Sample records for fluid dynamics point

  1. 2D modeling of direct laser metal deposition process using a finite particle method

    NASA Astrophysics Data System (ADS)

    Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.

    2018-05-01

    Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.

  2. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  3. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  4. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, Jr., David (Inventor)

    2016-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  5. Data Point Averaging for Computational Fluid Dynamics Data

    NASA Technical Reports Server (NTRS)

    Norman, David, Jr. (Inventor)

    2014-01-01

    A system and method for generating fluid flow parameter data for use in aerodynamic heating analysis. Computational fluid dynamics data is generated for a number of points in an area on a surface to be analyzed. Sub-areas corresponding to areas of the surface for which an aerodynamic heating analysis is to be performed are identified. A computer system automatically determines a sub-set of the number of points corresponding to each of the number of sub-areas and determines a value for each of the number of sub-areas using the data for the sub-set of points corresponding to each of the number of sub-areas. The value is determined as an average of the data for the sub-set of points corresponding to each of the number of sub-areas. The resulting parameter values then may be used to perform an aerodynamic heating analysis.

  6. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Computational fluid dynamics: An engineering tool?

    NASA Astrophysics Data System (ADS)

    Anderson, J. D., Jr.

    1982-06-01

    Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.

  8. Stability of Contact Lines in Fluids: 2D Stokes Flow

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Tice, Ian

    2018-02-01

    In an effort to study the stability of contact lines in fluids, we consider the dynamics of an incompressible viscous Stokes fluid evolving in a two-dimensional open-top vessel under the influence of gravity. This is a free boundary problem: the interface between the fluid in the vessel and the air above (modeled by a trivial fluid) is free to move and experiences capillary forces. The three-phase interface where the fluid, air, and solid vessel wall meet is known as a contact point, and the angle formed between the free interface and the vessel is called the contact angle. We consider a model of this problem that allows for fully dynamic contact points and angles. We develop a scheme of a priori estimates for the model, which then allow us to show that for initial data sufficiently close to equilibrium, the model admits global solutions that decay to equilibrium exponentially quickly.

  9. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  10. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  11. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  12. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. To date, the author is the only person to look at the uncertainty in the entire computational domain. For the flow regime being analyzed (turbulent, threedimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.

  13. Use of Computational Fluid Dynamics for improvement of Balloon Borne Frost Point Hygrometer

    NASA Astrophysics Data System (ADS)

    Jorge, Teresa; Brunamonti, Simone; Wienhold, Frank G.; Peter, Thomas

    2017-04-01

    In the StratoClim 2016 Balloon Campaign in Nainital (India) during the Asian Summer Monsoon, balloon born payloads containing the EN-SCI CFH - Cryogenic Frost point Hygrometer - were flown to observe water vapor and cloud formation processes in the Upper Troposphere and Lower Stratosphere. Some of the recorded atmospheric water vapor profiles showed unexpected values above the tropopause and were considered contaminated. To interpret these contaminated results and in the scope of the development of a new frost point hygrometer - the Peltier Cooled Frost point Hygrometer (PCFH) - computational fluid dynamic (CFD) simulations with ANSYS Fluent software have been carried out. These simulations incorporate the fluid and thermodynamic characteristics of stratospheric air to predict airflow in the inlet tube of the instrument. An ice wall boundary layer based on the Murphy and Koop 2005 ice-vapor parametrization was created as a cause of the unexpected water vapor. Sensitivity was tested in relation to the CFD mesh, ice wall surface, inlet flow, inlet tube dimension, sensor head location and variation of atmospheric conditions. The development of the PCFH uses the results of this study and other computational fluid dynamic studies concerning the whole instrument boundary layer and heat exchanger design to improve on previous realizations of frost point hygrometers. As a novelty in the field of frost point hygrometry, Optimal Control Theory will be used to optimize the cooling of the mirror by the Peltier element, which will be described in a physical "plant model", since the cooling capacity of a cryogenic liquid will no longer be available in the new instrument.

  14. A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight

    DTIC Science & Technology

    2010-01-01

    using a predictor - corrector strategy. Dynamic fluid grid adaptation is implemented to reduce the number of grid points and computation costs...governing the dynamics of the ow and the structure are simultaneously advanced in time by using a predictor - corrector strategy. Dynamic uid grid...colleague Patrick Rabenold, the math-guy, who provided the seminal work on adaptive mesh refine- ment for incompressible flow using the Paramesh c

  15. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2010-08-01

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  16. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouras, I.; El, A.; Fochler, O.

    2010-08-15

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  17. Gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids: A molecular dynamics study.

    PubMed

    Ouyang, Wen-Ze; Xu, Sheng-Hua; Sun, Zhi-Wei

    2011-01-07

    The Maxwell construction together with molecular dynamics simulation is used to study the gas-liquid phase coexistence of quasi-two-dimensional Stockmayer fluids. The phase coexistence curves and corresponding critical points under different dipole strength are obtained, and the critical properties are calculated. We investigate the dependence of the critical point and critical properties on the dipole strength. When the dipole strength is increased, the abrupt disappearance of the gas-liquid phase coexistence in quasi-two-dimensional Stockmayer fluids is not found. However, if the dipole strength is large enough, it does lead to the formation of very long reversible chains which makes the relaxation of the system very slow and the observation of phase coexistence rather difficult or even impossible.

  18. The coupling of fluids, dynamics, and controls on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher

    1995-01-01

    This grant provided for the demonstration of coupled controls, body dynamics, and fluids computations in a workstation cluster environment; and an investigation of the impact of peer-peer communication on flow solver performance and robustness. The findings of these investigations were documented in the conference articles.The attached publication, 'Towards Distributed Fluids/Controls Simulations', documents the solution and scaling of the coupled Navier-Stokes, Euler rigid-body dynamics, and state feedback control equations for a two-dimensional canard-wing. The poor scaling shown was due to serialized grid connectivity computation and Ethernet bandwidth limits. The scaling of a peer-to-peer communication flow code on an IBM SP-2 was also shown. The scaling of the code on the switched fabric-linked nodes was good, with a 2.4 percent loss due to communication of intergrid boundary point information. The code performance on 30 worker nodes was 1.7 (mu)s/point/iteration, or a factor of three over a Cray C-90 head. The attached paper, 'Nonlinear Fluid Computations in a Distributed Environment', documents the effect of several computational rate enhancing methods on convergence. For the cases shown, the highest throughput was achieved using boundary updates at each step, with the manager process performing communication tasks only. Constrained domain decomposition of the implicit fluid equations did not degrade the convergence rate or final solution. The scaling of a coupled body/fluid dynamics problem on an Ethernet-linked cluster was also shown.

  19. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  20. Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Garcia, S. M.; Chung, T. J.

    1997-01-01

    Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.

  1. Activity induces traveling waves, vortices and spatiotemporal chaos in a model actomyosin layer

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rajesh; Jülicher, Frank

    2016-02-01

    Inspired by the actomyosin cortex in biological cells, we investigate the spatiotemporal dynamics of a model describing a contractile active polar fluid sandwiched between two external media. The external media impose frictional forces at the interface with the active fluid. The fluid is driven by a spatially-homogeneous activity measuring the strength of the active stress that is generated by processes consuming a chemical fuel. We observe that as the activity is increased over two orders of magnitude the active polar fluid first shows spontaneous flow transition followed by transition to oscillatory dynamics with traveling waves and traveling vortices in the flow field. In the flow-tumbling regime, the active polar fluid also shows transition to spatiotemporal chaos at sufficiently large activities. These results demonstrate that level of activity alone can be used to tune the operating point of actomyosin layers with qualitatively different spatiotemporal dynamics.

  2. Thermally driven mass flows in the convection zone of the sun

    NASA Technical Reports Server (NTRS)

    Dijkhuis, G. C.

    1973-01-01

    A formulation of the fluid dynamics of convective regions is developed which leads to an analytical description of the solar rotation, the Evershed flow, and the supergranulation. The starting point of the present formulation is the mixing length picture of convective equilibrium, but the earlier point mass model for convective molecules is replaced here by a model with both inertia and intrinsic moment of inertia. This extension introduces three rotational degrees of freedom into the dynamics of individual convective molecules, which enter into the dynamical equations for a mixing length fluid in the form of a separate vector field which we term the spin field. It is shown that for convective molecules having a spherically symmetric mass distribution, the spin field is proportional to the local vorticity.

  3. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  4. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  5. Transient Dynamic Response and Failure of Composite Structure Under Cyclic Loading with Fluid Structure Interaction

    DTIC Science & Technology

    2014-09-01

    TERMS fluid structure interaction, composite structures shipbuilding, fatigue loading 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...under the three point bending test. All the composites exhibit an initial nonlinear and inelastic deformation trend and end with a catastrophic abrupt

  6. EDITORIAL: The FDR Prize The FDR Prize

    NASA Astrophysics Data System (ADS)

    Funakoshi, Mitsuaki

    2011-08-01

    From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.

  7. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  8. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects

    NASA Technical Reports Server (NTRS)

    West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)

    2000-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.

  9. Chemically reacting fluid flow in exoplanet and brown dwarf atmospheres

    NASA Astrophysics Data System (ADS)

    Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    In the past few decades, spectral observations of planets and brown dwarfs have demonstrated significant deviations from predictions in certain chemical abundances. Starting with Jupiter, these deviations were successfully explained to be the effect of fast dynamics on comparatively slow chemical reactions. These dynamical effects are treated using mixing length theory in what is known as the "quench" approximation. In these objects, however, both radiative and convective zones are present, and it is not clear that this approximation applies. To resolve this issue, we solve the fully compressible equations of fluid dynamics in a matched polytropic atmosphere using the state-of-the-art pseudospectral simulation framework Dedalus. Through the inclusion of passive tracers, we explore the transport properties of convective and radiative zones, and verify the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes using abstract chemical reactions. By locating the quench point (the point at which the dynamical and chemical timescales are the same) in different dynamical regimes, we test the quench approximation, and generate prescriptions for the exoplanet and brown dwarf communities.

  10. Prospects and expectations for unstructured methods

    NASA Technical Reports Server (NTRS)

    Baker, Timothy J.

