NASA Astrophysics Data System (ADS)
Pringle, James E.; King, Andrew
2003-07-01
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas
The fluid dynamics of atmospheric clouds
NASA Astrophysics Data System (ADS)
Randall, David A.
2017-11-01
Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.
Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.
2017-04-01
The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural
Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu
2011-08-01
To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.
NASA Technical Reports Server (NTRS)
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.
2015-12-01
We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.
Computational fluid dynamics applications to improve crop production systems
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2002-01-01
This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
How Does a Liquid Wet a Solid? Hydrodynamics of Dynamic Contact Angles
NASA Technical Reports Server (NTRS)
Rame, Enrique
2001-01-01
A contact line is defined at the intersection of a solid surface with the interface between two immiscible fluids. When one fluid displaces another immiscible fluid along a solid surface, the process is called dynamic wetting and a "moving" contact line (one whose position relative to the solid changes in time) often appears. The physics of dynamic wetting controls such natural and industrial processes as spraying of paints and insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, application of coatings, printing, drying and imbibition of fibrous materials, oil recovery from porous rocks, and microfluidics.
New hydrologic model of fluid migration in deep porous media
NASA Astrophysics Data System (ADS)
Dmitrievsky, A.; Balanyuk, I.
2009-04-01
The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for the sedimentary basins of Timan-Pechora region, Barents Sea, Volga-Ural area, etc. Hydrologic model of deep porous media and the idea of self-oscillation processes in fractured layers of the crust at different depths were used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in fractured layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, rift and subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. Specific manifestations of these mechanisms can vary in dependence on geological settings and geodynamic situations. In particular, periods of self-oscillations and depths of fractured layers can be various. Orientation of layers can be not only horizontal, but vertical as well, that is, self-oscillations can occur not only in deep porous media, but in faults and impaired fractured zones as well. Predominating vertical fluid migration can be accompanied by horizontal migration along crust waveguide. A set of fluid dynamic models is considered. Mathematical modeling of geodynamic and fluid dynamic processes in these zones seems very promising. Combined consideration of geodynamic and fluid dynamic aspects in a model of lithosphere plates collision enables to understand the influence of P-T conditions and shear deformations on the mechanism of hydrocarbon generation and to look after their migration and to explain these processes, but also to predict some features essential for the search and exploration of hydrocarbon fields in these regions and their classification. In terms of compaction models, multiphase filtration in a piezo-conduction mode and models of deep porous media major stages of fluid evolution under the conditions of developing passive margins and in the zones of collision of plates are described. In particular, compaction models of one of the stages of fluid mode evolution within a sedimentary basin and fluid migration from the convergence zones toward the upper layers are considered. In the final part of work, computation of fluid transfer of hydrocarbons in a pulse mode described by the equation of piezo-conductivity is presented for a mature oil-bearing sedimentary basin over individual sections for short periods of a few hundreds of years. These calculations were executed on the basis of a new mathematical method TEKON and computer programs for quantitative analysis of fluid migration and formation of hydrocarbon deposits with account taken for actual geometrical and lithological properties of the layers. On the basis of the specified numerical calculations the scales, form, and routes of fluid movement were disclosed, as well as the formation of zones of anomalously high rock pressure and non-traditional hydrocarbon deposits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Geoffrey
United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
NASA Astrophysics Data System (ADS)
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
Computational Fluid Dynamics: Past, Present, And Future
NASA Technical Reports Server (NTRS)
Kutler, Paul
1988-01-01
Paper reviews development of computational fluid dynamics and explores future prospects of technology. Report covers such topics as computer technology, turbulence, development of solution methodology, developemnt of algorithms, definition of flow geometries, generation of computational grids, and pre- and post-data processing.
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
Computational fluid dynamics uses in fluid dynamics/aerodynamics education
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1994-01-01
The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.
Jensen, M D; Ingildsen, P; Rasmussen, M R; Laursen, J
2006-01-01
Aeration tank settling is a control method allowing settling in the process tank during high hydraulic load. The control method is patented. Aeration tank settling has been applied in several waste water treatment plants using the present design of the process tanks. Some process tank designs have shown to be more effective than others. To improve the design of less effective plants, computational fluid dynamics (CFD) modelling of hydraulics and sedimentation has been applied. This paper discusses the results at one particular plant experiencing problems with partly short-circuiting of the inlet and outlet causing a disruption of the sludge blanket at the outlet and thereby reducing the retention of sludge in the process tank. The model has allowed us to establish a clear picture of the problems arising at the plant during aeration tank settling. Secondly, several process tank design changes have been suggested and tested by means of computational fluid dynamics modelling. The most promising design changes have been found and reported.
2D modeling of direct laser metal deposition process using a finite particle method
NASA Astrophysics Data System (ADS)
Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.
2018-05-01
Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.
Modeling the relaxation dynamics of fluids in nanoporous materials
NASA Astrophysics Data System (ADS)
Edison, John R.
Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced metastabilities and large equilibration times in certain classes of mesoporous materials, and the approach to the metastable/stable equilibrium is of tremendous interest. Secondly, understanding the transport resistances in a microscopic scale will help better engineer heterogeneous catalysts and separation processes. Here we present some of our preliminary studies on dynamics of fluids in ideal pore geometries. The tool that we have used extensively to investigate the relaxation dynamics of fluids in pores is the dynamic mean field theory (DMFT) as developed by Monson [P. A. Monson, J. Chem. Phys., 128, 084701 (2008)]. The theory is based on a lattice gas model of the system and can be viewed as a highly computationally efficient approximation to the dynamics averaged over an ensemble of Kawasaki dynamics Monte Carlo trajectories of the system. It provides a theory of the dynamics of the system consistent with the thermodynamics in mean field theory. The nucleation mechanisms associated with confined fluid phase transitions are emergent features in the calculations. We begin by describing the details of the theory and then present several applications of DMFT. First we present applications to three model pore networks (a) a network of slit pores with a single pore width; (b) a network of slit pores with two pore widths arranged in intersecting channels with a single pore width in each channel; (c) a network of slit pores with two pore widths forming an array of ink-bottles. The results illustrate the effects of pore connectivity upon the dynamics of vapor liquid phase transformations as well as on the mass transfer resistances to equilibration. We then present an application to a case where the solid-fluid interactions lead to partial wetting on a planar surface. The pore filling process in such systems features an asymmetric density distribution where a liquid droplet appears on one of the walls. We also present studies on systems where there is partial drying or drying associated with weakly attractive or repulsive interactions between the fluid and the pore walls. We describe the symmetries exhibited by the lattice model between pore filling for wetting states and pore emptying for drying states, for both the thermodynamics and dynamics. We then present an extension of DMFT to mixtures and present some examples that illustrate the utility of the approach. Finally we present an assessment the accuracy of the DMFT through comparisons with a higher order approximation based on the path probability method as well as Kawasaki dynamics.
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.
2015-12-01
Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
Cryogenic fluid management in space
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1988-01-01
Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.
Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.
Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon
2016-11-01
With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Poromechanics of stick-slip frictional sliding and strength recovery on tectonic faults
Scuderi, Marco M.; Carpenter, Brett M.; Johnson, Paul A.; ...
2015-10-22
Pore fluids influence many aspects of tectonic faulting including frictional strength aseismic creep and effective stress during the seismic cycle. But, the role of pore fluid pressure during earthquake nucleation and dynamic rupture remains poorly understood. Here we report on the evolution of pore fluid pressure and porosity during laboratory stick-slip events as an analog for the seismic cycle. We sheared layers of simulated fault gouge consisting of glass beads in a double-direct shear configuration under true triaxial stresses using drained and undrained fluid conditions and effective normal stress of 5–10 MPa. Shear stress was applied via a constant displacementmore » rate, which we varied in velocity step tests from 0.1 to 30 µm/s. Here, we observe net pore pressure increases, or compaction, during dynamic failure and pore pressure decreases, or dilation, during the interseismic period, depending on fluid boundary conditions. In some cases, a brief period of dilation is attendant with the onset of dynamic stick slip. Our data show that time-dependent strengthening and dynamic stress drop increase with effective normal stress and vary with fluid conditions. For undrained conditions, dilation and preseismic slip are directly related to pore fluid depressurization; they increase with effective normal stress and recurrence time. Microstructural observations confirm the role of water-activated contact growth and shear-driven elastoplastic processes at grain junctions. These results indicate that physicochemical processes acting at grain junctions together with fluid pressure changes dictate stick-slip stress drop and interseismic creep rates and thus play a key role in earthquake nucleation and rupture propagation.« less
The Influence of Dynamic Contact Angle on Wetting Dynamics
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Steven
2005-01-01
When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlüter, Steffen; Berg, Steffen; Li, Tianyi
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Putt, C. W.; Giamati, C. C.
1981-01-01
Color coding techniques used in the processing of remote sensing imagery were adapted and applied to the fluid dynamics problems associated with turbofan mixer nozzles. The computer generated color graphics were found to be useful in reconstructing the measured flow field from low resolution experimental data to give more physical meaning to this information and in scanning and interpreting the large volume of computer generated data from the three dimensional viscous computer code used in the analysis.
Modeling the Fluid Withdraw and Injection Induced Earthquakes
NASA Astrophysics Data System (ADS)
Meng, C.
2016-12-01
We present an open source numerical code, Defmod, that allows one to model the induced seismicity in an efficient and standalone manner. The fluid withdraw and injection induced earthquake has been a great concern to the industries including oil/gas, wastewater disposal and CO2 sequestration. Being able to numerically model the induced seismicity is long desired. To do that, one has to consider at lease two processes, a steady process that describes the inducing and aseismic stages before and in between the seismic events, and an abrupt process that describes the dynamic fault rupture accompanied by seismic energy radiations during the events. The steady process can be adequately modeled by a quasi-static model, while the abrupt process has to be modeled by a dynamic model. In most of the published modeling works, only one of these processes is considered. The geomechanicists and reservoir engineers are focused more on the quasi-static modeling, whereas the geophysicists and seismologists are focused more on the dynamic modeling. The finite element code Defmod combines these two models into a hybrid model that uses the failure criterion and frictional laws to adaptively switch between the (quasi-)static and dynamic states. The code is capable of modeling episodic fault rupture driven by quasi-static loading, e.g. due to reservoir fluid withdraw and/or injection, and by dynamic loading, e.g. due to the foregoing earthquakes. We demonstrate a case study for the 2013 Azle earthquake.
F*** Yeah Fluid Dynamics: Inside the science communication process
NASA Astrophysics Data System (ADS)
Sharp, Nicole
2016-11-01
Communicating scientific research to general audiences may seem daunting, but it does not have to be. For six years, fluid dynamics outreach blog FYFD has been sharing the community's scientific output with an audience of nearly a quarter of a million readers and viewers of all ages and backgrounds. This talk will focus on the process behind science communication and some of the steps and exercises that can help scientists communicate to broad audiences more effectively. Using examples from the FYFD blog and YouTube channel, the talk will illustrate this communication process in action.
Influence of fluid dynamics on anaerobic digestion of food waste for biogas production.
Wang, Fengping; Zhang, Cunsheng; Huo, Shuhao
2017-05-01
To enhance the stability and efficiency of an anaerobic process, the influences of fluid dynamics on the performance of anaerobic digestion and sludge granulation were investigated using computational fluid dynamics (CFD). Four different propeller speeds (20, 60, 100, 140 r/min) were adopted for anaerobic digestion of food waste in a 30 L continuously stirred tank reactor (CSTR). Experimental results indicated that the methane yield increased with increasing the propeller speed within the experimental range. Results from CFD simulation and sludge granulation showed that the optimum propeller speed for anaerobic digestion was 100 r/min. Lower propeller speed (20 r/min) inhibited mass transfer and resulted in the failure of anaerobic digestion, while higher propeller speed (140 r/min) would lead to higher energy loss and system instability. Under this condition, anaerobic digestion could work effectively with higher efficiency of mass transfer which facilitated sludge granulation and biogas production. The corresponding mean liquid velocity and shear strain rate were 0.082 m/s and 10.48 s -1 , respectively. Moreover, compact granular sludge could be formed, with lower energy consumption. CFD was successfully used to study the influence of fluid dynamics on the anaerobic digestion process. The key parameters of the optimum mixing condition for anaerobic digestion of food waste in a 30 L CSTR including liquid velocity and shear strain rate were obtained using CFD, which were of paramount significance for the scale-up of the bioreactor. This study provided a new way for the optimization and scale-up of the anaerobic digestion process in CSTR based on the fluid dynamics analysis.
Geophysical Fluid Dynamics Outreach Films
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Schwarz, J. W.; Noguez, G.
2012-12-01
Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.
Visualization of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)
1995-01-01
Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.
Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer
NASA Astrophysics Data System (ADS)
Ramaswamy, Rajesh; Jülicher, Frank
2016-02-01
Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.
ERIC Educational Resources Information Center
Cowan, Christina E.
This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…
Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente
2018-02-01
The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows
was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.
1998-01-01
This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.
Zheng, Bei; Ge, Xiao-peng; Yu, Zhi-yong; Yuan, Sheng-guang; Zhang, Wen-jing; Sun, Jing-fang
2012-08-01
Atomic force microscope (AFM) fluid imaging was applied to the study of micro-flocculation filtration process and the optimization of micro-flocculation time and the agitation intensity of G values. It can be concluded that AFM fluid imaging proves to be a promising tool in the observation and characterization of floc morphology and the dynamic coagulation processes under aqueous environmental conditions. Through the use of AFM fluid imaging technique, optimized conditions for micro-flocculation time of 2 min and the agitation intensity (G value) of 100 s(-1) were obtained in the treatment of dye-printing industrial tailing wastewater by the micro-flocculation filtration process with a good performance.
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, J.A.
TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.
Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.
Weis, P; Driesner, T; Heinrich, C A
2012-12-21
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Heinrich, C. A.
2012-12-01
Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.
Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel
NASA Astrophysics Data System (ADS)
Dewangan, Satish Kumar
2018-05-01
Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.
NASA Astrophysics Data System (ADS)
Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.
2016-12-01
This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.
FAST - A multiprocessed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.
Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics
NASA Astrophysics Data System (ADS)
Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume
2014-01-01
The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.
Multi-fluid CFD analysis in Process Engineering
NASA Astrophysics Data System (ADS)
Hjertager, B. H.
2017-12-01
An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.
Nonlinear dynamics of coiling, and mounding in viscoelastic jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Ober, Thomas; McKinley, Gareth
2009-11-01
Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.
Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Sharma, Vivek
Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.
Teaching Radioactive Decay and Radiometric Dating: An Analog Activity Based on Fluid Dynamics
ERIC Educational Resources Information Center
Claiborne, Lily L.; Miller, Calvin F.
2012-01-01
We present a new laboratory activity for teaching radioactive decay by using hydrodynamic processes as an analog and an evaluation of its efficacy in the classroom. A fluid flowing from an upper beaker into a lower beaker (shampoo in this case) behaves mathematically identically to radioactive decay, mimicking the exponential decay process,…
Particle Formation and Product Formulation Using Supercritical Fluids.
Knez, Željko; Knez Hrnčič, Maša; Škerget, Mojca
2015-01-01
Traditional methods for solids processing involve either high temperatures, necessary for melting or viscosity reduction, or hazardous organic solvents. Owing to the negative impact of the solvents on the environment, especially on living organisms, intensive research has focused on new, sustainable methods for the processing of these substances. Applying supercritical fluids for particle formation may produce powders and composites with special characteristics. Several processes for formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can be used also for impregnation of solid particles or for the formation of solid powderous emulsions and particle coating, e.g., for formation of solids with unique properties for use in different applications. We give an overview of the application of sub- and supercritical fluids as green processing media for particle formation processes and present recent advances and trends in development.
Smart algorithms and adaptive methods in computational fluid dynamics
NASA Astrophysics Data System (ADS)
Tinsley Oden, J.
1989-05-01
A review is presented of the use of smart algorithms which employ adaptive methods in processing large amounts of data in computational fluid dynamics (CFD). Smart algorithms use a rationally based set of criteria for automatic decision making in an attempt to produce optimal simulations of complex fluid dynamics problems. The information needed to make these decisions is not known beforehand and evolves in structure and form during the numerical solution of flow problems. Once the code makes a decision based on the available data, the structure of the data may change, and criteria may be reapplied in order to direct the analysis toward an acceptable end. Intelligent decisions are made by processing vast amounts of data that evolve unpredictably during the calculation. The basic components of adaptive methods and their application to complex problems of fluid dynamics are reviewed. The basic components of adaptive methods are: (1) data structures, that is what approaches are available for modifying data structures of an approximation so as to reduce errors; (2) error estimation, that is what techniques exist for estimating error evolution in a CFD calculation; and (3) solvers, what algorithms are available which can function in changing meshes. Numerical examples which demonstrate the viability of these approaches are presented.
Piatti, Filippo; Palumbo, Maria Chiara; Consolo, Filippo; Pluchinotta, Francesca; Greiser, Andreas; Sturla, Francesco; Votta, Emiliano; Siryk, Sergii V; Vismara, Riccardo; Fiore, Gianfranco Beniamino; Lombardi, Massimo; Redaelli, Alberto
2018-02-08
The performance of blood-processing devices largely depends on the associated fluid dynamics, which hence represents a key aspect in their design and optimization. To this aim, two approaches are currently adopted: computational fluid-dynamics, which yields highly resolved three-dimensional data but relies on simplifying assumptions, and in vitro experiments, which typically involve the direct video-acquisition of the flow field and provide 2D data only. We propose a novel method that exploits space- and time-resolved magnetic resonance imaging (4D-flow) to quantify the complex 3D flow field in blood-processing devices and to overcome these limitations. We tested our method on a real device that integrates an oxygenator and a heat exchanger. A dedicated mock loop was implemented, and novel 4D-flow sequences with sub-millimetric spatial resolution and region-dependent velocity encodings were defined. Automated in house software was developed to quantify the complex 3D flow field within the different regions of the device: region-dependent flow rates, pressure drops, paths of the working fluid and wall shear stresses were computed. Our analysis highlighted the effects of fine geometrical features of the device on the local fluid-dynamics, which would be unlikely observed by current in vitro approaches. Also, the effects of non-idealities on the flow field distribution were captured, thanks to the absence of the simplifying assumptions that typically characterize numerical models. To the best of our knowledge, our approach is the first of its kind and could be extended to the analysis of a broad range of clinically relevant devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Symposium on Turbulence (13th) Held at Rolla, Missouri on September 21- 23, 1992
1992-09-01
this article Is part of a project aimed at Increasing the role of computational fluid dynamics ( CFD ) in the process of developing more efficient gas...techniques in and fluid physics of high speed compressible or reacting flows undergoing significant changes of indices of refraction. Possible Topics...in experimental fluid mechanics; homogeneous turbulence, including closures and statistical properties; turbulence in compressible fluids ; fine scale
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.
2013-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Astrophysics Data System (ADS)
Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.
2018-01-01
The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.
Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara
2016-04-01
Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
NASA Astrophysics Data System (ADS)
Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu
2018-01-01
Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Energy dissipation in flows through curved spaces.
Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J
2017-02-14
Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.
Education and research in fluid dynamics
NASA Astrophysics Data System (ADS)
López González-Nieto, P.; Redondo, J. M.; Cano, J. L.
2009-04-01
Fluid dynamics constitutes an essential subject for engineering, since auronautic engineers (airship flights in PBL, flight processes), industrial engineers (fluid transportation), naval engineers (ship/vessel building) up to agricultural engineers (influence of the weather conditions on crops/farming). All the above-mentioned examples possess a high social and economic impact on mankind. Therefore, the fluid dynamics education of engineers is very important, and, at the same time, this subject gives us an interesting methodology based on a cycle relation among theory, experiments and numerical simulation. The study of turbulent plumes -a very important convective flow- is a good example because their theoretical governing equations are simple; it is possible to make experimental plumes in an aesy way and to carry out the corresponding numerical simulatons to verify experimental and theoretical results. Moreover, it is possible to get all these aims in the educational system (engineering schools or institutions) using a basic laboratory and the "Modellus" software.
Modeling of Non-Isothermal Cryogenic Fluid Sloshing
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Moder, Jeffrey P.
2015-01-01
A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2008-11-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2009-03-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
Coiling and Folding of Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2007-11-01
The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).
Dynamic of Air Invasion in an Immersed Granular Layer
NASA Astrophysics Data System (ADS)
Varas, G.; Ramos, G.; Géminard, J. C.; Vidal, V.
2014-12-01
Displacement processes (typically, grains displaced by a fluid) are the driving mechanism which control the dynamics of many geological processes (e.g. oil extraction, air sparging, piercement structures). They also play an important role in a wide range of industrial applications, from ground water hydrology and soil mechanics to agricultural engineering. The interaction between one or more moving fluids (e.g. rising gas immersed in a granular medium) and grains control the dynamics of these phenomena. Due to their economic and ecological importance, it is essential to understand the variety and potentiality of these phenomena. When an ascending air passes trough an immersed granular bed its fluidized producing the grains to start to move. When this process is repeated, its created a fluidized zone that evolves over time. Here, we investigate the morphology and dynamics of the region invaded by air as a function of a dimensionless parameter χ which accounts for the relative effects of the gravity and the capillarity. We propose new experimental observations on the air invasion regimes and on the morphology of the fluidized zone, in particular its growth dynamics.
Yang, Jubiao; Wang, Xingshi; Krane, Michael; Zhang, Lucy T.
2017-01-01
In this study, a fully-coupled fluid–structure interaction model is developed for studying dynamic interactions between compressible fluid and aeroelastic structures. The technique is built based on the modified Immersed Finite Element Method (mIFEM), a robust numerical technique to simulate fluid–structure interactions that has capabilities to simulate high Reynolds number flows and handles large density disparities between the fluid and the solid. For accurate assessment of this intricate dynamic process between compressible fluid, such as air and aeroelastic structures, we included in the model the fluid compressibility in an isentropic process and a solid contact model. The accuracy of the compressible fluid solver is verified by examining acoustic wave propagations in a closed and an open duct, respectively. The fully-coupled fluid–structure interaction model is then used to simulate and analyze vocal folds vibrations using compressible air interacting with vocal folds that are represented as layered viscoelastic structures. Using physiological geometric and parametric setup, we are able to obtain a self-sustained vocal fold vibration with a constant inflow pressure. Parametric studies are also performed to study the effects of lung pressure and vocal fold tissue stiffness in vocal folds vibrations. All the case studies produce expected airflow behavior and a sustained vibration, which provide verification and confidence in our future studies of realistic acoustical studies of the phonation process. PMID:29527067
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers
Current research in cavitating fluid films
NASA Technical Reports Server (NTRS)
Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)
1990-01-01
A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.
Complex Fluids and Hydraulic Fracturing.
Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H
2016-06-07
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.
Wetting dynamics of a collapsing fluid hole
NASA Astrophysics Data System (ADS)
Bostwick, J. B.; Dijksman, J. A.; Shearer, M.
2017-01-01
The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Simulating the flow of entangled polymers.
Masubuchi, Yuichi
2014-01-01
To optimize automation for polymer processing, attempts have been made to simulate the flow of entangled polymers. In industry, fluid dynamics simulations with phenomenological constitutive equations have been practically established. However, to account for molecular characteristics, a method to obtain the constitutive relationship from the molecular structure is required. Molecular dynamics simulations with atomic description are not practical for this purpose; accordingly, coarse-grained models with reduced degrees of freedom have been developed. Although the modeling of entanglement is still a challenge, mesoscopic models with a priori settings to reproduce entangled polymer dynamics, such as tube models, have achieved remarkable success. To use the mesoscopic models as staging posts between atomistic and fluid dynamics simulations, studies have been undertaken to establish links from the coarse-grained model to the atomistic and macroscopic simulations. Consequently, integrated simulations from materials chemistry to predict the macroscopic flow in polymer processing are forthcoming.
Application of computational fluid mechanics to atmospheric pollution problems
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
Techniques for animation of CFD results. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Horowitz, Jay; Hanson, Jeffery C.
1992-01-01
Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
[INVITED] Evaluation of process observation features for laser metal welding
NASA Astrophysics Data System (ADS)
Tenner, Felix; Klämpfl, Florian; Nagulin, Konstantin Yu.; Schmidt, Michael
2016-06-01
In the present study we show how fast the fluid dynamics change when changing the laser power for different feed rates during laser metal welding. By the use of two high-speed cameras and a data acquisition system we conclude how fast we have to image the process to measure the fluid dynamics with a very high certainty. Our experiments show that not all process features which can be measured during laser welding do represent the process behavior similarly well. Despite the good visibility of the vapor plume the monitoring of its movement is less suitable as an input signal for a closed-loop control. The features measured inside the keyhole show a good correlation with changes of process parameters. Due to its low noise, the area of the keyhole opening is well suited as an input signal for a closed-loop control of the process.
Dahlberg, Jerry; Tkacik, Peter T; Mullany, Brigid; Fleischhauer, Eric; Shahinian, Hossein; Azimi, Farzad; Navare, Jayesh; Owen, Spencer; Bisel, Tucker; Martin, Tony; Sholar, Jodie; Keanini, Russell G
2017-12-04
An analog, macroscopic method for studying molecular-scale hydrodynamic processes in dense gases and liquids is described. The technique applies a standard fluid dynamic diagnostic, particle image velocimetry (PIV), to measure: i) velocities of individual particles (grains), extant on short, grain-collision time-scales, ii) velocities of systems of particles, on both short collision-time- and long, continuum-flow-time-scales, iii) collective hydrodynamic modes known to exist in dense molecular fluids, and iv) short- and long-time-scale velocity autocorrelation functions, central to understanding particle-scale dynamics in strongly interacting, dense fluid systems. The basic system is composed of an imaging system, light source, vibrational sensors, vibrational system with a known media, and PIV and analysis software. Required experimental measurements and an outline of the theoretical tools needed when using the analog technique to study molecular-scale hydrodynamic processes are highlighted. The proposed technique provides a relatively straightforward alternative to photonic and neutron beam scattering methods traditionally used in molecular hydrodynamic studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, R.; Ziegler, D. P.
