solution to the massive case. The corresponding Reissner-Nordström-de Sitter solution is also compatible with a cosmological constant and additional U (1) gauge fields.

  10. Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.

    PubMed

    Harel, François; Ngo, Quam; Finnerty, Vincent; Hernandez, Edgar; Khairy, Paul; Dupuis, Jocelyn

    2007-08-01

    We validated a novel mobile detection system to evaluate reactive hyperemia using the radionuclide plethysmography technique. Twenty-six subjects underwent simultaneously radionuclide plethysmography with strain gauge plethysmography. Strain gauge and radionuclide methods showed excellent reproducibility with intraclass correlation coefficients of 0.96 and 0.89 respectively. There was also a good correlation of flows between the two methods during reactive hyperemia (r = 0.87). We conclude that radionuclide plethysmography using this mobile detection system is a non-invasive alternative to assess forearm blood flow and its dynamic variations during reactive hyperemia.

  11. Vanilla technicolor at linear colliders

    NASA Astrophysics Data System (ADS)

    Frandsen, Mads T.; Järvinen, Matti; Sannino, Francesco

    2011-08-01

    We analyze the reach of linear colliders for models of dynamical electroweak symmetry breaking. We show that linear colliders can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, until the maximum energy in the center of mass of the colliding leptons. In particular we analyze the Drell-Yan processes involving spin-one intermediate heavy bosons decaying either leptonically or into two standard model gauge bosons. We also analyze the light Higgs production in association with a standard model gauge boson stemming also from an intermediate spin-one heavy vector.

  12. The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tree, Mike; Fagan, Kiley; Yoganathan, Ajit

    2014-11-01

    The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.

  13. Cross-Effects in Microgravity Flows

    NASA Technical Reports Server (NTRS)

    Loyalka, Sudarshan K.; Tompson, R. V.; Ivchenko, I. N.; Ghosh, T. K.; Hamoodi, S. A.; Hickey, K. A.; Huang, C. M.; Tebbe, Patrick A.; Gabis, D. H.; Tekasakul, P.; hide

    1996-01-01

    Film growth by chemical/physical vapor deposition is a process of considerable interest in microgravity experiments. The absence of natural convection should allow better control of film growth processes but, in highly non-isothermal ampoules, thermal slip (creep) can become a matter of significant concern. The reported research is a theoretical and experimental investigation of the flow of gas/vapor mixtures under non-continuum conditions. The Boltzmann equation has been solved for a monatomic gas under non-condensing conditions and the various phenomenological coefficients have been computed. Computations for realistic potentials as well as for velocity and creep slip have been completed and the creep slip has been found to be dependent on the type of gas confirming the accuracy of previous variational results. The variational technique has been extended and planar flows calculated via the Burnett solutions. Velocity, diffusion and creep slips have been computed for gas mixtures and previously unknown dependencies of the creep slip on the mixture properties have been observed. Also for gas mixtures, an integral representation of the linearized Boltzmann operator has been developed for use in numerical and variational calculations for all intermolecular force laws. Two, two-bulb capillary systems have been designed, built and tested for the measurements of cross-flows; one of glass for isothermal measurements and one of stainless steel for non-isothermal measurements. Extensive data have been collected for Ar-He and N2-He mixtures at a variety of pressures and mole ratios. Viscosity, velocity slip coefficients and tangential momentum accommodation coefficients have been obtained from measurements with a spinning rotor gauge via a new theory that has been formulated for the spinning rotor gauge in the slip regime. The FIDAP fluid dynamics code has been applied to condensing flows in ampoules in the continuum regime and agreement obtained with the earlier work of Duval.

  14. Standard model group: Survival of the fittest

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Brene, N.

    1983-09-01

    The essential content of this paper is related to random dynamics. We speculate that the world seen through a sub-Planck-scale microscope has a lattice structure and that the dynamics on this lattice is almost completely random, except for the requirement that the random (plaquette) action is invariant under some "world (gauge) group". We see that the randomness may lead to spontaneous symmetry breakdown in the vacuum (spontaneous collapse) without explicit appeal to any scalar field associated with the usual Higgs mechanism. We further argue that the subgroup which survives as the end product of a possible chain of collapses is likely to have certain properties; the most important is that it has a topologically connected center. The standard group, i.e. the group of the gauge theory which combines the Salam-Weinberg model with QCD, has this property.

  15. Motions, efforts and actuations in constrained dynamic systems: a multi-link open-chain example

    NASA Astrophysics Data System (ADS)

    Duke Perreira, N.

    1999-08-01

    The effort-motion method, which describes the dynamics of open- and closed-chain topologies of rigid bodies interconnected with revolute and prismatic pairs, is interpreted geometrically. Systems are identified for which the simultaneous control of forces and velocities is desirable, and a representative open-chain system is selected for use in the ensuing analysis. Gauge invariant transformations are used to recast the commonly used kinetic and kinematic equations into a dimensional gauge invariant form. Constraint elimination techniques based on singular value decompositions then recast the invariant equations into orthogonal and reciprocal sets of motion and effort equations written in state variable form. The ideal actuation is found that simultaneously achieves the obtainable portions of the desired constraining efforts and motions. The performance is then evaluated of using the actuation closest to the ideal actuation.

  16. A composite model for the 750 GeV diphoton excess

    DOE PAGES

    Harigaya, Keisuke; Nomura, Yasunori

    2016-03-14

    We study a simple model in which the recently reported 750 GeV diphoton excess arises from a composite pseudo Nambu-Goldstone boson — hidden pion — produced by gluon fusion and decaying into two photons. The model only introduces an extra hidden gauge group at the TeV scale with a vectorlike quark in the bifundamental representation of the hidden and standard model gauge groups. We calculate the masses of all the hidden pions and analyze their experimental signatures and constraints. We find that two colored hidden pions must be near the current experimental limits, and hence are probed in the nearmore » future. We study physics of would-be stable particles — the composite states that do not decay purely by the hidden and standard model gauge dynamics — in detail, including constraints from cosmology. We discuss possible theoretical structures above the TeV scale, e.g. conformal dynamics and supersymmetry, and their phenomenological implications. We also discuss an extension of the minimal model in which there is an extra hidden quark that is singlet under the standard model and has a mass smaller than the hidden dynamical scale. This provides two standard model singlet hidden pions that can both be viewed as diphoton/diboson resonances produced by gluon fusion. We discuss several scenarios in which these (and other) resonances can be used to explain various excesses seen in the LHC data.« less

  17. An Innovative Sensing Approach Using Carbon Nanotube-Based Composites for Structural Health Monitoring of Concrete Structures

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vatsal

    This thesis presents some work on two quite disparate kinds of dynamical systems described by Hamiltonian dynamics. The first part describes a computation of gauge anomalies and their macroscopic effects in a semiclassical picture. The geometric (symplectic) formulation of classical mechanics is used to describe the dynamics of Weyl fermions in even spacetime dimensions, the only quantum input to the symplectic form being the Berry curvature that encodes the spin-momentum locking. The (semi-)classical equations of motion are used in a kinetic theory setup to compute the gauge and singlet currents, whose conservation laws reproduce the nonabelian gauge and singlet anomalies. Anomalous contributions to the hydrodynamic currents for a gas of Weyl fermions at a finite temperature and chemical potential are also calculated, and are in agreement with similar results in literature which were obtained using thermodynamic and/or quantum field theoretical arguments. The second part describes a generalized transfer matrix formalism for noninteracting tight-binding models. The formalism is used to study the bulk and edge spectra, both of which are encoded in the spectrum of the transfer matrices, for some of the common tight-binding models for noninteracting electronic topological phases of matter. The topological invariants associated with the boundary states are interpreted as winding numbers for windings around noncontractible loops on a Riemann sheet constructed using the algebraic structure of the transfer matrices, as well as with a Maslov index on a symplectic group manifold, which is the space of transfer matrices.

  18. Non-Ideal Compressible-Fluid Dynamics of Fast-Response Pressure Probes for Unsteady Flow Measurements in Turbomachinery

    NASA Astrophysics Data System (ADS)

    Gori, G.; Molesini, P.; Persico, G.; Guardone, A.

    2017-03-01

    The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.

  19. Fundamental Study on Quantum Nanojets

    DTIC Science & Technology

    2004-08-01

    Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical

  20. Non-linear power spectra in the synchronous gauge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented inmore » the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.« less

  1. Fluid Dynamics for Physicists

    NASA Astrophysics Data System (ADS)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  2. Fluid Dynamics of the Heart and its Valves

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.