    1995-01-01

    The last decade has witnessed a vigorous and sustained research effort on unstructured methods for computational fluid dynamics. Unstructured mesh generators and flow solvers have evolved to the point where they are now in use for design purposes throughout the aerospace industry. In this paper we survey the various mesh types, structured as well as unstructured, and examine their relative strengths and weaknesses. We argue that unstructured methodology does offer the best prospect for the next generation of computational fluid dynamics algorithms.

  11. A contemporary look at Hermann Hankel's 1861 pioneering work on Lagrangian fluid dynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel; Grimberg, Gérard; Villone, Barbara

    2017-12-01

    The present paper is a companion to the paper by Villone and Rampf (2017), titled "Hermann Hankel's On the general theory of motion of fluids, an essay including an English translation of the complete Preisschrift from 1861" together with connected documents [Eur. Phys. J. H 42, 557-609 (2017)]. Here we give a critical assessment of Hankel's work, which covers many important aspects of fluid dynamics considered from a Lagrangian-coordinates point of view: variational formulation in the spirit of Hamilton for elastic (barotropic) fluids, transport (we would now say Lie transport) of vorticity, the Lagrangian significance of Clebsch variables, etc. Hankel's work is also put in the perspective of previous and future work. Hence, the action spans about two centuries: from Lagrange's 1760-1761 Turin paper on variational approaches to mechanics and fluid mechanics problems to Arnold's 1966 founding paper on the geometrical/variational formulation of incompressible flow. The 22-year-old Hankel - who was to die 12 years later — emerges as a highly innovative master of mathematical fluid dynamics, fully deserving Riemann's assessment that his Preisschrift contains "all manner of good things."

  12. Bursting dynamics in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Dan, Surajit; Ghosh, Manojit; Nandukumar, Yada; Dana, Syamal K.; Pal, Pinaki

    2017-06-01

    We report bursting dynamics in a parametrically driven Rayleigh-Bénard convection (RBC) model of low Prandtl-number fluids with free-slip boundary conditions. A four dimensional RBC model [P. Pal, K. Kumar, P. Maity, S.K. Dana, Phys. Rev. E 87, 023001 (2013)] is used for this study. The dynamical system shows pitchfork, Hopf and gluing bifurcations near the onset of RBC of low Prandtl-number fluids. Around the bifurcation points, when the Rayleigh number of the system is slowly modulated periodically, two unknown kinds of bursting appears, namely, Hopf/Hopf via pitchfork bifurcation and Hopf/Hopf via gluing bifurcation besides the conventional Hopf/Hopf (elliptical) and pitchfork/pitchfork bursting.

  13. Critical fluid thermal equilibration experiment (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    1992-01-01

    Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.

  14. Burning invariant manifolds for reaction fronts in three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mitchell, Kevin; Solomon, Tom

    2017-11-01

    The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.

  15. Decorrelation of the static and dynamic length scales in hard-sphere glass formers.

    PubMed

    Charbonneau, Patrick; Tarjus, Gilles

    2013-04-01

    We show that, in the equilibrium phase of glass-forming hard-sphere fluids in three dimensions, the static length scales tentatively associated with the dynamical slowdown and the dynamical length characterizing spatial heterogeneities in the dynamics unambiguously decorrelate. The former grow at a much slower rate than the latter when density increases. This observation is valid for the dynamical range that is accessible to computer simulations, which roughly corresponds to that accessible in colloidal experiments. We also find that, in this same range, no one-to-one correspondence between relaxation time and point-to-set correlation length exists. These results point to the coexistence of several relaxation mechanisms in the dynamically accessible regime of three-dimensional hard-sphere glass formers.

  16. Dynamics of flexible molecules in thinning fluid filaments

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo E.; Juarez, Gabriel

    2011-11-01

    Newtonian liquids that contain small amounts (~ppm) of flexible polymers can exhibit viscoelastic behavior in extensional flows. In this talk, we report the results of experiments on the thinning and breakup of polymeric fluids in a simple microfluidic device. We aim to understand the stretching dynamics of flexible polymers by direct visualization of fluorescent DNA molecules, a model polymer. A Boger fluid, composed of 100 ppm polyacrylamide and 85% w/w glycerol, is seeded with stained lambdaâDNA molecules (<10% v/v) imaged by high speed epifluorescence microscopy. We observe that the strong flow in the thinning fluid threads provide sufficient forces to stretch the DNA molecules away from their equilibrium coiled state. The distribution of stretch lengths, however, is very heterogeneous due to molecular individualism and initial conditions. Once the molecules are stretched to their full length and aligned with the flow, they translate along the fluid thread as rigid rods until the point of pinch off. After pinch off, both the fluid and molecules return to a relaxed state.

  17. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    PubMed

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  18. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  19. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  20. Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.

  1. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  2. The effect of sediments on turbulent plume dynamics in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  3. Computational fluid dynamics - An introduction for engineers

    NASA Astrophysics Data System (ADS)

    Abbott, Michael Barry; Basco, David R.

    An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.

  4. Two-Point Microrheology of Phase-Separated Domains in Lipid Bilayers

    PubMed Central

    Hormel, Tristan T.; Reyer, Matthew A.; Parthasarathy, Raghuveer

    2015-01-01

    Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer. PMID:26287625

  5. A Fluid Dynamic Approach to the Dust-Acoustic Soliton

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Doyle, T. B.

    2002-12-01

    The properties of dust-acoustic solitons are derived from a fluid dynamic viewpoint in which conservation of total momentum, combined with the Bernoulli-like energy equations for each species, yields the structure equation for the heavy (or dust) speed in the stationary wave. This fully nonlinear approach reveals the crucial role played by the heavy sonic point in limiting the collective dust-acoustic Mach number, above which solitons cannot exist. An exact solution illustrates that the cold heavy species is compressed and this implies concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave.

  6. Technical Evaluation Report on the Fluid Dynamics Panel Symposium on Validation of Computational Fluid Dynamics

    DTIC Science & Technology

    1989-05-01

    separately each of the papers presented and makes general comments on the seven major topic sessions. In addition, a Poster Presentation was reviewed in...Appendix to this report. The Poster Papers, also listed in an Appendix, are published in CP437 Volume I. Le pr6sent rapport fait le point et donne une...ConfErence AGARD CP 437 Volume I dont une liste en est donn6e h I’annexe au pr6sent rapport. Une liste des r6unions d’information/exposition est

  7. Gas-liquid coexistence in a system of dipolar soft spheres.

    PubMed

    Jia, Ran; Braun, Heiko; Hentschke, Reinhard

    2010-12-01

    The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Here we compute the gas-liquid critical point in a system of dipolar soft spheres subject to an external electric field using molecular dynamics computer simulation. Tracking the critical point as the field strength is approaching zero we find the following limiting values: T(c)=0.063 and ρ(c)=0.0033 (dipole moment μ=1). These values are confirmed by independent simulation at zero field strength.

  8. Fluid/electrolyte and endocrine changes in space flight

    NASA Technical Reports Server (NTRS)

    Huntoon, Carolyn Leach

    1989-01-01

    The primary effects of space flight that influence the endocrine system and fluid and electrolyte regulation are the reduction of hydrostatic gradients, reduction in use and gravitational loading of bone and muscle, and stress. Each of these sets into motion a series of responses that culminates in alteration of some homeostatic set points for the environment of space. Set point alterations are believed to include decreases in venous pressure; red blood cell mass; total body water; plasma volume; and serum sodium, chloride, potassium, and osmolality. Serum calcium and phosphate increase. Hormones such as erythropoietin, atrial natriuretic peptide, aldosterone, cortisol, antidiuretic hormone, and growth hormone are involved in the dynamic processes that bring about the new set points. The inappropriateness of microgravity set points for 1-G conditions contributes to astronaut postflight responses.

  9. Sloshing dynamics on rotating helium dewar tank

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1993-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics were based on the non-inertia frame spacecraft bound coordinate, and solve time dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers were derived. Results were widely published in the open journals.

  10. Data-driven sensor placement from coherent fluid structures

    NASA Astrophysics Data System (ADS)

    Manohar, Krithika; Kaiser, Eurika; Brunton, Bingni W.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Optimal sensor placement is a central challenge in the prediction, estimation and control of fluid flows. We reinterpret sensor placement as optimizing discrete samples of coherent fluid structures for full state reconstruction. This permits a drastic reduction in the number of sensors required for faithful reconstruction, since complex fluid interactions can often be described by a small number of coherent structures. Our work optimizes point sensors using the pivoted matrix QR factorization to sample coherent structures directly computed from flow data. We apply this sampling technique in conjunction with various data-driven modal identification methods, including the proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). In contrast to POD-based sensors, DMD demonstrably enables the optimization of sensors for prediction in systems exhibiting multiple scales of dynamics. Finally, reconstruction accuracy from pivot sensors is shown to be competitive with sensors obtained using traditional computationally prohibitive optimization methods.

  11. Molecular dynamics simulations of diffusion and clustering along critical isotherms of medium-chain n-alkanes.

    PubMed

    Mutoru, J W; Smith, W; O'Hern, C S; Firoozabadi, A

    2013-01-14

    Understanding the transport properties of molecular fluids in the critical region is important for a number of industrial and natural systems. In the literature, there are conflicting reports on the behavior of the self diffusion coefficient D(s) in the critical region of single-component molecular systems. For example, D(s) could decrease to zero, reach a maximum, or remain unchanged and finite at the critical point. Moreover, there is no molecular-scale understanding of the behavior of diffusion coefficients in molecular fluids in the critical regime. We perform extensive molecular dynamics simulations in the critical region of single-component fluids composed of medium-chain n-alkanes-n-pentane, n-decane, and n-dodecane-that interact via anisotropic united-atom potentials. For each system, we calculate D(s), and average molecular cluster sizes κ(cl) and numbers N(cl) at various cluster lifetimes τ, as a function of density ρ in the range 0.2ρ(c) ≤ ρ ≤ 2.0ρ(c) at the critical temperature T(c). We find that D(s) decreases with increasing ρ but remains finite at the critical point. Moreover, for any given τ < 1.2 × 10(-12) s, κ(cl) increases with increasing ρ but is also finite at the critical point.

  12. Reference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate BoilingReference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate Boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less

  13. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  14. Freezing point depression in model Lennard-Jones solutions

    NASA Astrophysics Data System (ADS)

    Koschke, Konstantin; Jörg Limbach, Hans; Kremer, Kurt; Donadio, Davide

    2015-09-01

    Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed, scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

  15. Data-Driven Model Reduction and Transfer Operator Approximation

    NASA Astrophysics Data System (ADS)

    Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank

    2018-06-01

    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.