This project was a muki-partner CRADA. This was a partnership between Alcoa and LLNL. AIcoa developed a system of numerical simulation modules that provided accurate and efficient threedimensional modeling of combined fluid dynamics and structural response.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
NASA Astrophysics Data System (ADS)
Gagnon, David A.
Swimming microorganisms such as bacteria, spermatozoa, algae, and nematodes are critical to ubiquitous biological phenomena such as disease and infection, ecosystem dynamics, and mammalian fertilization. While there has been much scientific and practical interest in studying these swimmers in Newtonian (water-like) fluids, there are fewer systematic experimental studies on swimming through non-Newtonian (non-water-like) fluids with biologically-relevant mechanical properties. These organisms commonly swim through viscoelastic, structured, or shear-rate-dependent fluids, such as blood, mucus, and living tissues. Furthermore, the small length scales of these organisms dictate that their motion is dominated by viscous forces and inertia is negligible. Using rheology, microscopy, particle tracking, and image processing techniques, we examine the interaction of low Reynolds number swimmers and non-Newtonian fluids including viscoelastic, locally-anisotropic, and shear-thinning fluids. We then apply our understanding of locomotion to the study of the genetic disease Spinal Muscular Atrophy.
Water pumping in mantle shear zones
Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony
2017-01-01
Water plays an important role in geological processes. Providing constraints on what may influence the distribution of aqueous fluids is thus crucial to understanding how water impacts Earth's geodynamics. Here we demonstrate that ductile flow exerts a dynamic control on water-rich fluid circulation in mantle shear zones. Based on amphibole distribution and using dislocation slip-systems as a proxy for syn-tectonic water content in olivine, we highlight fluid accumulation around fine-grained layers dominated by grain-size-sensitive creep. This fluid aggregation correlates with dislocation creep-accommodated strain that localizes in water-rich layers. We also give evidence of cracking induced by fluid pressure where the highest amount of water is expected. These results emphasize long-term fluid pumping attributed to creep cavitation and associated phase nucleation during grain size reduction. Considering the ubiquitous process of grain size reduction during strain localization, our findings shed light on multiple fluid reservoirs in the crust and mantle. PMID:28593947
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
Dynamics of Active Microfilaments
NASA Astrophysics Data System (ADS)
Ling, Feng; Guo, Hanliang; Kanso, Eva
2017-11-01
Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.
Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.
Effects of Kinetic Processes in Shaping Io's Global Plasma Environment: A 3D Hybrid Model
NASA Technical Reports Server (NTRS)
Lipatov, Alexander S.; Combi, Michael R.
2004-01-01
The global dynamics of the ionized and neutral components in the environment of Io plays an important role in the interaction of Jupiter's corotating magnetospheric plasma with Io. The stationary simulation of this problem was done in the MHD and the electrodynamics approaches. One of the main significant results from the simplified two-fluid model simulations was a production of the structure of the double-peak in the magnetic field signature of the I0 flyby that could not be explained by standard MHD models. In this paper, we develop a method of kinetic ion simulation. This method employs the fluid description for electrons and neutrals whereas for ions multilevel, drift-kinetic and particle, approaches are used. We also take into account charge-exchange and photoionization processes. Our model provides much more accurate description for ion dynamics and allows us to take into account the realistic anisotropic ion distribution that cannot be done in fluid simulations. The first results of such simulation of the dynamics of ions in the Io's environment are discussed in this paper.
Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing
NASA Astrophysics Data System (ADS)
Bernaudin, M.; Gueydan, F.
2018-04-01
Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
Guo, Ce; Zhu, Xijing
2018-03-01
The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in ultrasonic assisted machining. Copyright © 2017 Elsevier B.V. All rights reserved.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
NASA Astrophysics Data System (ADS)
Rauh, Cornelia; Delgado, Antonio
2010-12-01
High pressures of up to several hundreds of MPa are utilized in a wide range of applications in chemical, bio-, and food engineering, aiming at selective control of (bio-)chemical reactions. Non-uniformity of process conditions may threaten the safety and quality of the resulting products because processing conditions such as pressure, temperature, and treatment history are crucial for the course of (bio-)chemical reactions. Therefore, thermofluid-dynamical phenomena during the high pressure process have to be examined, and numerical tools to predict process uniformity and to optimize the processes have to be developed. Recently applied mathematical models and numerical simulations of laboratory and industrial scale high pressure processes investigating the mentioned crucial phenomena are based on continuum balancing models of thermofluid dynamics. Nevertheless, biological systems are complex fluids containing the relevant (bio-)chemical compounds (enzymes and microorganisms). These compounds are particles that interact with the surrounding medium and between each other. This contribution deals with thermofluid-dynamical interactions of the relevant particulate (bio-)chemical compounds (enzymes and microorganisms) with the surrounding fluid. By consideration of characteristic time and length scales and particle forces, the motion of the (bio-)chemical compounds is characterized.
NASA Astrophysics Data System (ADS)
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
Pre- and Post-Processing Tools to Streamline the CFD Process
NASA Technical Reports Server (NTRS)
Dorney, Suzanne Miller
2002-01-01
This viewgraph presentation provides information on software development tools to facilitate the use of CFD (Computational Fluid Dynamics) codes. The specific CFD codes FDNS and CORSAIR are profiled, and uses for software development tools with these codes during pre-processing, interim-processing, and post-processing are explained.
Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface
NASA Astrophysics Data System (ADS)
Delléa, Olivier; Lebaigue, Olivier
2017-12-01
CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.
Finite Element Modeling of Non-linear Coupled Interacting Fault System
NASA Astrophysics Data System (ADS)
Xing, H. L.; Zhang, J.; Wyborn, D.
2009-04-01
PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool is developed for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials. PANDAS includes the following key components: Pandas/Pre, ESyS_Crustal, Pandas/Thermo, Pandas/Fluid and Pandas/Post as detailed in the following: • Pandas/Pre is developed to visualise the microseismicity events recorded during the hydraulic stimulation process to further evaluate the fracture location and evolution and geological setting of a certain reservoir, and then generate the mesh by it and/or other commercial graphics software (such as Patran) for the further finite element analysis of various cases; The Delaunay algorithm is applied as a suitable method for mesh generation using such a point set; • ESyS_Crustal is a finite element code developed for the interacting fault system simulation, which employs the adaptive static/dynamic algorithm to simulate the dynamics and evolution of interacting fault systems and processes that are relevant on short to mediate time scales in which several dynamic phenomena related with stick-slip instability along the faults need to be taken into account, i.e. (a). slow quasi-static stress accumulation, (b) rapid dynamic rupture, (c) wave propagation and (d) corresponding stress redistribution due to the energy release along the multiple fault boundaries; those are needed to better describe ruputure/microseimicity/earthquake related phenomena with applications in earthquake forecasting, hazard quantification, exploration, and environmental problems. It has been verified with various available experimental results[1-3]; • Pandas/Thermo is a finite element method based module for the thermal analysis of the fractured porous media; the temperature distribution is calculated from the heat transfer induced by the thermal boundary conditions without/with the coupled fluid effects and the geomechanical energy conversion for the pure/coupled thermal analysis. • Pandas/Fluid is a finite element method based module for simulating the fluid flow in the fractured porous media; the fluid flow velocity and pressure are calculated from energy equilibrium equations without/together with the coupling effects of the thermal and solid rock deformation for an independent/coupled fluid flow analysis; • Pandas/Post is to visualise the simulation results through the integration of VTK and/or Patran. All the above modules can be used independently/together to simulate individual/coupled phenomena (such as interacting fault system dynamics, heat flow and fluid flow) without/with coupling effects. PANDAS has been applied to the following issues: • visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e. the permeability) for the further numerical analysis; • interacting fault system simulation to determine the relevant complicated dynamic rupture process. • geomechanical-fluid flow coupling analysis to investigate the interactions between fluid flow and deformation in the fractured porous media under different loading conditions. • thermo-fluid flow coupling analysis of a fractured geothermal reservoir system. PANDAS will be further developed for a multiscale simulation of multiphase dynamic behaviour for a certain fractured geothermal reservoir. More details and additional application examples will be given during the presentation. References [1] Xing, H. L., Makinouchi, A. and Mora, P. (2007). Finite element modeling of interacting fault system, Physics of the Earth and Planetary Interiors, 163, 106-121.doi:10.1016/j.pepi.2007.05.006 [2] Xing, H. L., Mora, P., Makinouchi, A. (2006). An unified friction description and its application to simulation of frictional instability using finite element method. Philosophy Magazine, 86, 3453-3475 [3] Xing, H. L., Mora, P.(2006). Construction of an intraplate fault system model of South Australia, and simulation tool for the iSERVO institute seed project.. Pure and Applied Geophysics. 163, 2297-2316. DOI 10.1007/s00024-006-0127-x
Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Childress, S.
1987-01-01
This text is the first study to apply systematically the successive bifurcations approach to complex time-dependent processes in large scale atmospheric dynamics, geomagnetism, and theoretical climate dynamics. The presentation of recent results on planetary-scale phenomena in the earth's atmosphere, ocean, cryosphere, mantle and core provides an integral account of mathematical theory and methods together with physical phenomena and processes. The authors address a number of problems in rapidly developing areas of geophysics, bringing into closer contact the modern tools of nonlinear mathematics and the novel problems of global change in the environment.
NASA Astrophysics Data System (ADS)
Gautam, Siddharth S.; Ok, Salim; Cole, David R.
2017-06-01
Geo-fluids consisting of C-O-H volatiles are the main mode of transport of mass and energy throughout the lithosphere and are commonly found confined in pores, grain boundaries and fractures. The confinement of these fluids by porous media at the length scales of a few nanometers gives rise to numerous physical and chemical properties that deviate from the bulk behavior. Studying the structural and dynamical properties of these confined fluids at the length and time scales of nanometers and picoseconds respectively forms an important component of understanding their behavior. To study confined fluids, non-destructive penetrative probes are needed. Nuclear magnetic resonance (NMR) by virtue of its ability to monitor longitudinal and transverse magnetization relaxations of spins, and chemical shifts brought about by the chemical environment of a nucleus, and measuring diffusion coefficient provides a good opportunity to study dynamics and chemical structure at the molecular length and time scales. Another technique that gives insights into the dynamics and structure at these length and time scales is neutron scattering (NS). This is because the wavelength and energies of cold and thermal neutrons used in scattering experiments are in the same range as the spatial features and energies involved in the dynamical processes occurring at the molecular level. Molecular Dynamics (MD) simulations on the other hand help with the interpretation of the NMR and NS data. Simulations can also supplement the experiments by calculating quantities not easily accessible to experiments. Thus using NMR, NS and MD simulations in conjunction, a complete description of the molecular structure and dynamics of confined geo-fluids can be obtained. In the current review, our aim is to show how a synergistic use of these three techniques has helped shed light on the complex behavior of water, CO2, and low molecular weight hydrocarbons. After summarizing the theoretical backgrounds of the techniques, we will discuss some recent examples of the use of NMR, NS, and MD simulations to the study of confined fluids.
ISM simulations: an overview of models
NASA Astrophysics Data System (ADS)
de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.
2015-03-01
Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.
Faster Aerodynamic Simulation With Cart3D
NASA Technical Reports Server (NTRS)
2003-01-01
A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.
Analysis of nanoscale two-phase flow of argon using molecular dynamics
NASA Astrophysics Data System (ADS)
Verma, Abhishek Kumar; Kumar, Rakesh
2014-12-01
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
How are soap bubbles blown? Fluid dynamics of soap bubble blowing
NASA Astrophysics Data System (ADS)
Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin
2013-11-01
Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.
NASA Technical Reports Server (NTRS)
Spradley, L. W.
1975-01-01
The effects on heated fluids of nonconstant accelerations, rocket vibrations, and spin rates, was studied. A system is discussed which can determine the influence of the convective effects on fluid experiments. The general suitability of sounding rockets for performing these experiments is treated. An analytical investigation of convection in an enclosure which is heated in low gravity is examined. The gravitational body force was taken as a time-varying function using anticipated sounding rocket accelerations, since accelerometer flight data were not available. A computer program was used to calculate the flow rates and heat transfer in fluids with geometries and boundary conditions typical of space processing configurations. Results of the analytical investigation identify the configurations, fluids and boundary values which are most suitable for measuring the convective environment of sounding rockets. A short description of fabricated fluid cells and the convection measurement package is given. Photographs are included.
Using record player demonstrations as analog models for geophysical fluids
NASA Astrophysics Data System (ADS)
Grannan, A. M.; Cheng, J. S.; Hawkins, E. K.; Ribeiro, A.; Aurnou, J. M.
2015-12-01
All celestial bodies, including stars, planets, satellites, and asteroids, rotate. The influence of rotation on the fluid layers in these bodies plays an important and diverse role, affecting many processes including oceanic and atmospheric circulation at the surface and magnetic field generation occurring in the interior. To better understand these large-scale processes, record players and containers of water are used as analog models to demonstrate the basic interplay between rotation and fluid motions. To contrast between rotating and non-rotating fluid motions, coffee creamer and food coloring are used as fluid tracers to provide a hands-on method of understanding the influence of rotation on the shapes of the planets, weather patterns, and the alignment of magnetic fields with rotational axes. Such simple demonstrations have been successfully employed for children in public outreach events and for adults in graduate level fluid dynamics courses.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.
Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping
2018-02-20
Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei
2018-04-19
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
The coupling of fluids, dynamics, and controls on advanced architecture computers
NASA Technical Reports Server (NTRS)
Atwood, Christopher
1995-01-01
This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.
Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows
NASA Astrophysics Data System (ADS)
Minier, Jean-Pierre; Profeta, Christophe
2015-11-01
This article analyzes the status of two classical one-particle probability density function (PDF) descriptions of the dynamics of discrete particles dispersed in turbulent flows. The first PDF formulation considers only the process made up by particle position and velocity Zp=(xp,Up) and is represented by its PDF p (t ;yp,Vp) which is the solution of a kinetic PDF equation obtained through a flux closure based on the Furutsu-Novikov theorem. The second PDF formulation includes fluid variables into the particle state vector, for example, the fluid velocity seen by particles Zp=(xp,Up,Us) , and, consequently, handles an extended PDF p (t ;yp,Vp,Vs) which is the solution of a dynamic PDF equation. For high-Reynolds-number fluid flows, a typical formulation of the latter category relies on a Langevin model for the trajectories of the fluid seen or, conversely, on a Fokker-Planck equation for the extended PDF. In the present work, a new derivation of the kinetic PDF equation is worked out and new physical expressions of the dispersion tensors entering the kinetic PDF equation are obtained by starting from the extended PDF and integrating over the fluid seen. This demonstrates that, under the same assumption of a Gaussian colored noise and irrespective of the specific stochastic model chosen for the fluid seen, the kinetic PDF description is the marginal of a dynamic PDF one. However, a detailed analysis reveals that kinetic PDF models of particle dynamics in turbulent flows described by statistical correlations constitute incomplete stand-alone PDF descriptions and, moreover, that present kinetic-PDF equations are mathematically ill posed. This is shown to be the consequence of the non-Markovian characteristic of the stochastic process retained to describe the system and the use of an external colored noise. Furthermore, developments bring out that well-posed PDF descriptions are essentially due to a proper choice of the variables selected to describe physical systems and guidelines are formulated to emphasize the key role played by the notion of slow and fast variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J
A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less
Studies of the nucler equation of state using numerical calculations of nuclear drop collisions
NASA Technical Reports Server (NTRS)
Alonso, C. T.; Leblanc, J. M.; Wilson, J. R.
1982-01-01
A numerical calculation for the full thermal dynamics of colliding nuclei was developed. Preliminary results are reported for the thermal fluid dynamics in such processes as Coulomb scattering, fusion, fusion-fission, bulk oscillations, compression with heating, and collisions of heated nuclei.
NASA Astrophysics Data System (ADS)
Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina
2018-02-01
Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.
Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.
2007-12-01
Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a more thorough understanding of hydrothermal fluid processes. One such attempt will incorporate geometric data of veins in the Bingham porphyry Cu-Mo-Au deposit into our numerical model. The presentation will introduce the numerical model and show examples and first results of the aforementioned applications.
Liquid rocket combustor computer code development
NASA Technical Reports Server (NTRS)
Liang, P. Y.
1985-01-01
The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Osmotic generation of 'anomalous' fluid pressures in geological environments
Neuzii, C.E.
2000-01-01
Osmotic pressures are generated by differences in chemical potential of a solution across a membrane. But whether osmosis can have a significant effect on the pressure of fluids in geological environments has been controversial, because the membrane properties of geological media are poorly understood. 'Anomalous' pressures - large departures from hydrostatic pressure that are not explicable in terms of topographic or fluid-density effects are widely found in geological settings, and are commonly considered to result from processes that alter the pore or fluid volume, which in turn implies crustal changes happening at a rate too slow to observe directly. Yet if osmosis can explain some anomalies, there is no need to invoke such dynamic geological processes in those cases. Here I report results of a nine- year in situ measurement of fluid pressures and solute concentrations in shale that are consistent with the generation of large (up to 20 MPa) osmotic-pressure anomalies which could persist for tens of millions of years. Osmotic pressures of this magnitude and duration can explain many of the pressure anomalies observed in geological settings. The require, however, small shale porosity and large contrasts in the amount of dissolved solids in the pore waters - criteria that may help to distinguish between osmotic and crystal-dynamic origins of anomalous pressures.
Low-cost digital dynamic visualization system
NASA Astrophysics Data System (ADS)
Asundi, Anand K.; Sajan, M. R.
1995-05-01
High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Bazow, Dennis; Heinz, Ulrich; Strickland, Michael
2018-04-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.
Graham, Brian T; Moore, Axel C; Burris, David L; Price, Christopher
2018-04-11
The interstitial fluid within articular cartilage shields the matrix from mechanical stresses, reduces friction and wear, enables biochemical processes, and transports solutes into and out of the avascular extracellular matrix. The balanced competition between fluid exudation and recovery under load is thus critical to the mechanical and biological functions of the tissue. We recently discovered that sliding alone can induce rapid solute transport into buried cartilage contact areas via a phenomenon termed tribological rehydration. In this study, we use in situ confocal microscopy measurements to track the spatiotemporal propagation of a small neutral solute into the buried contact area to clarify the fluid mechanics underlying the tribological rehydration phenomenon. Sliding experiments were interrupted by periodic static loading to enable scanning of the entire contact area. Spatiotemporal patterns of solute transport combined with tribological data suggested pressure driven flow through the extracellular matrix from the contact periphery rather than into the surface via a fluid film. Interestingly, these testing interruptions also revealed dynamic, repeatable and history-independent fluid loss and recovery processes consistent with those observed in vivo. Unlike the migrating contact area, which preserves hydration by moving faster than interstitial fluid can flow, our results demonstrate that the stationary contact area can maintain and actively recover hydration through a dynamic competition between load-induced exudation and sliding-induced recovery. The results demonstrate that sliding contributes to the recovery of fluid and solutes by cartilage within the contact area while clarifying the means by which it occurs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bulk properties and near-critical behaviour of SiO2 fluid
NASA Astrophysics Data System (ADS)
Green, Eleanor C. R.; Artacho, Emilio; Connolly, James A. D.
2018-06-01
Rocky planets and satellites form through impact and accretion processes that often involve silicate fluids at extreme temperatures. First-principles molecular dynamics (FPMD) simulations have been used to investigate the bulk thermodynamic properties of SiO2 fluid at high temperatures (4000-6000 K) and low densities (500-2240 kg m-3), conditions which are relevant to protoplanetary disc condensation. Liquid SiO2 is highly networked at the upper end of this density range, but depolymerises with increasing temperature and volume, in a process characterised by the formation of oxygen-oxygen (Odbnd O) pairs. The onset of vaporisation is closely associated with the depolymerisation process, and is likely to be non-stoichiometric at high temperature, initiated via the exsolution of O2 molecules to leave a Si-enriched fluid. By 6000 K the simulated fluid is supercritical. A large anomaly in the constant-volume heat capacity occurs near the critical temperature. We present tabulated thermodynamic properties for silica fluid that reconcile observations from FPMD simulations with current knowledge of the SiO2 melting curve and experimental Hugoniot curves.
Battiste, Richard L.
2007-12-25
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Battiste, Richard L
2013-12-31
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Orbital Decay in Binaries with Evolved Stars
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.
2018-01-01
Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.
Application of process tomography in gas-solid fluidised beds in different scales and structures
NASA Astrophysics Data System (ADS)
Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.
2018-04-01
Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.
Numerical models analysis of energy conversion process in air-breathing laser propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Yanji; Song Junling; Cui Cunyan
Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.
Automating the parallel processing of fluid and structural dynamics calculations
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Cole, Gary L.
1987-01-01
The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.
NASA Astrophysics Data System (ADS)
Bellissima, S.; Neumann, M.; Guarini, E.; Bafile, U.; Barocchi, F.
2017-01-01
Extending a preceding study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid [Phys. Rev. E 92, 042166 (2015), 10.1103/PhysRevE.92.042166] to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion method allows for a full account and understanding of the basic dynamical processes encompassed by a fundamental quantity as the VAF. In particular, besides obtaining evidence of a persisting long-time tail, we assign specific and unambiguous physical meanings to groups of exponential modes related to the longitudinal and transverse collective dynamics, respectively. We have made this possible by consistently introducing the interpretation of the VAF frequency spectrum as a global density of states in fluids, generalizing a solid-state concept, and by giving to specific spectral components, obtained through the VAF exponential expansion, the corresponding meaning of partial densities of states relative to specific dynamical processes. The clear identification of a high-frequency oscillation of the VAF with the near-top excitation frequency in the dispersion curve of acoustic waves is a neat example of the power of the method. As for the transverse mode contribution, its analysis turns out to be particularly important, because the multiexponential expansion reveals a transition marking the onset of propagating excitations when the density is increased beyond a threshold value. While this finding agrees with the recent literature debating the issue of dynamical crossover boundaries, such as the one identified with the Frenkel line, we can add detailed information on the modes involved in this specific process in the domains of both time and frequency. This will help obtain a still missing full account of transverse dynamics, in both its nonpropagating and propagating aspects which are linked through dynamical transitions depending on both the thermodynamic states and the excitation wave vectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2008-10-15
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerfulmore » for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.« less
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
NASA Technical Reports Server (NTRS)
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
The aerospace plane design challenge: Credible computational fluid dynamics results
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1990-01-01
Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD.
Quantification and Control of Wall Effects in Porous Media Experiments
NASA Astrophysics Data System (ADS)
Roth, E. J.; Mays, D. C.; Neupauer, R.; Crimaldi, J. P.
2017-12-01
Fluid flow dynamics in porous media are dominated by media heterogeneity. This heterogeneity can create preferential pathways in which local seepage velocities dwarf system seepage velocities, further complicating an already incomplete understanding of dispersive processes. In physical models of porous media flows, apparatus walls introduce preferential flow paths (i.e., wall effects) that may overwhelm other naturally occurring preferential pathways within the apparatus, leading to deceptive results. We used planar laser-induced fluorescence (PLIF) in conjunction with refractive index matched (RIM) porous media and pore fluid to observe fluid dynamics in the porous media, with particular attention to the region near the apparatus walls in a 17 cm x 8 cm x 7 cm uniform flow cell. Hexagonal close packed spheres were used to create an isotropic, homogenous porous media field in the interior of the apparatus. Visualization of the movement of a fluorescent dye revealed the influence of the wall in creating higher permeability preferential flow paths in an otherwise homogenous media packing. These preferential flow paths extended approximately one half of one sphere diameter from the wall for homogenously packed regions, with a quickly diminishing effect on flow dynamics for homogenous media adjacent to the preferential pathway, but with major influence on flow dynamics for adjoining heterogeneous regions. Multiple approaches to mitigate wall effects were investigated, and a modified wall was created such that the fluid dynamics near the wall mimics the fluid dynamics within the homogenous porous media. This research supports the design of a two-dimensional experimental apparatus that will simulate engineered pumping schemes for use in contaminant remediation. However, this research could benefit the design of fixed bed reactors or other engineering challenges in which vessel walls contribute to unwanted preferential flow.
NASA Astrophysics Data System (ADS)
Kavanagh, J. L.; Dennis, D. J.
2014-12-01
Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.
The Microgravity Research Experiments (MICREX) Data Base. Volume 2
NASA Technical Reports Server (NTRS)
Winter, C. A.; Jones, J. C.
1996-01-01
An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
The Microgravity Research Experiments (MICREX) Data Base. Volume 1
NASA Technical Reports Server (NTRS)
Winter, C. A.; Jones, J.C.
1996-01-01
An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators, (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the experimental facilities employed to examine reduced gravity fluid flow, (3) discusses the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
Estimating dynamic permeability in fractal pore network saturated by Maxwellian fluid
NASA Astrophysics Data System (ADS)
Sun, W.