    1997-11-01

    The fluid dynamics of the heart involve the interaction of blood, a viscous incompressible fluid, with the flexible, elastic, fiber-reinforced heart valve leaflets that are immersed in that fluid. Neither the fluid motion nor the valve leaflet motion are known in advance: both must be computed simultaneously by solving their coupled equations of motion. This can be done by the immersed boundary method(Peskin CS and McQueen DM: A general method for the computer simulation of biological systems interacting with fluids. In: Biological Fluid Dynamics (Ellington CP and Pedley TJ, eds.), The Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.), which can be extended to incorporate the contractile fiber architecture of the muscular heart walls as well as the valve leaflets and the blood. In this way we arrive at a three-dimensional computer model of the heart(Peskin CS and McQueen DM: Fluid dynamics of the heart and its valves. In: Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (Othmer HG, Adler FR, Lewis MA, and Dallon JC, eds.), Prentice-Hall, Englewood Cliffs NJ, 1996, pp. 309-337.), which can be used as a test chamber for the design of prosthetic cardiac valves, and also to study the function of the heart in health and in disease. Numerical solutions of the equations of cardiac fluid dynamics obtained by the immersed boundary method will be presented in the form of a video animation of the beating heart.

  3. Cellular fluid mechanics.

    PubMed

    Kamm, Roger D

    2002-01-01

    The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.

  4. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, E.; Niemi, H.; Rischke, D. H.

    2016-12-01

    In Molnár et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.

  5. Improving students’ conceptions on fluid dynamics through peer teaching model with PDEODE (PTM-PDEODE)

    NASA Astrophysics Data System (ADS)

    Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.

    2018-05-01

    This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.

  6. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  7. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.

  8. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  9. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  10. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.

    PubMed

    Furukawa, Akira; Tateno, Michio; Tanaka, Hajime

    2018-05-16

    Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.

  11. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  12. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  13. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  14. Weak interactions and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, M.K.

    1979-12-01

    The status of the electroweak gauge theory, also known as quantum asthenodynamics (QAD), is examined. The major result is that the standard WS-GIM model describes the data well, although one should still look for signs of further complexity and better tests of its gauge theory aspect. A second important result is that the measured values of the three basic coupling constants of present-energy physics, g/sub s/, g, and ..sqrt..(5/3)g' of SU(3)/sub c/ x SU(2)/sub 2/ x U(1), are compatible with the idea that these interactions are unified at high energies. Much of the paper deals with open questions, and itmore » takes up the following topics: the status of QAD, the scalar meson spectrum, the fermion spectrum, CP violation, and decay dynamics. 118 references, 20 figures. (RWR)« less

  15. Probing strong electroweak symmetry breaking dynamics through quantum interferometry at the LHC

    DOE PAGES

    Murayama, Hitoshi; Rentala, Vikram; Shu, Jing

    2015-12-07

    Here, we present a new probe of strongly coupled electroweak symmetry breaking at the 14 TeV LHC by measuring a phase shift in the event distribution of the decay azimuthal angles in massive gauge boson scattering. One generically expects a large phase shift in the longitudinal gauge boson scattering amplitude due to the presence of broad resonances. This phase shift is observable as an interference effect between the strongly interacting longitudinal modes and the transverse modes of the gauge bosons. We find that even very broad resonances of masses up to 900 GeV can be probed at 3σ significance withmore » a 3000 fb -1 run of the LHC by using this technique. We also present the estimated reach for a future 50 TeV proton-proton collider.« less

  16. Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Nishigaki, Shinsuke M.

    2018-02-01

    We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.

  17. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  18. Relativistic astrophysics. [studies of gravitational radiation in asymptotic de sitter space and post Newtonian approximation

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.

    1975-01-01

    The coordinate independence of gravitational radiation and the parameterized post-Newtonian approximation from which it is extended are described. The general consistency of the field equations with Bianchi identities, gauge conditions, and the Newtonian limit of the perfect fluid equations of hydrodynamics are studied. A technique of modification is indicated for application to vector-metric or double metric theories, as well as to scalar-tensor theories.

  19. Low Gravity Issues of Deep Space Refueling

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2005-01-01

    This paper discusses the technologies required to develop deep space refueling of cryogenic propellants and low cost flight experiments to develop them. Key technologies include long term storage, pressure control, mass gauging, liquid acquisition, and fluid transfer. Prior flight experiments used to mature technologies are discussed. A plan is presented to systematically study the deep space refueling problem and devise low-cost experiments to further mature technologies and prepare for full scale flight demonstrations.

  20. Pseudospectral method for gravitational wave collapse

    NASA Astrophysics Data System (ADS)

    Hilditch, David; Weyhausen, Andreas; Brügmann, Bernd

    2016-03-01

    We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first-order generalized harmonic gauge formulation. The relevant theory is reviewed, and the numerical method is critically examined and specialized for the task at hand. In particular, we investigate formulation parameters—gauge- and constraint-preserving boundary conditions well suited to nonvanishing gauge source functions. Different types of axisymmetric twist-free moment-of-time-symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong-field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We employ the Cartoon method to efficiently evolve axisymmetric data in our 3 +1 -dimensional code. We perform test evolutions of the Schwarzschild spacetime perturbed by gravitational waves and by gauge pulses, both to demonstrate the use of our black-hole excision scheme and for comparison with earlier results. Finally, numerical evolutions of supercritical Brill waves are presented to demonstrate durability of the excision scheme for the dynamical formation of a black hole.

  1. M theory through the looking glass: Tachyon condensation in the E{sub 8} heterotic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horava, Petr; Keeler, Cynthia A.

    2008-03-15

    We study the spacetime decay to nothing in string theory and M-theory. First we recall a nonsupersymmetric version of heterotic M-theory, in which bubbles of nothing--connecting the two E{sub 8} boundaries by a throat--are expected to be nucleated. We argue that the fate of this system should be addressed at weak string coupling, where the nonperturbative instanton instability is expected to turn into a perturbative tachyonic one. We identify the unique string theory that could describe this process: The heterotic model with one E{sub 8} gauge group and a singlet tachyon. We then use world sheet methods to study themore » tachyon condensation in the Neveu-Schwarz-Ramond formulation of this model, and show that it induces a world sheet super-Higgs effect. The main theme of our analysis is the possibility of making meaningful alternative gauge choices for world sheet supersymmetry, in place of the conventional superconformal gauge. We show in a version of unitary gauge how the world sheet gravitino assimilates the Goldstino and becomes dynamical. This picture clarifies recent results of Hellerman and Swanson. We also present analogs of R{sub {xi}} gauges, and note the importance of logarithmic conformal field theories in the context of tachyon condensation.« less

  2. Quantum gas microscopy of the interacting Harper-Hofstadter system

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alex; Preiss, Philipp; Rispoli, Matthew; Schittko, Robert; Kaufman, Adam; Greiner, Markus

    2016-05-01

    At the heart of many topological states is the underlying gauge field. One example of a gauge field is the magnetic field which causes the deflection of a moving charged particle. This behavior can be understood through the Aharonov-Bohm phase that a particle acquires upon traversing a closed path. Gauge fields give rise to novel states of matter that cannot be described with symmetry breaking. Instead, these states, e.g. fractional quantum Hall (FQH) states, are characterized by topological invariants, such as the Chern number. In this talk, we report on experimental results upon introducing a gauge field in a system of strongly-interacting ultracold Rb87 atoms confined to a 2D optical lattice. With single-site resolution afforded by a quantum gas microscope, we can prepare a fixed atom number and project hard walls. With an artificial gauge field, this quantum simulator realizes the Harper-Hofstadter Hamiltonian. We can independently control the two tunneling strengths as well as dynamically change the flux. This flexibility enables studies of topological phenomena from many perspectives, e.g. site-resolved images of edge currents. With the strong on-site interactions possible in our system, these experiments will pave the way to observing FQH-like states in a lattice.

  3. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  4. Dynamic stabilization of Rayleigh-Taylor instability: Experiments with Newtonian fluids as surrogates for ablation fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Prieto, G.; Piriz, A. R.; Lopez Cela, J. J.

    2013-01-15

    A previous theory on dynamic stabilization of Rayleigh-Taylor instability at interfaces between Newtonian fluids is reformulated in order to make evident the analogy of this problem with the related one on dynamic stabilization of ablation fronts in the framework of inertial confinement fusion. Explicit analytical expressions are obtained for the boundaries of the dynamically stable region which turns out to be completely analogue to the stability charts obtained for the case of ablation fronts. These results allow proposing experiments with Newtonian fluids as surrogates for studying the case of ablation fronts. Experiments with Newtonian fluids are presented which demonstrate themore » validity of the theoretical approach and encourage to pursue experimental research on ablation fronts to settle the feasibility of dynamic stabilization in the inertial confinement fusion scenario.« less

  5. Cosmology from a gauge induced gravity

    NASA Astrophysics Data System (ADS)

    Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.

    2017-09-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.