  16. Walking the Razor's Edge: Risks and Rewards for Students and Faculty Adopting Case in Point Teaching and Learning Approaches

    ERIC Educational Resources Information Center

    Wildermuth, Cristina de-Mello-e-Souza; Smith-Bright, Elaine; Noll-Wilson, Sarah; Fink, Alex

    2015-01-01

    Case in Point (CIP) is an interactive leadership development method pioneered by Ronald Heifetz. CIP instructors follow a fluid class structure, in which group dynamics and student concerns become catalysts for learning. CIP proponents defend the method's potential to help students experience real life leadership challenges. To date, however, very…

  17. Magnetorheological properties of sodium sulphonate capped electrolytic iron based MR fluid: a comparison with CI based MR fluid

    NASA Astrophysics Data System (ADS)

    Vinod, Sithara; John, Reji; Philip, John

    2017-02-01

    Magnetorheological fluids have numerous engineering applications due to their interesting field assisted rheological behavior. Most commonly used dispersed phase in MR fluids is carbonyl iron (CI). The relatively high cost of CI warrants the need to develop cheaper alternatives to CI, without compromising rheological properties. With the above goal in mind, we have synthesized sodium sulphonate capped electrolytic iron based MR fluid and studied their magnetorheological properties. The results are compared with that of CI based MR fluid. EI and CI particles of average particle size of ∼10 μm with fumed silica particles additives are used in the present study. The dynamic yield stress for EI and CI based MR fluid were found to vary with field strength with an exponent of roughly 1.2 and 1.24, respectively. The slightly lower static and dynamic yield stress values of EI based MR fluid is attributed to the lower magnetization and polydispersity values. The dynamic yield stress showed a decrease of 18.73% and 61.8% for field strengths of 177 mT and 531 mT, respectively as the temperature was increased from 293 to 323 K. The optorheological studies showed a peak in the loss moduli, close to the crossover point of the storage and loss moduli, due to freely moving large sized aggregates along the shear direction that are dislodged from the rheometer plates at higher strains. Our results suggests that EI based MR fluids have magnetorheological behavior comparable to that of CI based MR fluids. As EI is much cheaper than CI, our findings will have important commercial implications in producing cost effective EI based MR fluids.

  18. Automated Parameter Studies Using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian

    2004-01-01

    Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.

  19. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Rojahn, Josh

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  20. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Rojahn, Josh; Ruf, Joe

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state and in three dimensions with symmetric geometries, no freestream sideslip angle, and motors firing. The trajectory points at issue were in the transonic regime, at 0 and +/- 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC's Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  1. Numerical studies of the surface tension effect of cryogenic liquid helium

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by both the gravity gradient and jitter accelerations applicable to scientific spacecraft which is eligible to carry out spinning motion and/or slew motion for the purpose of performing scientific observation during the normal spacecraft operation is investigated. An example is given with Gravity Probe-B (GP-B) spacecraft which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics has been based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers, have been derived.

  2. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  3. A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan

    2018-02-01

    The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.

  4. Superfluid helium sloshing dynamics induced oscillations and fluctuations of angular momentum, force and moment actuated on spacecraft driven by gravity gradient or jitter acceleration associated with slew motion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1994-01-01

    The generalized mathematical formulation of sloshing dynamics for partially filled liquid of cryogenic superfluid helium II in dewar containers driven by the gravity gradient and jitter accelerations associated with slew motion for the purpose to perform scientific observation during the normal spacecraft operation are investigated. An example is given with the Advanced X-Ray Astrophysics Facility-Spectroscopy (AXAF-S) for slew motion which is responsible for the sloshing dynamics. The jitter accelerations include slew motion, spinning motion, atmospheric drag on the spacecraft, spacecraft attitude motions arising from machinery vibrations, thruster firing, pointing control of spacecraft, crew motion, etc. Explicit mathematical expressions to cover these forces acting on the spacecraft fluid systems are derived. The numerical computation of sloshing dynamics is based on the non-inertia frame spacecraft bound coordinate, and solve time-dependent, three-dimensional formulations of partial differential equations subject to initial and boundary conditions. The explicit mathematical expressions of boundary conditions to cover capillary force effect on the liquid-vapor interface in microgravity environments are also derived. The formulations of fluid moment and angular moment fluctuations in fluid profiles induced by the sloshing dynamics, together with fluid stress and moment fluctuations exerted on the spacecraft dewar containers have also been derived. Examples are also given for cases applicable to the AXAF-S spacecraft sloshing dynamics associated with slew motion.

  5. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaenko, S S

    2014-02-28

    The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body withmore » fixed point. Bibliography: 23 titles.« less

  6. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  7. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    PubMed

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-03-22

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  8. Emergent geometries and nonlinear-wave dynamics in photon fluids

    NASA Astrophysics Data System (ADS)

    Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.

    2016-03-01

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  9. Study of the long-time dynamics of a viscous vortex sheet with a fully adaptive nonstiff method

    NASA Astrophysics Data System (ADS)

    Ceniceros, Hector D.; Roma, Alexandre M.

    2004-12-01

    A numerical investigation of the long-time dynamics of two immiscible two-dimensional fluids shearing past one another is presented. The fluids are incompressible and the interface between the bulk phases is subjected to surface tension. The simple case of density and viscosity matched fluids is considered. The two-dimensional Navier-Stokes equations are solved numerically with a fully adaptive nonstiff strategy based on the immersed boundary method. Dynamically adaptive mesh refinements are used to cover at all times the separately tracked fluid interface at the finest grid level. In addition, by combining adaptive front tracking, in the form of continuous interface marker equidistribution, with a predictor-corrector discretization an efficient method is introduced to successfully treat the well-known numerical difficulties associated with surface tension. The resulting numerical method can be used to compute stably and with high resolution the flow for wide-ranging Weber numbers but this study focuses on the computationally challenging cases for which elongated fingering and interface roll-up are observed. To assess the importance of the viscous and vortical effects in the interfacial dynamics the full viscous flow simulations are compared with inviscid counterparts computed with a state-of-the-art boundary integral method. In the examined cases of roll-up, it is found that in contrast to the inviscid flow in which the interface undergoes a topological reconfiguration, the viscous interface remarkably escapes self-intersection and rich long-time dynamics due to separation, transport, and diffusion of vorticity is observed. An even more striking motion occurs at an intermediate Weber number for which elongated interpenetrating fingers of fluid develop. In this case, it is found that the Kelvin-Helmholtz instability weakens due to shedding of vorticity and unlike the inviscid counterpart in which there is indefinite finger growth the viscous interface is pulled back by surface tension. As the interface recedes, thin necks connecting pockets of fluid with the rest of the fingers form. Narrow jets are observed at the necking regions but the vorticity there ultimately appears to be insufficient to drain all the fluid and cause reconnection. However, at another point, two disparate portions of the interface come in close proximity as the interface continues to contract. Large curvature points and an intense concentration of vorticity are observed in this region and then the motion is abruptly terminated by the collapse of the interface.

  10. Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex

    2016-03-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.

  11. STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less

  12. Solid-liquid phase coexistence of alkali nitrates from molecular dynamics simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaraman, Saivenkataraman

    2010-03-01

    Alkali nitrate eutectic mixtures are finding application as industrial heat transfer fluids in concentrated solar power generation systems. An important property for such applications is the melting point, or phase coexistence temperature. We have computed melting points for lithium, sodium and potassium nitrate from molecular dynamics simulations using a recently developed method, which uses thermodynamic integration to compute the free energy difference between the solid and liquid phases. The computed melting point for NaNO3 was within 15K of its experimental value, while for LiNO3 and KNO3, the computed melting points were within 100K of the experimental values [4]. We aremore » currently extending the approach to calculate melting temperatures for binary mixtures of lithium and sodium nitrate.« less

  13. Vortex formation through inertial wave focusing

    NASA Astrophysics Data System (ADS)

    Duran-Matute, Matias; Flor, Jan-Bert; Godeferd, Fabien

    2011-11-01

    We present a novel experimental and numerical study on the formation of columnar vortical structures by inertial waves in a rotating fluid. Two inertial-wave cones are generated by a vertically oscillating torus in a fluid in solid body rotation At the tip of the cones, there is a singular point towards which the energy of the waves gets focused. The particularity of this configuration, as compared to those of previous experiments (e.g. oscillating sphere or disc), is that the singular point's position within the fluid leads to complex non-linear wave interaction, which may lead to the formation of a localized vortex that expands in the vertical in the form of a Taylor column. Using detailed PIV measurements we consider the flow evolution from the localized wave overturning motion to the Taylor column formation as well as the inertial wave dynamics during this process, The results are discussed in the context of turbulence in rotating fluids. We acknowledge financial support from projects ANR ANISO and CIBLE.

  14. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.

    2017-08-01

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  15. Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: a molecular dynamics simulation study.

    PubMed

    Wang, Jun; Apte, Pankaj A; Morris, James R; Zeng, Xiao Cheng

    2013-09-21

    Stockmayer fluids are a prototype model system for dipolar fluids. We have computed the freezing temperatures of Stockmayer fluids at zero pressure using three different molecular-dynamics simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature two-phase coexistence method, and the constant-pressure and constant-enthalpy two-phase coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with the dimensionless dipole moment μ*=1, √2, √3 is 0.656 ± 0.001, 0.726 ± 0.002, and 0.835 ± 0.005, respectively. The freezing temperature increases with the dipolar strength. Moreover, for the first time, the solid-liquid interfacial free energies γ of the fcc (111), (110), and (100) interfaces are computed using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, i.e., γ100 > γ110 > γ111.