2017-12-01
The frequency dependent flow of fluid in porous media is an important issue in geophysical prospecting. Oscillating flow in pipe leads to frequency dependent dynamic permeability and has been studied in pore network containing Newtonian fluid. But there is little work on oscillating complex fluid in pipe network, especially in irregular network. Here we formulated frequency dependent permeability for Maxwellian fluid and estimated the permeability in three-dimensional fractal network model. We consider an infinitely long cylindrical pipe with rigid solid wall. The pipe is filled with Maxwellian fluids. Based on the mass conservation equation, the equilibrium equation of force and Maxwell constitutive relationship, we formulated the flux by integration of axial velocity component over the pipe's cross section. Then we extend single pipe formulation to a 3D irregular network. Flux balance condition yields a set of linear equations whose unknowns are the fluid pressure at each node. By evaluating the total flow flux through the network, the dynamic permeability can be calculated.We investigated the dynamic permeability of brine and CPyCl/NaSal in a 3D porous sample with a cubic side length 1 cm. The pore network is created by a Voronoi cell filling method. The porosity, i.e., volume ratio between pore/pipe network and the overall cubic, is set as 0.1. The irregular pore network has a fractal structure. The dimension d of the pore network is defined by the relation between node number M within a sphere and the radius r of the sphere,M=rd.The results show that both brine and Maxwellian fluid's permeability maintain a stable value at low frequency, then decreases with fluctuating peaks. The dynamic permeability in pore networks saturated by Maxwellian fluid (CPyCl/NaSal (60 mM)) show larger peaks during the decline process at high frequency, which represents the typical resonance behavior. Dynamic permeability shows clear dependence on the dimension of the fractal network. Small-scale network has higher dimension than large-scale networks. The reason is that in larger networks pore and inter-pore connections are so dense that the probability P(r) to have a neighboring pore at distance r decays faster. The proposed model may be used to explain velocity dispersion in unconventional reservoir rocks observed in laboratory.
Ninth Thermal and Fluids Analysis Workshop Proceedings
NASA Technical Reports Server (NTRS)
Sakowski, Barbara (Compiler)
1999-01-01
The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
Application of Krylov exponential propagation to fluid dynamics equations
NASA Technical Reports Server (NTRS)
Saad, Youcef; Semeraro, David
1991-01-01
An application of matrix exponentiation via Krylov subspace projection to the solution of fluid dynamics problems is presented. The main idea is to approximate the operation exp(A)v by means of a projection-like process onto a krylov subspace. This results in a computation of an exponential matrix vector product similar to the one above but of a much smaller size. Time integration schemes can then be devised to exploit this basic computational kernel. The motivation of this approach is to provide time-integration schemes that are essentially of an explicit nature but which have good stability properties.
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
NASA Technical Reports Server (NTRS)
DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.
1999-01-01
Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.
CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR
The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...
A computational model of amoeboid cell swimming in unbounded medium and through obstacles
NASA Astrophysics Data System (ADS)
Campbell, Eric; Bagchi, Prosenjit
2017-11-01
Pseudopod-driven motility is commonly observed in eukaryotic cells. Pseudopodia are actin-rich protrusions of the cellular membrane which extend, bifurcate, and retract in cycles resulting in amoeboid locomotion. While actin-myosin interactions are responsible for pseudopod generation, cell deformability is crucial concerning pseudopod dynamics. Because pseudopodia are highly dynamic, cells are capable of deforming into complex shapes over time. Pseudopod-driven motility represents a multiscale and complex process, coupling cell deformation, protein biochemistry, and cytoplasmic and extracellular fluid motion. In this work, we present a 3D computational model of amoeboid cell swimming in an extracellular medium (ECM). The ECM is represented as a fluid medium with or without obstacles. The model integrates full cell deformation, a coarse-grain reaction-diffusion system for protein dynamics, and fluid interaction. Our model generates pseudopodia which bifurcate and retract, showing remarkable similarity to experimental observations. Influence of cell deformation, protein diffusivity and cytoplasmic viscosity on the swimming speed is analyzed in terms of altered pseudopod dynamics. Insights into the role of matrix porosity and obstacle size on cell motility are also provided. Funded by NSF CBET 1438255.
Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation
NASA Astrophysics Data System (ADS)
Vincent, Olivier; Marguet, Bastien; Stroock, Abraham
2016-11-01
A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.
NASA Astrophysics Data System (ADS)
Han, Xuesong; Li, Haiyan; Zhao, Fu
2017-07-01
Particle-fluid based surface generation process has already become one of the most important materials processing technology for many advanced materials such as optical crystal, ceramics and so on. Most of the particle-fluid based surface generation technology involves two key process: chemical reaction which is responsible for surface softening; physical behavior which is responsible for materials removal/deformation. Presently, researchers cannot give a reasonable explanation about the complex process in the particle-fluid based surface generation technology because of the small temporal-spatial scale and the concurrent influence of physical-chemical process. Molecular dynamics (MD) method has already been proved to be a promising approach for constructing effective model of atomic scale phenomenon and can serve as a predicting simulation tool in analyzing the complex surface generation mechanism and is employed in this research to study the essence of surface generation. The deformation and piles of water molecule is induced with the feeding of abrasive particle which justifies the property mutation of water at nanometer scale. There are little silica molecule aggregation or materials removal because the water-layer greatly reduce the strength of mechanical interaction between particle and materials surface and minimize the stress concentration. Furthermore, chemical effect is also observed at the interface: stable chemical bond is generated between water and silica which lead to the formation of silconl and the reaction rate changes with the amount of water molecules in the local environment. Novel ring structure is observed in the silica surface and it is justified to be favored of chemical reaction with water molecule. The siloxane bond formation process quickly strengthened across the interface with the feeding of abrasive particle because of the compressive stress resulted by the impacting behavior.
Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadtke, J.B.; Bulsara, A.
These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)
FAST: A multi-processed environment for visualization of computational fluid dynamics
NASA Technical Reports Server (NTRS)
Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin
1991-01-01
Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed.
NASA Astrophysics Data System (ADS)
Domonik, A.; Słaby, E.; Śmigielski, M.
2012-04-01
A self-similarity parameter, the Hurst exponent (H) (called also roughness exponent) has been used to show the long-range dependence of element behaviour during the processes. The H value ranges between 0 and 1; a value of 0.5 indicates a random distribution indistinguishable from noise. For values greater or less than 0.5, the system shows non-linear dynamics. H < 0.5 represents anti-persistent (more chaotic) behaviour, whereas H > 0.5 corresponds to increasing persistence (less chaotic). Such persistence is characterized as an effect of a long-term memory, and thus by a large degree of positive correlation. In theory, the preceding data constantly affect the next in the whole temporal series. Applied to chaotic dynamics, the system shows a subtle sensitivity to initial conditions. The process can show some degree of chaos, due to local variations, but generally, the trend preserves its persistent character through time. If the exponent value is low, the process shows frequent and sudden reversals e.g. the trends of such a process show mutual negative correlation of the succeding values in the data series. Thus, the system can be described as having a high degree of deterministic chaos. Alkali feldspar megacrysts grown from mixed magmas and recrystallized due to interaction with fluids have been selected for the study (Słaby et al., 2011). Hurst exponent variability has been calculated within some primary-magmatic and secondary-recrystallized crystal domains for some elements redistributed by crystal fluid interaction. Based on the Hurst exponent value two different processes can easily be recognized. In the core of the megacrysts the element distribution can be ascribed to magmatic growth. By contrast, the marginal zones can relate to inferred late crystal-fluid interactions. Both processes are deterministic, not random. The spatial distribution of elements in the crystal margins is irregular, with high-H values identifying the process as persistent. The trace element distributions in feldspar cores are almost homogeneous and only relatively small and irregular variations in trace element contents makes their growth morphology slightly patchy. Despite homogenization the fractal statistics reveal that trace elements were incorporated chaotically into the growing crystal. The anti-persistent chaotic behaviour of elements during magmatic growth of the feldspars progressively changes into persistent behaviour within domains, where re-crystallization reaction took place. Elements demonstrate variable dynamics of this exchange corresponding to increasing persistency. This dynamics is different for individual elements compared to analogical, observed for crystallization process proceeding from mixed magmas. Consequently, it appears that fractal statistics clearly discriminate between two different processes, with contrasted element behaviour during these processes. One process is magma crystallization and it is recorded in the core of the megacrysts; the second is recorded in the crystal rims and along cleavages and cracks, such that it can be related to a post-crystallization process linked to fluid percolation. Słaby, E., Martin, H., Hamada, M., Śmigielski, M., Domonik, A., Götze, J., Hoefs, J., Hałas, S., Simon, K., Devidal, J-L., Moyen, J-F., Jayananda, M. (2011) Evidence in Archaean alkali-feldspar megacrysts for high-temperature interaction with mantle fluids. Journal of Petrology (on line). doi:10.1093/petrology/egr056
NASA Astrophysics Data System (ADS)
de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero
2010-05-01
A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.
The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement
NASA Technical Reports Server (NTRS)
Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.
1987-01-01
The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar
2002-01-01
Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well the droplet wall interactions to a point in time just before splash. Additional information is included in the original extended abstract.
Studying dynamic processes in liquids by TEM/STEM/DTEM
NASA Astrophysics Data System (ADS)
Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration
2013-03-01
In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.
Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.
Fusseis, F; Regenauer-Lieb, K; Liu, J; Hough, R M; De Carlo, F
2009-06-18
The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust.
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
An evaluation of Computational Fluid dynamics model for flood risk analysis
NASA Astrophysics Data System (ADS)
Di Francesco, Silvia; Biscarini, Chiara; Montesarchio, Valeria
2014-05-01
This work presents an analysis of the hydrological-hydraulic engineering requisites for Risk evaluation and efficient flood damage reduction plans. Most of the research efforts have been dedicated to the scientific and technical aspects of risk assessment, providing estimates of possible alternatives and of the risk associated. In the decision making process for mitigation plan, the contribute of scientist is crucial, due to the fact that Risk-Damage analysis is based on evaluation of flow field ,of Hydraulic Risk and on economical and societal considerations. The present paper will focus on the first part of process, the mathematical modelling of flood events which is the base for all further considerations. The evaluation of potential catastrophic damage consequent to a flood event and in particular to dam failure requires modelling of the flood with sufficient detail so to capture the spatial and temporal evolutions of the event, as well of the velocity field. Thus, the selection of an appropriate mathematical model to correctly simulate flood routing is an essential step. In this work we present the application of two 3D Computational fluid dynamics models to a synthetic and real case study in order to evaluate the correct evolution of flow field and the associated flood Risk . The first model is based on a opensource CFD platform called openFoam. Water flow is schematized with a classical continuum approach based on Navier-Stokes equation coupled with Volume of fluid (VOF) method to take in account the multiphase character of river bottom-water- air systems. The second model instead is based on the Lattice Boltzmann method, an innovative numerical fluid dynamics scheme based on Boltzmann's kinetic equation that represents the flow dynamics at the macroscopic level by incorporating a microscopic kinetic approach. Fluid is seen as composed by particles that can move and collide among them. Simulation results from both models are promising and congruent to experimental results available in literature, thought the LBM model requires less computational effort respect to the NS one.
Combustion Fundamentals Research
NASA Technical Reports Server (NTRS)
1984-01-01
The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.
Computational fluid dynamics modeling of bun baking process under different oven load conditions.
Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C
2014-09-01
A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
NASA Astrophysics Data System (ADS)
Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.
1995-03-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.
MPI implementation of PHOENICS: A general purpose computational fluid dynamics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, S.; Zacharia, T.; Baltas, N.
1995-04-01
PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. Themore » Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.« less
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
Nonlinear ship waves and computational fluid dynamics
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
Bayatian, Majid; Ashrafi, Khosro; Azari, Mansour Rezazadeh; Jafari, Mohammad Javad; Mehrabi, Yadollah
2018-04-01
There has been an increasing concern about the continuous and the sudden release of volatile organic pollutants from petroleum refineries and occupational and environmental exposures. Benzene is one of the most prevalent volatile compounds, and it has been addressed by many authors for its potential toxicity in occupational and environmental settings. Due to the complexities of sampling and analysis of benzene in routine and accidental situations, a reliable estimation of the benzene concentration in the outdoor setting of refinery using a computational fluid dynamics (CFD) could be instrumental for risk assessment of occupational exposure. In the present work, a computational fluid dynamic model was applied for exposure risk assessment with consideration of benzene being released continuously from a reforming unit of a refinery. For simulation of benzene dispersion, GAMBIT, FLUENT, and CFD post software are used as preprocessing, processing, and post-processing, respectively. Computational fluid dynamic validation was carried out by comparing the computed data with the experimental measurements. Eventually, chronic daily intake and lifetime cancer risk for routine operations through the two seasons of a year are estimated through the simulation model. Root mean square errors are 0.19 and 0.17 for wind speed and concentration, respectively. Lifetime risk assessments of workers are 0.4-3.8 and 0.0096-0.25 per 1000 workers in stable and unstable atmospheric conditions, respectively. Exposure risk is unacceptable for the head of shift work, chief engineer, and general workers in 141 days (38.77%) in a year. The results of this study show that computational fluid dynamics is a useful tool for modeling of benzene exposure in a complex geometry and can be used to estimate lifetime risks of occupation groups in a refinery setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less
NASA Astrophysics Data System (ADS)
Viegas, G. F.; Urbancic, T.; Baig, A. M.
2014-12-01
In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.
Chouet, B.
2003-01-01
A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic regimes and determining their physical and chemical properties; and (3) quantitatively understanding multiphase fluid flow behavior under dynamic volcanic conditions. To realize these goals, not only must we learn how to translate seismic observations into quantitative information about fluid dynamics, but we also must determine the underlying physics that governs vesiculation, fragmentation, and the collapse of bubble-rich suspensions to form separate melt and vapor. Refined understanding of such processes-essential for quantitative short-term eruption forecasts-will require multidisciplinary research involving detailed field measurements, laboratory experiments, and numerical modeling.
Fluid Dynamics of Human Phonation and Speech
NASA Astrophysics Data System (ADS)
Mittal, Rajat; Erath, Byron D.; Plesniak, Michael W.
2013-01-01
This article presents a review of the fluid dynamics, flow-structure interactions, and acoustics associated with human phonation and speech. Our voice is produced through the process of phonation in the larynx, and an improved understanding of the underlying physics of this process is essential to advancing the treatment of voice disorders. Insights into the physics of phonation and speech can also contribute to improved vocal training and the development of new speech compression and synthesis schemes. This article introduces the key biomechanical features of the laryngeal physiology, reviews the basic principles of voice production, and summarizes the progress made over the past half-century in understanding the flow physics of phonation and speech. Laryngeal pathologies, which significantly enhance the complexity of phonatory dynamics, are discussed. After a thorough examination of the state of the art in computational modeling and experimental investigations of phonatory biomechanics, we present a synopsis of the pacing issues in this arena and an outlook for research in this fascinating subject.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
Viscous fingering with partially miscible fluids
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-10-01
Viscous fingering—the fluid-mechanical instability that takes place when a low-viscosity fluid displaces a high-viscosity fluid—has traditionally been studied under either fully miscible or fully immiscible fluid systems. Here we study the impact of partial miscibility (a common occurrence in practice) on the fingering dynamics. Through a careful design of the thermodynamic free energy of a binary mixture, we develop a phase-field model of fluid-fluid displacements in a Hele-Shaw cell for the general case in which the two fluids have limited (but nonzero) solubility into one another. We show, by means of high-resolution numerical simulations, that partial miscibility exerts a powerful control on the degree of fingering: fluid dissolution hinders fingering while fluid exsolution enhances fingering. We also show that, as a result of the interplay between compositional exchange and the hydrodynamic pattern-forming process, stronger fingering promotes the system to approach thermodynamic equilibrium more quickly.
Precision Fluid Management in Continuous Renal Replacement Therapy.
Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio
2016-01-01
Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.
Forced imbibition through model porous media
NASA Astrophysics Data System (ADS)
Odier, Celeste; Levache, Bertrand; Bartolo, Denis
2016-11-01
A number of industrial and natural process ultimately rely on two-phase flow in heterogeneous media. One of the most prominent example is oil recovery which has driven fundamental and applied research in this field for decades. Imbibition occurs when a wetting fluid displaces an immiscible fluid e.g. in a porous media. Using model microfluidic experiment we control both the geometry and wetting properties of the heterogenous media, and show that the typical front propagation picture fails when imbibition is forced and the displacing fluid is less viscous than the non-wetting fluid. We identify and quantitatively characterize four different flow regimes at the pore scale yielding markedly different imbibition patterns at large scales. In particular we will discuss the transition from a conventional 2D-front propagation scenario to a regime where the meniscus dynamics is an intrinsically 3D process.
An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation
NASA Astrophysics Data System (ADS)
Li, Jia-Wei; Wang, Jiang-Feng
2018-05-01
In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.
Astrophysical flows near [Formula: see text] gravity black holes.
Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher
In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.
Deformation and breakup of liquid-liquid threads, jets, and drops
NASA Astrophysics Data System (ADS)
Doshi, Pankaj
The formation and breakup of two-fluid jets and drops find application in various industrially important processes like microencapsulation, inkjet printing, dispersion and emulsion formation, micro fluidics. Two important aspects of these problems are studied in this thesis. The first regards the study of the dynamics of a two-fluid jet issuing out of a concentric nozzle and breaking into multiple liquid drops. The second aspect concerns the study of the dynamics of liquid-liquid interface rupture. Highly robust and accurate numerical algorithms based on the Galerkin finite element method (G/FEM) and elliptic mesh generation technique are developed. The most important results of this research are the prediction of compound drop formation and volume partitioning between primary drop and satellite drops, which are of critical importance for microencapsulation technology. Another equally important result is computational and experimental demonstration of a self-similar behavior for the rupture of liquid-liquid interface. The final focus is the study of the pinch-off dynamics of generalized-Newtonian fluids with deformation-rate-dependent rheology using asymptotic analysis and numerical computation. A significant result is the first ever prediction of self-similar pinch-off of liquid threads of generalized Newtonian fluids.
Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2004-01-01
This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.
Computer animation challenges for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine
2012-07-01
Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hojin; Strachan, Alejandro
2015-11-28
We use large-scale molecular dynamics (MD) to characterize fluid damping between a substrate and an approaching beam. We focus on the near contact regime where squeeze film (where fluid gap is comparable to the mean free path of the gas molecules) and many-body effects in the fluid become dominant. The MD simulations provide explicit description of many-body and non-equilibrium processes in the fluid as well as the surface topography. We study how surface roughness and beam width increases the damping coefficient due to their effect on fluid mobility. We find that the explicit simulations are in good agreement with priormore » direct simulation Monte Carlo results except at near-contact conditions where many-body effects in the compressed fluid lead the increased damping and weaker dependence on beam width. We also show that velocity distributions near the beam edges and for short gaps deviate from the Boltzmann distribution indicating a degree of local non-equilibrium. These results will be useful to parameterize compact models used for microsystem device-level simulations and provide insight into mesoscale simulations of near-contact damping.« less
NASA Technical Reports Server (NTRS)
Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)
1987-01-01
The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.
NASA Technical Reports Server (NTRS)
Brown, R. A.
1986-01-01
This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.
On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media
2015-06-16
fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown
NASA Astrophysics Data System (ADS)
Bather, Wayne Anthony
The metalorganic chemical vapor deposition (MOCVD) growth of compound semiconductors has become important in producing many high performance electronic and optoelectronic devices from the wide bandgaps III-V nitrides, for example, aluminum nitride (AlN). A systematic theoretical and experimental investigation of the chemistry and mass transport process in a MOCVD system can yield predictive models of the deposition process. The chemistries and fluid dynamics of the MOCVD growth of AlN in a vertical reactor is analyzed and characterized in order to parameterize and model the deposition process. A Fourier Transform Infrared (FTIR) spectroscopic study of the predeposition reactions between trimethylaluminum (TMAl) and ammonia (NHsb3) is carried out in a static gas cell to examine the primary homogeneous gas phase reactions, pyrolysis of the reactants, and adduct formation, possibly accompanied by elimination reactions. A series of reactions, based on laboratory studies and literature review, is then proposed to model the deposition process. All pertinent kinetic, thermochemical, and transport properties were obtained. Utilizing a mass transport model, we performed computational fluid dynamics calculations using the FLUENT software package. We determined temperature, velocity, and concentration profiles, along with deposition rates inside the experimental vertical CVD reactor in the Howard University Material Science Research Center of Excellence. Experimental deposition rate data were found to be in good agreement with those predicted from the simulations, thus validating the proposed model. The control of the homogeneous gas phase reaction leading to the formation and subsequent decomposition of the adduct is critical to the formation of device-grade AlN films. Many basic processes occurring during MOCVD of AlN are still not completely understood, and none of the detailed surface reaction mechanisms are known.
Infiltration of MHD liquid into a deformable porous material
NASA Astrophysics Data System (ADS)
Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng
2018-03-01
We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.
2015-12-01
Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.
1984-01-01
crossing in a disorderly way. The similarity of these structures to the " spinifex textures" character- istic of the millimeter scales in komatite rocks...strongl supports the idea that the spinifex structure had its origin in just such a process. NOTES SUBMITTED BY Bruce Bayly and Andre Gorius * S
NASA Astrophysics Data System (ADS)
Fannin, P. C.; Vekas, L.; Marin, C. N.; Malaescu, I.
2017-02-01
Complex susceptibility measurements provide a unique and efficient means for the investigation and determination of the dynamic properties of magnetic fluids. In particular, measurement of the frequency, f(Hz), and field, H(kA/m), dependent, complex susceptibility, χ(ω, Η)= χ‧(ω, Η)-iχ″(ω, Η), of magnetic fluids has proven to be a valuable and reliable technique for investigating such properties. The experimental data presented here was obtained from measurements of a transformer oil based ferrofluid, with measurements being performed over the frequency range 0.1-20 GHz and polarising fields 0-168 kA/m. In the case of transformer oil magnetic fluids, the normal measurement emphasis has been on the investigation of their dielectric properties, including the effects which lightning may have on these properties. Little has been reported on the measurement of the corresponding magnetic susceptibility, χ(ω), of such fluids and in this paper we address this fact. Thus we consider it worthwhile, in the case of a transformer with magnetic fluid transformer oil, being affected as a result of a lightening occurrence, to have knowledge of the fluids dynamic properties, at the microwave frequencies. In the process of determining the sample susceptibility profiles, it was found that the peak value of the χ″(ω) component, was approximately constant over the frequency range 2.4-6.3 GHz. From this it was determined that the fluid was effectively operating as a wideband absorber over a bandwidth of 3.9 GHz.
The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems
NASA Astrophysics Data System (ADS)
Weis, P.
2014-12-01
Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.
Multitasking the code ARC3D. [for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Barton, John T.; Hsiung, Christopher C.
1986-01-01
The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.
NASA Astrophysics Data System (ADS)
Cerroni, D.; Manservisi, S.; Pozzetti, G.
2015-11-01
In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Convective radiation fluid-dynamics: formation and early evolution of ultra low-mass objects
NASA Astrophysics Data System (ADS)
Wuchterl, G.
2005-12-01
The formation process of ultra low-mass objects is some kind of extension of the star formation process. The physical changes towards lower mass are discussed by investigating the collapse of cloud cores that are modelled as Bonnor-Ebert spheres. Their collapse is followed by solving the equations of fluid dynamics with radiation and a model of time-dependent convection that has been calibrated to the Sun. For a sequence of cloud-cores with 1 to 0.01 solar masses, evolutionary tracks and isochrones are shown in the mass-radius diagram, the Hertzsprung-Russel diagram and the effective temperature-surface gravity or Kiel diagram. The collapse and the early hydrostatic evolution to ages of few Ma are briefly discussed and compared to observations of objects in Upper Scorpius and the low-mass components of GG Tau.
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2012-04-01
Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.
CFD studies on biomass thermochemical conversion.
Wang, Yiqun; Yan, Lifeng
2008-06-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.
CFD Studies on Biomass Thermochemical Conversion
Wang, Yiqun; Yan, Lifeng
2008-01-01
Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD) modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field. PMID:19325848
Assess and improve the sustainability of water treatment facility using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tejada-Martinez, Andres; Lei, Hongxia; Zhang, Qiong
2016-11-01
Fluids problems in water treatment industry are often simplified or omitted since the focus is usually on chemical process only. However hydraulics also plays an important role in determining effluent water quality. Recent studies have demonstrated that computational fluid dynamics (CFD) has the ability to simulate the physical and chemical processes in reactive flows in water treatment facilities, such as in chlorine and ozone disinfection tanks. This study presents the results from CFD simulations of reactive flow in an existing full-scale ozone disinfection tank and in potential designs. Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT (the product of disinfectant concentration and contact time) obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone disinfection tank designs and developed a composite indicator to quantify the sustainability of ozone disinfection tank in technological, environmental and economic dimensions.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.
On the Use of Computers for Teaching Fluid Mechanics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.
Three-dimensional numerical and experimental studies on transient ignition of hybrid rocket motor
NASA Astrophysics Data System (ADS)
Tian, Hui; Yu, Ruipeng; Zhu, Hao; Wu, Junfeng; Cai, Guobiao
2017-11-01
This paper presents transient simulations and experimental studies of the ignition process of the hybrid rocket motors (HRMs) using 90% hydrogen peroxide (HP) as the oxidizer and polymethyl methacrylate (PMMA) and Polyethylene (PE) as fuels. A fluid-solid coupling numerically method is established based on the conserved form of the three-dimensional unsteady Navier-Stokes (N-S) equations, considering gas fluid with chemical reactions and heat transfer between the fluid and solid region. Experiments are subsequently conducted using high-speed camera to record the ignition process. The flame propagation, chamber pressurizing process and average fuel regression rate of the numerical simulation results show good agreement with the experimental ones, which demonstrates the validity of the simulations in this study. The results also indicate that the flame propagation time is mainly affected by fluid dynamics and it increases with an increasing grain port area. The chamber pressurizing process begins when the flame propagation completes in the grain port. Furthermore, the chamber pressurizing time is about 4 times longer than the time of flame propagation.