  6. Eliminating the η-problem in SUGRA hybrid inflation with vector backreaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulos, Konstantinos; Wagstaff, Jacques M.; Lazarides, George, E-mail: k.dimopoulos1@lancaster.ac.uk, E-mail: lazaride@eng.auth.gr, E-mail: j.wagstaff@lancaster.ac.uk

    2012-02-01

    It is shown that, when the inflaton field modulates the gauge kinetic function of the gauge fields in supergravity realisations of inflation, the dynamic backreaction leads to a new inflationary attractor solution, in which the inflaton's variation suffers additional impedance. As a result, slow-roll inflation can naturally occur along directions of the scalar potential which would be too steep and curved to support it otherwise. This provides a generic solution to the infamous eta-problem of inflation in supergravity. Moreover, it is shown that, in the new inflationary attractor, the spectral index of the generated curvature perturbations is kept mildly redmore » despite eta of order unity. The above findings are applied to a model of hybrid inflation in supergravity with a generic Kähler potential. The spectral index of the generated curvature perturbations is found to be 0.97–0.98, in excellent agreement with observations. The gauge field can play the role of the vector curvaton after inflation but observable statistical anisotropy requires substantial tuning of the gauge coupling.« less

  7. Design and Analysis of a Compact Precision Positioning Platform Integrating Strain Gauges and the Piezoactuator

    PubMed Central

    Huang, Hu; Zhao, Hongwei; Yang, Zhaojun; Fan, Zunqiang; Wan, Shunguang; Shi, Chengli; Ma, Zhichao

    2012-01-01

    Miniaturization precision positioning platforms are needed for in situ nanomechanical test applications. This paper proposes a compact precision positioning platform integrating strain gauges and the piezoactuator. Effects of geometric parameters of two parallel plates on Von Mises stress distribution as well as static and dynamic characteristics of the platform were studied by the finite element method. Results of the calibration experiment indicate that the strain gauge sensor has good linearity and its sensitivity is about 0.0468 mV/μm. A closed-loop control system was established to solve the problem of nonlinearity of the platform. Experimental results demonstrate that for the displacement control process, both the displacement increasing portion and the decreasing portion have good linearity, verifying that the control system is available. The developed platform has a compact structure but can realize displacement measurement with the embedded strain gauges, which is useful for the closed-loop control and structure miniaturization of piezo devices. It has potential applications in nanoindentation and nanoscratch tests, especially in the field of in situ nanomechanical testing which requires compact structures. PMID:23012566

  8. General dynamical density functional theory for classical fluids.

    PubMed

    Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim

    2012-09-21

    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

  9. Markov stochasticity coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  10. Yang-Mills correlators across the deconfinement phase transition

    NASA Astrophysics Data System (ADS)

    Reinosa, U.; Serreau, J.; Tissier, M.; Tresmontant, A.

    2017-02-01

    We compute the finite temperature ghost and gluon propagators of Yang-Mills theory in the Landau-DeWitt gauge. The background field that enters the definition of the latter is intimately related with the (gauge-invariant) Polyakov loop and serves as an equivalent order parameter for the deconfinement transition. We use an effective gauge-fixed description where the nonperturbative infrared dynamics of the theory is parametrized by a gluon mass which, as argued elsewhere, may originate from the Gribov ambiguity. In this scheme, one can perform consistent perturbative calculations down to infrared momenta, which have been shown to correctly describe the phase diagram of Yang-Mills theories in four dimensions as well as the zero-temperature correlators computed in lattice simulations. In this article, we provide the one-loop expressions of the finite temperature Landau-DeWitt ghost and gluon propagators for a large class of gauge groups and present explicit results for the SU(2) case. These are substantially different from those previously obtained in the Landau gauge, which corresponds to a vanishing background field. The nonanalyticity of the order parameter across the transition is directly imprinted onto the propagators in the various color modes. In the SU(2) case, this leads, for instance, to a cusp in the electric and magnetic gluon susceptibilities as well as similar signatures in the ghost sector. We mention the possibility that such distinctive features of the transition could be measured in lattice simulations in the background field gauge studied here.

  11. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  12. 2T Physics, Weyl Symmetry and the Geodesic Completion of Black Hole Backgrounds

    NASA Astrophysics Data System (ADS)

    Araya Quezada, Ignacio Jesus

    In this thesis, we discuss two different contexts where the idea of gauge symmetry and duality is used to solve the dynamics of physical systems. The first of such contexts is 2T-physics in the worldline in d+2 dimensions, where the principle of Sp(2,R) gauge symmetry in phase space is used to relate different 1T systems in (d -- 1) + 1 dimensions, such as a free relativistic particle, and a relativistic particle in an arbitrary V(x2) potential. Because each 1T shadow system corresponds to a particular gauge of the underlying symmetry, there is a web of dualities relating them. The dualities between said systems amount to canonical transformations including time and energy, which allows the different systems to be described by different Hamiltonians, and consequently, to correspond to different dynamics in the (d -- 1)+1 phase space. The second context, corresponds to a Weyl invariant scalar-tensor theory of gravity, obtained as a direct prediction of 2T gravity, where the Weyl symmetry is used to obtain geodesically complete dynamics both in the context of cosmology and black hole (BH) backgrounds. The geodesic incompleteness of usual Einstein gravity, in the presence of singularities in spacetime, is related to the definition of the Einstein gauge, which fixes the sign and magnitude of the gravitational constant GN, and therefore misses the existence of antigravity patches, which are expected to arise generically just beyond gravitational singularities. The definition of the Einstein gauge can be generalized by incorporating a sign flip of the gravitational constant GN at the transitions between gravity and antigravity. This sign is a key aspect that allows us to define geodesically complete dynamics in cosmology and in BH backgrounds, particularly, in the case of the 4D Schwarzschild BH and the 2D stringy BH. The complete nature of particle geodesics in these BH backgrounds is exhibited explicitly at the classical level, and the extension of these results to the behavior of fields, interpreted as the first quantized particle wavefunctions in the backgrounds is discussed for the 2D stringy BH case. It is shown that the geodesic completion also carries through at the quantum level, by examining the effective potential of the corresponding Schwarzschild problem. Also, in the case of the 2D stringy BH, it is explicitly shown that the spacetime has a multi-sheeted structure, which resolves possible issues like the presence of closed timelike curves. This multi-sheeted structure is conjectured to exist also for the 4D Schwarzschild BH (and perhaps for all BH backgrounds). The main new results of this thesis are the extended network of dualities, in the form of canonical transformations including time and energy, between the 1T dynamical systems, presented in Chapter 2 and the construction of the geodesically complete 4D Schwarzschild and 2D stringy black hole backgrounds, presented in Chapter 3.

  13. Fluid dynamic and thermodynamic analysis of a model pertaining to cryogenic fluid management in low gravity environments for a system with dynamically induced settling

    NASA Technical Reports Server (NTRS)

    Rios, J.

    1982-01-01

    The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.

  14. Dynamic response of fluid inside a penny shaped crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kazuo; Seki, Hitoshi

    1997-12-31

    In order to discuss the method for estimating the geometric characteristics of geothermal reservoir cracks, a theoretical study is performed on the dynamic response of the fluid inside a reservoir crack in a rock mass subjected to a dynamic excitation due to propagation of an elastic wave. As representative models of reservoir cracks, a penny shaped crack and a two-dimensional crack which are connected to a borehole are considered. It is found that the resonance frequency of the fluid motion is dependent on the crack size, the fluid`s viscosity and the permeability of the formation. The intensity of the resonancemore » is dependent on the fluid`s viscosity when the size, the aperture and the permeability are fixed. It is also found that, at a value of the fluid`s viscosity, the resonance of fluid pressure becomes strongest. The optimum value of the fluid`s viscosity is found to be almost perfectly determined by the permeability of the formation. Furthermore, it is revealed that, if the fluid`s viscosity is fixed to be the optimum value, the resonance frequency is almost independent of the permeability and aperture, but is dependent on the size of crack. Inversely speaking, this implies that the size of the reservoir crack can be estimated from the resonance frequency, if the fluid with the above mentioned optimum value of viscosity is employed for hydraulic fracturing.« less

  15. Liquid Hydrogen Sensor Considerations for Space Exploration

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2006-01-01

    The on-orbit management of liquid hydrogen planned for the return to the moon will introduce new considerations not encountered in previous missions. This paper identifies critical liquid hydrogen sensing needs from the perspective of reliable on-orbit cryogenic fluid management, and contrasts the fundamental differences in fluid and thermodynamic behavior for ground-based versus on-orbit conditions. Opportunities for advanced sensor development and implementation are explored in the context of critical Exploration Architecture operations such as on-orbit storage, docking, and trans-lunar injection burn. Key sensing needs relative to these operations are also examined, including: liquid/vapor detection, thermodynamic condition monitoring, mass gauging, and leak detection. Finally, operational aspects of an integrated system health management approach are discussed to highlight the potential impact on mission success.

  16. A sealed capsule system for biological and liquid shock-recovery experiments.

    PubMed

    Leighs, James A; Appleby-Thomas, Gareth J; Stennett, Chris; Hameed, Amer; Wilgeroth, James M; Hazell, Paul J

    2012-11-01

    This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ~500 ms(-1) (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.