  16. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillol, Jean-Michel, E-mail: Jean-Michel.Caillol@th.u-psud.fr; Trulsson, Martin, E-mail: martin.trulsson@lptms.u-psud.fr

    2014-09-28

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all themore » formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.« less

  17. A new dipolar potential for numerical simulations of polar fluids on the 4D hypersphere

    NASA Astrophysics Data System (ADS)

    Caillol, Jean-Michel; Trulsson, Martin

    2014-09-01

    We present a new method for Monte Carlo or Molecular Dynamics numerical simulations of three-dimensional polar fluids. The simulation cell is defined to be the surface of the northern hemisphere of a four-dimensional (hyper)sphere. The point dipoles are constrained to remain tangent to the sphere and their interactions are derived from the basic laws of electrostatics in this geometry. The dipole-dipole potential has two singularities which correspond to the following boundary conditions: when a dipole leaves the northern hemisphere at some point of the equator, it reappears at the antipodal point bearing the same dipole moment. We derive all the formal expressions needed to obtain the thermodynamic and structural properties of a polar liquid at thermal equilibrium in actual numerical simulation. We notably establish the expression of the static dielectric constant of the fluid as well as the behavior of the pair correlation at large distances. We report and discuss the results of extensive numerical Monte Carlo simulations for two reference states of a fluid of dipolar hard spheres and compare these results with previous methods with a special emphasis on finite size effects.

  18. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    PubMed

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  19. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less

  20. Methods for simulation-based analysis of fluid-structure interaction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonalmore » decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.« less

  1. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  2. Stumping for the Project

    NASA Technical Reports Server (NTRS)

    Ginty, Carol

    2003-01-01

    Advocating research is a little trickier than selling other projects at NASA. You can point to a satellite. You can point to a rocket you can see the Shuttle and the International Space Station . But it's different on the research side . How do you display Computational Fluid Dynamics? How do you get someone to understand the value of composite materials or Nano-tubes that they can't even see without a microscope?

  3. Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L. D., E-mail: lachlan.smith@monash.edu; CSIRO Mineral Resources, Clayton, Victoria 3800; Rudman, M.

    2016-05-15

    Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversalmore » in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.« less

  4. Acquisition system environmental effects study. [for capillary-screen propellant retention devices

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of vibration, warm gas exposure, and feed system startup/shutdown fluid dynamics on capillary-screen propellant retention capabilities are quantified. The existing technology is extended to the point where quantitative conlusions in terms of design criteria may be drawn.

  5. Cellular automatons applied to gas dynamic problems

    NASA Technical Reports Server (NTRS)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  6. Experiments on point plumes in a rotating environment

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    Motivated by the Deepwater Horizon oil spill in the Gulf of Mexico we study the dynamics of point plumes in a stratified and homogeneous rotating environment. To this end, we conduct small-scale experiments in the laboratory on salt water and bubble plumes over a wide range of Rossby numbers. The rotation modifies the entrainment into the plume and also inhibits the lateral spreading of the plume fluid which leads to various instabilities in the flow. In particular, we focus on the plume behaviour in the near-source region (where the plume is dominated by the source conditions) and at intermediate water depths, e.g., lateral intrusions at the neutral buoyancy level in the stratified environment. One of the striking features in the rotating environment is the anticyclonic precession of the plume axis which leads to an enhanced dispersion of the plume fluid in the ambient and which is absent in the non-rotating system. In this talk, we present our experimental results and develop simple models to explain the observed plume dynamics.

  7. PREFACE: Complex dynamics of fluids in disordered and crowded environments Complex dynamics of fluids in disordered and crowded environments

    NASA Astrophysics Data System (ADS)

    Coslovich, Daniele; Kahl, Gerhard; Krakoviack, Vincent

    2011-06-01

    Over the past two decades, the dynamics of fluids under nanoscale confinement has attracted much attention. Motivation for this rapidly increasing interest is based on both practical and fundamental reasons. On the practical and rather applied side, problems in a wide range of scientific topics, such as polymer and colloidal sciences, rheology, geology, or biophysics, benefit from a profound understanding of the dynamical behaviour of confined fluids. Further, effects similar to those observed in confinement are expected in fluids whose constituents have strong size or mass asymmetry, and in biological systems where crowding and obstruction phenomena in the cytosol are responsible for clear separations of time scales for macromolecular transport in the cell. In fundamental research, on the other hand, the interest focuses on the complex interplay between confinement and structural relaxation, which is responsible for the emergence of new phenomena in the dynamics of the system: in confinement, geometric constraints associated with the pore shape are imposed to the adsorbed fluids and an additional characteristic length scale, i.e. the pore size, comes into play. For many years, the topic has been mostly experimentally driven. Indeed, a broad spectrum of systems has been investigated by sophisticated experimental techniques, while theoretical and simulation studies were rather scarce due to conceptual and computational issues. In the past few years, however, theory and simulations could largely catch up with experiments. On one side, new theories have been put forward that duly take into account the porosity, the connectivity, and the randomness of the confinement. On the other side, the ever increasing available computational power now allows investigations that were far out of reach a few years ago. Nowadays, instead of isolated state points, systematic investigations on the dynamics of confined fluids, covering a wide range of system parameters, can be realized. In fact, theory and simulations were recently able to predict new and surprising dynamical features, such as the occurrence of sub-diffusive laws, which result from the trapping due to the geometric and topological constraints and/or quenched disorder, the presence of both continuous and discontinuous glass transitions, and diffusion-localization transitions. Together, theory and simulations are thus able to contribute to a deeper insight into the complex dynamical behaviour of fluids in disordered confinement. Still, many yet unsolved problems remain. The fact that theoretical and simulation approaches have caught up with experimental investigations, has motivated us to organize a workshop on the dynamics of fluids confined in disordered environments, so as to bring together the different communities working in this field: theory and simulations, with their recent developments based on the mode-coupling theory of the glass transition, and experiments, with particular emphasis on colloidal systems and novel techniques. In an effort to give credit to recent developments in related problems of biophysical relevance, an entire session of the programme was dedicated to anomalous diffusion in crowded environments. The workshop was thus aimed at providing a deeper understanding of the complex dynamics of fluids in confinement as well as up-to-date perspectives on the interdisciplinary applications of this field of research. We are proud to say that all 32 contacted speakers accepted our invitation. Additional participants were attracted by our scientific programme, contributing poster presentations to the workshop. In total, close to 50 participants were registered, arriving from 11 different countries (including the US, Japan, and Mexico). Thus we conclude that the workshop indeed addressed a highly topical scientific field. From the scientific point of view a broad range of problems was covered, ranging from biophysics over soft matter to fermion systems. From the vivid discussions it became evident that the close scientific contact between theory, simulation and experiment brought along a fruitful and mutually inspiring atmosphere. On the theoretical side, these discussions have allowed clarification of several connections between the dynamics of models of fluids in porous media (quenched-annealed, pinned particles models), those of well-known limiting cases (Lorentz gas), of realistic models of liquids with strong dynamic asymmetry (asymmetric size and mass mixtures, sodium silicates, polymers blends) and even of bulk glass-formers. On the experimental side, it appeared that soft matter systems may provide an excellent test-bed to verify the theoretical predictions. From the concluding discussion it was also clear that addressing related issues relevant to biology still remains an open challenge for the future. In view of all this, it was concluded that within a short time period a workshop with analogous scope should be organized to address the progress made on both fundamental and interdisciplinary aspects. The realization of this workshop was made possible by generous financial support from CECAM, Centre Blaise Pascal-ENS de Lyon, and the ESF network 'Molecular Simulations in Biosystems and Material Science' (SimBioMa). Complex dynamics of fluids in disordered and crowded environments contents Phonon dispersions of cluster crystals Tim Neuhaus and Christos N Likos Challenges in determining anomalous diffusion in crowded fluids Marcel Hellmann, Joseph Klafter, Dieter W Heermann and Matthias Weiss Diffusion of active tracers in fluctuating fields David S Dean and Vincent Démery Self-diffusion of non-interacting hard spheres in particle gels Jean-Christophe Gimel and Taco Nicolai Probing glassy states in binary mixtures of soft interpenetrable colloids E Stiakakis, B M Erwin, D Vlassopoulos, M Cloitre, A Munam, M Gauthier, H Iatrou and N Hadjichristidis Fluids with quenched disorder: scaling of the free energy barrier near critical points T Fischer and R L C Vink Lennard-Jones binary mixture in disordered matrices: exploring the mode coupling scenario at increasing confinement P Gallo and M Rovere Static and dynamic contributions to anomalous chain dynamics in polymer blends Marco Bernabei, Angel J Moreno and J Colmenero Anomalous transport of a tracer on percolating clusters Markus Spanner, Felix Höfling, Gerd E Schröder-Turk, Klaus Mecke and Thomas Franosch Long-wavelength anomalies in the asymptotic behavior of mode-coupling theory S K Schnyder, F Höfling, T Franosch and Th Voigtmann Dynamic arrest of colloids in porous environments: disentangling crowding and confinement Jan Kurzidim, Daniele Coslovich and Gerhard Kahl Slow dynamics, dynamic heterogeneities, and fragility of supercooled liquids confined in random media Kang Kim, Kunimasa Miyazaki and Shinji Saito

  8. Dynamical clustering of red blood cells in capillary vessels.

    PubMed

    Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A

    2003-02-01

    We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

  9. A preliminary investigation of the growth of an aneurysm with a multiscale monolithic Fluid-Structure interaction solver

    NASA Astrophysics Data System (ADS)

    Cerroni, D.; Manservisi, S.; Pozzetti, G.

    2015-11-01

    In this work we investigate the potentialities of multi-scale engineering techniques to approach complex problems related to biomedical and biological fields. In particular we study the interaction between blood and blood vessel focusing on the presence of an aneurysm. The study of each component of the cardiovascular system is very difficult due to the fact that the movement of the fluid and solid is determined by the rest of system through dynamical boundary conditions. The use of multi-scale techniques allows us to investigate the effect of the whole loop on the aneurysm dynamic. A three-dimensional fluid-structure interaction model for the aneurysm is developed and coupled to a mono-dimensional one for the remaining part of the cardiovascular system, where a point zero-dimensional model for the heart is provided. In this manner it is possible to achieve rigorous and quantitative investigations of the cardiovascular disease without loosing the system dynamic. In order to study this biomedical problem we use a monolithic fluid-structure interaction (FSI) model where the fluid and solid equations are solved together. The use of a monolithic solver allows us to handle the convergence issues caused by large deformations. By using this monolithic approach different solid and fluid regions are treated as a single continuum and the interface conditions are automatically taken into account. In this way the iterative process characteristic of the commonly used segregated approach, it is not needed any more.