Metabolic profiling of body fluids and multivariate data analysis.
Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten
2017-01-01
Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.
A GPU-based incompressible Navier-Stokes solver on moving overset grids
NASA Astrophysics Data System (ADS)
Chandar, Dominic D. J.; Sitaraman, Jayanarayanan; Mavriplis, Dimitri J.
2013-07-01
In pursuit of obtaining high fidelity solutions to the fluid flow equations in a short span of time, graphics processing units (GPUs) which were originally intended for gaming applications are currently being used to accelerate computational fluid dynamics (CFD) codes. With a high peak throughput of about 1 TFLOPS on a PC, GPUs seem to be favourable for many high-resolution computations. One such computation that involves a lot of number crunching is computing time accurate flow solutions past moving bodies. The aim of the present paper is thus to discuss the development of a flow solver on unstructured and overset grids and its implementation on GPUs. In its present form, the flow solver solves the incompressible fluid flow equations on unstructured/hybrid/overset grids using a fully implicit projection method. The resulting discretised equations are solved using a matrix-free Krylov solver using several GPU kernels such as gradient, Laplacian and reduction. Some of the simple arithmetic vector calculations are implemented using the CU++: An Object Oriented Framework for Computational Fluid Dynamics Applications using Graphics Processing Units, Journal of Supercomputing, 2013, doi:10.1007/s11227-013-0985-9 approach where GPU kernels are automatically generated at compile time. Results are presented for two- and three-dimensional computations on static and moving grids.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Ouellet, Simon
2017-07-01
The evolution of material strength within several dense particle suspensions impacted by a projectile is investigated and shown to be strongly dependent on the particle material in suspension. For stronger particles, such as silicon carbide, the shear strength of the fluid is shown to increase with the ballistic impact strength. For weaker particles, such as silica, the shear strength of the suspension is found to be independent of impact strength in this dynamic range of tests. A soft-capture technique is employed to collect ejecta samples of a silica-based shear thickening fluid, following a ballistic impact and penetration event. Ejecta samples that were collected from impacts at three different velocities are observed and compared to the benchmark particles using a Scanning Electron Microscope. The images show evidence of fractured and deformed silica particles recovered among the nominally 1 μm diameter monodisperse spheres. There is also evidence of particle fragments that appear to be the result of interparticle grinding. The trends observed in the shear strength estimates are interpreted with regards to the particle damage seen in the ejecta recovery experiments to develop a concept of the impact response of these fluids. The results suggest that particle slip through deformation is likely the dominant factor in limiting the transient impact strength of these fluids. Particularly, particle strength is important in the formation and collapse of dynamically jammed particle contact networks in the penetration process.
Linear lateral vibration of axisymmetric liquid briges
NASA Astrophysics Data System (ADS)
Ferrera, C.; Montanero, J. M.; Cabezas, M. G.
A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid
NASA Astrophysics Data System (ADS)
Jönkkäri, I.; Sorvali, M.; Huhtinen, H.; Sarlin, E.; Salminen, T.; Haapanen, J.; Mäkelä, J. M.; Vuorinen, J.
2017-09-01
In this study we have used liquid flame spray (LFS) process to synthetize γ-Fe2O3 nanoparticles of two different average sizes. Different sized nanoparticles were generated with two different liquid precursor feed rates in the spray process, higher feed rate resulting in larger nanoparticles with higher saturation magnetization. The nanoparticles were used in bidisperse magnetorheological fluids to substitute 5% of the micron sized carbonyl iron particles. To our knowledge this is the first time particles synthetized by the LFS method have been used in magnetorheological fluids. The bidisperse fluids showed significantly improved sedimentation stability compared to a monodisperse suspension with the same solid concentration. The tradeoff was an increased viscosity without magnetic field. The effect of the nanoparticles on the rheological properties under external magnetic field was modest. Finally, the dynamic oscillatory testing was used to evaluate the structural changes in the fluids under magnetic field. The addition of nanoparticles decreased the elastic portion of the deformation and increased the viscous portion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kordilla, Jannes; Tartakovsky, Alexandre M.; Geyer, Tobias
2013-09-01
Flow on fracture surfaces has been identified by many authors as an important flow process in unsaturated fractured rock formations. Given the complexity of flow dynamics on such small scales, robust numerical methods have to be employed in order to capture the highly dynamic interfaces and flow intermittency. In this work we present microscale free-surface flow simulations using a three-dimensional multiphase Smoothed Particle Hydrodynamics (SPH) code. Pairwise solid-fluid and fluid-fluid interaction forces are used to control the wetting behavior and cover a wide range of static and transient contact angles as well as Reynolds numbers encountered in droplet flow onmore » rock surfaces. We validate our model via comparison with existing empirical and semi-analyical solutions for droplet flow. We use the model to investigate the occurence of adsorbed trailing films of droplets under various flow conditions and its importance for the flow dynamics when films and droplets coexist. We show that flow velocities are higher on prewetted surfaces covered by a thin film which is qualitatively attributed to the enhanced dynamic wetting and dewetting at the trailing and advancing contact line.« less
Reactive-brittle dynamics in peridotite alteration
NASA Astrophysics Data System (ADS)
Evans, O.; Spiegelman, M. W.; Kelemen, P. B.
2017-12-01
The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.
Feedback Controlled Colloidal Assembly at Fluid Interfaces
NASA Astrophysics Data System (ADS)
Bevan, Michael
The autonomous and reversible assembly of colloidal nano- and micro- scale components into ordered configurations is often suggested as a scalable process capable of manufacturing meta-materials with exotic electromagnetic properties. As a result, there is strong interest in understanding how thermal motion, particle interactions, patterned surfaces, and external fields can be optimally coupled to robustly control the assembly of colloidal components into hierarchically structured functional meta-materials. We approach this problem by directly relating equilibrium and dynamic colloidal microstructures to kT-scale energy landscapes mediated by colloidal forces, physically and chemically patterned surfaces, multiphase fluid interfaces, and electromagnetic fields. 3D colloidal trajectories are measured in real-space and real-time with nanometer resolution using an integrated suite of evanescent wave, video, and confocal microscopy methods. Equilibrium structures are connected to energy landscapes via statistical mechanical models. The dynamic evolution of initially disordered colloidal fluid configurations into colloidal crystals in the presence of tunable interactions (electromagnetic field mediated interactions, particle-interface interactions) is modeled using a novel approach based on fitting the Fokker-Planck equation to experimental microscopy and computer simulated assembly trajectories. This approach is based on the use of reaction coordinates that capture important microstructural features of crystallization processes and quantify both statistical mechanical (free energy) and fluid mechanical (hydrodynamic) contributions. Ultimately, we demonstrate real-time control of assembly, disassembly, and repair of colloidal crystals using both open loop and closed loop control to produce perfectly ordered colloidal microstructures. This approach is demonstrated for close packed colloidal crystals of spherical particles at fluid-solid interfaces and is being extended to anisotropic particles and multiphase fluid interfaces.
Alex, J; Kolisch, G; Krause, K
2002-01-01
The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.
Lahann, R.W.; Swarbrick, R.E.
2011-01-01
Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.
The Microgravity Research Experiments (MICREX) Data Base
NASA Technical Reports Server (NTRS)
Winter, C. A.; Jones, J. C.
1996-01-01
An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments) was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigator (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes thE MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
The Microgravity Research Experiments (MICREX) Data Base, Volume 4
NASA Technical Reports Server (NTRS)
Winter, C. A.; Jones, J. C.
1996-01-01
An electronic data base identifying over 800 fluids and materials processing experiments performed in a low-gravity environment has been created at NASA Marshall Space Flight Center. The compilation, called MICREX (MICrogravity Research Experiments), was designed to document all such experimental efforts performed (1) on U.S. manned space vehicles, (2) on payloads deployed from U.S. manned space vehicles, and (3) on all domestic and international sounding rockets (excluding those of China and the former U.S.S.R.). Data available on most experiments include (1) principal and co-investigators (2) low-gravity mission, (3) processing facility, (4) experimental objectives and results, (5) identifying key words, (6) sample materials, (7) applications of the processed materials/research area, (8) experiment descriptive publications, and (9) contacts for more information concerning the experiment. This technical Memorandum (1) summarizes the historical interest in reduced-gravity fluid dynamics, (2) describes the importance of a low-gravity fluids and materials processing data base, (4) describes the MICREX data base format and computational World Wide Web access procedures, and (5) documents (in hard-copy form) the descriptions of the first 600 fluids and materials processing experiments entered into MICREX.
NASA Astrophysics Data System (ADS)
Park, A. J.; Tuncay, K.; Ortoleva, P. J.
2003-12-01
An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.
NASA Astrophysics Data System (ADS)
Li, Cheng-Jui; Tsai, Tsung-Wen; Tseng, Chien-Chou
The purpose of this research is to analyse the complex phase change and the heat transfer behavior of the Ti-6Al-4 V powder particle during the Selective Laser Melting (SLM) process. In this study, the rapid melting and solidification process is presented by Computational Fluid Dynamics (CFD) approach under the framework of the volume-of-fluid (VOF) method. The interaction between the laser velocity and power to the solidification shape and defects of the metal components will be studied numerically as a guideline to improve quality and reduce costs.
Analysis of physical-chemical processes governing SSME internal fluid flows
NASA Technical Reports Server (NTRS)
Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.
1984-01-01
The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.
Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity
NASA Technical Reports Server (NTRS)
Niederhaus, Charles; Nahra, Henry; Flynn, Michael
2006-01-01
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA s C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Uncertainty Quantification in Aeroelasticity
NASA Astrophysics Data System (ADS)
Beran, Philip; Stanford, Bret; Schrock, Christopher
2017-01-01
Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.
Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations
NASA Astrophysics Data System (ADS)
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-01
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations.
Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako
2014-03-07
We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.
European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science
1992-01-01
evclopment in the Abbey-Polymer Processing and Properties ................... 524 J, Magill Corrosion and Protection Centre at the University of...34* Software Engineering and microprocessors and communication chips. The Information Processing Systems recently announced T9000 microprocessor will...computational fluid dynamics, struc- In addition to general and special-purpose tural mechanics, partial differential equations, processing , Europe has a
A Graduate Course in Polymer Processing.
ERIC Educational Resources Information Center
Middleman, Stanley
1978-01-01
This course, offered by the departments of chemical engineering and polymer science and engineering at the University of Massachusetts, is mainly a course in applied fluid dynamics with an emphasis on flow pressures dominated by viscous effects. (BB)
Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix
2016-09-01
The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.
Traffic Flow Density Distribution Based on FEM
NASA Astrophysics Data System (ADS)
Ma, Jing; Cui, Jianming
In analysis of normal traffic flow, it usually uses the static or dynamic model to numerical analyze based on fluid mechanics. However, in such handling process, the problem of massive modeling and data handling exist, and the accuracy is not high. Finite Element Method (FEM) is a production which is developed from the combination of a modern mathematics, mathematics and computer technology, and it has been widely applied in various domain such as engineering. Based on existing theory of traffic flow, ITS and the development of FEM, a simulation theory of the FEM that solves the problems existing in traffic flow is put forward. Based on this theory, using the existing Finite Element Analysis (FEA) software, the traffic flow is simulated analyzed with fluid mechanics and the dynamics. Massive data processing problem of manually modeling and numerical analysis is solved, and the authenticity of simulation is enhanced.
Electrohydrodynamic simulation of an electrospray in a colloid thruster
NASA Astrophysics Data System (ADS)
Jugroot, Manish; Forget, Martin; Malardier-Jugroot, Cecile
2012-02-01
A precise understanding of electrosprays is highly interesting as the complexity of micro-technology (such as nano-material processing, spacecraft propulsion and mass-spectrometers) systems increases. A multi-component CFD-based model coupling fluid dynamics, charged species dynamics and electric field is developed. The simulations describe the charged fluid interface with emphasis on the Taylor cone formation and cone-jet transition under the effect of a electric field. The goal is to recapture this transition from a rounded liquid interface into a Taylor cone from an initial uniform distribution, without making assumptions on the behaviour, geometry or charge distribution of the system. The time evolution of the interface highlights the close interaction among space charge, coulombic forces and the surface tension, which appear as governing and competing processes in the transition. The results from the coupled formalism provide valuable insights on the physical phenomena and will be applied to a colloid thruster for small spacecrafts.
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
NASA Astrophysics Data System (ADS)
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.
Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM
NASA Astrophysics Data System (ADS)
Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.
2016-09-01
The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.
Unraveling the Geometry Dependence of In-Nozzle Cavitation in High-Pressure Injectors
Im, Kyoung-Su; Cheong, Seong-Kyun; Powell, Christopher F.; Lai, Ming-chia D.; Wang, Jin
2013-01-01
Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating. PMID:23797665
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.
Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.
2014-10-17
We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less
Modeling the formation of porphyry-copper ores
Ingebritsen, Steven E.
2012-01-01
Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
Dynamic self-assembly of charged colloidal strings and walls in simple fluid flows.
Abe, Yu; Zhang, Bo; Gordillo, Leonardo; Karim, Alireza Mohammad; Francis, Lorraine F; Cheng, Xiang
2017-02-22
Colloidal particles can self-assemble into various ordered structures in fluid flows that have potential applications in biomedicine, materials synthesis and encryption. These dynamic processes are also of fundamental interest for probing the general principles of self-assembly under non-equilibrium conditions. Here, we report a simple microfluidic experiment, where charged colloidal particles self-assemble into flow-aligned 1D strings with regular particle spacing near a solid boundary. Using high-speed confocal microscopy, we systematically investigate the influence of flow rates, electrostatics and particle polydispersity on the observed string structures. By studying the detailed dynamics of stable flow-driven particle pairs, we quantitatively characterize interparticle interactions. Based on the results, we construct a simple model that explains the intriguing non-equilibrium self-assembly process. Our study shows that the colloidal strings arise from a delicate balance between attractive hydrodynamic coupling and repulsive electrostatic interaction between particles. Finally, we demonstrate that, with the assistance of transverse electric fields, a similar mechanism also leads to the formation of 2D colloidal walls.
NASA Astrophysics Data System (ADS)
Rua, Yenny; Kharbouch, Karim; Sanford, Christopher; Reckinger, Shanon
2014-11-01
Suction feeding is the most common form of prey capture in aquatic vertebrates. During the early evolution of fishes there was a major change in shape of the mouth, from a wedge shaped mouth opening in more primitive fishes to a more circular and planar mouth. This change in shape resulted from increased mobility of a key upper jaw bone, the maxilla. It has been suggested that this change in shape dramatically increased suction feeding efficiency. This study examines the hydrodynamic effects of these two mouth shapes in the same animal, the bowfin fish (Amia calva). 2D Particle Image Velocimetry (PIV) is used to analyze suction feeding events. Post-processing algorithms have been developed to determine the flow rate of water into the mouth of the fish; the area of fluid, the velocity of fluid and the volume of fluid affected by the fish; the velocity of the fluid at the mouth, as well as the velocity of the fluid as a function of the distance from the mouth, finally the force exerted on the fluid by the fish is also determined. Lastly, a numerical model has been developed for comparison using a non-uniform mesh, which adapts dynamically in space and time to the fish feeding event. The realistic geometry of the fish's head is modeled in CAD.
A CFD Approach to Modeling Spacecraft Fuel Slosh
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.
2009-01-01
Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally displaces the air. Using the conservation of mass, momentum, and energy equations, as well as the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, pressure gradients, and velocity field for the entire liquid as a function of time.
Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalz, Mark S
2011-07-24
Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.« less
A Theoretical and Experimental Study for a Developing Flow in a Thin Fluid Gap
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Lang, Ji; Jen, Kei-Peng; Nathan, Rungun; Vucbmss Team
2016-11-01
In this paper, we report a novel theoretical and experimental approach to examine a fast developing flow in a thin fluid gap. Although the phenomena are widely observed in industrial applications and biological systems, there is a lack of analytical approach that captures the instantaneous fluid response to a sudden impact. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. A sudden impact was imposed on the piston, creating a fast compaction on the thin fluid gap underneath. The motion of the piston was captured by the laser displacement sensor, and the fluid pressure build-up and relaxation was recorded by the pressure transducer. For this dynamic process, a novel analytical approach was developed. It starts with the inviscid limit when the viscous fluid effect has no time to appear. This short process is followed by a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. A boundary layer integral method is used during the process. Lastly, the flow is completely viscous dominant featured by a typical squeeze flow in a thin gap. Excellent agreement between the theory and the experiment was achieved. The study presented herein, filling the gap in the literature, will have broad impact in industrial and biomedical applications. This research was supported by the National Science Foundation under Award #1511096.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Thermo-Gas-Dynamic Model of Afterburning in Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Ferguson, R E; Bell, J B
2003-07-27
A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
Fluid mechanics and solidification investigations in low-gravity environments
NASA Technical Reports Server (NTRS)
Fichtl, G. H.; Lundquist, C. A.; Naumann, R. J.
1980-01-01
Fluid mechanics of gases and liquids and solidification processes were investigated under microgravity conditions during Skylab and Apollo-Soyuz missions. Electromagnetic, acoustic, and aerodynamic levitation devices, drop tubes, aircraft parabolic flight trajectories, and vertical sounding rockets were developed for low-g simulation. The Spacelab 3 mission will be carried out in a gravity gradient flight attitude; analyses of sources of vehicle dynamic accelerations with associated g-levels and angular rates will produce results for future specific experiments.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Ligament Mediated Fragmentation of Viscoelastic Liquids
NASA Astrophysics Data System (ADS)
Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.
2016-10-01
The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.
Ligament Mediated Fragmentation of Viscoelastic Liquids.
Keshavarz, Bavand; Houze, Eric C; Moore, John R; Koerner, Michael R; McKinley, Gareth H
2016-10-07
The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with n_{min}=4. The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.
Flash nano-precipitation of polymer blends: a role for fluid flow?
NASA Astrophysics Data System (ADS)
Grundy, Lorena; Mason, Lachlan; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Lee, Victoria; Prudhomme, Robert; Priestley, Rodney; Matar, Omar K.
2017-11-01
Porous structures can be formed by the controlled precipitation of polymer blends; ranging from porous matrices, with applications in membrane filtration, to porous nano-particles, with applications in catalysis, targeted drug delivery and emulsion stabilisation. Under a diffusive exchange of solvent for non-solvent, prevailing conditions favour the decomposition of polymer blends into multiple phases. Interestingly, dynamic structures can be `trapped' via vitrification prior to thermodynamic equilibrium. A promising mechanism for large-scale polymer processing is flash nano-precipitation (FNP). FNP particle formation has recently been modelled using spinodal decomposition theory, however the influence of fluid flow on structure formation is yet to be clarified. In this study, we couple a Navier-Stokes equation to a Cahn-Hilliard model of spinodal decomposition. The framework is implemented using Code BLUE, a massively scalable fluid dynamics solver, and applied to flows within confined impinging jet mixers. The present method is valid for a wide range of mixing timescales spanning FNP and conventional immersion precipitation processes. Results aid in the fabrication of nano-scale polymer particles with tuneable internal porosities. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.
NASA Astrophysics Data System (ADS)
Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.
2013-06-01
Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.
Key issues, observations and goals for coupled, thermodynamic/geodynamic models
NASA Astrophysics Data System (ADS)
Kelemen, P. B.
2017-12-01
In coupled, thermodynamic/geodynamic models, focus should be on processes involving major rock forming minerals and simple fluid compositions, and parameters with first-order effects on likely dynamic processes: In a given setting, will fluid mass increase or decrease? How about solid density? Will flow become localized or diffuse? Will rocks flow or break? How do reactions affect global processes such as formation and evolution of the plates, plate boundary deformation, metamorphism, weathering, climate and geochemical cycles. Important reaction feedbacks in geodynamics include formation of dissolution channels and armored channels; divergence of flow and formation of permeability barriers due to crystallization in pore space; localization of fluid transport and ductile deformation in shear zones; reaction-driven cracking; mechanical channels granular media; shear heating; density instabilities; viscous fluid-weakening; fluid-induced frictional failure; and hydraulic fracture. Density instabilities often lead to melting, and there is an interesting dialectic between porous flow and diapirs. The best models provide a simple but comprehensive framework that can account for the general features in many or most of these phenomena. Ideally, calculations based on thermodynamic data and rheological observations alone should delineate the regimes in which each of these processes will occur and the boundaries between them. These often start with "toy models" and lab experiments on analog systems, with highly approximate scaling to simplified geological conditions and materials. Geologic observations provide the best constraints where `frozen' fluid transport pathways or deformation processes are preserved. Inferences about completed processes based on fluid or solid products alone is more challenging and less unique. Not all important processes have good examples in outcrop, so directed searches for specific phenomena may fail. A highly generalized approach provides a way forward, allowing serendipitous discoveries of iconic examples wherever they are best developed. These then constrain and inspire the overall "phase diagram" of geodynamic processes.
An experimental study of dynamic characteristics of labyrinth seal
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Fukumoto, Koji; Mochida, Hideyuki
1994-01-01
The fluid force due to labyrinth seal sometimes makes the turbomachineries unstable under higher rotating speed, higher pressure and higher power. Therefore, it is important to predict the magnitude and the direction of the fluid force and to evaluate the stability of the rotor system in design process. This paper shows the experimental results of the fluid force induced by a straight labyrinth seal and the rotordynamic coefficients calculated from the fluid force. Influences of the number of fins under the rotating speed, whirling speed, inlet pressure, and inlet tangential velocity are mainly investigated on a stability of the rotor system. The results show that increase of the number of fins makes the fluid force small and the rotor system stable, an increase of inlet pressure makes the fluid forces large and an increase of inlet tangential velocity makes the rotor system unstable.
Spray Cooling Processes for Space Applications
NASA Technical Reports Server (NTRS)
Kizito, John P.; VanderWal, Randy L.; Berger, Gordon; Tryggvason, Gretar
2004-01-01
The present paper reports ongoing work to develop numerical and modeling tools used to design efficient and effective spray cooling processes and to determine characteristic non-dimensional parametric dependence for practical fluids and conditions. In particular, we present data that will delineate conditions towards control of the impingement dynamics of droplets upon a heated substrate germane to practical situations.
Formation and organization of protein domains in the immunological synapse
NASA Astrophysics Data System (ADS)
Carlson, Andreas; Mahadevan, L.
2014-11-01
The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. Here, we propose a minimal mathematical model for the dynamics of the IS that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the dynamics of protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and fluid flow in the synaptic cleft. Numerical simulations complement the scaling laws by quantifying the nucleation, growth and stabilization of proteins domains on the size of the cell. Direct comparison with experiment suggests that passive dynamics suffices to describe the short-time formation and organization of protein clusters, while the stabilization and long time dynamics of the synapse is likely determined by active cytoskeleton processes triggered by receptor binding. Our study reveals that the fluid flow generated by the interplay between membrane deformation and protein binding kinetics can assist immune cells in regulating protein sorting.
77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1
NASA Technical Reports Server (NTRS)
Williams, Robert W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
OpenFLUID: an open-source software environment for modelling fluxes in landscapes
NASA Astrophysics Data System (ADS)
Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc
2013-04-01
Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network transfer, diagnosis and prediction of water quality taking into account human activities, study of the effect of spatial organization on hydrological fluxes, modelling of surface-subsurface water exchanges, … At LISAH research unit, OpenFLUID is the supporting development platform of the MHYDAS model, which is a distributed model for agrosystems (Moussa et al., 2002, Hydrological Processes, 16, 393-412). OpenFLUID web site : http://www.openfluid-project.org
The effect of fluids on the frictional behavior of calcite gouge
NASA Astrophysics Data System (ADS)
Rempe, M.; Di Toro, G.; Mitchell, T. M.; Hirose, T.; Smith, S. A. F.; Renner, J.
2016-12-01
The presence of fluids in fault zones affects the faults' strength and the nucleation and propagation of earthquakes due to mechanical or physico-chemical weakening effects. To better understand the effect of pore fluids on the frictional behavior of gouge-bearing faults, a series of intermediate- to high-velocity experiments was conducted using the Phv rotary-shear apparatus (Kochi Core Center, Japan) equipped with a servo-controlled pore-fluid pressure system. Calcite gouge was sheared up to several meters displacement at room-humidity (dry) and water-saturated conditions. The pore-fluid factor, λ=pf/σn, ranged from 0.15 to 0.7 and the effective normal stress, σn,eff=σn-pf, from 1 to 12 MPa. Sheared samples were analyzed using scanning electron microscopy and Raman spectroscopy. The steady-state shear stress is lower for saturated than for dry gouges sliding at V=1 mm/s, possibly due to higher intergranular lubrication and/or accelerated subcritical crack growth, as evidenced also by the observed higher degree of compaction. At V=1 m/s, dry gouges show a pronounced strengthening phase preceding the onset of dynamic weakening; saturated gouges weaken abruptly. The higher λ, the lower the peak and steady-state shear stress, but -counterintuitively- the less localized deformation. Degree of weakening and localization might be influenced by insufficient drainage at high λ. In undrained experiments, the shear stress is slightly decreased likely due to thermal pressurization of the pore fluid, but the onset of dynamic weakening is not accelerated, indicating that dynamic weakening is due to more efficient mechanisms. For example, amorphous carbon may lubricate the slip surfaces of dry and saturated calcite gouges and cause dynamic weakening, yet Raman spectra only show the presence of disordered carbon on the principal slip surface. Furthermore, the presence of small recrystallized grains suggests that strain accommodation during steady-state slip might occur by non-frictional processes, such as grain-boundary sliding aided by diffusion creep.