  17. A sealed capsule system for biological and liquid shock-recovery experiments

    NASA Astrophysics Data System (ADS)

    Leighs, James A.; Appleby-Thomas, Gareth J.; Stennett, Chris; Hameed, Amer; Wilgeroth, James M.; Hazell, Paul J.

    2012-11-01

    This paper presents an experimental method designed to one-dimensionally shock load and subsequently recover liquid samples. Resultant loading profiles have been interrogated via hydrocode simulation as the nature of the target did not allow for direct application of the diagnostics typically employed in shock physics (e.g., manganin stress gauges or Heterodyne velocimeter (Het-V)). The target setup has been experimentally tested using aluminium flyer plates accelerated by a 50-mm bore single-stage gas-gun reaching projectile impact velocities of up to ˜500 ms-1 (corresponding to peak pressures of up to ca. 4 GPa being experienced by fluid samples). Recovered capsules survived well showing only minor signs of damage. Modelled gauge traces have been validated through the use of a (slightly modified) experiment in which a Het-V facing the rear of the inner capsule was employed. In these tests, good correlation between simulated and experimental traces was observed.

  18. Postdural Puncture Headache

    PubMed Central

    Ghaleb, Ahmed

    2010-01-01

    Postdural puncture headache (PDPH) has been a problem for patients, following dural puncture, since August Bier reported the first case in 1898. His paper discussed the pathophysiology of low-pressure headache resulting from leakage of cerebrospinal fluid (CSF) from the subarachnoid to the epidural space. Clinical and laboratory research over the last 30 years has shown that use of small-gauge needles, particularly of the pencil-point design, is associated with a lower risk of PDPH than traditional cutting point needle tips (Quincke-point needle). A careful history can rule out other causes of headache. A postural component of headache is the sine qua non of PDPH. In high-risk patients , for example, age < 50 years, postpartum, large-gauge needle puncture, epidural blood patch should be performed within 24–48 h of dural puncture. The optimum volume of blood has been shown to be 12–20 mL for adult patients. Complications of AEBP are rare. PMID:20814596

  19. Instability in interacting dark sector: an appropriate holographic Ricci dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Ramón; Hipólito-Ricaldi, W.S.; Videla, Nelson, E-mail: ramon.herrera@pucv.cl, E-mail: wiliam.ricaldi@ufes.br, E-mail: nelson.videla@ing.uchile.cl

    In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities inmore » its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.« less

  20. Large amplitude m=1 diocotron mode measurements in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.

    2002-01-01

    Smaller-diameter pure electron plasmas are generated in the Electron Diffusion Gauge (EDG) using a thoriated tungsten filament wound into a spiral shape with an outer diameter which is 1/4 of the trap wall diameter. The m=1 diocotron mode is excited in the plasma by means of the resistive-wall instability, using a resistor-relay circuit which allows the mode to be induced at various initial amplitudes. The dynamics of this mode may be predicted using linear theory when the amplitude is small. However, it has been observed [e.g., Fine et al., Phys. Rev. Lett. 63, 2232 (1989)] [1] that at larger amplitudes the frequency of this mode (relative to the small-amplitude frequency) exhibits a quadratic dependence on the mode amplitude. In this paper, the frequency shift and nonlinear dynamics of the m=1 diocotron mode in the EDG device are investigated.

  1. Effect of fluid compressibility on journal bearing performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    An analysis was undertaken to determine the effect of fluid film compressibility on the performance of fluid film bearings. A new version of the Reynolds equation was developed, using a polytropic expansion, for both steady-state and dynamic conditions. Polytropic exponents from 1 (isothermal) to 1000 (approaching an incompressible liquid) were evaluated for two bearing numbers, selected from a range of practical interest for cryogenic application, and without cavitation. Bearing loads were insensitive to fluid compressibility for low bearing numbers, as was expected. The effect of compressibility on attitude angle was significant, even when the bearing number was low. A small amount of fluid compressibility was enough to obtain stable running conditions. Incompressible liquid lacked stability at all conditions. Fluid compressibility can be used to control the bearing dynamic coefficients, thereby influencing the dynamic behavior of the rotor-bearing system.

  2. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    DOT National Transportation Integrated Search

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  3. Experimental study on dynamic mechanical behaviors of polycarbonate

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng

    2017-01-01

    Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.

  4. Laboratory and field performance of FOS sensors in static and dynamic strain monitoring in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, B.; Debaiky, A.; El-Ragaby, A.; Roy, R.; El-Gamal, S.; El-Salakawy, E.

    2006-03-01

    There is a growing need for designing and constructing innovative concrete bridges using FRP reinforcing bars as internal reinforcement to avoid the corrosion problems and high costs of maintenance and repair. For efficient use and to increase the lifetime of these bridges, it is important to develop efficient monitoring systems for such innovative structures. Fabry-Perot and Bragg fibre optic sensors (FOS) that can measure the strains and temperature are promising candidates for life-long health monitoring of these structures. This article reports laboratory and field performance of Fabry-Perot and Bragg FOS sensors as well as electrical strain gauges in static and dynamic strain monitoring in concrete bridge decks. The laboratory tests include tensile testing of glass FRP bars and testing of full-scale concrete bridge deck slabs reinforced with glass and carbon FRP bars under static and cyclic concentrated loads. The field tests include static and dynamic testing of two bridges reinforced with steel and glass FRP bars. The obtained strain results showed satisfactory agreement between the different gauges.

  5. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  6. Thermalized axion inflation

    NASA Astrophysics Data System (ADS)

    Ferreira, Ricardo Z.; Notari, Alessio

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton phi to gauge fields of the form phi F tilde F/f, as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= dot phi/(2fH), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H, due to the very large occupation numbers, and create a thermal bath of particles of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξgtrsim2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξgtrsim3.4 however, observations require ξgtrsim6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of Teq simeq ξ H/bar g where bar g is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if phi is thermal and find that the tensor to scalar ratio is suppressed by H/(2T), if tensors do not thermalize.

  7. Thermalized axion inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Ricardo Z.; Notari, Alessio, E-mail: rferreira@icc.ub.edu, E-mail: notari@ub.edu

    2017-09-01

    We analyze the dynamics of inflationary models with a coupling of the inflaton φ to gauge fields of the form φ F F-tilde / f , as in the case of axions. It is known that this leads to an instability, with exponential amplification of gauge fields, controlled by the parameter ξ= φ-dot /(2 fH ), which can strongly affect the generation of cosmological perturbations and even the background. We show that scattering rates involving gauge fields can become larger than the expansion rate H , due to the very large occupation numbers, and create a thermal bath of particlesmore » of temperature T during inflation. In the thermal regime, energy is transferred to smaller scales, radically modifying the predictions of this scenario. We thus argue that previous constraints on ξ are alleviated. If the gauge fields have Standard Model interactions, which naturally provides reheating, they thermalize already at ξ∼>2.9, before perturbativity constraints and also before backreaction takes place. In absence of SM interactions (i.e. for a dark photon), we find that gauge fields and inflaton perturbations thermalize if ξ∼>3.4; however, observations require ξ∼>6, which is above the perturbativity and backreaction bounds and so a dedicated study is required. After thermalization, though, the system should evolve non-trivially due to the competition between the instability and the gauge field thermal mass. If the thermal mass and the instabilities equilibrate, we expect an equilibrium temperature of T {sub eq} ≅ ξ H / g-bar where g-bar is the effective gauge coupling. Finally, we estimate the spectrum of perturbations if φ is thermal and find that the tensor to scalar ratio is suppressed by H /(2 T ), if tensors do not thermalize.« less

  8. Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.

  9. Model identification methodology for fluid-based inerters

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  10. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2017-12-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  11. Update on SU(2) gauge theory with NF = 2 fundamental flavours.

    NASA Astrophysics Data System (ADS)

    Drach, Vincent; Janowski, Tadeusz; Pica, Claudio

    2018-03-01

    We present a non perturbative study of SU(2) gauge theory with two fundamental Dirac flavours. This theory provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics, such as a minimal realization of composite Higgs models. We present an update on the status of the meson spectrum and decay constants based on increased statistics on our existing ensembles and the inclusion of new ensembles with lighter pion masses, resulting in a more reliable chiral extrapolation. Preprint: CP3-Origins-2017-048 DNRF90

  12. Gravitational instantons, self-duality, and geometric flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourliot, F.; Estes, J.; Petropoulos, P. M.

    2010-05-15

    We discuss four-dimensional 'spatially homogeneous' gravitational instantons. These are self-dual solutions of Euclidean vacuum Einstein equations. They are endowed with a product structure RxM{sub 3} leading to a foliation into three-dimensional subspaces evolving in Euclidean time. For a large class of homogeneous subspaces, the dynamics coincides with a geometric flow on the three-dimensional slice, driven by the Ricci tensor plus an so(3) gauge connection. The flowing metric is related to the vielbein of the subspace, while the gauge field is inherited from the anti-self-dual component of the four-dimensional Levi-Civita connection.