  10. Linear lateral vibration of axisymmetric liquid briges

    NASA Astrophysics Data System (ADS)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid

  11. Restricted Euler dynamics along trajectories of small inertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Meneveau, Charles

    2016-11-01

    The fate of small particles in turbulent flows depends strongly on the surrounding fluid's velocity gradient properties such as rotation and strain-rates. For non-inertial (fluid) particles, the Restricted Euler model provides a simple, low-dimensional dynamical system representation of Lagrangian evolution of velocity gradients in fluid turbulence, at least for short times. Here we derive a new restricted Euler dynamical system for the velocity gradient evolution of inertial particles such as solid particles in a gas or droplets and bubbles in turbulent liquid flows. The model is derived in the limit of small (sub Kolmogorov scale) particles and low Stokes number. The system exhibits interesting fixed points, stability and invariant properties. Comparisons with data from Direct Numerical Simulations show that the model predicts realistic trends such as the tendency of increased straining over rotation along heavy particle trajectories and, for light particles such as bubbles, the tendency of severely reduced self-stretching of strain-rate. Supported by a National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1232825 and by a Grant from The Gulf of Mexico Research Initiative.

  12. The Mochi project: a field theory approach to plasma dynamics and self-organization

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan

    2016-10-01

    The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.

  13. Actions for particles and strings and Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Jiusi, Lei; Nair, V. P.

    2017-09-01

    We consider actions for particles and strings, including twistorial descriptions on 4D Minkowski and AdS5 spacetimes from the point of view of coadjoint orbits for the isometry group. We also consider the collective coordinate dynamics of singular solutions in Chern-Simons (CS) theories and CS theories of gravity. This is a generalization of the work of Einstein, Infeld, and Hoffmann and also has potential points of contact with fluid-gravity correspondence.

  14. Numerical simulations of thermoacoustic waves in transcritical fluids employing the spectral difference approach

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Migliorino, Mario Tindaro; Chapelier, Jean-Baptiste

    2017-11-01

    We investigate the stability properties of thermoacoustically unstable planar waves in transcritical fluids via high-fidelity Navier-Stokes simulations based on a Spectral Difference (SD) discretization coupled with the Peng-Robinson equation of state and Chung's method for the fluid transport properties. A canonical thermoacoustically unstable standing-wave resonator filled with supercritical CO2 kept in pseudoboiling conditions in the stack is considered. Real fluid effects near the critical point are shown to boost thermoacoustic energy production, as also confirmed by companion eigenvalue analysis supporting the closure of the acoustic energy budgets. A kink in the eigenmode shape is observed at the location of pseudo phase change, consistent with the abrupt change in base impedance. The current study demonstrates a transformative approach to thermoacoustic energy generation, exploiting otherwise unwanted fluid dynamics instabilities commonly observed in aeronautical applications employing transcritical fluids.

  15. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  16. A computational fluid dynamics simulation of high- and low-current arcs in self-blast circuit breakers

    NASA Astrophysics Data System (ADS)

    Claessens, M.; Möller, K.; Thiel, H. G.

    1997-07-01

    Computational fluid dynamics calculations for high- and low-current arcs in an interrupter of the self-blast type have been performed. The mixing process of the hot PTFE cloud with the cold 0022-3727/30/13/011/img6 in the pressure chamber is strongly inhomogeneous. The existence of two different species has been taken into account by interpolation of the material functions according to their mass fraction in each grid cell. Depending on the arcing time, fault current and interrupter geometry, blow temperatures of up to 2000 K have been found. The simulation results for a decaying arc immediately before current zero yield a significantly reduced arc cooling at the stagnation point for high blow temperatures.

  17. OPEN PROBLEM: Turbulence transition in pipe flow: some open questions

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno

    2008-01-01

    The transition to turbulence in pipe flow is a longstanding problem in fluid dynamics. In contrast to many other transitions it is not connected with linear instabilities of the laminar profile and hence follows a different route. Experimental and numerical studies within the last few years have revealed many unexpected connections to the nonlinear dynamics of strange saddles and have considerably improved our understanding of this transition. The text summarizes some of these insights and points to some outstanding problems in areas where valuable contributions from nonlinear dynamics can be expected.

  18. Bulk viscosity of the Lennard-Jones fluid for a wide range of states computed by equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.; Vogelsang, R.; Schoen, M.

    1987-12-01

    Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.

  19. Drift-based scrape-off particle width in X-point geometry

    NASA Astrophysics Data System (ADS)

    Reiser, D.; Eich, T.

    2017-04-01

    The Goldston heuristic estimate of the scrape-off layer width (Goldston 2012 Nucl. Fusion 52 013009) is reconsidered using a fluid description for the plasma dynamics. The basic ingredient is the inclusion of a compressible diamagnetic drift for the particle cross field transport. Instead of testing the heuristic model in a sophisticated numerical simulation including several physical mechanisms working together, the purpose of this work is to point out basic consequences for a drift-dominated cross field transport using a reduced fluid model. To evaluate the model equations and prepare them for subsequent numerical solution a specific analytical model for 2D magnetic field configurations with X-points is employed. In a first step parameter scans in high-resolution grids for isothermal plasmas are done to assess the basic formulas of the heuristic model with respect to the functional dependence of the scrape-off width on the poloidal magnetic field and plasma temperature. Particular features in the 2D-fluid calculations—especially the appearance of supersonic parallel flows and shock wave like bifurcational jumps—are discussed and can be understood partly in the framework of a reduced 1D model. The resulting semi-analytical findings might give hints for experimental proof and implementation in more elaborated fluid simulations.

  20. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.

  1. Passive scalars chaotic dynamics induced by two vortices in a two-layer geophysical flow with shear and rotation

    NASA Astrophysics Data System (ADS)

    Ryzhov, Eugene

    2015-11-01

    Vortex motion in shear flows is of great interest from the point of view of nonlinear science, and also as an applied problem to predict the evolution of vortices in nature. Considering applications to the ocean and atmosphere, it is well-known that these media are significantly stratified. The simplest way to take stratification into account is to deal with a two-layer flow. In this case, vortices perturb the interface, and consequently, the perturbed interface transits the vortex influences from one layer to another. Our aim is to investigate the dynamics of two point vortices in an unbounded domain where a shear and rotation are imposed as the leading order influence from some generalized perturbation. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Point vortices induce singular velocity fields in the layer they belong to, however, in the other layers of a multi-layer flow, they induce regular velocity fields. The main feature is that singular velocity fields prohibit irregular dynamics in the vicinity of the singular points, but regular velocity fields, provided optimal conditions, permit irregular dynamics to extend almost in every point of the corresponding phase space.

  2. Analysis of thermal processing of table olives using computational fluid dynamics.

    PubMed

    Dimou, A; Panagou, E; Stoforos, N G; Yanniotis, S

    2013-11-01

    In the present work, the thermal processing of table olives in brine in a stationary metal can was studied through computational fluid dynamics (CFD). The flow patterns of the brine and the temperature evolution in the olives and brine during the heating and the cooling cycles of the process were calculated using the CFD code. Experimental temperature measurements at 3 points (2 inside model olive particles and 1 at a point in the brine) in a can (with dimensions of 75 mm × 105 mm) filled with 48 olives in 4% (w/v) brine, initially held at 20 °C, heated in water at 100 °C for 10 min, and thereafter cooled in water at about 20 °C for 10 min, validated model predictions. The distribution of temperature and F-values and the location of the slowest heating zone and the critical point within the product, as far as microbial destruction is concerned, were assessed for several cases. For the cases studied, the critical point was located at the interior of the olives at the 2nd, or between the 1st and the 2nd olive row from the bottom of the container, the exact location being affected by olive size, olive arrangement, and geometry of the container. © 2013 Institute of Food Technologists®

  3. A Versatile Nonlinear Method for Predictive Modeling

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  4. Astrophysical flows near [Formula: see text] gravity black holes.

    PubMed

    Ahmed, Ayyesha K; Azreg-Aïnou, Mustapha; Bahamonde, Sebastian; Capozziello, Salvatore; Jamil, Mubasher

    In this paper, we study the accretion process for fluids flowing near a black hole in the context of f ( T ) teleparallel gravity. Specifically, by performing a dynamical analysis by a Hamiltonian system, we are able to find the sonic points. After that, we consider different isothermal test fluids in order to study the accretion process when they are falling onto the black hole. We find that these flows can be classified according to the equation of state and the black hole features. Results are compared in f ( T ) and f ( R ) gravity.

  5. Twitter and Non-Elites: Interpreting Power Dynamics in the Life Story of the (#)BRCA Twitter Stream.

    PubMed

    Vicari, Stefania

    2017-09-01

    In May 2013 and March 2015, actress Angelina Jolie wrote in the New York Times about her choice to undergo preventive surgery. In her two op-eds, she explained that - as a carrier of the BRCA1 gene mutation - preventive surgery was the best way to lower her heightened risk of developing breast and ovarian cancer. By applying a digital methods approach to BRCA-related tweets from 2013 and 2015, before, during, and after the exposure of Jolie's story, this study maps and interprets Twitter discursive dynamics at two time points of the BRCA Twitter stream. Findings show an evolution in curation and framing dynamics occurring between 2013 and 2015, with individual patient advocates replacing advocacy organizations as top curators of BRCA content and coming to prominence as providers of specialist illness narratives. These results suggest that between 2013 and 2015, Twitter went from functioning primarily as an organization-centered news reporting mechanism, to working as a crowdsourced specialist awareness system. This article advances a twofold contribution. First, it points at Twitter's fluid functionality for an issue public and suggests that by looking at the life story-rather than at a single time point-of an issue-based Twitter stream, we can track the evolution of power roles underlying discursive practices and better interpret the emergence of non-elite actors in the public arena. Second, the study provides evidence of the rise of activist cultures that rely on fluid, non-elite, collective, and individual social media engagement.

  6. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  7. Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergey P.

    2015-05-01

    Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).

  8. Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-08-01

    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.

  9. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    NASA Astrophysics Data System (ADS)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  10. Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.

    2017-11-01

    Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.

  11. OFF-Stagnation point testing in plasma facility

    NASA Astrophysics Data System (ADS)

    Viladegut, A.; Chazot, O.

    2015-06-01

    Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.

  12. Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA

    NASA Astrophysics Data System (ADS)

    Pope, David

    Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.

  13. Communication: A method to compute the transport coefficient of pure fluids diffusing through planar interfaces from equilibrium molecular dynamics simulations.