On approximation of non-Newtonian fluid flow by the finite element method
NASA Astrophysics Data System (ADS)
Svácek, Petr
2008-08-01
In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.
ERIC Educational Resources Information Center
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Computational fluid dynamics: Transition to design applications
NASA Technical Reports Server (NTRS)
Bradley, R. G.; Bhateley, I. C.; Howell, G. A.
1987-01-01
The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.
NASA Astrophysics Data System (ADS)
Forterre, Yoel; Sobac, Benjamin
2010-11-01
Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2008-11-01
To understand role of fluid on earthquake rupture processes, we investigated effects of thermal pressurization on spatial variation of dynamic rupture by computing spontaneous rupture propagation on a rectangular fault. We found thermal pressurization can cause heterogeneity of rupture even on a fault of uniform properties. On drained faults, tractions drop linearly with increasing slip in the same way everywhere. However, by changing the drained condition to an undrained one, the slip-weakening curves become non-linear and depend on locations on faults with small shear zone thickness w, and the dynamic frictional stresses vary spatially and temporally. Consequently, the super-shear transition fault length decreases for small w, and the final slip distribution can have some peaks regardless of w, especially on undrained faults. These effects should be taken into account of determining dynamic rupture parameters and modeling earthquake cycles when the presence of fluid is suggested in the source regions.
Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2003-01-01
A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.
Parabolic flights as Earth analogue for surface processes on Mars
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2017-04-01
The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.
2016-09-01
Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.
Geophysical aspects of underground fluid dynamics and mineral transformation process
NASA Astrophysics Data System (ADS)
Khramchenkov, Maxim; Khramchenkov, Eduard
2014-05-01
The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The present work is dedicated to the retrieval of new ways to formulate and construct such models. It was shown that in some important cases there is a governing equation of non-linear diffusion equation type (well-known Fisher equation). In addition, some geophysical aspects of filtration process in usual non-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and skeleton material, including earth quakes, are considered.
Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade
2016-11-01
turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis
Knowledge-based zonal grid generation for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1988-01-01
Automation of flow field zoning in two dimensions is an important step towards reducing the difficulty of three-dimensional grid generation in computational fluid dynamics. Using a knowledge-based approach makes sense, but problems arise which are caused by aspects of zoning involving perception, lack of expert consensus, and design processes. These obstacles are overcome by means of a simple shape and configuration language, a tunable zoning archetype, and a method of assembling plans from selected, predefined subplans. A demonstration system for knowledge-based two-dimensional flow field zoning has been successfully implemented and tested on representative aerodynamic configurations. The results show that this approach can produce flow field zonings that are acceptable to experts with differing evaluation criteria.
Out of the frying pan: Explosive droplet dynamics
NASA Astrophysics Data System (ADS)
Marston, Jeremy; Li, Chao; Truscott, Tadd; Mansoor, Mohammad
2017-11-01
Regardless of culinary skills, most people who have used a stove top have encountered the result of water interacting with hot oil. The phenomenon is particularly memorable if the result is impingement of hot fluid on one's skin. Whilst ubiquitous, a deeper probing of this phenomenon reveals a vastly rich dynamical process. We use high-speed imaging to investigate the idealized case of a single water droplet impacting onto a hot oil film. At a qualitative level, we have observed three regimes of fluid ejection - jets, cones and explosive vaporization. The latter of these results in the spectacular creation of aerosol with sizes down to the sub-micrometer range. We present our experimental findings based upon control parameters such as temperature, film thickness and oil type.
Evolution of Advection Upstream Splitting Method Schemes
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2010-01-01
This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes. The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM. First and foremost is the concept of upwinding. Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting. Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields. Fourth, the realisation of separating the flux into convection and pressure fluxes. The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references. Keywords: Computational fluid dynamics methods, hyperbolic systems, advection upstream splitting method, conservation laws, upwinding, CFD
Design, development and manufacture of a breadboard radio frequency mass gauging system
NASA Technical Reports Server (NTRS)
1975-01-01
The feasibility of the RF gauging mode, counting technique was demonstrated for gauging liquid hydrogen and liquid oxygen under all attitude conditions. With LH2, it was also demonstrated under dynamic fluid conditions, in which the fluid assumes ever changing positions within the tank, that the RF gauging technique on the average provides a very good indication of mass. It is significant that the distribution of the mode count data at each fill level during dynamic LH2 and LOX orientation testing does approach a statistical normal distribution. Multiple space-diversity probes provide better coupling to the resonant modes than utilization of a single probe element. The variable sweep rate generator technique provides a more uniform mode versus time distribution for processing.
NASA Astrophysics Data System (ADS)
Claessens, M.; Möller, K.; Thiel, H. G.
1997-07-01
Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.
Development of hybrid fluid jet/float polishing process
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.
2013-09-01
On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.
Experimental and computational fluid dynamic studies of mixing for complex oral health products
NASA Astrophysics Data System (ADS)
Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota
2015-11-01
Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.
2001-10-25
THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle
Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks
NASA Astrophysics Data System (ADS)
de Paola, Nicola; Hirose, Takehiro; Mitchell, Tom; di Toro, Giulio; Viti, Cecilia; Shimamoto, Toshiko
2010-05-01
During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee's range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.
Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks
NASA Astrophysics Data System (ADS)
de Paola, N.; Hirose, T.; Mitchell, T. M.; di Toro, G.; Viti, C.; Shimamoto, T.
2009-12-01
During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee’s range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.
Relativistic Fluid Dynamics Far From Local Equilibrium
NASA Astrophysics Data System (ADS)
Romatschke, Paul
2018-01-01
Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
Empirical Modeling of Nanoscale Dynamics using Solution Mapping
2010-02-27
high performance liquid chromatography (HPLC). Journal of Supercritical Fluids , 44(2):139–147, 2008. 14 30 40 50 60 70 80 90 100 110 120 0 0.5 1 1.5...dioxide. Journal of Supercritical Fluids , 41(2):179–186, 2007. [3] O. Aschenbrenner, N. Dahmen, K. Schaber, and E. Dinjus. Adsorption of dimethyl(1,5...carbon nanotubes in a supercritical carbon dioxide process. The goal is to predict the time-evolution of the nanoparticle size distribution, as well
Fracturing And Liquid CONvection
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-02-29
FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermalhydrologicalmechanical processes.
Recent Improvements in the FDNS CFD Code and its Associated Process
NASA Technical Reports Server (NTRS)
West, Jeff S.; Dorney, Suzanne M.; Turner, Jim (Technical Monitor)
2002-01-01
This viewgraph presentation gives an overview on recent improvements in the Finite Difference Navier Stokes (FDNS) computational fluid dynamics (CFD) code and its associated process. The development of a utility, PreViewer, has essentially eliminated the creeping of simple human error into the FDNS Solution process. Extension of PreViewer to encapsulate the Domain Decompression process has made practical the routine use of parallel processing. The combination of CVS source control and ATS consistency validation significantly increases the efficiency of the CFD process.
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
NASA Astrophysics Data System (ADS)
Tully, B. J.; Heidelberg, J. F.; Kraft, B.; Girguis, P. R.; Huber, J. A.
2016-12-01
The oceanic crust contains the largest aquifer on Earth with a volume approximately 2% of the global ocean. Ongoing research at the North Pond (NP) site, west of the Mid-Atlantic Ridge, provides an environment representative of oxygenated crustal aquifers beneath oligotrophic surface waters. Using subseafloor CORK observatories for multiple sampling depths beneath the seafloor, crustal fluids were sampled along the predicted aquifer fluid flow path over a two-year period. DNA was extracted and sequenced for metagenomic analysis from 22 crustal fluid samples, along with the overlying bottom. At broad taxonomic groupings, the aquifer system is highly dynamic over time and space, with shifts in dominant taxa and "blooms" of transient groups that appear at discreet time points and sample depths. We were able to reconstruct 194 high-quality, low-contamination bacterial and archaeal metagenomic-assembled genomes (MAGs) with estimated completeness >50% (429 MAGs >20% complete). Environmental genomes were assigned to phylogenies from the major bacterial phyla, putative novel groups, and poorly sampled phylogenetic groups, including the Marinimicrobia, Candidate Phyla Radiation, and Planctomycetes. Biogeochemically relevant processes were assigned to MAGs, including denitrification, dissimilatory sulfur and hydrogen cycling, and carbon fixation. Collectively, the oxic NP aquifer system represents a diverse, dynamic microbial habitat with the metabolic potential to impact multiple globally relevant biogeochemical cycles, including nitrogen, sulfur, and carbon.
Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions
NASA Technical Reports Server (NTRS)
Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.
2001-01-01
Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Comparison of salivary collection and processing methods for quantitative HHV-8 detection.
Speicher, D J; Johnson, N W
2014-10-01
Saliva is a proved diagnostic fluid for the qualitative detection of infectious agents, but the accuracy of viral load determinations is unknown. Stabilising fluids impede nucleic acid degradation, compared with collection onto ice and then freezing, and we have shown that the DNA Genotek P-021 prototype kit (P-021) can produce high-quality DNA after 14 months of storage at room temperature. Here we evaluate the quantitative capability of 10 collection/processing methods. Unstimulated whole mouth fluid was spiked with a mixture of HHV-8 cloned constructs, 10-fold serial dilutions were produced, and samples were extracted and then examined with quantitative PCR (qPCR). Calibration curves were compared by linear regression and qPCR dynamics. All methods extracted with commercial spin columns produced linear calibration curves with large dynamic range and gave accurate viral loads. Ethanol precipitation of the P-021 does not produce a linear standard curve, and virus is lost in the cell pellet. DNA extractions from the P-021 using commercial spin columns produced linear standard curves with wide dynamic range and excellent limit of detection. When extracted with spin columns, the P-021 enables accurate viral loads down to 23 copies μl(-1) DNA. The quantitative and long-term storage capability of this system makes it ideal for study of salivary DNA viruses in resource-poor settings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
1992-06-01
The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightlessness environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Drop Physics Module (DPM) in the USML science laboratory. The DPM was dedicated to the detailed study of the dynamics of fluid drops in microgravity: their equilibrium shapes, the dynamics of their flows, and their stable and chaotic behaviors. It also demonstrated a technique known as containerless processing. The DPM and microgravity combine to remove the effects of the container, such as chemical contamination and shape, on the sample being studied. Sound waves, generating acoustic forces, were used to suspend a sample in microgravity and to hold a sample of free drops away from the walls of the experiment chamber, which isolated the sample from potentially harmful external influences. The DPM gave scientists the opportunity to test theories of classical fluid physics, which have not been confirmed by experiments conducted on Earth. This image is a close-up view of the DPM. The USML-1 flew aboard the STS-50 mission on June 1992, and was managed by the Marshall Space Flight Center.
NASA Astrophysics Data System (ADS)
Dannberg, J.; Heister, T.; Grove, R. R.; Gassmoeller, R.; Spiegelman, M. W.; Bangerth, W.
2017-12-01
Earth's surface shows many features whose genesis can only be understood through the interplay of geodynamic and thermodynamic models. This is particularly important in the context of melt generation and transport: Mantle convection determines the distribution of temperature and chemical composition, the melting process itself is then controlled by the thermodynamic relations and in turn influences the properties and the transport of melt. Here, we present our extension of the community geodynamics code ASPECT, which solves the equations of coupled magma/mantle dynamics, and allows to integrate different parametrizations of reactions and phase transitions: They may alternatively be implemented as simple analytical expressions, look-up tables, or computed by a thermodynamics software. As ASPECT uses a variety of numerical methods and solvers, this also gives us the opportunity to compare different approaches of modelling the melting process. In particular, we will elaborate on the spatial and temporal resolution that is required to accurately model phase transitions, and show the potential of adaptive mesh refinement when applied to melt generation and transport. We will assess the advantages and disadvantages of iterating between fluid dynamics and chemical reactions derived from thermodynamic models within each time step, or decoupling them, allowing for different time step sizes. Beyond that, we will expand on the functionality required for an interface between computational thermodynamics and fluid dynamics models from the geodynamics side. Finally, using a simple example of melting of a two-phase, two-component system, we compare different time-stepping and solver schemes in terms of accuracy and efficiency, in dependence of the time scales of fluid flow and chemical reactions relative to each other. Our software provides a framework to integrate thermodynamic models in high resolution, 3d simulations of coupled magma/mantle dynamics, and can be used as a tool to study links between physical processes and geochemical signals in the Earth.
Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Mitchell, T. M.
2017-12-01
Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.
Multiple Scales in Fluid Dynamics and Meteorology: The DFG Priority Programme 1276 MetStröm
NASA Astrophysics Data System (ADS)
von Larcher, Th; Klein, R.
2012-04-01
Geophysical fluid motions are characterized by a very wide range of length and time scales, and by a rich collection of varying physical phenomena. The mathematical description of these motions reflects this multitude of scales and mechanisms in that it involves strong non-linearities and various scale-dependent singular limit regimes. Considerable progress has been made in recent years in the mathematical modelling and numerical simulation of such flows in detailed process studies, numerical weather forecasting, and climate research. One task of outstanding importance in this context has been and will remain for the foreseeable future the subgrid scale parameterization of the net effects of non-resolved processes that take place on spacio-temporal scales not resolvable even by the largest most recent supercomputers. Since the advent of numerical weather forecasting some 60 years ago, one simple but efficient means to achieve improved forecasting skills has been increased spacio-temporal resolution. This seems quite consistent with the concept of convergence of numerical methods in Applied Mathematics and Computational Fluid Dynamics (CFD) at a first glance. Yet, the very notion of increased resolution in atmosphere-ocean science is very different from the one used in Applied Mathematics: For the mathematician, increased resolution provides the benefit of getting closer to the ideal of a converged solution of some given partial differential equations. On the other hand, the atmosphere-ocean scientist would naturally refine the computational grid and adjust his mathematical model, such that it better represents the relevant physical processes that occur at smaller scales. This conceptual contradiction remains largely irrelevant as long as geophysical flow models operate with fixed computational grids and time steps and with subgrid scale parameterizations being optimized accordingly. The picture changes fundamentally when modern techniques from CFD involving spacio-temporal grid adaptivity get invoked in order to further improve the net efficiency in exploiting the given computational resources. In the setting of geophysical flow simulation one must then employ subgrid scale parameterizations that dynamically adapt to the changing grid sizes and time steps, implement ways to judiciously control and steer the newly available flexibility of resolution, and invent novel ways of quantifying the remaining errors. The DFG priority program MetStröm covers the expertise of Meteorology, Fluid Dynamics, and Applied Mathematics to develop model- as well as grid-adaptive numerical simulation concepts in multidisciplinary projects. The goal of this priority programme is to provide simulation models which combine scale-dependent (mathematical) descriptions of key physical processes with adaptive flow discretization schemes. Deterministic continuous approaches and discrete and/or stochastic closures and their possible interplay are taken into consideration. Research focuses on the theory and methodology of multiscale meteorological-fluid mechanics modelling. Accompanying reference experiments support model validation.
Dynamic stall reattachment revisited
NASA Astrophysics Data System (ADS)
Mulleners, Karen
2017-11-01
Dynamic stall on pitching airfoils is an important practical problem that affects for example rotary wing aircraft and wind turbines. It also comprises a number of interesting fundamental fluid dynamical phenomena such as unsteady flow separation, vortex formation and shedding, unsteady flow reattachment, and dynamic hysteresis. Following up on past efforts focussing on the separation development, we now revisited the flow reattachment or stall recovery process. Experimental time-resolved velocity field and surface pressure data for a two-dimensional sinusoidally pitching airfoil with various reduced frequencies was analysed using different Eulerian, Lagrangian, and modal decomposition methods. This complementary analysis resulted in the identification of the chain of events that play a role in the flow reattachment process, a detailed description of that role, and characterisation of the individual events by the governing time-scales and flow features.
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.
1992-01-01
Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.
LES of a Jet Excited by the Localized Arc Filament Plasma Actuators
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2011-01-01
The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.
Simulating shock-bubble interactions at water-gelatin interfaces
NASA Astrophysics Data System (ADS)
Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus
2016-11-01
Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).
A Spalart-Allmaras local correlation-based transition model for Thermo-fuid dynamics
NASA Astrophysics Data System (ADS)
D'Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A.
2017-11-01
The study of innovative energy systems often involves complex fluid flows problems and the Computational Fluid-Dynamics (CFD) is one of the main tools of analysis. It is important to put in evidence that in several energy systems the flow field experiences the laminar-to-turbulent transition. Direct Numerical Simulations (DNS) or Large Eddy Simulation (LES) are able to predict the flow transition but they are still inapplicable to the study of real problems due to the significant computational resources requirements. Differently standard Reynolds Averaged Navier Stokes (RANS) approaches are not always reliable since they assume a fully turbulent regime. In order to overcome this drawback in the recent years some locally formulated transition RANS models have been developed. In this work, we present a local correlation-based transition approach adding two equations that control the laminar-toturbulent transition process -γ and \\[\\overset{}{\\mathop{{{\\operatorname{Re}}θ, \\text{t}}}} \\] - to the well-known Spalart-Allmaras (SA) turbulence model. The new model was implemented within OpenFOAM code. The energy equation is also implemented in order to evaluate the model performance in thermal-fluid dynamics applications. In all the considered cases a very good agreement between numerical and experimental data was observed.
Working research codes into fluid dynamics education: a science gateway approach
NASA Astrophysics Data System (ADS)
Mason, Lachlan; Hetherington, James; O'Reilly, Martin; Yong, May; Jersakova, Radka; Grieve, Stuart; Perez-Suarez, David; Klapaukh, Roman; Craster, Richard V.; Matar, Omar K.
2017-11-01
Research codes are effective for illustrating complex concepts in educational fluid dynamics courses, compared to textbook examples, an interactive three-dimensional visualisation can bring a problem to life! Various barriers, however, prevent the adoption of research codes in teaching: codes are typically created for highly-specific `once-off' calculations and, as such, have no user interface and a steep learning curve. Moreover, a code may require access to high-performance computing resources that are not readily available in the classroom. This project allows academics to rapidly work research codes into their teaching via a minimalist `science gateway' framework. The gateway is a simple, yet flexible, web interface allowing students to construct and run simulations, as well as view and share their output. Behind the scenes, the common operations of job configuration, submission, monitoring and post-processing are customisable at the level of shell scripting. In this talk, we demonstrate the creation of an example teaching gateway connected to the Code BLUE fluid dynamics software. Student simulations can be run via a third-party cloud computing provider or a local high-performance cluster. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Effects of aperture variability and wettability on immiscible displacement in fractures
NASA Astrophysics Data System (ADS)
Yang, Zhibing; Méheust, Yves; Neuweiler, Insa
2017-04-01
Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.
Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas
2012-02-28
Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Thermal and fluid-dynamics behavior of circulating systems in the case of pressure relief
NASA Astrophysics Data System (ADS)
Moeller, L.
Aspects of safety in the case of large-scale installations with operational high-pressure conditions must be an important consideration already during the design of such installations, taking into account all conceivable disturbances. Within an analysis of such disturbances, studies related to pressure relief processes will have to occupy a central position. For such studies, it is convenient to combine experiments involving small-scale models of the actual installation with suitable computational programs. The experiments can be carried out at lower pressures and temperatures if the actual fluid is replaced by another medium, such as, for instance, a refrigerant. This approach has been used in the present investigation. The obtained experimental data are employed as a basis for a verification of the results provided by the computational model 'Frelap-UK' which has been expressly developed for the analysis of system behavior in the case of pressure relief. It is found that the computer fluid-dynamics characteristics agree with the experimental results.
Marangoni-induced symmetry-breaking pattern selection on viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2016-11-01
Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
High bulk modulus of ionic liquid and effects on performance of hydraulic system.
Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko
2014-01-01
Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid.
Cao, Bing-Yang; Dong, Ruo-Yu
2014-01-21
Rotational diffusion processes are correlated with nanoparticle visualization and manipulation techniques, widely used in nanocomposites, nanofluids, bioscience, and so on. However, a systematical methodology of deriving this diffusivity is still lacking. In the current work, three molecular dynamics (MD) schemes, including equilibrium (Green-Kubo formula and Einstein relation) and nonequilibrium (Einstein-Smoluchowski relation) methods, are developed to calculate the rotational diffusion coefficient, taking a single rigid carbon nanotube in fluid argon as a case. We can conclude that the three methods produce same results on the basis of plenty of data with variation of the calculation parameters (tube length, diameter, fluid temperature, density, and viscosity), indicative of the validity and accuracy of the MD simulations. However, these results have a non-negligible deviation from the theoretical predictions of Tirado et al. [J. Chem. Phys. 81, 2047 (1984)], which may come from several unrevealed factors of the theory. The three MD methods proposed in this paper can also be applied to other situations of calculating rotational diffusion coefficient.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
NASA Astrophysics Data System (ADS)
Antao, Dion Savio
Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization of the systems over a wide range of operating conditions helped to better understand the factors that govern and affect the performance of the PTR. The operating frequency of the linear motor driving the PTR affected the systems' performance the most. Other parameters that resulted in performance variations were the mean operating pressure, the pressure amplitude output from the linear motor, and the geometry of the inertance tube. The effect of the inertance tube's geometry was controlled by a single parameter labeled the "inertance". External/ambient conditions affected the performance of the cryocoolers too. To prevent the influence of the ambient conditions on the performance, a vacuum chamber was fabricated to isolate the low temperature regions of the PTR from the variable ambient atmosphere. The experiments provided important information and guidelines for the simulation studies of the PTR that were carried out concurrently. A time-dependent high fidelity computational fluid dynamic model of the entire PTR system was developed to gain a better understanding of internal interactions between the refrigerant fluid and the porous heat-exchangers in its various components and to facilitate better design of PTR systems based on the knowledge gained. The compressible forms of the conservation of mass, momentum and energy equations are solved in the gas and porous media (appropriate estimation of fluid dynamics in heat-exchangers) regions. The heat transfer in the porous regions is governed by a thermal non-equilibrium heat transfer model that calculates a separate gas and solid temperature and accounts for heat transfer between the two. The numerical model was validated using both temporal and quasi-steady state results obtained from the experimental studies. The validated model was applied to study the effects of different operating parameters (frequency, pressure and geometry of the components) on the PTR's performance. The simulations revealed interesting steady-periodic flow patterns that develop in the pulse tube due to the fluctuations caused by the piston and the presence of the inertance tube. Similar to the experiments, the simulations provided important information that help guide the design of efficient PTR systems.
Kwee, Ingrid L.
2017-01-01
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467
Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji
2017-08-18
The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
Interfacial gauge methods for incompressible fluid dynamics
Saye, Robert
2016-01-01
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567
F*** Yeah Fluid Dynamics: Lessons from online outreach
NASA Astrophysics Data System (ADS)
Sharp, Nicole
2013-11-01
The fluid dynamics education outreach blog FYFD features photos, videos, and research along with concise, accessible explanations of phenomena every weekday. Over the past three years, the blog has attracted an audience of roughly 200,000 online followers. Reader survey results indicate that over half of the blog's audience works or studies in non-fluids fields. Twenty-nine percent of all survey respondents indicate that FYFD has been a positive influence on their desire to pursue fluid dynamics in their education or career. Of these positively influenced readers, over two-thirds have high-school or undergraduate-level education, indicating a significant audience of potential future fluid dynamicists. This talk will utilize a mixture of reader metrics, web analytics, and anecdotal evidence to discuss what makes science outreach successful and how we, as a community, can benefit from promoting fluid dynamics to a wider audience. http://tinyurl.com/azjjgj2
Pulse!! The Virtual Clinical Learning Lab and Center of Excellence
2011-08-01
environments, physiological assets and case-authoring tools using state- of-the art technologies common to the videogame industry but here appropriated...interior processes (e.g., fluid dynamics) are beyond the current reach of the videogame industry. c. Concise Accomplishments (limit 200 words/170
NASA Astrophysics Data System (ADS)
Negrut, Dan; Lamb, David; Gorsich, David
2011-06-01
This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The heterogeneous and distributed computing hardware infrastructure is assumed herein to be made up of a combination of CPUs and Graphics Processing Units (GPUs). The computational dynamics applications targeted to execute on such a hardware topology include many-body dynamics, smoothed-particle hydrodynamics (SPH) fluid simulation, and fluid-solid interaction analysis. The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of subdomains that are each managed by a separate core/accelerator (CPU/GPU) pair. Five components at the core of HCT enable the envisioned distributed computing approach to large-scale dynamical system simulation: (a) the ability to partition the problem according to the one-to-one mapping; i.e., spatial subdivision, discussed above (pre-processing); (b) a protocol for passing data between any two co-processors; (c) algorithms for element proximity computation; and (d) the ability to carry out post-processing in a distributed fashion. In this contribution the components (a) and (b) of the HCT are demonstrated via the example of the Discrete Element Method (DEM) for rigid body dynamics with friction and contact. The collision detection task required in frictional-contact dynamics (task (c) above), is shown to benefit on the GPU of a two order of magnitude gain in efficiency when compared to traditional sequential implementations. Note: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not imply its endorsement, recommendation, or favoring by the United States Army. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Army, and shall not be used for advertising or product endorsement purposes.