  13. D=10 Chiral Tensionless Super p-BRANES

    NASA Astrophysics Data System (ADS)

    Bozhilov, P.

    We consider a model for tensionless (null) super-p-branes with N chiral supersymmetries in ten-dimensional flat space-time. After establishing the symmetries of the action, we give the general solution of the classical equations of motion in a particular gauge. In the case of a null superstring (p=1) we find the general solution in an arbitrary gauge. Then, using a harmonic superspace approach, the initial algebra of first- and second-class constraints is converted into an algebra of Lorentz-covariant, BFV-irreducible, first-class constraints only. The corresponding BRST charge is as for a first rank dynamical system.

  14. Electromagnetic wave propagating along a space curve

    NASA Astrophysics Data System (ADS)

    Lai, Meng-Yun; Wang, Yong-Long; Liang, Guo-Hua; Wang, Fan; Zong, Hong-Shi

    2018-03-01

    By using the thin-layer approach, we derive the effective equation for the electromagnetic wave propagating along a space curve. We find intrinsic spin-orbit, extrinsic spin-orbit, and extrinsic orbital angular-momentum and intrinsic orbital angular-momentum couplings induced by torsion, which can lead to geometric phase, spin, and orbital Hall effects. And we show the helicity inversion induced by curvature that can convert a right-handed circularly polarized electromagnetic wave into a left-handed polarized one, vice versa. Finally, we demonstrate that the gauge invariance of the effective dynamics is protected by the geometrically induced gauge potential.

  15. Equivariant branes and equivariant homological mirror symmetry

    NASA Astrophysics Data System (ADS)

    Ashwinkumar, Meer; Tan, Meng-Chwan

    2018-03-01

    We describe supersymmetric A-branes and B-branes in open N =(2 ,2 ) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description as branes in gauged Landau-Ginzburg models with neutral matter. We then study correlation functions in the topological A-twisted version of the GNLSM and identify their values with open Hamiltonian Gromov-Witten invariants. Supersymmetry breaking can occur in the A-twisted GNLSM due to nonperturbative open symplectic vortices, and we canonically Becchi-Rouet-Stora-Tyutin quantize the mirror theory to analyze this phenomenon.

  16. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2018-07-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  17. [Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].

    PubMed

    Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu

    2011-08-01

    To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.

  18. Continuous Advances in QCD 2008

    NASA Astrophysics Data System (ADS)

    Peloso, Marco M.

    2008-12-01

    1. High-order calculations in QCD and in general gauge theories. NLO evolution of color dipoles / I. Balitsky. Recent perturbative results on heavy quark decays / J. H. Piclum, M. Dowling, A. Pak. Leading and non-leading singularities in gauge theory hard scattering / G. Sterman. The space-cone gauge, Lorentz invariance and on-shell recursion for one-loop Yang-Mills amplitudes / D. Vaman, Y.-P. Yao -- 2. Heavy flavor physics. Exotic cc¯ mesons / E. Braaten. Search for new physics in B[symbol]-mixing / A. J. Lenz. Implications of D[symbol]-D[symbol] mixing for new physics / A. A. Petrov. Precise determinations of the charm quark mass / M. Steinhauser -- 3. Quark-gluon dynamics at high density and/or high temperature. Crystalline condensate in the chiral Gross-Neveu model / G. V. Dunne, G. Basar. The strong coupling constant at low and high energies / J. H. Kühn. Quarkyonic matter and the phase diagram of QCD / L. McLerran. Statistical QCD with non-positive measure / J. C. Osborn, K. Splittorff, J. J. M. Verbaarschot. From equilibrium to transport properties of strongly correlated fermi liquids / T. Schäfer. Lessons from random matrix theory for QCD at finite density / K. Splittorff, J. J. M. Verbaarschot -- 4. Methods and models of holographic correspondence. Soft-wall dynamics in AdS/QCD / B. Batell. Holographic QCD / N. Evans, E. Threlfall. QCD glueball sum rules and vacuum topology / H. Forkel. The pion form factor in AdS/QCD / H. J. Kwee, R. F. Lebed. The fast life of holographic mesons / R. C. Myers, A. Sinha. Properties of Baryons from D-branes and instantons / S. Sugimoto. The master space of N = 1 quiver gauge theories: counting BPS operators / A. Zaffaroni. Topological field congurations. Skyrmions in theories with massless adjoint quarks / R. Auzzi. Domain walls, localization and confinement: what binds strings inside walls / S. Bolognesi. Static interactions of non-abelian vortices / M. Eto. Vortices which do not abelianize dynamically: semi-classical origin of non-abelian monopoles / K. Konishi. A generalized construction for lumps and non-abelian vortices / W. Vinci -- 6. Dynamics in supersymmetric theories. Cusp anomalous dimension in planar maximally supersymmetric Yang-Mills theory / B. Basso. SO(2M) and USp(2M) (hyper)Kähler quotients and lumps / S. B. Gudnason -- 7. Other developments. Gluinos condensing at the CCNI: 4096 CPUs weigh in / J. Giedt ... [et al.]. Baryon Regge trajectories and the 1/N[symbol] expansion / J. L. Goity, N. Matagne. Infrared behavior of the fermion propagator in unquenched QED[symbol] with finite threshold effects / Y. Hoshino. Gauge fields in accelerated frames / F. Lenz. QCD at complex coupling, large order in perturbation theory and the gluon condensate / Y. Meurice. 511 KeV line and other diffuse emissions as a trace of the dark matter / A. R. Zhitnitsky -- 8. Glimpses of the conference.

  19. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  20. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    PubMed

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  1. An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.

    PubMed

    Xia, Guohua; Lin, Ching-Long

    2008-04-01

    A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.

  2. Good IR duals of bad quiver theories

    NASA Astrophysics Data System (ADS)

    Dey, Anindya; Koroteev, Peter

    2018-05-01

    The infrared dynamics of generic 3d N = 4 bad theories (as per the good-bad-ugly classification of Gaiotto and Witten) are poorly understood. Examples of such theories with a single unitary gauge group and fundamental flavors have been studied recently, and the low energy effective theory around some special point in the Coulomb branch was shown to have a description in terms of a good theory and a certain number of free hypermultiplets. A classification of possible infrared fixed points for bad theories by Bashkirov, based on unitarity constraints and superconformal symmetry, suggest a much richer set of possibilities for the IR behavior, although explicit examples were not known. In this note, we present a specific example of a bad quiver gauge theory which admits a good IR description on a sublocus of its Coulomb branch. The good description, in question, consists of two decoupled quiver gauge theories with no free hypermultiplets.

  3. Shock and Release Response of Unreacted Epon 828: Shot 2s-905

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisa, Matthew Alexander; Fredenburg, David A.; Dattelbaum, Dana M.

    This document summarizes the shock and release response of Epon 828 measured in the dynamic impact experiment 2s-905. Experimentally, a thin Kel-F impactor backed by a low impedance foam impacted an Epon 828 target with embedded electromagnetic gauges. Computationally, a one dimensional simulation of the impact event was performed, and tracer particles were located at the corresponding electromagnetic gauge locations. The experimental configuration was such that the Epon 828 target was initially shocked, and then allowed to release from the high-pressure state. Comparisons of the experimental gauge and computational tracer data were made to assess the performance of equation ofmore » state (EOS) 7603, a SESAME EOS for Epon 828, on and off the principal shock Hugoniot. Results indicate that while EOS 7603 can capture the Hugoniot response to better that 1%, while the sound speeds at pressure are under-predicted by 6 - 7%.« less

  4. Small Multi-Purpose Research Facility (SMiRF)

    NASA Image and Video Library

    2015-10-15

    NASA Glenn engineer Monica Guzik in the Small Multi-Purpose Research Facility (SMiRF). The facility provides the ability to simulate the environmental conditions encountered in space for a variety of cryogenic applications such as thermal protection systems, fluid transfer operations and propellant level gauging. SMiRF is a low-cost, small-scale screening facility for concept and component testing of a wide variety of hardware and is capable of testing cryogenic hydrogen, oxygen, methane and nitrogen.

  5. ASRDI oxygen technology survey. Volume 5: Density and liquid level measurement instrumentation for the cryogenic fluids oxygen, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Roder, H. M.

    1974-01-01

    Information is presented on instrumentation for density measurement, liquid level measurement, quantity gauging, and phase measurement. Coverage of existing information directly concerned with oxygen was given primary emphasis. A description of the physical principle of measurement for each instrumentation type is included. The basic materials of construction are listed if available from the source document for each instrument discussed. Cleaning requirements, procedures, and verification techniques are included.

  6. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  7. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  8. Technical Competencies Applied in Experimental Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  9. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  10. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  11. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  12. A Textbook for a First Course in Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)

    1999-01-01

    This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.