    PubMed

    Vermorel, Romain; Oulebsir, Fouad; Galliero, Guillaume

    2017-09-14

    The computation of diffusion coefficients in molecular systems ranks among the most useful applications of equilibrium molecular dynamics simulations. However, when dealing with the problem of fluid diffusion through vanishingly thin interfaces, classical techniques are not applicable. This is because the volume of space in which molecules diffuse is ill-defined. In such conditions, non-equilibrium techniques allow for the computation of transport coefficients per unit interface width, but their weak point lies in their inability to isolate the contribution of the different physical mechanisms prone to impact the flux of permeating molecules. In this work, we propose a simple and accurate method to compute the diffusional transport coefficient of a pure fluid through a planar interface from equilibrium molecular dynamics simulations, in the form of a diffusion coefficient per unit interface width. In order to demonstrate its validity and accuracy, we apply our method to the case study of a dilute gas diffusing through a smoothly repulsive single-layer porous solid. We believe this complementary technique can benefit to the interpretation of the results obtained on single-layer membranes by means of complex non-equilibrium methods.

  14. Metagenomic Assessment of a Dynamic Microbial Population from Subseafloor Aquifer Fluids in the Cold, Oxygenated Crust

    NASA Astrophysics Data System (ADS)

    Tully, B. J.; Heidelberg, J. F.; Kraft, B.; Girguis, P. R.; Huber, J. A.

    2016-12-01

    The oceanic crust contains the largest aquifer on Earth with a volume approximately 2% of the global ocean. Ongoing research at the North Pond (NP) site, west of the Mid-Atlantic Ridge, provides an environment representative of oxygenated crustal aquifers beneath oligotrophic surface waters. Using subseafloor CORK observatories for multiple sampling depths beneath the seafloor, crustal fluids were sampled along the predicted aquifer fluid flow path over a two-year period. DNA was extracted and sequenced for metagenomic analysis from 22 crustal fluid samples, along with the overlying bottom. At broad taxonomic groupings, the aquifer system is highly dynamic over time and space, with shifts in dominant taxa and "blooms" of transient groups that appear at discreet time points and sample depths. We were able to reconstruct 194 high-quality, low-contamination bacterial and archaeal metagenomic-assembled genomes (MAGs) with estimated completeness >50% (429 MAGs >20% complete). Environmental genomes were assigned to phylogenies from the major bacterial phyla, putative novel groups, and poorly sampled phylogenetic groups, including the Marinimicrobia, Candidate Phyla Radiation, and Planctomycetes. Biogeochemically relevant processes were assigned to MAGs, including denitrification, dissimilatory sulfur and hydrogen cycling, and carbon fixation. Collectively, the oxic NP aquifer system represents a diverse, dynamic microbial habitat with the metabolic potential to impact multiple globally relevant biogeochemical cycles, including nitrogen, sulfur, and carbon.

  15. Wall shear stress fixed points in blood flow

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn

    2017-11-01

    Patient-specific computational fluid dynamics produces large datasets, and wall shear stress (WSS) is one of the most important parameters due to its close connection with the biological processes at the wall. While some studies have investigated WSS vectorial features, the WSS fixed points have not received much attention. In this talk, we will discuss the importance of WSS fixed points from three viewpoints. First, we will review how WSS fixed points relate to the flow physics away from the wall. Second, we will discuss how certain types of WSS fixed points lead to high biochemical surface concentration in cardiovascular mass transport problems. Finally, we will introduce a new measure to track the exposure of endothelial cells to WSS fixed points.

  16. Tracking gas-liquid coexistence in fluids of charged soft dumbbells.

    PubMed

    Braun, Heiko; Hentschke, Reinhard

    2009-10-01

    The existence of gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction than dipole-dipole interaction is a basic and open question in the theory of fluids. Recent Monte Carlo work by Camp and co-workers indicates that a fluid of charged hard dumbbells does exhibit gas-liquid (g-l) coexistence. This system has the potential to answer the above fundamental question because the charge-to-charge separation, d , on the dumbbells may be reduced to, at least in principle, yield the dipolar fluid limit. Using the molecular-dynamics technique we present simulation results for the g-l critical point of charged soft dumbbells at fixed dipole moment as function of d . We do find a g-l critical point at finite temperature even at the smallest d value (10;{-4}) . Reversible aggregation appears to play less a role than in related model systems as d becomes small. Consequently attempts to interpret the simulation results using either an extension of Flory's lattice theory for polymer systems, which includes reversible assembly of monomers into chains, or the defect model for reversible networks proposed by Tlusty and Safran are not successful. The overall best qualitative interpretation of the critical parameters is obtained by considering the dumbbells as dipoles immersed in a continuum dielectric.

  17. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  18. Instabilities and diffusion in a hydrodynamic model of a fluid membrane coupled to a thin active fluid layer.

    PubMed

    Sarkar, N; Basu, A

    2012-11-01

    We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.

  19. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions

    NASA Astrophysics Data System (ADS)

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2018-05-01

    We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  20. Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team

    2015-11-01

    The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.

  1. Mathematical Fluid Dynamics of Plasma Flow Control Over High Speed Wings

    DTIC Science & Technology

    2009-02-01

    decreased voltage; e= 8, d= 1 mm. electrode u fe ^mmm^^n/* Fyd electrode Fig. 23 Schematics of momentum and heat source distributions for...For a>25°, the influence of DBD on the vortex breakdown is not so clear, because the breakdown point is very close to the wing apex in all three

  2. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    NASA Astrophysics Data System (ADS)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D). In cosmology referring to the pancake model of Zel'dovich and the adhesion model of Gurbatov and Saichev, both assuming a clumping of matter at the intersection points of fluid particle trajectories (i.e. at the caustics), the foam-like large-scale structure of our Universe observed recently by Chandra X-ray observatory may be explained by the 3D convection of weakly interacting dark matter. Recent developments in plasma and nanotechnology-the miniaturization and fabrication of nanoelectronic devices being one example-have reinforced the interest in the quasi-ballistic electron transport in diodes and triodes, a field which turns out to be best treated by the Lagrangian fluid description. It is shown that the well-known space-charge-limited flow given by Child-Langmuir turns out to be incorrect in cases of finite electron injection velocities at the emitting electrode. In that case it is an intrinsic bifurcation scenario which is responsible for current limitation rather than electron reflection at the virtual cathode as intuitively assumed by Langmuir. The inclusion of a Drude friction term in the electron momentum equation can be handled solely by the Lagrangian fluid description. Exploiting the formula in case of field emission it is possible to bridge ballistic and drift-dominated transport. Furthermore, the transient processes in the electron transport triggered by the switching of the anode potential are shown to be perfectly accounted for by means of the Lagrangian fluid description. Finally, by use of the Lagrangian ion fluid equations in case of a two component, current driven plasma we derive a system of two coupled scalar wave equations which involve the specific volume of ions and electrons, respectively. It has a small amplitude strange soliton solution with unusual scaling properties. In case of charge neutrality the existence of two types of collapses are predicted, one being associated with a density excavation, the other one with a density clumping as in the laser induced ion expansion problem and in the cosmic sticking matter problem. However, only the latter will survive charge separation and hence be observable. In summary, the Lagrangian method of solving fluid equations turns out to be a powerful tool for compressible media in general. It offers new perspectives and addresses to a broad audience of physicists with interest in fields such as plasma and fluid dynamics, semiconductor- and astrophysics, to mention few of them.

  3. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.

    PubMed

    Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai

    2017-10-01

    Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.

  4. Two liquid states of matter: a dynamic line on a phase diagram.

    PubMed

    Brazhkin, V V; Fomin, Yu D; Lyapin, A G; Ryzhov, V N; Trachenko, K

    2012-03-01

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "nonrigid" liquids. Rigid to nonrigid transition corresponds to the condition τ≈τ(0), where τ is the liquid relaxation time and τ(0) is the minimal period of transverse quasiharmonic waves. This condition defines a new dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all available frequencies and, consequently, to the qualitative change in many important liquid properties. We analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2k(B) per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase diagram "Frenkel line".

  5. An examination of the rheology of flocculated clay suspensions

    NASA Astrophysics Data System (ADS)

    Spearman, Jeremy

    2017-04-01

    A dense cohesive sediment suspension, sometimes referred to as fluid mud, is a thixotropic fluid with a true yield stress. Current rheological formulations struggle to reconcile the structural dynamics of cohesive sediment suspensions with the equilibrium behaviour of these suspensions across the range of concentrations and shear. This paper is concerned with establishing a rheological framework for the range of sediment concentrations from the yield point to Newtonian flow. The shear stress equation is based on floc fractal theory, put forward by Mills and Snabre (1988). This results in a Casson-like rheology equation. Additional structural dynamics is then added, using a theory on the self-similarity of clay suspensions proposed by Coussot (1995), giving an equation which has the ability to match the equilibrium and time-dependent viscous rheology of a wide range of suspensions of different concentration and mineralogy.

  6. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2003-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  7. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2004-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  8. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L.

    2007-12-25

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  9. Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof

    DOEpatents

    Battiste, Richard L

    2013-12-31

    Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

  10. Lymphatic System Flows

    NASA Astrophysics Data System (ADS)

    Moore, James E., Jr.; Bertram, Christopher D.

    2018-01-01

    The supply of oxygen and nutrients to tissues is performed by the blood system and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviors that indicate that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphedema.

  11. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  12. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  13. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  14. Automated Fluid Feature Extraction from Transient Simulations

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Lovely, David

    1999-01-01

    In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.

  15. Analysis of the fluid mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2012-02-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns, similar to the stitch patterns produced by a traditional sewing machine. By simulating the dynamics of the viscous thread numerically, we can reproduce these patterns and their bifurcations. The results lead us to propose a new classification of the stitch patterns within a unified framework, based on the Fourier spectra of the motion of the point of contact of the thread with the belt. The frequencies of the longitudinal and transverse components of the contact point motion are locked in most cases to simple ratios of the frequency φc of steady coiling on a surface at rest (i.e., the limit of zero belt speed). In particular, the ``alternating loops'' pattern involves the first five multiples of φc/3. The dynamics of the patterns can be described by matching the upper (linear) and the lower (non-linear) portions of the thread. Following this path we propose a toy model that successfully reproduces the observed transitions from the steady dragged configuration to sinusoidal meanders, alternating loops, and the translated coiling pattern as the belt speed is varied.