NASA Astrophysics Data System (ADS)
van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro
2017-08-01
This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.
Anatomy of a fumarolic system inferred from a multiphysics approach.
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra
2018-05-15
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding
NASA Astrophysics Data System (ADS)
Otto, Andreas; Patschger, Andreas; Seiler, Michael
The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.
Effective height of chimney for biomass cook stove simulated by computational fluid dynamics
NASA Astrophysics Data System (ADS)
Faisal; Setiawan, A.; Wusnah; Khairil; Luthfi
2018-02-01
This paper presents the results of numerical modelling of temperature distribution and flow pattern in a biomass cooking stove using CFD simulation. The biomass stove has been designed to suite the household cooking process. The stove consists of two pots. The first is the main pot located on the top of the combustion chamber where the heat from the combustion process is directly received. The second pot absorbs the heat from the exhaust gas. A chimney installed at the end of the stove releases the exhaust gas to the ambient air. During the tests, the height of chimney was varied to find the highest temperatures at both pots. Results showed that the height of the chimney at the highest temperatures of the pots is 1.65 m. This chimney height was validated by developing a model for computational fluid dynamics. Both experimental and simulations results show a good agreement and help in tune-fining the design of biomass cooking stove.
Effects of stiffness and volume on the transit time of an erythrocyte through a slit.
Salehyar, Sara; Zhu, Qiang
2017-06-01
By using a fully coupled fluid-cell interaction model, we numerically simulate the dynamic process of a red blood cell passing through a slit driven by an incoming flow. The model is achieved by combining a multiscale model of the composite cell membrane with a boundary element fluid dynamics model based on the Stokes flow assumption. Our concentration is on the correlation between the transit time (the time it takes to finish the whole translocation process) and different conditions (flow speed, cell orientation, cell stiffness, cell volume, etc.) that are involved. According to the numerical prediction (with some exceptions), the transit time rises as the cell is stiffened. It is also highly sensitive to volume increase inside the cell. In general, even slightly swollen cells (i.e., the internal volume is increased while the surface area of the cell kept unchanged) travel dramatically slower through the slit. For these cells, there is also an increased chance of blockage.
Aerothermodynamic testing requirements for future space transportation systems
NASA Technical Reports Server (NTRS)
Paulson, John W., Jr.; Miller, Charles G., III
1995-01-01
Aerothermodynamics, encompassing aerodynamics, aeroheating, and fluid dynamic and physical processes, is the genesis for the design and development of advanced space transportation vehicles. It provides crucial information to other disciplines involved in the development process such as structures, materials, propulsion, and avionics. Sources of aerothermodynamic information include ground-based facilities, computational fluid dynamic (CFD) and engineering computer codes, and flight experiments. Utilization of this triad is required to provide the optimum requirements while reducing undue design conservatism, risk, and cost. This paper discusses the role of ground-based facilities in the design of future space transportation system concepts. Testing methodology is addressed, including the iterative approach often required for the assessment and optimization of configurations from an aerothermodynamic perspective. The influence of vehicle shape and the transition from parametric studies for optimization to benchmark studies for final design and establishment of the flight data book is discussed. Future aerothermodynamic testing requirements including the need for new facilities are also presented.
NASA Technical Reports Server (NTRS)
Winter, E. R. F.; Schoenhals, R. J.; Haug, R. I.; Libby, T. L.; Nelson, R. N.; Stevenson, W. H.
1968-01-01
The stratification behavior of a contained fluid subjected to transient free convection heat transfer was studied. A rectangular vessel was employed with heat transfer from two opposite walls of the vessel to the fluid. The wall temperature was increased suddenly to initiate the process and was then maintained constant throughout the transient stratification period. Thermocouples were positioned on a post at the center of the vessel. They were adjusted so that temperatures could be measured at the fluid surface and at specific depths beneath the surface. The predicted values of the surface temperature and the stratified layer thickness were found to agree reasonably well with the experimental measurements. The experiments also provided information on the transient centerline temperature distribution and the transient flow distribution.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
NASA Astrophysics Data System (ADS)
Bayer, U.; Littke, R.; Gajewski, D.; Brink, H.-J.
In 2001 a major research program "Dynamics of Sedimentary Systems under Varying Stress Conditions" has been established by the German Science Foundation (DFG). The programme effectively will start early in 2002 and in some sense provides a continuation of the EUROPROBE project TESZ. However, it will focus mainly on post-Paleozoic processes. The following sub-themes for this programme capture a wide range of areas of interest, calling for interdisciplinary research: 1. Structure and evolution of the crust. This topic will be based on the three- dimensional structural interpretation, pre-stack migration, and modelling of geophysi- cal data such as seismic, gravimetric, magnetic, and magnetotelluric data. The deriva- tion of interval velocities and the prediction of lateral inhomogeneities will be essential for the interpretation of rheological properties on one hand and historical geodynamic processes on the other. 2. Basin dynamics in space and time. Methods of basin anal- ysis, seismic stratigraphy,sedimentology, sequence- and event stratigraphy should be used in combination with subsidence analysis and basin modelling to interpret facies distributions within the evolving accomodation space of a sedimentary basin. An ad- vanced interpretation of seismic lines using new modelling tools is of key interest to extract facies patterns and related petrophysical properties for the three dimensional space of a sedimentary basin. 3. Fluid- and salt dynamics. Salt dynamics is related to the recent and historic stress fields of a basin and greatly governs the sedimentation and erosion processes at the surface. In addition, the rheology of the upper crust and the temperature field within sedimentary basins greatly depends on salt doming. Fluid dynamics is coupled to the temperature and pressure field, but depends also on the permeability of sedimentary rocks which varies by more than 15 orders of magnitude. The origin of non-hydrocarbon gases (CO2, N2, H2S), each dominating over methane in specific provinces of the Central European Basin as well as in many other basins 1 worldwide, is of special interest. 4. Recent state and young processes. It is the inten- tion to develop an understanding of the most recent structural and sedimentological evolution as a response to processes intrinsic to the basin or related to external causes, including glaciation periods in the Quaternary. In particular, knowledge about recently active fault systems and salt doming will be of crucial importance for any future risk assessment, e.g. with respect to the protection of coast lines and landscapes. All above mentioned topics will benefit from the further development of modelling tools for non-linear transport processes, including compaction, porosity- and perme- ability evolution, temperature evolution, maturation of organic matter and clay miner- als, diagenesis, and fluid flow. 2
Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes
NASA Technical Reports Server (NTRS)
Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.
2005-01-01
Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.
Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events
NASA Astrophysics Data System (ADS)
Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.
2015-12-01
During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related processes.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Fluid Dynamics Lagrangian Simulation Model
NASA Astrophysics Data System (ADS)
Hyman, Ellis
1994-02-01
The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.
Rational design of capillary-driven flows for paper-based microfluidics.
Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A
2015-05-21
The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
NASA Astrophysics Data System (ADS)
Spina, L.; Colucci, S.; De'Michieli Vitturi, M.; Scheu, B.; Dingwell, D. B.
2014-12-01
Numerical modeling, joined with experimental investigations, is fundamental for studying the dynamics of magmatic fluid into the conduit, where direct observations are unattainable. Furthermore, laboratory experiments can provide invaluable data to vunalidate complex multiphase codes. With the aim on unveil the essence of nucleation process, as well as the behavior of the multiphase magmatic fluid, we performed slow decompression experiments in a shock tube system. We choose silicon oil as analogue for the magmatic melt, and saturated it with Argon at 10 MPa for 72h. The slow decompression to atmospheric conditions was monitored through a high speed camera and pressure sensors, located into the experimental conduit. The experimental conditions of the decompression process have then been reproduced numerically with a compressible multiphase solver based on OpenFOAM. Numerical simulations have been performed by the OpenFOAM compressibleInterFoam solver for 2 compressible, non-isothermal immiscible fluids, using a VOF (volume of fluid) phase-fraction based interface capturing approach. The data extracted from 2D images obtained from laboratory analyses were compared to the outcome of numerical investigation, showing the capability of the model to capture the main processes studied.
Microfluidic Model Porous Media: Fabrication and Applications.
Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing
2018-05-01
Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Muscatello, Jordan; Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando
2017-07-01
The interfacial thermal resistance determines condensation-evaporation processes and thermal transport across material-fluid interfaces. Despite its importance in transport processes, the interfacial structure responsible for the thermal resistance is still unknown. By combining nonequilibrium molecular dynamics simulations and interfacial analyses that remove the interfacial thermal fluctuations we show that the thermal resistance of liquid-vapor interfaces is connected to a low density fluid layer that is adsorbed at the liquid surface. This thermal resistance layer (TRL) defines the boundary where the thermal transport mechanism changes from that of gases (ballistic) to that characteristic of dense liquids, dominated by frequent particle collisions involving very short mean free paths. We show that the thermal conductance is proportional to the number of atoms adsorbed in the TRL, and hence we explain the structural origin of the thermal resistance in liquid-vapor interfaces.
Development of a new continuous process for mixing of complex non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
Simultaneous Multiple-Location Separation Control
NASA Technical Reports Server (NTRS)
Greenblatt, David (Inventor)
2009-01-01
A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.
Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications
Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman
2014-01-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."
Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications
NASA Astrophysics Data System (ADS)
Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.
2014-12-01
Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.
The use of numerical programs in research and academic institutions
NASA Astrophysics Data System (ADS)
Scupi, A. A.
2016-08-01
This paper is conceived on the idea that numerical programs using computer models of physical processes can be used both for scientific research and academic teaching to study different phenomena. Computational Fluid Dynamics (CFD) is used today on a large scale in research and academic institutions. CFD development is not limited to computer simulations of fluid flow phenomena. Analytical solutions for most fluid dynamics problems are already available for ideal or simplified situations for different situations. CFD is based on the Navier- Stokes (N-S) equations characterizing the flow of a single phase of any liquid. For multiphase flows the integrated N-S equations are complemented with equations of the Volume of Fluid Model (VOF) and with energy equations. Different turbulent models were used in the paper, each one of them with practical engineering applications: the flow around aerodynamic surfaces used as unconventional propulsion system, multiphase flows in a settling chamber and pneumatic transport systems, heat transfer in a heat exchanger etc. Some of them numerical results were validated by experimental results. Numerical programs are also used in academic institutions where certain aspects of various phenomena are presented to students (Bachelor, Master and PhD) for a better understanding of the phenomenon itself.
Direct modeling for computational fluid dynamics
NASA Astrophysics Data System (ADS)
Xu, Kun
2015-06-01
All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct construction of discrete numerical evolution equations, where the mesh size and time step will play dynamic roles in the modeling process. With the variation of the ratio between mesh size and local particle mean free path, the scheme will capture flow physics from the kinetic particle transport and collision to the hydrodynamic wave propagation. Based on the direct modeling, a continuous dynamics of flow motion will be captured in the unified gas-kinetic scheme. This scheme can be faithfully used to study the unexplored non-equilibrium flow physics in the transition regime.
McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.
2010-01-01
Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.
Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A
2010-08-01
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.
NASA Technical Reports Server (NTRS)
1982-01-01
Electroprocessing which is concerned with fluid dynamics of the electroreduction process to determine how it may be modified to improve the quality of the deposit was studied. Experimental techniques are used in this research. These techniques include laser Schlieren photography, laser Doppler velocimetry, and frequency spectrum analysis. Projects involve fluid flow studies of zinc plating in aqueous and molten salt electrolytes, study of cell design for magnesium chlorides electrolysis, digital signal analysis of manganese electrodeposition in molten chlorides, and electroplating of molybdenum from low melting salts. It is anticipated that the use of refractory metals as constructed materials in engineering will increase. Their electrodeposition from molten salt electrolytes is important in the extraction metallurgy of refractory metals.
Chemical vapor deposition fluid flow simulation modelling tool
NASA Technical Reports Server (NTRS)
Bullister, Edward T.
1992-01-01
Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.
NASA Astrophysics Data System (ADS)
Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi
2018-04-01
The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.
The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John
1988-01-01
The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong
2015-07-01
Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.
The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics
NASA Astrophysics Data System (ADS)
Tree, Mike; Fagan, Kiley; Yoganathan, Ajit
2014-11-01
The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.
The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...
DOT National Transportation Integrated Search
1979-01-01
A review of the present level of understanding of the basic thermodynamic, fluid dynamic, and chemical kinetic processes which affect the fuel economy and levels of pollutant exhaust products of Diesel, Stratified Charge, and Spark Ignition engines i...
PREFACE: Dynamics of wetting Dynamics of wetting
NASA Astrophysics Data System (ADS)
Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III
2009-11-01
Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting dynamics and the broader field of fluid dynamics [7-9]. Such an active field requires an occasional collective examination of current research to highlight both recent successes and remaining challenges. Herein, we have collected a range of articles to illustrate the broad nature of research associated with understanding dynamics of moving condensed matter three phase contact lines. Despite the breadth of topics examined, certain unifying themes emerge. The role of the substrate surface is critical in determining kinetics of wetting; this is evidenced by the attention given to this in articles herein. McHale et al investigate the role of surface topography on wetting kinetics and how its effect can be incorporated in existing theories describing contact line dynamics. Moosavi et al examine surface topography effects via a mesoscopic hydrodynamics approach. The capillary driven motion of fluid through structures on a surface bears tremendous importance for microfluidics studies and the emerging field of nanofluidics. Blow et al examine this phenomena for liquid imbibition into a geometric array of structures on a solid surface, while Shen et al analyze the effects of surface temperature during boiling and non-boiling conditionson droplet impingement dynamics. Finally, Pesika et al discover a wonderful world of smart surfaces, like gecko adhesion pads. A number of papers utilize computational modeling to explore phenomena underlying wetting dynamics and to consider relevant mechanisms in terms of existing theory for contact line dynamics. Winter et al utilize Monte Carlo simulation techniques and thermodynamic integration methods to test classical theory describing heterogeneous nucleation at a wall near a wetting transition. Qian et al briefly review the Onsager principle of minimum energy dissipation underlying many descriptions of dissipative systems; they then provide a variational approach description of hydrodynamics of moving contact lines and demonstrate the validity of their continuum model via comparison with molecular dynamics simulations.Bertrand et al use large scale molecular dynamics simulations to examine fundamental questions about wetting dynamics and how they depend upon interactions between a liquid drop and solid substrate; in particular, atomic scale mechanisms directly associated with the molecular kinetic theory of wetting are observed and quantified. Sun et al explore, by molecular dynamics simulations, atomistic mechanisms of high temperature contact line advancement for a rapidly spreading liquid droplet. Starov et al discuss general aspects of surface forces and wetting phenomena, while Courbin et al present anoverview of diverse dynamical processes ranging from inertial spreading to viscous imbibition. Mukhopadhyay et al examine the effect of Marangoni and centrifugal forces on the wetting dynamics of thin liquid films and drops. Willis et al analyze an enhanced droplet spreading due to thermal fluctuations. How wetting and contact line dynamics depend upon the complexity of the structure in the liquid is interesting both academically and technologically; Delabre et al illustrate this with a study of wetting of liquid crystals and the role of molecular scale organization. In addition, Mechkov et al explore this realm by studying post-Tanner spreading for nematic droplets and, in general, post-Tanner spreading of liquid droplets governed by the contact line-tension effects. Liang et al focus on spreading dynamics of power-law fluid droplets, while Wei et al discuss dynamics of wetting in viscous Newtonian and non-Newtonian fluids. Yin et al discuss an important issue of reactive wetting in metal-metal systems. We hope that the articles gathered here will permit readers to understand the wide range of condensed matter systems impacted by wetting kinetics and the many complicating factors that emerge in describing contact line dynamics for realistic materials. We wish to thank all the contributing authors for their effort and support of our endeavour. References [1] Young T 1805 Phil. Trans. R. Soc. A 95 65 [2] Lucas R 1918 Kolloidn. Zh. 23 15 [3] Washburn E W 1921 Phys. Rev. 17 273 [4] de Gennes P G 1985 Rev. Mod. Phys. 57 827 [5] Ralston J, Popescu M and Sedev R 2008 Annu. Rev. Mater. Res.38 23 [6] High Temperature Capillarity Focus Issue 2005 Current Opinion in Solid State and Materials Science 9 149-254 [7] Starov V M, Velarde M G and Radke C J 2007 Wetting and Spreading Dynamics (Boca Raton, FL: CRC Press) [8] Golub J 2008 Phys. Today 61 8 [9] Homsby G M (ed) 2008 Multimedia Fluid Mechanics 2nd edn (New York: Cambridge University Press) (Also see www.efluids.com)
López-Alcaraz, P; Catherall, A T; Hill, R J A; Leaper, M C; Swift, Michael R; King, P J
2007-10-01
A fluid-immersed granular mixture may spontaneously separate when subjected to vertical vibration, separation occurring when the ratio of particle inertia to fluid drag is sufficiently different between the component species of the mixture. Here, we describe how fluid-driven separation is influenced by magneto-Archimedes buoyancy, the additional buoyancy force experienced by a body immersed in a paramagnetic fluid when a strong inhomogeneous magnetic field is applied. In our experiments glass and bronze mixtures immersed in paramagnetic aqueous solutions of MnCl2 have been subjected to sinusoidal vertical vibration. In the absence of a magnetic field the separation is similar to that observed when the interstitial fluid is water. However, at modest applied magnetic fields, magneto-Archimedes buoyancy may balance the inertia/fluid-drag separation mechanism, or it may dominate the separation process. We identify the vibratory and magnetic conditions for four granular configurations, each having distinctive granular convection. Abrupt transitions between these states occur at well-defined values of the magnetic and vibrational parameters. In order to gain insight into the dynamics of the separation process we use computer simulations based on solutions of the Navier-Stokes' equations. The simulations reproduce the experimental results revealing the important role of convection and gap formation in the stability of the different states.
NASA Astrophysics Data System (ADS)
Vandre, Eric
2014-11-01
Dynamic wetting is crucial to processes where a liquid displaces another fluid along a solid surface, such as the deposition of a coating liquid onto a moving substrate. Dynamic wetting fails when process speed exceeds some critical value, leading to incomplete fluid displacement and transient phenomena that impact a variety of applications, such as microfluidic devices, oil-recovery systems, and splashing droplets. Liquid coating processes are particularly sensitive to wetting failure, which can induce air entrainment and other catastrophic coating defects. Despite the industrial incentives for careful control of wetting behavior, the hydrodynamic factors that influence the transition to wetting failure remain poorly understood from empirical and theoretical perspectives. This work investigates the fundamentals of wetting failure in a variety of systems that are relevant to industrial coating flows. A hydrodynamic model is developed where an advancing fluid displaces a receding fluid along a smooth, moving substrate. Numerical solutions predict the onset of wetting failure at a critical substrate speed, which coincides with a turning point in the steady-state solution path for a given set of system parameters. Flow-field analysis reveals a physical mechanism where wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. Novel experimental systems are used to measure the substrate speeds and meniscus shapes associated with the onset of air entrainment during wetting failure. Using high-speed visualization techniques, air entrainment is identified by the elongation of triangular air films with system-dependent size. Air films become unstable to thickness perturbations and ultimately rupture, leading to the entrainment of air bubbles. Meniscus confinement in a narrow gap between the substrate and a stationary plate is shown to delay air entrainment to higher speeds for a variety of water/glycerol solutions. In addition, liquid pressurization (relative to ambient air) further postpones air entrainment when the meniscus is located near a sharp corner along the plate. Recorded critical speeds compare well to predictions from the model, supporting the hydrodynamic mechanism for the onset of wetting failure. Lastly, the industrial practice of curtain coating is investigated using the hydrodynamic model. Due to the complexity of this system, a new computational approach is developed combining a finite element method and lubrication theory in order to improve the efficiency of the numerical analysis. Results show that the onset of wetting failure varies strongly with the operating conditions of this system. In addition, stresses from the air flow dramatically affect the steady wetting behavior of curtain coating. Ultimately, these findings emphasize the important role of two-fluid displacement mechanics in high-speed wetting systems.
NASA Astrophysics Data System (ADS)
de Mier, M.; Costa, F.; Idelsohn, S.
2008-12-01
Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account in the momentum conservation equation through the full shear-stress tensor. The implications of different magma intrusion rates, volumes, and times will be discussed in the context of mafic-silicic magma mixing and eruption triggers.
Computational study of a self-cleaning process on superhydrophobic surface
NASA Astrophysics Data System (ADS)
Farokhirad, Samaneh
All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance beyond the boundary layer of the surface can be accomplished with a surface-parallel shear flow. This thesis presents an investigation of the physics involved in the mechanism of coalescence-induced self-propelled jumping of droplet with and without particle presence, through the use of numerical simulation. (Abstract shortened by ProQuest.).
Potential application of artificial concepts to aerodynamic simulation
NASA Technical Reports Server (NTRS)
Kutler, P.; Mehta, U. B.; Andrews, A.
1984-01-01
The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.
NASA Astrophysics Data System (ADS)
Gori, G.; Molesini, P.; Persico, G.; Guardone, A.
2017-03-01
The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
Fundamental Study on Quantum Nanojets
2004-08-01
Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical
Proceedings of the Fourth Microgravity Fluid Physics and Transport Phenomena Conference
NASA Technical Reports Server (NTRS)
Singh, Bhim S. (Editor)
1999-01-01
This conference presents information to the scientific community on research results, future directions, and research opportunities in microgravity fluid physics and transport phenomena within NASA's microgravity research program. The conference theme is "The International Space Station." Plenary sessions provide an overview of the Microgravity Fluid Physics Program, the International Space Station and the opportunities ISS presents to fluid physics and transport phenomena researchers, and the process by which researchers may become involved in NASA's program, including information about the NASA Research Announcement in this area. Two plenary lectures present promising areas of research in electrohydrodynamics/electrokinetics in the movement of particles and in micro- and meso-scale effects on macroscopic fluid dynamics. Featured speakers in plenary sessions present results of recent flight experiments not heretofore presented. The conference publication consists of this book of abstracts and the full Proceedings of the 4th Microgravity Fluid Physics and Transport Phenomena Conference on CD-ROM, containing full papers presented at the conference (NASA/CP-1999-208526/SUPPL1).
Bed Erosion Process in Geophysical Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.
2017-12-01
The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.
NASA Astrophysics Data System (ADS)
Faber, T. E.
1995-08-01
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.
2016-12-01
Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Fluid Dynamics of the Heart and its Valves
NASA Astrophysics Data System (ADS)
Peskin, Charles S.
1997-11-01
The fluid dynamics of the heart involve the interaction of blood, a viscous incompressible fluid, with the flexible, elastic, fiber-reinforced heart valve leaflets that are immersed in that fluid. Neither the fluid motion nor the valve leaflet motion are known in advance: both must be computed simultaneously by solving their coupled equations of motion. This can be done by the immersed boundary method(Peskin CS and McQueen DM: A general method for the computer simulation of biological systems interacting with fluids. In: Biological Fluid Dynamics (Ellington CP and Pedley TJ, eds.), The Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.), which can be extended to incorporate the contractile fiber architecture of the muscular heart walls as well as the valve leaflets and the blood. In this way we arrive at a three-dimensional computer model of the heart(Peskin CS and McQueen DM: Fluid dynamics of the heart and its valves. In: Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (Othmer HG, Adler FR, Lewis MA, and Dallon JC, eds.), Prentice-Hall, Englewood Cliffs NJ, 1996, pp. 309-337.), which can be used as a test chamber for the design of prosthetic cardiac valves, and also to study the function of the heart in health and in disease. Numerical solutions of the equations of cardiac fluid dynamics obtained by the immersed boundary method will be presented in the form of a video animation of the beating heart.
Novel Shapes of Miscible Interfaces Observed
NASA Technical Reports Server (NTRS)
Balasubramaniam, Ramaswamy; Rashidnia, Nasser
2001-01-01
The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the pipette, at speeds less than 0.1 mm/sec.
Kamm, Roger D
2002-01-01
The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.
NASA Astrophysics Data System (ADS)
Molnár, E.; Niemi, H.; Rischke, D. H.
2016-12-01
In Molnár et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.
NASA Astrophysics Data System (ADS)
Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.
2018-05-01
This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.
The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
2012-01-01
The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.
Remote Visualization and Remote Collaboration On Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Watson, Val; Lasinski, T. A. (Technical Monitor)
1995-01-01
A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).
Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.
Furukawa, Akira; Tateno, Michio; Tanaka, Hajime
2018-05-16
Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.
Interfacial gauge methods for incompressible fluid dynamics
Saye, R.
2016-06-10
Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
The long-term goal of our project (known as OCEAN 3D +1) was to better understand and predict ocean circulation features that are fundamentally three...dimensional in space and that vary in time. In particular, we sought to quantify the dynamical processes that govern the formation , evolution, and...predictability of 3D +1 transport pathways in the ocean. Our approach was to develop algorithms to thoroughly analyze a hierarchy of model and
Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic
2017-08-01
Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.