  13. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  14. Study on heat transfer coefficients during cooling of PET bottles for food beverages

    NASA Astrophysics Data System (ADS)

    Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco

    2016-08-01

    The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.

  15. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  16. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Publisher’s Version)

    DTIC Science & Technology

    2014-08-01

    performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of

  17. Geophysical Fluid Dynamics Outreach Films

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Schwarz, J. W.; Noguez, G.

    2012-12-01

    Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.

  18. Variational principles for stochastic fluid dynamics

    PubMed Central

    Holm, Darryl D.

    2015-01-01

    This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083

  19. Revisiting sea level changes in the North Sea during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Jensen, Jürgen; Dangendorf, Sönke; Wahl, Thomas; Niehüser, Sebastian

    2016-04-01

    The North Sea is one of the best instrumented ocean basins in the world. Here we revisit sea level changes in the North Sea region from tide gauges, satellite altimetry, hydrographic profiles and ocean reanalysis data from the beginning of the 19th century to present. This includes an overview of the sea level chapter of the North Sea Climate Change Assessment (NOSCCA) complemented by results from more recent investigations. The estimates of long-term changes from tide gauge records are significantly affected by vertical land motion (VLM), which is related to both the large-scale viscoelastic response of the solid earth to ice melting since the last deglaciation and local effects. Removing VLM (estimated from various data sources such as GPS, tide gauge minus altimetry and GIA) significantly reduces the spatial variability of long-term trends in the basin. VLM corrected tide gauge records suggest a transition from relatively moderate changes in the 19th century towards modern trends of roughly 1.5 mm/yr during the 20th century. Superimposed on the long-term changes there is a considerable inter-annual to multi-decadal variability. On inter-annual timescales this variability mainly reflects the barotropic response of the ocean to atmospheric forcing with the inverted barometer effect dominating along the UK and Norwegian coastlines and wind forcing controlling the southeastern part of the basin. The decadal variability is mostly remotely forced and dynamically linked to the North Atlantic via boundary waves in response to long-shore winds along the continental slope. These findings give valuable information about the required horizontal resolution of ocean models and the necessary boundary conditions and are therefore important for the dynamical downscaling of sea level projections for the North Sea coastlines.

  20. Nouvelles techniques pratiques pour la modelisation du comportement dynamique des systèmes eau-structure

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin

    The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.

  1. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  2. From viscous to elastic sheets: Dynamics of smectic freely floating films

    NASA Astrophysics Data System (ADS)

    Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf

    2015-03-01

    Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.

  3. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    NASA Astrophysics Data System (ADS)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed flood extent data and measured water levels from a 2007 summer flood event on the river Severn. The area of interest is a 7 km reach in which the river passes through the city of Worcester, a low water slope, subcritical reach in which backwater effects are significant. For this domain, the catchment area between flow gauging stations extends over 540 km2. Four hydrological models from the FUSE framework (Framework for Understanding Structural Errors) were set up to simulate the rainfall-runoff process over this area. At this regional scale, a 2-dimensional hydraulic model that solves the local inertial approximation of the shallow water equations was applied to route the flow, whereas the full form of these equations was solved at the local scale to predict the urban flow field. This nested approach hence allows an examination of water fluxes from the catchment to the building scale, while requiring short setup and computational times. An accurate prediction of the magnitude and timing of the flood peak was obtained with the proposed method, in spite of the unusual structure of the rain episode and the complexity of the River Severn system. The findings highlight the importance of estimating boundary condition uncertainty and local rainfall contribution for accurate prediction of river flows and inundation.

  4. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.

  5. A Dynamic Optimization Technique for Siting the NASA-Clark Atlanta Urban Rain Gauge Network (NCURN)

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Taylor, Layi

    2003-01-01

    NASA satellites and ground instruments have indicated that cities like Atlanta, Georgia may create or alter rainfall. Scientists speculate that the urban heat island caused by man-made surfaces in cities impact the heat and wind patterns that form clouds and rainfall. However, more conclusive evidence is required to substantiate findings from satellites. NASA, along with scientists at Clark Atlanta University, are implementing a dense, urban rain gauge network in the metropolitan Atlanta area to support a satellite validation program called Studies of PRecipitation Anomalies from Widespread Urban Landuse (SPRAWL). SPRAWL will be conducted during the summer of 2003 to further identify and understand the impact of urban Atlanta on precipitation variability. The paper provides an. overview of SPRAWL, which represents one of the more comprehensive efforts in recent years to focus exclusively on urban-impacted rainfall. The paper also introduces a novel technique for deploying rain gauges for SPRAWL. The deployment of the dense Atlanta network is unique because it utilizes Geographic Information Systems (GIS) and Decision Support Systems (DSS) to optimize deployment of the rain gauges. These computer aided systems consider access to roads, drainage systems, tree cover, and other factors in guiding the deployment of the gauge network. GIS and DSS also provide decision-makers with additional resources and flexibility to make informed decisions while considering numerous factors. Also, the new Atlanta network and SPRAWL provide a unique opportunity to merge the high-resolution, urban rain gauge network with satellite-derived rainfall products to understand how cities are changing rainfall patterns, and possibly climate.

  6. Light chiral dark sector

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Nomura, Yasunori

    2016-08-01

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U (1 ) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo-Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, S U (N ) , and a U (1 ) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and the stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimental and cosmological constraints. In a corner of the parameter space, the discrepancy of the muon g -2 between experiments and the standard model prediction can also be ameliorated due to a loop contribution of the dark photon. Smoking-gun signatures of the model include a monophoton signal from the e+e- collision into a photon and a "dark rho meson." Observation of two processes in e+e- collision—the mode into the dark photon and that into the dark rho meson—would provide strong evidence for the model.

  7. Shape dynamics and Mach's principles: Gravity from conformal geometrodynamics

    NASA Astrophysics Data System (ADS)

    Gryb, Sean

    2012-04-01

    In this PhD thesis, we develop a new approach to classical gravity starting from Mach's principles and the idea that the local shape of spatial configurations is fundamental. This new theory, "shape dynamics", is equivalent to general relativity but differs in an important respect: shape dynamics is a theory of dynamic conformal 3-geometry, not a theory of spacetime. Equivalence is achieved by trading foliation invariance for local conformal invariance (up to a global scale). After the trading, what is left is a gauge theory invariant under 3d diffeomorphisms and conformal transformations that preserve the volume of space. The local canonical constraints are linear and the constraint algebra closes with structure constants. Shape dynamics, thus, provides a novel new starting point for quantum gravity. The procedure for the trading of symmetries was inspired by a technique called "best matching". We explain best matching and its relation to Mach's principles. The key features of best matching are illustrated through finite dimensional toy models. A general picture is then established where relational theories are treated as gauge theories on configuration space. Shape dynamics is then constructed by applying best matching to conformal geometry. We then study shape dynamics in more detail by computing its Hamiltonian and Hamilton-Jacobi functional perturbatively. This thesis is intended as a pedagogical but complete introduction to shape dynamics and the Machian ideas that led to its discovery. The reader is encouraged to start with the introduction, which gives a conceptual outline and links to the relevant sections in the text for a more rigorous exposition. When full rigor is lacking, references to the literature are given. It is hoped that this thesis may provide a starting point for anyone interested in learning about shape dynamics.

  8. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  9. Nanoscale hydrodynamics near solids

    NASA Astrophysics Data System (ADS)

    Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid

    2018-02-01

    Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.

  10. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    NASA Technical Reports Server (NTRS)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on NASA's F-15B aircraft, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. For future flight data from this platform to be valid, more information must be gathered concerning the quality of the airflow underneath the body of the F-15B at various flight conditions, especially supersonic conditions. The flow angularity and Mach number must be known at multiple locations on any test article interface plane for measurement data at these locations to be valid. To determine this prerequisite information, flight data will be gathered in the Rake Airflow Gauge Experiment using a custom-designed flowfield rake to probe the airflow underneath the F-15B at the desired flight conditions. This paper addresses the design considerations of the rake and probe assembly, including the loads and stress analysis using analytical methods, computational fluid dynamics, and finite element analysis. It also details the flow calibration procedure, including the completed wind-tunnel test and posttest data reduction, calibration verification, and preparation for flight-testing.

  11. Experimental studies of the rotor flow downwash on the Stability of multi-rotor crafts in descent

    NASA Astrophysics Data System (ADS)

    Veismann, Marcel; Dougherty, Christopher; Gharib, Morteza

    2017-11-01

    All rotorcrafts, including helicopters and multicopters, have the inherent problem of entering rotor downwash during vertical descent. As a result, the craft is subject to highly unsteady flow, called vortex ring state (VRS), which leads to a loss of lift and reduced stability. To date, experimental efforts to investigate this phenomenon have been largely limited to analysis of a single, fixed rotor mounted in a horizontal wind tunnel. Our current work aims to understand the interaction of multiple rotors in vertical descent by mounting a multi-rotor craft in a low speed, vertical wind tunnel. Experiments were performed with a fixed and rotationally free mounting; the latter allowing us to better capture the dynamics of a free flying drone. The effect of rotor separation on stability, generated thrust, and rotor wake interaction was characterized using force gauge data and PIV analysis for various descent velocities. The results obtained help us better understand fluid-craft interactions of drones in vertical descent and identify possible sources of instability. The presented material is based upon work supported by the Center for Autonomous Systems and Technologies (CAST) at the Graduate Aerospace Laboratories of the California Institute of Technology (GALCIT).