  16. Dynamic wetting failure in surfactant solutions

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Yu; Vandre, Eric; Carvalho, Marcio; Kumar, Satish

    2015-11-01

    The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox. Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment. The hybrid modeling approach developed here can readily be extended to more complicated geometries where a thin air layer is present near a contact line.

  17. Fluid-membrane tethers: minimal surfaces and elastic boundary layers.

    PubMed

    Powers, Thomas R; Huber, Greg; Goldstein, Raymond E

    2002-04-01

    Thin cylindrical tethers are common lipid bilayer membrane structures, arising in situations ranging from micromanipulation experiments on artificial vesicles to the dynamic structure of the Golgi apparatus. We study the shape and formation of a tether in terms of the classical soap-film problem, which is applied to the case of a membrane disk under tension subject to a point force. A tether forms from the elastic boundary layer near the point of application of the force, for sufficiently large displacement. Analytic results for various aspects of the membrane shape are given.

  18. Object-oriented design and implementation of CFDLab: a computer-assisted learning tool for fluid dynamics using dual reciprocity boundary element methodology

    NASA Astrophysics Data System (ADS)

    Friedrich, J.

    1999-08-01

    As lecturers, our main concern and goal is to develop more attractive and efficient ways of communicating up-to-date scientific knowledge to our students and facilitate an in-depth understanding of physical phenomena. Computer-based instruction is very promising to help both teachers and learners in their difficult task, which involves complex cognitive psychological processes. This complexity is reflected in high demands on the design and implementation methods used to create computer-assisted learning (CAL) programs. Due to their concepts, flexibility, maintainability and extended library resources, object-oriented modeling techniques are very suitable to produce this type of pedagogical tool. Computational fluid dynamics (CFD) enjoys not only a growing importance in today's research, but is also very powerful for teaching and learning fluid dynamics. For this purpose, an educational PC program for university level called 'CFDLab 1.1' for Windows™ was developed with an interactive graphical user interface (GUI) for multitasking and point-and-click operations. It uses the dual reciprocity boundary element method as a versatile numerical scheme, allowing to handle a variety of relevant governing equations in two dimensions on personal computers due to its simple pre- and postprocessing including 2D Laplace, Poisson, diffusion, transient convection-diffusion.

  19. Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H.

    2014-05-01

    The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles was measured by the STAR Collaboration in the beam energy scan program. In this article, we examine the collision energy dependence of directed flow v1 in fluid dynamical model descriptions of heavy ion collisions for √sNN =3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities such as the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data; the values of the slopes are always larger than in the data.

  20. The effect of dense gas dynamics on loss in ORC transonic turbines

    NASA Astrophysics Data System (ADS)

    Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.

    2017-03-01

    This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.

  1. Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha

    2010-06-01

    Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.

  2. Silverton Conference on Applications of the Zero Gravity Space Shuttle Environment to Problems in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Eisner, M. (Editor)

    1974-01-01

    The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.

  3. Aqueous clay suspensions stabilized by alginate fluid gels for coal spontaneous combustion prevention and control.

    PubMed

    Qin, Botao; Ma, Dong; Li, Fanglei; Li, Yong

    2017-11-01

    We have developed aqueous clay suspensions stabilized by alginate fluid gels (AFG) for coal spontaneous combustion prevention and control. Specially, this study aimed to characterize the effect of AFG on the microstructure, static and dynamic stability, and coal fire inhibition performances of the prepared AFG-stabilized clay suspensions. Compared with aqueous clay suspensions, the AFG-stabilized clay suspensions manifest high static and dynamic stability, which can be ascribed to the formation of a robust three-dimensional gel network by AFG. The coal acceleration oxidation experimental results show that the prepared AFG-stabilized clay suspensions can improve the coal thermal stability and effectively inhibit the coal spontaneous oxidation process by increasing crossing point temperature (CPT) and reducing CO emission. The prepared low-cost and nontoxic AFG-stabilized clay suspensions, exhibiting excellent coal fire extinguishing performances, indicate great application potentials in coal spontaneous combustion prevention and control.

  4. Computational fluid dynamics of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P.; Mcfadden, G.

    1982-01-01

    It is pointed out that transonic flow is one of the fields where computational fluid dynamics turns out to be most effective. Codes for the design and analysis of supercritical airfoils and wings have become standard tools of the aircraft industry. The present investigation is concerned with mathematical models and theorems which account for some of the progress that has been made. The most successful aerodynamics codes are those for the analysis of flow at off-design conditions where weak shock waves appear. A major breakthrough was achieved by Murman and Cole (1971), who conceived of a retarded difference scheme which incorporates artificial viscosity to capture shocks in the supersonic zone. This concept has been used to develop codes for the analysis of transonic flow past a swept wing. Attention is given to the trailing edge and the boundary layer, entropy inequalities and wave drag, shockless airfoils, and the inverse swept wing code.

  5. The effect of wind direction and building surroundings on a marina bay in the Black Sea

    NASA Astrophysics Data System (ADS)

    Katona, Cosmin; Safta, Carmen Anca

    2017-01-01

    The wind effect has usually a major importance in the marina bay. These environmental sites are an interplay between tourist and commercial activities, requiring a high-detailed and definition studies of the dynamic fluid in the harbor. Computational Fluid Dynamics (CFD) has been used elaborately in urban surroundings research. However, most CFD studies were performed for harbors for only a confined number of wind directions and/or without considering the building surroundings effects. This paper presents the results of different simulations based on various wind flows and the CFD simulation of coupled urban wind flow and general wind directions upon a semi-closed area. Thus the importance of wind effects on the evaluation of the marina bay will be pointed out to achieve a safe and secure mooring at the berth and eventually a good potential of renewable energy for an impending green harbor.

  6. Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-03-01

    The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.

  7. Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1979-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.

  8. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  9. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  10. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  11. Using heteroclinic orbits to quantify topological entropy in fluid flows

    NASA Astrophysics Data System (ADS)

    Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.

    2016-03-01

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.

  12. Dynamics of large-diameter water pipes in hydroelectric power plants

    NASA Astrophysics Data System (ADS)

    Pavić, G.; Chevillotte, F.; Heraud, J.

    2017-04-01

    An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.

  13. Does fasting influence preload responsiveness in ASA 1 and 2 volunteers?

    PubMed

    Alves, Daniel Rodrigues; Ribeiras, Regina

    Preoperative fasting was long regarded as an important cause of fluid depletion, leading to hemodynamic instability during surgery should replenishment is not promptly instituted. Lately, this traditional point of view has been progressively challenged, and a growing number of authors now propose a more restrictive approach to fluid management, although doubt remains as to the true hemodynamic influence of preoperative fasting. We designed an observational, analytic, prospective, longitudinal study in which 31 ASA 1 and ASA 2 volunteers underwent an echocardiographic examination both before and after a fasting period of at least 6hours (h). Data from both static and dynamic preload indices were obtained on both periods, and subsequently compared. Static preload indices exhibited a markedly variable behaviour with fasting. Dynamic indices, however, were far more consistent with one another, all pointing in the same direction, i.e., evidencing no statistically significant change with the fasting period. We also analysed the reliability of dynamic indices to respond to known, intentional preload changes. Aortic velocity time integral (VTI) variation with the passive leg raise manoeuvre was the only variable that proved to be sensitive enough to consistently signal the presence of preload variation. Fasting does not appear to cause a change in preload of conscious volunteers nor does it significantly alter their position in the Frank-Starling curve, even with longer fasting times than usually recommended. Transaortic VTI variation with the passive leg raise manoeuvre is the most robust dynamic index (of those studied) to evaluate preload responsiveness in spontaneously breathing patients. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Prediction of force coefficients for labyrinth seals

    NASA Technical Reports Server (NTRS)

    Lee, O. W. K.; Martinez-Sanchez, M.; Czajkowski, E.

    1984-01-01

    The development of a linear model for the prediction of labyrinth seal forces and on its comparison to available stiffness data is presented. A discussion of the relevance of fluid damping forces and the preliminary stages of a program to obtain data on these forces are examined. Fluid-dynamic forces arising from nonuniform pressure patterns in labyrinth seal glands are known to be potentially destablizing in high power turbomachinery. A well documented case in point is that of the space Shuttle Main Engine turbopumps. Seal forces are also an important factor for the stability of shrouded turbines, acting in that case in conjunction with the effects of blade-tip clearance variations.

  15. von Kármán-Howarth equation for three-dimensional two-fluid plasmas.

    PubMed

    Andrés, N; Mininni, P D; Dmitruk, P; Gómez, D O

    2016-06-01

    We derive the von Kármán-Howarth equation for a full three-dimensional incompressible two-fluid plasma. In the long-time limit and for very large Reynolds numbers we obtain the equivalent of the hydrodynamic "four-fifths" law. This exact law predicts the scaling of the third-order two-point correlation functions, and puts a strong constraint on the plasma turbulent dynamics. Finally, we derive a simple expression for the 4/5 law in terms of third-order structure functions, which is appropriate for comparison with in situ measurements in the solar wind at different spatial ranges.

  16. Motile bacteria in a critical fluid mixture

    NASA Astrophysics Data System (ADS)

    Koumakis, Nick; Devailly, Clémence; Poon, Wilson C. K.

    2018-06-01

    We studied the swimming of Escherichia coli bacteria in the vicinity of the critical point in a solution of the nonionic surfactant C12E5 in buffer solution. In phase-contrast microscopy, each swimming cell produces a transient trail behind itself lasting several seconds. Comparing quantitative image analysis with simulations show that these trails are due to local phase reorganization triggered by differential adsorption. This contrasts with similar trails seen in bacteria swimming in liquid crystals, which are due to shear effects. We show how our trails are controlled, and use them to probe the structure and dynamics of critical fluctuations in the fluid medium.

  17. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  18. A dynamical systems approach to the tilted Bianchi models of solvable type

    NASA Astrophysics Data System (ADS)

    Coley, Alan; Hervik, Sigbjørn

    2005-02-01

    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh and VIIh) with a perfect fluid and a linear barotropic γ-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi type VII0 models. We prove the important result that for non-inflationary Bianchi type VIIh models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exist closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh models there is a bifurcation in which a set of equilibrium points turns into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh models in this region the solution curves approach a compact surface which is topologically a torus.

  19. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study.

    PubMed

    Calderín, L; González, L E; González, D J

    2011-09-21

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm(-3). We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm(-3).