Space shuttle main engine numerical modeling code modifications and analysis
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1988-01-01
The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
NASA Astrophysics Data System (ADS)
Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume
2014-05-01
The characterization and comprehension of rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control,volcanic eruptions), or in the industry, as CO2 sequestration. Even though the fluids and rocks are relatively easier to understand individually, the coupled behaviour of porous media with a dynamic fluid flow makes the system difficult to comprehend. The dynamic interaction between flow and the porous media, rapid changes in the local porosity due to the compaction and migration of the porous material, fracturing due to the momentum exchange in fast flow, make understanding of such a complex system a challenge. In this study, analogue models are developed to predict and control the mechanical stability of rock and soil formations during the injection or extraction of fluids. The models are constructed and calibrated based on the experimental data acquired. This experimental data obtained from solid-fluid interaction are monitored using a combination of techniques, both from geophysics and from experimental fluid mechanics. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. Non expanding polystyrene beads around 80μm size are used as solid particles and air is used as the intruding fluid. During the experiments, the fluid is injected steadily (or injected and suddenly stopped to see the pushback in a setup with four impermeable boundaries) into the system from the point opposite to the semi-permeable boundary so that the fluid penetrates into the solid and makes a way via creating channels, fractures or directly using the pore network to the semi-permeable boundary. The acoustic signals emitted during the mentioned solid-fluid interactions are recorded by various sensors - i.e. Piezoelectric Shock Accelerometer (Freq. range: 1Hz - 26kHz) and Piezoelectrical Sensors (Freq. range: 100kHz - 1MHz) with a sampling rate of 1MHz - on the Hele-Shaw cell. After the experiment, those signals are compared and investigated further in both time and frequency domains. Moreover, by using different techniques localization of the acoustic emissions are done and compared. Furthermore, during the experiments pictures of the Hele-Shaw cell are taken using a high speed camera. Thus, it is possible to visualize the solid-fluid interaction and to process images to gather information about the mechanical properties of the solid partition. The link between the visual and the mechanical wave signals is investigated. The spectrum of the signal is observed to be strongly affected by the size and shape of deforming channels created during the process. The power of the recorded signal is related to the integrated deformation rate in the process. Fast avalanches and rearrangements of grains at small scales are related to high frequency (above 10 kHz) acoustic emissions.
NASA Astrophysics Data System (ADS)
Gu, Dongdong; Yuan, Pengpeng
2015-12-01
In this study, a three-dimensional transient computational fluid dynamics model was established to investigate the influence of reinforcement weight fraction on thermal evolution behavior and fluid dynamics during selective laser melting (SLM) additive manufacturing of TiC/AlSi10Mg nanocomposites. The powder-to-solid transition and nonlinear variation of thermal physical properties of as-used materials were considered in the numerical model, using the Gaussian distributed volumetric heat source. The simulation results showed that the increase of operating temperature and the resultant formation of larger melt pool were caused by the increase of weight fraction of reinforcement. The Marangoni convection was intensified using a larger reinforcement content, accelerating the coupled motion of fluid and solid particles. The circular flows appeared when the TiC content reached 5.0 wt. % and the larger-sized circular flows were present as the reinforcement content increased to 7.5 wt. %. The experimental study on surface morphologies and microstructures on the polished sections of SLM-processed TiC/AlSi10Mg nanocomposite parts was performed. A considerably dense and smooth surface free of any balling effect and pore formation was obtained when the reinforcement content was optimized at 5.0 wt. %, due to the sufficient liquid formation and moderate Marangoni flow. Novel ring-structured reinforcing particulates were tailored because of the combined action of the attractive effect of centripetal force and repulsive force, which was consistent with the simulation results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, Christian; Gompper, Gerhard; Dill, Ken A.
This special issue highlights new developments in theory and coarse-graining in biological and synthetic macromolecules and membranes. Such approaches give unique insights into the principles and design of the structures, dynamics, and assembly processes of these complex fluids and soft materials, where the length and time scales are often prohibitively long for fully atomistic modeling.
Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad
2007-05-01
We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.
Modeling and control of magnetorheological fluid dampers using neural networks
NASA Astrophysics Data System (ADS)
Wang, D. H.; Liao, W. H.
2005-02-01
Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.
Spray Formation from a Charged Liquid Jet of a Dielectric Fluid
NASA Astrophysics Data System (ADS)
Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team
2017-11-01
Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.
The Stokesian hydrodynamics of flexing, stretching filaments
NASA Astrophysics Data System (ADS)
Shelley, Michael J.; Ueda, Tetsuji
2000-11-01
A central element of many fundamental problems in physics and biology lies in the interaction of a viscous fluid with slender, elastic filaments. Examples arise in the dynamics of biological fibers, the motility of microscopic organisms, and in phase transitions of liquid crystals. When considering the dynamics on the scale of a single filament, the surrounding fluid can often be assumed to be inertialess and hence governed by the Stokes’ equations. A typical simplification then is to assume a local relation, along the filament, between the force per unit length exerted by the filament upon the fluid and the velocity of the filament. While this assumption can be justified through slender-body theory as the leading-order effect, this approximation is only logarithmically separated (in aspect ratio) from the next-order contribution capturing the first effects of non-local interactions mediated by the surrounding fluid; non-local interactions become increasingly important as a filament comes within proximity to itself, or another filament. Motivated by a pattern forming system in isotropic to smectic-A phase transitions, we consider the non-local Stokesian dynamics of a growing elastica immersed in a fluid. The non-local interactions of the filament with itself are included using a modification of the slender-body theory of Keller and Rubinow. This modification is asymptotically equivalent, and removes an instability of their formulation at small, unphysical length-scales. Within this system, the filament lives on a marginal stability boundary, driven by a continual process of growth and buckling. Repeated bucklings result in filament flex, which, coupled to the non-local interactions and mediated by elastic response, leads to the development of space-filling patterns. We develop numerical methods to solve this system accurately and efficiently, even in the presence of temporal stiffness and the close self-approach of the filament. While we have ignored many of the thermodynamic aspects of this system, our simulations show good qualitative agreement with experimental observations. Our results also suggest that non-locality, induced by the surrounding fluid, will be important to understanding the dynamics of related filament systems.
NASA Astrophysics Data System (ADS)
Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro
2018-02-01
Although laser processing is widely used for many applications, the cutting quality of carbon fiber reinforced plastic (CFRP) decreases around the heat-affected zone (HAZ) during laser processing. Carbon fibers are exposed around the HAZ, and tensile strength decreases with increasing length of the HAZ. Some theoretical studies of thermal conductions that do not consider fluid dynamics have been performed; however, theoretical considerations that include the dynamics of laser ablation are scarce. Using removed mass and depth observed from experiments, the dynamics of laser ablation of CFRP with high-temperature and high-pressure of compressive gas is simulated herein. In this calculation, the mushroom-like shape of laser ablation is qualitatively simulated compared with experiments using a high-speed camera. Considering the removal temperature of the resin and the temperature distribution at each point on the surface, the simulation results suggest that a wide area of the resin is removed when the processing depth is shallow, and a rounded kerf is generated as the processing depth increases.
Stewart, Robert A; Shaw, J M
2015-09-01
The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.
A cyber-physical approach to experimental fluid mechanics
NASA Astrophysics Data System (ADS)
Mackowski, Andrew Williams
This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate a hypothetical VIV energy harvesting device. By replacing standard linear springs with nonlinear ones, we can broaden the system's frequency response. Next, we transition from bluff bodies to unsteady airfoils, where we begin by measuring the thrust and efficiency of an airfoil pitching about its quarter-chord point. Finally, we examine how the propulsive performance of an oscillating airfoil is improved by the addition of passive dynamics.
NASA Technical Reports Server (NTRS)
Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin
2006-01-01
Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.
NASA Astrophysics Data System (ADS)
Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi
2017-04-01
The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
Numerical Study of the Reduction Process in an Oxygen Blast Furnace
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng
2016-02-01
Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
NASA Astrophysics Data System (ADS)
Brueckmann, W.; Linke, P.; Pieper, M.; Hensen, C.; Tuerk, M.
2006-12-01
Research in the cooperative research center (SFB) 574 "Volatiles and Fluids in Subduction Zones" at the University Kiel focuses on volatile and fluid exchange processes at subduction zones. These have a significant impact on the long-term geochemical evolution of the hydrosphere and atmosphere. In the SFB 574 working area off Central America more than 120 mud volcanoes, mud diapirs and cold seeps have been identified and sampled. To better understand the internal dynamics of these structures and the temporal variability of fluid expulsion an in-situ tool for monitoring shallow pore pressure variations was devised. The tool (PWPL) monitors pore pressure variations along a 2m profile in the shallow subsurface using a stinger with 4 pressure ports. Positioned with a video-guided lander the stinger is gently pushed into the seafloor where it remains for several weeks or months in autonomous mode before being retrieved. While particular emphasis was placed on the convergent margin of Central America, mud volcanoes in other tectonic settings suitable for long-term observations of fluid flux are used for comparison. Here we will present data and interpretations from two mud volcanoes off Costa Rica and in the Gulf of Cadiz where we have conducted successful tests. Pore pressure data from short-term tests on Mound 11 on the continental slope off Costa Rica are compared with new results from a long-term (3-month) campaign on the Captain Arutjunov deep water mud volcano in the Gulf of Cadiz. Rates of fluid flow at both structures have been thoroughly characterized and quantified with geochemical methods providing a frame of reference for judging the significance of dynamic pore pressure variations.
Insulin transport into the brain.
Gray, Sarah M; Barrett, Eugene J
2018-05-30
While there is a growing consensus that insulin has diverse and important regulatory actions on the brain, seemingly important aspects of brain insulin physiology are poorly understood. Examples include: what is the insulin concentration within brain interstitial fluid under normal physiologic conditions; whether insulin is made in the brain and acts locally; does insulin from the circulation cross the blood-brain barrier or the blood-CSF barrier in a fashion that facilitates its signaling in brain; is insulin degraded within the brain; do privileged areas with a "leaky" blood-brain barrier serve as signaling nodes for transmitting peripheral insulin signaling; does insulin action in the brain include regulation of amyloid peptides; whether insulin resistance is a cause or consequence of processes involved in cognitive decline. Heretofore, nearly all studies examining brain insulin physiology have employed techniques and methodologies that do not appreciate the complex fluid compartmentation and flow throughout the brain. This review attempts to provide a status report on historical and recent work that begins to address some of these issues. It is undertaken in an effort to suggest a framework for studies going forward. Such studies are inevitably influenced by recent physiologic and genetic studies of insulin accessing and acting in brain, discoveries relating to brain fluid dynamics and the interplay of cerebrospinal fluid, brain interstitial fluid, and brain lymphatics, and advances in clinical neuroimaging that underscore the dynamic role of neurovascular coupling.
Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics
NASA Astrophysics Data System (ADS)
Benjamin, Robert F.
1999-09-01
A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.
Ultrasound Thermal Field Imaging of Opaque Fluids
NASA Technical Reports Server (NTRS)
Andereck, C. David
1999-01-01
We have initiated an experimental program to develop an ultrasound system for non-intrusively imaging the thermal field in opaque fluids under an externally imposed temperature gradient. Many industrial processes involve opaque fluids, such as molten metals, semiconductors, and polymers, often in situations in which thermal gradients are important. For example, one may wish to understand semiconductor crystal growth dynamics in a Bridgman apparatus. Destructive testing of the crystal after the process is completed gives only indirect information about the fluid dynamics of the formation process. Knowledge of the coupled thermal and velocity fields during the growth process is then essential. Most techniques for non-intrusive velocity and temperature measurement in fluids are optical in nature, and hence the fluids studied must be transparent. In some cases (for example, LDV (laser Doppler velocimetry) and PIV (particle imaging velocimetry)) the velocities of small neutrally buoyant seed particles suspended in the fluid, are measured. Without particle seeding one can use the variation of the index of refraction of the fluid with temperature to visualize, through interferometric, Schlieren or shadowgraph techniques, the thermal field. The thermal field in turn gives a picture of the pattern existing in the fluid. If the object of study is opaque, non-optical techniques must be used. In this project we focus on the use of ultrasound, which propagates easily through opaque liquids and solids. To date ultrasound measurements have almost exclusively relied on the detection of sound scattered from density discontinuities inside the opaque material of interest. In most cases it has been used to visualize structural properties, but more recently the ultrasound Doppler velocimeter has become available. As in the optical case, it relies on seed particles that scatter Doppler shifted sound back to the detector. Doppler ultrasound techniques are, however, not useful for studying convective fluid flow in crystal growth, because particle seeding is unacceptable and flow velocities are typically too low to be resolved, and may be even lower in microgravity conditions where buoyancy forces are negligible. We will investigate a different use of ultrasound to probe the flows of opaque fluids non-intrusively and without the use of seed particles: our goal is to ultrasonically visualize the thermal field of opaque fluids with relatively high spatial resolution. The proposed technique relies upon the variation of sound speed with temperature of the fluid. A high frequency ultra-sound pulse passing through a fluid-filled chamber will traverse the chamber in a time determined by the relevant chamber dimension and the temperature of the fluid through which the pulse passes. With high time-resolution instrumentation that compares the excitation signal with the received pulse we can detect the influence of the fluid temperature on the pulse travel time. This is effectively an interferometric system, which in its optical form is an extremely sensitive approach to measuring thermal fields in fluids. Moreover, the temperature dependence of sound velocity in liquid metals is comparable to the temperature dependence of the speed of light required for accurate interferometric thermal images in transparent fluids. With an array of transducers scanned electronically a map of the thermal field over the chamber could be produced. An alternative approach would be to use the ultrasound analog of the shadowgraph technique. In the optical version, collimated light passes through the fluid, where it is focused or defocused locally by temperature field induced variations of the index of refraction. The resulting image reveals the thermal field through the spatial pattern of light intensity variations. By analogy, an ultrasound plane wave traversing an opaque fluid sample would be also locally focused or defocused depending on the speed of sound variations, giving rise to spatial variations in sound intensity that will reveal the thermal field pattern. These approaches could be applied to any situation in which temperature differences are expected to occur, and will rapidly provide information about the flow that simply cannot be obtained by any current intrusive or non-intrusive diagnostic technique. As materials processing in microgravity matures it will become increasingly important to have available simple and versatile diagnostic tools, such as we will develop, for studying the flows of opaque fluids under thermal forcing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez Prieto, G.; Piriz, A. R.; Lopez Cela, J. J.
2013-01-15
A previous theory on dynamic stabilization of Rayleigh-Taylor instability at interfaces between Newtonian fluids is reformulated in order to make evident the analogy of this problem with the related one on dynamic stabilization of ablation fronts in the framework of inertial confinement fusion. Explicit analytical expressions are obtained for the boundaries of the dynamically stable region which turns out to be completely analogue to the stability charts obtained for the case of ablation fronts. These results allow proposing experiments with Newtonian fluids as surrogates for studying the case of ablation fronts. Experiments with Newtonian fluids are presented which demonstrate themore » validity of the theoretical approach and encourage to pursue experimental research on ablation fronts to settle the feasibility of dynamic stabilization in the inertial confinement fusion scenario.« less
Holographic digital microscopy in on-line process control
NASA Astrophysics Data System (ADS)
Osanlou, Ardeshir
2011-09-01
This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.
Mechanism study and numerical simulation of Uranium nitriding induced by high energy laser
NASA Astrophysics Data System (ADS)
Zhu, Yuan; Xu, Jingjing; Qi, Yanwen; Li, Shengpeng; Zhao, Hui
2018-06-01
The gradients of interfacial tension induced by local heating led to Marangoni convection, which had a significant effect on surface formation and the process of mass transport in the laser nitriding of uranium. An experimental observation of the underlying processes was very difficult. In present study, the Marangoni convection was considered and the computational fluid dynamic (CFD) analysis technique of FLUENT program was performed to determine the physical processes such as heat transfer and mass transport. The progress of gas-liquid falling film desorption was presented by combining phase-change model with fluid volume function (VOF) model. The time-dependent distribution of the temperature had been derived. Moreover, the concentration and distribution of nitrogen across the laser spot are calculated. The simulation results matched with the experimental data. The numerical resolution method provided a better approach to know the physical processes and dependencies of the coating formation.
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
NASA Astrophysics Data System (ADS)
Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.
2018-01-01
Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.
NASA Astrophysics Data System (ADS)
Friedrich, J.
1999-08-01
As lecturers, our main concern and goal is to develop more attractive and efficient ways of communicating up-to-date scientific knowledge to our students and facilitate an in-depth understanding of physical phenomena. Computer-based instruction is very promising to help both teachers and learners in their difficult task, which involves complex cognitive psychological processes. This complexity is reflected in high demands on the design and implementation methods used to create computer-assisted learning (CAL) programs. Due to their concepts, flexibility, maintainability and extended library resources, object-oriented modeling techniques are very suitable to produce this type of pedagogical tool. Computational fluid dynamics (CFD) enjoys not only a growing importance in today's research, but is also very powerful for teaching and learning fluid dynamics. For this purpose, an educational PC program for university level called 'CFDLab 1.1' for Windows™ was developed with an interactive graphical user interface (GUI) for multitasking and point-and-click operations. It uses the dual reciprocity boundary element method as a versatile numerical scheme, allowing to handle a variety of relevant governing equations in two dimensions on personal computers due to its simple pre- and postprocessing including 2D Laplace, Poisson, diffusion, transient convection-diffusion.
NASA Astrophysics Data System (ADS)
Dhamale, G. D.; Tak, A. K.; Mathe, V. L.; Ghorui, S.
2018-06-01
Synthesis of yttria (Y2O3) nanoparticles in an atmospheric pressure radiofrequency inductively coupled thermal plasma (RF-ICTP) reactor has been investigated using the discrete-sectional (DS) model of particle nucleation and growth with argon as the plasma gas. Thermal and fluid dynamic information necessary for the investigation have been extracted through rigorous computational fluid dynamic (CFD) study of the system with coupled electromagnetic equations under the extended field approach. The theoretical framework has been benchmarked against published data first, and then applied to investigate the nucleation and growth process of yttrium oxide nanoparticles in the plasma reactor using the discrete-sectional (DS) model. While a variety of nucleation and growth mechanisms are suggested in literature, the study finds that the theory of homogeneous nucleation fits well with the features observed experimentally. Significant influences of the feed rate and quench rate on the distribution of particles sizes are observed. Theoretically obtained size distribution of the particles agrees well with that observed in the experiment. Different thermo-fluid dynamic environments with varied quench rates, encountered by the propagating vapor front inside the reactor under different operating conditions are found to be primarily responsible for variations in the width of the size distribution.
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Improvements in the efficiency of turboexpanders in cryogenic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Lin, M.C.; Ershaghi, B.
1996-12-31
Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.
The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework
NASA Astrophysics Data System (ADS)
Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare
2014-06-01
In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
NASA Astrophysics Data System (ADS)
Blinov, V. N.; Shalay, V. V.; Vavilov, I. S.; Kositsin, V. V.; Ruban, V. I.; Lykyanchik, A. I.; Yachmenev, P. S.; Vlasov, A. S.
2017-06-01
This paper is devoted to development and approbation of the gas dynamic model of ammonia thruster with low power consumption and ultra small thrust for picosatellite weighing up to 5 kg and possibility of applying microwave heating of a working fluid. It is shown, that simplest electrothermal thruster consisting of propellant tank, solenoid valve, expension cavity and heating chamber can provide ultra small trust due to gas dynamic processes and small heat supply. The results of the study set tasks for further design of small spacecrafts microwave generators.
An ultrasonic flowmeter for measuring dynamic liquid flow
NASA Technical Reports Server (NTRS)
Carpini, T. D.; Monteith, J. H.
1978-01-01
A novel oscillating pipe system was developed to provide dynamic calibration wherein small sinusoidal signals with amplitudes of 0.5 to 10% of the steady-state flow were added to the steady-state flow by oscillating the flowmeter relative to the fixed pipes in the flow system. Excellent agreement was obtained between the dynamic velocities derived from an accelerometer mounted on the oscillating pipe system and those sensed by the flowmeter at frequencies of 7, 19, and 30 Hz. Also described were the signal processing techniques used to retrieve the small sinusoidal signals which were obscured by the fluid turbulence.
NASA Technical Reports Server (NTRS)
Rios, J.
1982-01-01
The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2015-02-01
Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.
From cellulose to kerogen: molecular simulation of a geological process.
Atmani, Lea; Bichara, Christophe; Pellenq, Roland J-M; Van Damme, Henri; van Duin, Adri C T; Raza, Zamaan; Truflandier, Lionel A; Obliger, Amaël; Kralert, Paul G; Ulm, Franz J; Leyssale, Jean-Marc
2017-12-01
The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization. The composition of the solid residue along the maturation pathway strictly follows what is observed for natural type III kerogen and for artificially matured samples under confined conditions. After expulsion of the fluid phase, the obtained microporous kerogen possesses the structure, texture, density, porosity and stiffness observed for mature type III kerogen and a microporous carbon obtained by saccharose pyrolysis at low temperature. As expected for this variety of precursor, the main resulting hydrocarbon is methane. The present work thus demonstrates that molecular simulations can now be used to assess, almost quantitatively, such complex chemical processes as petrogenesis in fossil reservoirs and, more generally, the possible conversion of any natural product into bio-sourced materials and/or fuel.
Simulation of collisional transport processes and the stability of planetary rings
NASA Technical Reports Server (NTRS)
Brophy, Thomas G.; Esposito, Larry W.
1989-01-01
The utility of the phase-space fluid method for the study of planetary ring dynamics is presently demonstrated through the numerical solution of a model kinetic equation for a flattened Keplerian disk. Attention is given to ringlets composed of single-sized particles, as well as to ringlets composed of two different-sized particles; in the latter case, the ringlets evolve in such a way that the lighter particles are confined by the heavier ones. The results obtained indicate that some natural process may sharpen the optical depth profile of edges even without an external forcing mechanism, and that intermediate optical depths are dynamically preferred in some cases.
Dynamic response of fluid inside a penny shaped crack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, Kazuo; Seki, Hitoshi
1997-12-31
In order to discuss the method for estimating the geometric characteristics of geothermal reservoir cracks, a theoretical study is performed on the dynamic response of the fluid inside a reservoir crack in a rock mass subjected to a dynamic excitation due to propagation of an elastic wave. As representative models of reservoir cracks, a penny shaped crack and a two-dimensional crack which are connected to a borehole are considered. It is found that the resonance frequency of the fluid motion is dependent on the crack size, the fluid`s viscosity and the permeability of the formation. The intensity of the resonancemore » is dependent on the fluid`s viscosity when the size, the aperture and the permeability are fixed. It is also found that, at a value of the fluid`s viscosity, the resonance of fluid pressure becomes strongest. The optimum value of the fluid`s viscosity is found to be almost perfectly determined by the permeability of the formation. Furthermore, it is revealed that, if the fluid`s viscosity is fixed to be the optimum value, the resonance frequency is almost independent of the permeability and aperture, but is dependent on the size of crack. Inversely speaking, this implies that the size of the reservoir crack can be estimated from the resonance frequency, if the fluid with the above mentioned optimum value of viscosity is employed for hydraulic fracturing.« less
The application of CFD to the modelling of fires in complex geometries
NASA Astrophysics Data System (ADS)
Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.
The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.
Gleeson, Tom; Ingebritsen, Steven E.
2016-01-01
Permeability is the primary control on fluid flow in the Earth’s crust and is key to a surprisingly wide range of geological processes, because it controls the advection of heat and solutes and the generation of anomalous pore pressures. The practical importance of permeability – and the potential for large, dynamic changes in permeability – is highlighted by ongoing issues associated with hydraulic fracturing for hydrocarbon production (“fracking”), enhanced geothermal systems, and geologic carbon sequestration. Although there are thousands of research papers on crustal permeability, this is the first book-length treatment. This book bridges the historical dichotomy between the hydrogeologic perspective of permeability as a static material property and the perspective of other Earth scientists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions.
NASA Astrophysics Data System (ADS)
Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.
2016-06-01
A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.
Effect of fluid compressibility on journal bearing performance
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1993-01-01
An analysis was undertaken to determine the effect of fluid film compressibility on the performance of fluid film bearings. A new version of the Reynolds equation was developed, using a polytropic expansion, for both steady-state and dynamic conditions. Polytropic exponents from 1 (isothermal) to 1000 (approaching an incompressible liquid) were evaluated for two bearing numbers, selected from a range of practical interest for cryogenic application, and without cavitation. Bearing loads were insensitive to fluid compressibility for low bearing numbers, as was expected. The effect of compressibility on attitude angle was significant, even when the bearing number was low. A small amount of fluid compressibility was enough to obtain stable running conditions. Incompressible liquid lacked stability at all conditions. Fluid compressibility can be used to control the bearing dynamic coefficients, thereby influencing the dynamic behavior of the rotor-bearing system.
Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars
DOT National Transportation Integrated Search
2009-11-13
This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
Wrapping with a splash: High-speed encapsulation with ultrathin sheets
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Paulsen, Joseph D.; Russell, Thomas P.; Menon, Narayanan
2018-02-01
Many complex fluids rely on surfactants to contain, protect, or isolate liquid drops in an immiscible continuous phase. Thin elastic sheets can wrap liquid drops in a spontaneous process driven by capillary forces. For encapsulation by sheets to be practically viable, a rapid, continuous, and scalable process is essential. We exploit the fast dynamics of droplet impact to achieve wrapping of oil droplets by ultrathin polymer films in a water phase. Despite the violence of splashing events, the process robustly yields wrappings that are optimally shaped to maximize the enclosed fluid volume and have near-perfect seams. We achieve wrappings of targeted three-dimensional (3D) shapes by tailoring the 2D boundary of the films and show the generality of the technique by producing both oil-in-water and water-in-oil wrappings.
NASA Astrophysics Data System (ADS)
Sharapov, V. N.; Kuznetsov, G. V.; Chudnenko, K. V.