  12. The role of the entry-and-stretch phase at the different paces of race in front crawl swimming.

    PubMed

    Samson, Mathias; Monnet, Tony; Bernard, Anthony; Lacouture, Patrick; David, Laurent

    2015-01-01

    The aim of this study was to determine the role played by the entry-and-stretch phase in the coordination of swimming, at the different paces of race. Three national level swimmers (two men and one woman) were recorded, in lateral and bottom views, in three swimming paces: sprint (50 m and 100 m), middle-distance (200 m and 400 m) and long-distance (800 m and 1500 m). Anatomical landmark positions were obtained by manual digitalisation of the videos. Computational fluid dynamics and experimental studies (with a strain gauge balance and particle image velocimetry method) were used to measure and to calculate the external forces applied to the hand and to the forearm and to visualise the flow around the profile. Entry-and-stretch is the phase which varies the most according to the swimming pace. This phase can be decomposed into two sub-phases: one, the extension forward coordinated with the insweep of the opposite arm, and another one, the rotation downward coordinated with the upsweep. Results show that, at the three paces, this phase is not propulsive and could contribute essentially to maintain the horizontal balance of the body.

  13. N-fold Darboux transformation and double-Wronskian-typed solitonic structures for a variable-coefficient modified Kortweg-de Vries equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei, E-mail: wanglei2239@126.com; Gao, Yi-Tian; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191

    2012-08-15

    Under investigation in this paper is a variable-coefficient modified Kortweg-de Vries (vc-mKdV) model describing certain situations from the fluid mechanics, ocean dynamics and plasma physics. N-fold Darboux transformation (DT) of a variable-coefficient Ablowitz-Kaup-Newell-Segur spectral problem is constructed via a gauge transformation. Multi-solitonic solutions in terms of the double Wronskian for the vc-mKdV model are derived by the reduction of the N-fold DT. Three types of the solitonic interactions are discussed through figures: (1) Overtaking collision; (2) Head-on collision; (3) Parallel solitons. Nonlinear, dispersive and dissipative terms have the effects on the velocities of the solitonic waves while the amplitudes ofmore » the waves depend on the perturbation term. - Highlights: Black-Right-Pointing-Pointer N-fold DT is firstly applied to a vc-AKNS spectral problem. Black-Right-Pointing-Pointer Seeking a double Wronskian solution is changed into solving two systems. Black-Right-Pointing-Pointer Effects of the variable coefficients on the multi-solitonic waves are discussed in detail. Black-Right-Pointing-Pointer This work solves the problem from Yi Zhang [Ann. Phys. 323 (2008) 3059].« less

  14. The use of Quincke and Whitacre 27-gauge needles in orthopedic patients: incidence of failed spinal anesthesia and postdural puncture headache.

    PubMed

    Lynch, J; Kasper, S M; Strick, K; Topalidis, K; Schaaf, H; Zech, D; Krings-Ernst, I

    1994-07-01

    This study examined the incidence of failed spinal anesthesia and postdural puncture headache using a 27-gauge Whitacre and a 27-gauge Quincke needle in patients undergoing elective inpatient orthopedic procedures. The overall rate of failed spinal anesthesia was 8.5% [95% confidence interval (CI) = 4.6%-12.4%] (n = 17) in the Quincke group (n = 199) and 5.5% [95% CI = 2.3%-8.7%] (n = 11) in the Whitacre group (n = 199). This difference was not statistically significant. The overall incidence of postdural puncture headache (PDPH) was 0.8%; 1.1% [95% CI = 0%-2.4%] (n = 2) in the Quincke group and 0.5% [95% CI = 0%-1.5%] (n = 1) in the Whitacre group. These differences were not statistically significant. All headaches were classified as mild and resolved spontaneously with conservative management. The mean time for withdrawal of the stylet to appearance of cerebrospinal fluid was 10.8 +/- 6.9 s in the Quincke (n = 31) and 10.7 +/- 6.8 s in the Whitacre group (n = 33). These differences were not statistically significant. Our results suggest that both needles are associated with a very low incidence of PDPH and an incidence of failed anesthesia of 5.5%-8.5%.

  15. Effective action and electromagnetic response of topological superconductors and Majorana-mass Weyl fermions

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Lopes, Pedro L. e. S.

    2016-05-01

    Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.

  16. An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühnlein, Christian, E-mail: christian.kuehnlein@ecmwf.int; Smolarkiewicz, Piotr K., E-mail: piotr.smolarkiewicz@ecmwf.int

    An advancement of the unstructured-mesh finite-volume MPDATA (Multidimensional Positive Definite Advection Transport Algorithm) is presented that formulates the error-compensative pseudo-velocity of the scheme to rely only on face-normal advective fluxes to the dual cells, in contrast to the full vector employed in previous implementations. This is essentially achieved by expressing the temporal truncation error underlying the pseudo-velocity in a form consistent with the flux-divergence of the governing conservation law. The development is especially important for integrating fluid dynamics equations on non-rectilinear meshes whenever face-normal advective mass fluxes are employed for transport compatible with mass continuity—the latter being essential for flux-formmore » schemes. In particular, the proposed formulation enables large-time-step semi-implicit finite-volume integration of the compressible Euler equations using MPDATA on arbitrary hybrid computational meshes. Furthermore, it facilitates multiple error-compensative iterations of the finite-volume MPDATA and improved overall accuracy. The advancement combines straightforwardly with earlier developments, such as the nonoscillatory option, the infinite-gauge variant, and moving curvilinear meshes. A comprehensive description of the scheme is provided for a hybrid horizontally-unstructured vertically-structured computational mesh for efficient global atmospheric flow modelling. The proposed finite-volume MPDATA is verified using selected 3D global atmospheric benchmark simulations, representative of hydrostatic and non-hydrostatic flow regimes. Besides the added capabilities, the scheme retains fully the efficacy of established finite-volume MPDATA formulations.« less

  17. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  18. Equation of state and some structural and dynamical properties of the confined Lennard-Jones fluid into carbon nanotube: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Akbarzadeh, Hamed; Salemi, Sirous; Abroodi, Mousarreza

    2016-11-01

    By considering the anisotropic pressure tensor, two separate equations of state (EoS) as functions of the density, temperature, and carbon nanotube (CNT) diameter have been proposed for the radial and axial directions for the confined Lennard-Jones (LJ) fluid into (11,11), (12,10), and (19,0) CNTs from 120 to 600 K using molecular dynamics (MD) simulations. We have also investigated the effects of the pore size, pore loading, chirality, and temperature on some of the structural and dynamical properties of the confined LJ fluid into (11,11), (12,10), (19,0), and (19,19) CNTs such as the radial density profile and self-diffusion coefficient. We have also determined the EoS for the confined LJ fluid into double and triple walled CNTs.

  19. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  20. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  1. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  2. Static and dynamic properties of smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  3. Darkness without dark matter and energy - generalized unimodular gravity

    NASA Astrophysics Data System (ADS)

    Barvinsky, A. O.; Kamenshchik, A. Yu.

    2017-11-01

    We suggest a Lorentz non-invariant generalization of the unimodular gravity theory, which is classically equivalent to general relativity with a locally inert (devoid of local degrees of freedom) perfect fluid having an equation of state with a constant parameter w. For the range of w near -1 this dark fluid can play the role of dark energy, while for w = 0 this dark dust admits spatial inhomogeneities and can be interpreted as dark matter. We discuss possible implications of this model in the cosmological initial conditions problem. In particular, this is the extension of known microcanonical density matrix predictions for the initial quantum state of the closed cosmology to the case of spatially open Universe, based on the imitation of the spatial curvature by the dark fluid density. We also briefly discuss quantization of this model necessarily involving the method of gauge systems with reducible constraints and the effect of this method on the treatment of recently! suggested mechanism of vacuum energy sequestering.

  4. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer

    PubMed Central

    Sturm, C.; Tanese, D.; Nguyen, H.S.; Flayac, H.; Galopin, E.; Lemaître, A.; Sagnes, I.; Solnyshkov, D.; Amo, A.; Malpuech, G.; Bloch, J.