2016-04-01
A quantitative model describing the dynamics of the process of metasomatic wehrlitization of ultramafics is put forward. It is elaborated for the process taking place in permeable fault zones over a time span of 50 kyr with fluid source depths in the range of 150-50 km at initial temperatures of 1000-1200°C. The possibility of existence of two physical-chemical facies of this process has been demonstrated: one occurs at the level of garnet and the other is at the level of spinel depth facies. Their realization is related to the dependence of the activity of Mg-Ca-Si metasomatism against variation in the composition of low-molecular hydrocarbons in a fluid under conditions of changing T and P in a system.
Vortex breakdown in simple pipe bends
NASA Astrophysics Data System (ADS)
Ault, Jesse; Shin, Sangwoo; Stone, Howard
2016-11-01
Pipe bends and elbows are one of the most common fluid mechanics elements that exists. However, despite their ubiquity and the extensive amount of research related to these common, simple geometries, unexpected complexities still remain. We show that for a range of geometries and flow conditions, these simple flows experience unexpected fluid dynamical bifurcations resembling the bubble-type vortex breakdown phenomenon. Specifically, we show with simulations and experiments that recirculation zones develop within the bends under certain conditions. As a consequence, fluid and particles can remain trapped within these structures for unexpectedly-long time scales. We also present simple techniques to mitigate this recirculation effect which can potentially have impact across industries ranging from biomedical and chemical processing to food and health sciences.
Holographic microscopy studies of emulsions
NASA Technical Reports Server (NTRS)
Witherow, W. K.
1981-01-01
A holographic microscopy system that records and observes the dynamic properties of separation of dispersed immiscible fluids is described. The holographic construction system and reconstruction system that were used to obtain particle size and distribution information from the holograms are discussed. The holographic microscopy system is used to observed the phase separating processes in immiscible fluids that were isothermally cooled into the two phase region. Nucleation, growth rates, coalescence, and particle motion are successfully demonstrated with this system. Thus a holographic particle sizing system with a resolution of 2 micrometers and a field of view of 100 cu cm was developed that provides the capability of testing the theories of separating immiscible fluids for particle number densities in the range of 10 to 10 to the 7th power particles.
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Leslie, F. W.
1991-01-01
The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.
Fluid models and simulations of biological cell phenomena
NASA Technical Reports Server (NTRS)
Greenspan, H. P.
1982-01-01
The dynamics of coated droplets are examined within the context of biofluids. Of specific interest is the manner in which the shape of a droplet, the motion within it as well as that of aggregates of droplets can be controlled by the modulation of surface properties and the extent to which such fluid phenomena are an intrinsic part of cellular processes. From the standpoint of biology, an objective is to elucidate some of the general dynamical features that affect the disposition of an entire cell, cell colonies and tissues. Conventionally averaged field variables of continuum mechanics are used to describe the overall global effects which result from the myriad of small scale molecular interactions. An attempt is made to establish cause and effect relationships from correct dynamical laws of motion rather than by what may have been unnecessary invocation of metabolic or life processes. Several topics are discussed where there are strong analogies droplets and cells including: encapsulated droplets/cell membranes; droplet shape/cell shape; adhesion and spread of a droplet/cell motility and adhesion; and oams and multiphase flows/cell aggregates and tissues. Evidence is presented to show that certain concepts of continuum theory such as suface tension, surface free energy, contact angle, bending moments, etc. are relevant and applicable to the study of cell biology.
Monitoring and characterizing natural hazards with satellite InSAR imagery
Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel
2010-01-01
Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.
Preliminary design of turbopumps and related machinery
NASA Technical Reports Server (NTRS)
Wislicenus, George F.
1986-01-01
Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.
The Dynamics of Current Carriers In Standing Alfven Waves
NASA Astrophysics Data System (ADS)
Wright, A. N.; Allan, W.; Ruderman, M. S.; Elphic, R. C.
The acceleration of current carriers in an Alfvén wave current system is considered. The model incorporates a dipole magnetic field geometry, and we present an analyt- ical solution of the two-fluid equations by successive approximations. The leading solution corresponds to the familiar single-fluid toroidal oscillations. The next order describes the nonlinear dynamics of electrons responsible for carrying a few µAm-2 field aligned current into the ionosphere. The solution shows how most of the elec- tron acceleration in the magnetosphere occurs within 1 RE of the ionosphere, and that a parallel electric field of the order of 1 mVm-1 is reponsible for energising the electrons to 1 keV. The limitations of the electron fluid approximation are considered, and a qualitative solution including electron beams and a modified E is developed in accord with observations. We find that the electron acceleration can be nonlinear, (ve )ve > ve , as a result of our nonuniform equilibrium field geometry even when ve is less than the Alfvén speed. Our calculation also elucidates the processes through which E is generated and supported.
NASA Astrophysics Data System (ADS)
Kaur, K.; Laanearu, J.; Annus, I.
2017-10-01
The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.
NASA Astrophysics Data System (ADS)
Son, Kwon Joong
2018-02-01
Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.
Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A
2010-01-01
Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process. © 2010 American Society for Bone and Mineral Research. PMID:20200992
NASA Astrophysics Data System (ADS)
Farías, Cristian; Galván, Boris; Miller, Stephen A.
2017-09-01
Earthquake triggering of hydrothermal and volcanic systems is ubiquitous, but the underlying processes driving these systems are not well-understood. We numerically investigate the influence of seismic wave interaction with volcanic systems simulated as a trapped, high-pressure fluid reservoir connected to a fluid-filled fault system in a 2-D poroelastic medium. Different orientations and earthquake magnitudes are studied to quantify dynamic and static stress, and pore pressure changes induced by a seismic event. Results show that although the response of the system is mainly dominated by characteristics of the radiated seismic waves, local structures can also play an important role on the system dynamics. The fluid reservoir affects the seismic wave front, distorts the static overpressure pattern induced by the earthquake, and concentrates the kinetic energy of the incoming wave on its boundaries. The static volumetric stress pattern inside the fault system is also affected by the local structures. Our results show that local faults play an important role in earthquake-volcanic systems dynamics by concentrating kinetic energy inside and acting as wave-guides that have a breakwater-like behavior. This generates sudden changes in pore pressure, volumetric expansion, and stress gradients. Local structures also influence the regional Coulomb yield function. Our results show that local structures affect the dynamics of volcanic and hydrothermal systems, and should be taken into account when investigating triggering of these systems from nearby or distant earthquakes.
Dynamics of defect-induced dark solitons in an exciton-polariton condensate
NASA Astrophysics Data System (ADS)
Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał
2018-04-01
We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)
2001-01-01
This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.
Dynamical Heterogeneity in Granular Fluids and Structural Glasses
NASA Astrophysics Data System (ADS)
Avila, Karina E.
Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than for other glassy systems and it provides evidence in favor of a particular theory for the origin of dynamical heterogeneity.
NASA Astrophysics Data System (ADS)
Johnsen, O.; Chevalier, C.; Toussaint, R.; Lindner, A.; Niebling, M.; Schmittbuhl, J.; Maloy, K. J.; Clement, E.; Flekkoy, E. G.
2009-04-01
We present experimental systems where we inject a fluid at high pressure in a poorly cohesive porous material saturated with the same fluid. This fluid is either a highly compressible gas (air), or an almost incompressible and viscous fluid (oil), in an otherwise identical porous matrix. We compare both situations. These porous materials are designed as analogs to real rocks in terms of processes, but their cohesion and geometry are tuned so that the hydrofracture process can be followed optically in the lab, in addition to the ability to follow the imposed pressure and fluxes. Namely, we work with lowly cohesive granular materials, confined in thin elongated Hele-Shaw cell, and follow it with high speed cameras. The fluid is injected on the side of the material, and the injection overpressure is maintained constant after the start. At sufficiently high overpressures, the mobilization of grains is observed, and the formation of hydrofracture fingering patterns is followed and analyzed quantitatively. The two situations where air is injected and where oil is injected are compared together. Many striking similarities are observed between both situations about the shape selections and dynamics, when time is rescaled according to the viscosity of the interstitial fluid. Some differences survive in the speed of the traveling hydrofracture, and their physical origin is discussed. In practice, this problem is relevant for important aspects in the formation and sustenance of increased permeability macroporous networks as demonstrated in nature and industry in many situations. E.g., in active hydrofracture in boreholes, piping/internal erosion in soils and dams, sand production in oil or water wells, and wormholes in oil sands. It is also important to understand the formation of macroporous channels, and the behavior of confined gouges when overpressured fluids are mobilized in seismic sources. Indeed, the formation of preferential paths in this situation can severely affect the fluid and heat transport properties in this situations, and thus affect the pore pressurization effects.
Xiang, J; Tutino, V M; Snyder, K V; Meng, H
2014-10-01
Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.
An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.
Xia, Guohua; Lin, Ching-Long
2008-04-01
A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.
NASA Astrophysics Data System (ADS)
Khan, Aamir; Shah, Rehan Ali; Shuaib, Muhammad; Ali, Amjad
2018-06-01
The effects of magnetic field dependent (MFD) thermosolutal convection and MFD viscosity of the fluid dynamics are investigated between squeezing discs rotating with different velocities. The unsteady constitutive expressions of mass conservation, modified Navier-Stokes, Maxwell and MFD thermosolutal convection are coupled as a system of ordinary differential equations. The corresponding solutions for the transformed radial and azimuthal momentum as well as solutions for the azimuthal and axial induced magnetic field equations are determined, also the MHD pressure and torque which the fluid exerts on the upper disc is derived and discussed in details. In the case of smooth discs the self-similar equations are solved using Homotopy Analysis Method (HAM) with appropriate initial guesses and auxiliary parameters to produce an algorithm with an accelerated and assured convergence. The validity and accuracy of HAM results is proved by comparison of the HAM solutions with numerical solver package BVP4c. It has been shown that magnetic Reynolds number causes to decrease magnetic field distributions, fluid temperature, axial and tangential velocity. Also azimuthal and axial components of magnetic field have opposite behavior with increase in MFD viscosity. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems, heating up or cooling processes, biological sensor systems and biological prosthetic etc.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Dynamic Data Driven Applications Systems (DDDAS)
2012-05-03
response) – Earthquakes, hurricanes, tornados, wildfires, floods, landslides, tsunamis, … • Critical Infrastructure systems – Electric-powergrid...Multiphase Flow Weather and Climate Structural Mechanics Seismic Processing Aerodynamics Geophysical Fluids Quantum Chemistry Actinide Chemistry...Alloys • Approach and Objectives: Consider porous SMAs: similar macroscopic behavior but mass /weight is less, and thus attractive for
Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.
2016-01-01
Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.
Mexico City's Indios Verdes: Exploring Cultural Processes Using Public Memorials
ERIC Educational Resources Information Center
Dixon, Seth
2010-01-01
Finding ways to convey current research in cultural geography that is predicated on theoretical frameworks in a manner accessible to high school and undergraduate college students is pedagogically important but difficult in practice. Statues in Mexico City nicknamed the Indios Verdes offer a rich example of fluid cultural dynamics that illustrate…
Space Station Freedom: A foothold on the future
NASA Technical Reports Server (NTRS)
1989-01-01
An overview of the Space Station Freedom is given. Its modules are discussed and illustrated along with its microgravity research facilities. These facilities include the advanced protein crystal growth facility, the containerless processing facility, a furnace facility, a combustion facility, and a fluid physics/dynamics facility. The topic of living in space is also addressed.
theoretically. Negative ions are produced by a corona discharge from a needle placed along the axis of a nozzle. A dense air-vapor mixture is...interaction with the gas molecules to an electrode of high potential. The effectiveness of the viscous coupling depends on the charge mobility being
Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao
2018-03-02
Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.
NASA Astrophysics Data System (ADS)
Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.
2012-10-01
Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.
The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses
NASA Astrophysics Data System (ADS)
Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien
2014-11-01
Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.
Anishaparvin, A; Chhanwal, N; Indrani, D; Raghavarao, K S M S; Anandharamakrishnan, C
2010-01-01
A computational fluid dynamics (CFD) model was developed for bread-baking process in a pilot-scale baking oven to find out the effect of hot air distribution and placement of bread on temperature and starch gelatinization index of bread. In this study, product (bread) simulation was carried out with different placements of bread. Simulation results were validated with experimental measurements of bread temperature. This study showed that nonuniform air flow pattern inside the oven cavity leads to uneven temperature distribution. The study with respect to placement of bread showed that baking of bread in upper trays required shorter baking time and gelatinization index compared to those in the bottom tray. The upper tray bread center reached 100 °C at 1200 s, whereas starch gelatinization completed within 900 s, which was the minimum baking index. Moreover, the heat penetration and starch gelatinization were higher along the sides of the bread as compared to the top and bottom portions of the bread. © 2010 Institute of Food Technologists®
Ogawa, M
2000-01-01
A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.
NASA Astrophysics Data System (ADS)
Fujiwara, K.; Shibahara, M.
2018-02-01
Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.
Lattice Boltzmann computation of creeping fluid flow in roll-coating applications
NASA Astrophysics Data System (ADS)
Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga
2018-04-01
Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.
NASA Astrophysics Data System (ADS)
Hess, Julian; Wang, Yongqi
2016-11-01
A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.
Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes
NASA Astrophysics Data System (ADS)
de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric
2015-11-01
The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.
Dynamic switching enables efficient bacterial colonization in flow.
Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert
2018-05-22
Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Holt, James B.; Canabal, Francisco
1999-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; Holt, James B.; Canabal, Francisco
2001-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
Technical Competencies Applied in Experimental Fluid Dynamics
NASA Astrophysics Data System (ADS)
Tagg, Randall
2017-11-01
The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.
A new model for fluid velocity slip on a solid surface.
Shu, Jian-Jun; Teo, Ji Bin Melvin; Chan, Weng Kong
2016-10-12
A general adsorption model is developed to describe the interactions between near-wall fluid molecules and solid surfaces. This model serves as a framework for the theoretical modelling of boundary slip phenomena. Based on this adsorption model, a new general model for the slip velocity of fluids on solid surfaces is introduced. The slip boundary condition at a fluid-solid interface has hitherto been considered separately for gases and liquids. In this paper, we show that the slip velocity in both gases and liquids may originate from dynamical adsorption processes at the interface. A unified analytical model that is valid for both gas-solid and liquid-solid slip boundary conditions is proposed based on surface science theory. The corroboration with the experimental data extracted from the literature shows that the proposed model provides an improved prediction compared to existing analytical models for gases at higher shear rates and close agreement for liquid-solid interfaces in general.
NASA Astrophysics Data System (ADS)
Bălău, Oana; Bica, Doina; Koneracka, Martina; Kopčansky, Peter; Susan-Resiga, Daniela; Vékás, Ladislau
Rheological and magnetorheological behaviour of monolayer and double layer sterically stabilized magnetic fluids, with transformer oil (UTR), diloctilsebacate (DOS), heptanol (Hept), pentanol (Pent) and water (W) as carrier liquids, were investigated. The data for volumic concentration dependence of dynamic viscosity of high colloidal stability UTR, DOS, Hept and Pent samples are particularly well fitted by the formulas given by Vand (1948) and Chow (1994). The Chow type dependence proved its universal character as the viscosity data for dilution series of various magnetic fluids are well fitted by the same curve, regardless the nonpolar or polar charcater of the sample. The magnetorheological effect measured for low and medium concentration water based magnetic fluids is much higher, due to agglomerate formation process, than the corresponding values obtained for the well stabilized UTR, DOS, Hept and Pent samples, even at very high volumic fraction of magnetic nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardle, K.E.
2013-07-01
Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less
CFD Process Pre- and Post-processing Automation in Support of Space Propulsion
NASA Technical Reports Server (NTRS)
Dorney, Suzanne M.
2003-01-01
The use of Computational Fluid Dynamics or CFD has become standard practice in the design and analysis of the major components used for space propulsion. In an attempt to standardize and improve the CFD process a series of automated tools have been developed. Through the use of these automated tools the application of CFD to the design cycle has been improved and streamlined. This paper presents a series of applications in which deficiencies were identified in the CFD process and corrected through the development of automated tools.
Fluid Dynamics of Bottle Filling
NASA Astrophysics Data System (ADS)
McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman
2011-11-01
Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
NASA Astrophysics Data System (ADS)
Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther
2017-06-01
This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.
Methodologies for launcher-payload coupled dynamic analysis
NASA Astrophysics Data System (ADS)
Fransen, S. H. J. A.
2012-06-01
An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.
Sleep, Norman H.; Blanpied, M.L.
1994-01-01
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.
A Textbook for a First Course in Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)
1999-01-01
This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.
Study on heat transfer coefficients during cooling of PET bottles for food beverages
NASA Astrophysics Data System (ADS)
Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco
2016-08-01
The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.
Computational fluid dynamics: An engineering tool?
NASA Astrophysics Data System (ADS)
Anderson, J. D., Jr.
1982-06-01
Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.
2014-08-01
performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Kutler, Paul
1988-01-01
Discussed are the capabilities of NASA's Numerical Aerodynamic Simulation (NAS) Program and its application as an advanced supercomputing system for computational fluid dynamics (CFD) research. First, the paper describes the NAS computational system, called the NAS Processing System Network, and the advanced computational capabilities it offers as a consequence of carrying out the NAS pathfinder objective. Second, it presents examples of pioneering CFD research accomplished during NAS's first operational year. Examples are included which illustrate CFD applications for predicting fluid phenomena, complementing and supplementing experimentation, and aiding in design. Finally, pacing elements and future directions for CFD and NAS are discussed.
Variational principles for stochastic fluid dynamics
Holm, Darryl D.
2015-01-01
This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083
Coupled discrete element and finite volume solution of two classical soil mechanics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Drumm, Eric; Guiochon, Georges A
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less
A high-pressure atomic force microscope for imaging in supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.
2011-04-26
A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit
2012-11-01
Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.
NASA Astrophysics Data System (ADS)
Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman
2017-10-01
Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.
Use of Computational Fluid Dynamics for improvement of Balloon Borne Frost Point Hygrometer
NASA Astrophysics Data System (ADS)
Jorge, Teresa; Brunamonti, Simone; Wienhold, Frank G.; Peter, Thomas
2017-04-01
In the StratoClim 2016 Balloon Campaign in Nainital (India) during the Asian Summer Monsoon, balloon born payloads containing the EN-SCI CFH - Cryogenic Frost point Hygrometer - were flown to observe water vapor and cloud formation processes in the Upper Troposphere and Lower Stratosphere. Some of the recorded atmospheric water vapor profiles showed unexpected values above the tropopause and were considered contaminated. To interpret these contaminated results and in the scope of the development of a new frost point hygrometer - the Peltier Cooled Frost point Hygrometer (PCFH) - computational fluid dynamic (CFD) simulations with ANSYS Fluent software have been carried out. These simulations incorporate the fluid and thermodynamic characteristics of stratospheric air to predict airflow in the inlet tube of the instrument. An ice wall boundary layer based on the Murphy and Koop 2005 ice-vapor parametrization was created as a cause of the unexpected water vapor. Sensitivity was tested in relation to the CFD mesh, ice wall surface, inlet flow, inlet tube dimension, sensor head location and variation of atmospheric conditions. The development of the PCFH uses the results of this study and other computational fluid dynamic studies concerning the whole instrument boundary layer and heat exchanger design to improve on previous realizations of frost point hygrometers. As a novelty in the field of frost point hygrometry, Optimal Control Theory will be used to optimize the cooling of the mirror by the Peltier element, which will be described in a physical "plant model", since the cooling capacity of a cryogenic liquid will no longer be available in the new instrument.
Uncertainty Quantification of CFD Data Generated for a Model Scramjet Isolator Flowfield
NASA Technical Reports Server (NTRS)
Baurle, R. A.; Axdahl, E. L.
2017-01-01
Computational fluid dynamics is now considered to be an indispensable tool for the design and development of scramjet engine components. Unfortunately, the quantification of uncertainties is rarely addressed with anything other than sensitivity studies, so the degree of confidence associated with the numerical results remains exclusively with the subject matter expert that generated them. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Given the limitations of current hypersonic ground test facilities, this expanded role is believed to be a requirement by some in the hypersonics community if scramjet engines are to be given serious consideration as a viable propulsion system. The present effort describes a simple, relatively low cost, nonintrusive approach to uncertainty quantification that includes the basic ingredients required to handle both aleatoric (random) and epistemic (lack of knowledge) sources of uncertainty. The nonintrusive nature of the approach allows the computational fluid dynamicist to perform the uncertainty quantification with the flow solver treated as a "black box". Moreover, a large fraction of the process can be automated, allowing the uncertainty assessment to be readily adapted into the engineering design and development workflow. In the present work, the approach is applied to a model scramjet isolator problem where the desire is to validate turbulence closure models in the presence of uncertainty. In this context, the relevant uncertainty sources are determined and accounted for to allow the analyst to delineate turbulence model-form errors from other sources of uncertainty associated with the simulation of the facility flow.
NASA Astrophysics Data System (ADS)
Miquel, Benjamin
The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
NASA Astrophysics Data System (ADS)
Rozairo, Damith; Croll, Andrew
Understanding the dynamics of the formation and drainage of the thin fluid film that becomes trapped by a deformable droplet as it approaches another object is crucial to the advancement of many industrial and biomedical applications. Adding amphiphilic diblock copolymers, which are becoming more commonly used in drug delivery and oil recovery, only add to the complexity. Despite their increased use, little is known about how long polymer chains fill an emulsion drop's interface or how the molecules influence hydrodynamic processes. We study the drainage dynamics of a thin water film trapped between mica and a diblock copolymer saturated oil droplet. Specifically, we examine several different polystyrene-b-poly(ethylene oxide) (PS-PEO) molecules self-assembled at a toluene-water interface using laser scanning confocal microscopy. Our experiments reveal that the molecular details of the polymer chains deeply influence the drainage times, indicating that they are not acting as a 'simple' surfactant. The presence of the chains creates a much slower dynamic as fluid is forced to drain through an effective polymer brush, the brush itself determined by chain packing at the interface. We present a simple model which accounts for the basic physics of the interface.
Dynamics of solid nanoparticles near a liquid-liquid interface
NASA Astrophysics Data System (ADS)
Daher, Ali; Ammar, Amine; Hijazi, Abbas
2018-05-01
The liquid - liquid interface can be used as a suitable medium for generating some nanostructured films of metals, or inorganic materials such as semi conducting metals. This process can be controlled well if we study the dynamics of nanoparticles (NPs) at the liquid-liquid interface which is a new field of study, and is not understood well yet. The dynamics of NPs at liquid-liquid interfaces is investigated by solving the fluid-particle and particle-particle interactions. Our work is based on the Molecular Dynamics (MD) simulation in addition to Phase Field (PF) method. We modeled the liquid-liquid interface using the diffuse interface model, where the interface is considered to have a characteristic thickness. We have shown that the concentration gradient of one fluid in the other gives rise to a hydrodynamic force that drives the NPs to agglomerate at the interface. These obtained results may introduce new applications where certain interfaces can be considered to be suitable mediums for the synthesis of nanostructured materials. In addition, some liquid interfaces can play the role of effective filters for different species of biological NPs and solid state waste NPs, which will be very important in many industrial and biomedical domains.
NASA Astrophysics Data System (ADS)
Lv, Dongwei; Zhang, Jian; Yu, Xinhai
2018-05-01
In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.
From viscous to elastic sheets: Dynamics of smectic freely floating films
NASA Astrophysics Data System (ADS)
Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf
2015-03-01
Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.
Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge
NASA Astrophysics Data System (ADS)
Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.
2017-12-01
We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.
Nanoscale hydrodynamics near solids
NASA Astrophysics Data System (ADS)
Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid
2018-02-01
Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.
Analysis of Mars Pathfinder Entry Data, Aerothermal Heating, and Heat Shield Material Response
NASA Technical Reports Server (NTRS)
Milos, Frank; Chen, Y. K.; Tran, H. K.; Rasky, Daniel J. (Technical Monitor)
1997-01-01
The Mars Pathfinder heatshield contained several thermocouples and resistance thermometers. A description of the experiment, the entry data, and analysis of the entry environment and material response is presented. In particular, the analysis addresses uncertainties of the data and the fluid dynamics and material response models. The calculations use the latest trajectory and atmosphere reconstructions for the Pathfinder entry. A modified version of the GIANTS code is used for CFD (computational fluid dynamics) analyses, and FIAT is used for material response. The material response and flowfield are coupled appropriately. Three different material response models are considered. The analysis of Pathfinder entry data for validation of aerothermal heating and material response models is complicated by model uncertainties and unanticipated data-acquisition and processing problems. We will discuss these issues as well as ramifications of the data and analysis for future Mars missions.
Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong
2017-11-01
We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.
NASA Astrophysics Data System (ADS)
Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O.; Karl, S.; Hannemann, K.
2016-07-01
The paper summarizes technical results and first highlights of the cooperation between DLR and Airbus Defence and Space (DS) within the work package "CFD Modeling of Combustion Chamber Processes" conducted in the frame of the Propulsion 2020 Project. Within the addressed work package, DLR Göttingen and Airbus DS Ottobrunn have identified several test cases where adequate test data are available and which can be used for proper validation of the computational fluid dynamics (CFD) tools. In this paper, the first test case, the Penn State chamber (RCM1), is discussed. Presenting the simulation results from three different tools, it is shown that the test case can be computed properly with steady-state Reynolds-averaged Navier-Stokes (RANS) approaches. The achieved simulation results reproduce the measured wall heat flux as an important validation parameter very well but also reveal some inconsistencies in the test data which are addressed in this paper.