    2014-01-01

    Quantum fluids based on light is a highly developing research field, since they provide a nonlinear platform for developing optical functionalities and quantum simulators. An important issue in this context is the ability to coherently control the properties of the fluid. Here we propose an all-optical approach for controlling the phase of a flow of cavity-polaritons, making use of their strong interactions with localized excitons. Here we illustrate the potential of this method by implementing a compact exciton–polariton interferometer, which output intensity and polarization can be optically controlled. This interferometer is cascadable with already reported polariton devices and is promising for future polaritonic quantum optic experiments. Complex phase patterns could be also engineered using this optical method, providing a key tool to build photonic artificial gauge fields. PMID:24513781

  5. Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics

    NASA Astrophysics Data System (ADS)

    Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David

    2016-01-01

    Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.

  6. Towards a natural theory of electroweak interactions

    NASA Astrophysics Data System (ADS)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is transmitted to the superpartners by nonstandard gauge interactions, leading to distinctive predictions for the superpartner masses. Finally, I propose a model that combines a mechanism of dynamical electroweak symmetry breaking with supersymmetry, which explains some features of the quark and lepton mass spectrum.

  7. Lattice gauge action suppressing near-zero modes of H{sub W}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi

    2006-11-01

    We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less

  8. Asymptotically Free Gauge Theories. I

    DOE R&D Accomplishments Database

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Nawazish, I., E-mail: iqranawazish07@gmail.com

    We attempt to find exact solutions of the Bianchi I model in f(R) gravity using the Noether symmetry approach. For this purpose, we take a perfect fluid and formulate conserved quantities for the power-law f(R) model. We discuss some cosmological parameters for the resulting solution which are responsible for expanding behavior of the universe. We also explore Noether gauge symmetry and the corresponding conserved quantity. It is concluded that symmetry generators as well as conserved quantities exist in all cases and the behavior of cosmological parameters shows consistency with recent observational data.

  10. Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.

    2016-01-01

    This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.

  11. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  12. Nonlinear dynamics of coiling, and mounding in viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Ober, Thomas; McKinley, Gareth

    2009-11-01

    Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.

  13. Application of wave mechanics theory to fluid dynamics problems: Boundary layer on a circular cylinder including turbulence

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.

  14. Fluid Mechanics of Spinning Rockets.

    DTIC Science & Technology

    1987-01-01

    A177 358 FLUID MECHANICS OF SPINNING ROCKETS(U) UTAH UNIV SACT 1d𔃼 LAKCE CITY FLUID DYNAMICS LAB G A FLANDRO ET AL JAN087 AFRPL-TR-86-872 F846ii-81...ELECTEFEB 2 5 198m D January 1987 Authors: University of Utah G. A. Flandro Fluid Dynamics Laboratory W. K. VanMoorhem Salt Lake City, Utah 84112 in0...was Mr Gary L. Vogt. This technical report has been reviewed and is approved for publication and distribution in accordance with the distribution

  15. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  16. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  17. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  18. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  19. Simulations of cold electroweak baryogenesis: dependence on the source of CP-violation

    NASA Astrophysics Data System (ADS)

    Mou, Zong-Gang; Saffin, Paul M.; Tranberg, Anders

    2018-05-01

    We compute the baryon asymmetry created in a tachyonic electroweak symmetry breaking transition, focusing on the dependence on the source of effective CP-violation. Earlier simulations of Cold Electroweak Baryogenesis have almost exclusively considered a very specific CP-violating term explicitly biasing Chern-Simons number. We compare four different dimension six, scalar-gauge CP-violating terms, involving both the Higgs field and another dynamical scalar coupled to SU(2) or U(1) gauge fields. We find that for sensible values of parameters, all implementations can generate a baryon asymmetry consistent with observations, showing that baryogenesis is a generic outcome of a fast tachyonic electroweak transition.

  20. Particle creation and reheating in a braneworld inflationary scenario

    NASA Astrophysics Data System (ADS)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-10-01

    We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.

  1. Computational modeling of blast exposure associated with recoilless weapons combat training

    NASA Astrophysics Data System (ADS)

    Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.

    2017-11-01

    Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not wearing blast gauges themselves. By accurately understanding the blast exposure and its variations across an individual, more meaningful correlations with physiologic response including potential TBI spectrum physiology associated with sub-concussive blast exposure can be established. As blast injury thresholds become better defined, results from these reconstructions can provide important insights into approaches for reducing possible risk of injury to personnel operating shoulder-launched weapons.

  2. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  3. Fluid Dynamic Mechanisms and Interactions within Separated Flows.

    DTIC Science & Technology

    1986-07-01

    Vol. 42, Series E, No., pp. 197, pp. 387-39S. b5-bD, March N95, 18. Warpinski , N. R., and Chow, W. L., "Base Pres- 27. Chow, W. L., "Base Pressure of a...lied Rocket/Plume Fluid Dynamic Interactions, Vol. Mechanics, Vol. 46, No. 3, Sept. 197. 1, Base Flows, Fluid Dynamic Lab Report 63-101, 19. Warpinski ...34Surface Pressure Measurements ’" Warpinski , N. R. and Chow, W. L., "Base Pressure Associated on a Boattailed Projectile Shape at Transonic Speeds," ARBRL

  4. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  5. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  6. Late Holocene sea level variability and Atlantic Meridional Overturning Circulation

    USGS Publications Warehouse

    Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.

    2014-01-01

    Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.

  7. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  8. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2016-06-01

    Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.

  9. Corresponding-states behavior of an ionic model fluid with variable dispersion interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de

    2016-06-21

    Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less

  10. Translational and rotational diffusion of Janus nanoparticles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Rezvantalab, Hossein; Shojaei-Zadeh, Shahab

    2014-11-01

    We use molecular dynamics simulations to understand the thermal motion of nanometer-sized Janus particles at the interface between two immiscible fluids. We consider spherical nanoparticles composed of two sides with different affinity to fluid phases, and evaluate their dynamics and changes in fluid structure as a function of particle size and surface chemistry. We show that as the amphiphilicity increases upon enhancing the wetting of each side with its favored fluid, the in-plane diffusivity at the interface becomes slower. Detail analysis of the fluid structure reveals that this is mainly due to formation of a denser adsorption layer around more amphiphilic particles, which leads to increased drag acting against nanoparticle motion. Similarly, the rotational thermal motion of Janus particles is reduced compared to their homogeneous counterparts as a result of the higher resistance of neighboring fluid species against rotation. We also incorporate the influence of fluid density and surface tension on the interfacial dynamics of such Janus nanoparticles. Our findings may have implications in understanding the adsorption mechanism of drugs and protein molecules with anisotropic surface properties to biological interfaces including cell membranes.

  11. Sea Level Variability in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Bruni, S.; del Conte, S.; Errico, M.; Petracca, F.; Prati, C.; Raicich, F.; Santi, E.

    2015-12-01

    Tide gauges measure local sea-level relative to a benchmark on land, therefore the interpretation of these measurements can be limited by the lack of appropriate knowledge of vertical crustal motions. The oldest sea-level records date back to the 18th century; these observations are the only centuries-old data source enabling the estimate of historical sea-level trends/variations. In general, tide gauge benchmarks were not frequently levelled, except in those stations where natural and/or anthropogenic subsidence was a major concern. However, in most cases, it is difficult to retrieve the historical geodetic levelling data. Space geodetic techniques, such as GNSS, Doris and InSAR are now providing measurements on a time and space-continuous basis, giving rise to a large amount of different data sets. The vertical motions resulting from the various analyses need to be compared and best exploited for achieving reliable estimates of sea level variations. In the Mediterranean area, there are a few centennial tide gauge records; our study focuses, in particular, on the Italian time series of Genoa, Marina di Ravenna, Venice and Trieste. Two of these stations, Marina di Ravenna and Venice, are affected by both natural and anthropogenic subsidence, the latter was particularly intense during a few decades of the 20th century because of ground fluids withdrawal. We have retrieved levelling data of benchmarks at and/or close to the tide gauges from the end of 1800 and, for the last couple of decades, also GPS and InSAR height time series in close proximity of the stations. By using an ensemble of these data, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removal of the land vertical motions, the linear long period sea-level rates of all stations are in excellent agreement. Over the last two decades, the tide gauge rates were also compared with those obtained by satellite radar altimetry data.

  12. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  13. Pure gravity mediation and spontaneous B–L breaking from strong dynamics

    DOE PAGES

    Babu, Kaladi S.; Schmitz, Kai; Yanagida, Tsutomu T.

    2016-04-01

    In pure gravity mediation (PGM), the most minimal scheme for the mediation of supersymmetry (SUSY) breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number Band lepton number L. The F-term of the SUSY-breakingmore » field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–Lat a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, Λ N~m 3/2. Furthermore, assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m 3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–Lis identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–LD-term.« less

  14. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  15. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  16. On hydrodynamic phase field models for binary fluid mixtures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi

    2018-05-01

    Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.

  17. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation

    PubMed Central

    Ma, Xianghong

    2016-01-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914

  18. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.

    PubMed

    Wu, Zhangming; Ma, Xianghong

    2016-03-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

  19. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  20. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

Top