  20. Orbital Decay in Binaries with Evolved Stars

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  1. Program to stimulate graduate training in the field of aeroacoustics. [cross correlation of flow fields of a jet-blown flap with far fields

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1975-01-01

    An experiment is reported to cross correlate the output of hot film probes located at various points in the flow field of a jet-blown flap with the output of microphones in the acoustic far field. Fluid dynamic measurements of the flow fields of the test configuration are reported.

  2. Potential application of artificial concepts to aerodynamic simulation

    NASA Technical Reports Server (NTRS)

    Kutler, P.; Mehta, U. B.; Andrews, A.

    1984-01-01

    The concept of artificial intelligence as it applies to computational fluid dynamics simulation is investigated. How expert systems can be adapted to speed the numerical aerodynamic simulation process is also examined. A proposed expert grid generation system is briefly described which, given flow parameters, configuration geometry, and simulation constraints, uses knowledge about the discretization process to determine grid point coordinates, computational surface information, and zonal interface parameters.

  3. Interior Fluid Dynamics of Liquid-Filled Projectiles

    DTIC Science & Technology

    1989-12-01

    the Sandia code. The previous codes are primarily based on finite-difference approximations with relatively coarse grid and were designed without...exploits Chorin’s method of artificial compressibility. The steady solution at 11 X 24 X 21 grid points in r, 0, z-direction is obtained by integrating...differences in radial and axial direction and pseudoepectral differencing in the azimuthal direction. Nonuniform grids are introduced for increased

  4. On the correspondence between quantum and classical variational principles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-06-10

    Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.

  5. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  6. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  7. A cyber-physical approach to experimental fluid mechanics

    NASA Astrophysics Data System (ADS)

    Mackowski, Andrew Williams

    This Thesis documents the design, implementation, and use of a novel type of experimental apparatus, termed Cyber-Physical Fluid Dynamics (CPFD). Unlike traditional fluid mechanics experiments, CPFD is a general-purpose technique that allows one to impose arbitrary forces on an object submerged in a fluid. By combining fluid mechanics with robotics, we can perform experiments that would otherwise be incredibly difficult or time-consuming. More generally, CPFD allows a high degree of automation and control of the experimental process, allowing for much more efficient use of experimental facilities. Examples of CPFD's capabilites include imposing a gravitational force in the horizontal direction (allowing a test object to "fall" sideways in a water channel), simulating nonlinear springs for a vibrating fluid-structure system, or allowing a self-propelled body to move forward under its own force. Because experimental parameters (including forces and even the mass of the test object) are defined in software, one can define entire ensembles of experiments to run autonomously. CPFD additionally integrates related systems such as water channel speed control, LDV flow speed measurements, and PIV flowfield measurements. The end result is a general-purpose experimental system that opens the door to a vast array of fluid-structure interaction problems. We begin by describing the design and implementation of CPFD, the heart of which is a high-performance force-feedback control system. Precise measurement of time-varying forces (including removing effects of the test object's inertia) is more critical here than in typical robotic force-feedback applications. CPFD is based on an integration of ideas from control theory, fluid dynamics, computer science, electrical engineering, and solid mechanics. We also describe experiments using the CPFD experimental apparatus to study vortex-induced vibration (VIV) and oscillating-airfoil propulsion. We show how CPFD can be used to simulate a hypothetical VIV energy harvesting device. By replacing standard linear springs with nonlinear ones, we can broaden the system's frequency response. Next, we transition from bluff bodies to unsteady airfoils, where we begin by measuring the thrust and efficiency of an airfoil pitching about its quarter-chord point. Finally, we examine how the propulsive performance of an oscillating airfoil is improved by the addition of passive dynamics.

  8. Michel accretion of a polytropic fluid with adiabatic index \\gamma \\gt 5/3: global flows versus homoclinic orbits

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Mach, Patryk; Sarbach, Olivier

    2016-05-01

    We analyze the properties of a polytropic fluid that is radially accreted into a Schwarzschild black hole. The case where the adiabatic index γ lies in the range of 1\\lt γ ≤slant 5/3 has been treated in previous work. In this article, we analyze the complementary range of 5/3\\lt γ ≤slant 2. To this purpose, the problem is cast into an appropriate Hamiltonian dynamical system, whose phase flow is analyzed. While, for 1\\lt γ ≤slant 5/3, the solutions are always characterized by the presence of a unique critical saddle point, we show that, when 5/3\\lt γ ≤slant 2, an additional critical point might appear, which is a center point. For the parametrization used in this paper, we prove that, whenever this additional critical point appears, there is a homoclinic orbit. Solutions corresponding to homoclinic orbits differ from standard transonic solutions with vanishing asymptotic velocities in two aspects: they are local (i.e., they cannot be continued to arbitrarily large radii); the dependence of the density or the value of the velocity on the radius is not monotonic.

  9. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  10. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  11. COLD-SAT dynamic model

    NASA Technical Reports Server (NTRS)

    Adams, Neil S.; Bollenbacher, Gary

    1992-01-01

    This report discusses the development and underlying mathematics of a rigid-body computer model of a proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer spacecraft (COLD-SAT). This model, referred to in this report as the COLD-SAT dynamic model, consists of both a trajectory model and an attitudinal model. All disturbance forces and torques expected to be significant for the actual COLD-SAT spacecraft are modeled to the required degree of accuracy. Control and experimental thrusters are modeled, as well as fluid slosh. The model also computes microgravity disturbance accelerations at any specified point in the spacecraft. The model was developed by using the Boeing EASY5 dynamic analysis package and will run on Apollo, Cray, and other computing platforms.

  12. A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.

    PubMed

    Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh

    2017-03-08

    A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.

  13. The dynamics of the rapid solidification of two successive aluminum particles in molten state

    NASA Astrophysics Data System (ADS)

    Zirari, M.; El-Hadj, A. Abdellah; Bacha, N.

    2013-12-01

    A finite element method is used to simulate coating deposition in the thermal spraying process. The model uses a method based on a fixed-grid Eulerian control volume to solve the fluid dynamics and energy conservation equations. A volume-of-fluid algorithm was used to track free surface deformation. The specific heat method (SHM) is used for the solidification phenomenon. This work deals mainly numerically, the problem related to solidification during impact of two identical aluminium drops, impacting successively on the same point and time-shifted, onto a smooth steel substrate. In the first part of this study, a completely melted particle, sprayed onto substrate tool steel H13 is considered in the objective of identification. Then, we examine four possible cases of successive impacts of two particles and their effects on the sprawl dynamics in different states (fully and/or partially melted). It was found that the internal energy in conjunction with the metallurgical state of the droplet play a key role in the final morphology of the coating.

  14. The Future with Cryogenic Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his many contributions to Cryogenics. As long ago as 1992, he first proposed in his "History and Origins of Cryogenics" that the temperature range for Cryogenics should be extended up to the ice-point at 273K. This paper expands on this proposal with the implicit assumption that Cryogenic Fluid Dynamics can provide a universal basis for modelling heat transfer and convective fluid behaviour of all fluids, at all temperatures, below the ice-point at 273K; or below 250K if you wish to exclude refrigeration engineering."

  15. On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media

    DTIC Science & Technology

    2015-06-16

    fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown

  16. Geometric, Kinematic and Radiometric Aspects of Image-Based Measurements

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu

    2002-01-01

    This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry. radiometry, kinematics and dynamics. Specific topics include perspective projection transformation. perspective developable conical surface, perspective projection under surface constraint, perspective invariants, the point correspondence problem. motion fields of curves and surfaces. and motion equations of image intensity. The methods given in this paper arc useful for determining morphology and motion fields of deformable bodies such as elastic bodies. viscoelastic mediums and fluids.

  17. Early years of Computational Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Mareschal, Michel

    2018-05-01

    Evidence that a model of hard spheres exhibits a first-order solid-fluid phase transition was provided in the late fifties by two new numerical techniques known as Monte Carlo and Molecular Dynamics. This result can be considered as the starting point of computational statistical mechanics: at the time, it was a confirmation of a counter-intuitive (and controversial) theoretical prediction by J. Kirkwood. It necessitated an intensive collaboration between the Los Alamos team, with Bill Wood developing the Monte Carlo approach, and the Livermore group, where Berni Alder was inventing Molecular Dynamics. This article tells how it happened.

  18. A distributed fluid level sensor suitable for monitoring fuel load on board a moving fuel tank

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Parkinson, Luke A.; Papageorgiou, Anthony W.

    2018-02-01

    A temperature insensitive fiber Bragg grating sensing array has been developed for monitoring fluid levels in a moving tank. The sensors are formed from two optical fibers twisted together to form a double helix with pairs of fiber Bragg gratings located above one another at the points where the fibers are vertically disposed. The sensing mechanism is based on a downwards deflection of the section of the double helix containing the FBGs which causes the tension in the upper FBG to decrease and the tension in the lower FBG to increase with concomitant changes in Bragg wavelength in each FBG. Changes in ambient temperature cause a common mode increase in Bragg wavelength, thus monitoring the differential change in wavelength provides a temperature independent measure of the applied pressure. Ambient temperature can be monitored simultaneously by taking the average wavelength of the upper and lower FBGs. The sensors are able to detect variations in pressure with resolutions better than 1 mmH2O and when placed on the bottom of a tank can be used to monitor fluid level based on the recorded pressure. Using an array of these sensors located along the bottom of a moving tank it was possible to monitor the fluid level at multiple points and hence dynamically track the total fluid volume in the tank. The outer surface of the sensing array is formed from a thin continuous Teflon sleeve, making it suitable for monitoring the level of volatile fluids such as aviation fuel and gasoline.

  19. Performance of the Widely-Used CFD Code OVERFLOW on the Pleides Supercomputer

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2017-01-01

    Computational performance studies were made for NASA's widely used Computational Fluid Dynamics code OVERFLOW on the Pleiades Supercomputer. Two test cases were considered: a full launch vehicle with a grid of 286 million points and a full rotorcraft model with a grid of 614 million points. Computations using up to 8000 cores were run on Sandy Bridge and Ivy Bridge nodes. Performance was monitored using times reported in the day files from the Portable Batch System utility. Results for two grid topologies are presented and compared in detail. Observations and suggestions for future work are made.

  20. A numerical simulation of magma motion, crustal deformation, and seismic radiation associated with volcanic eruptions

    USGS Publications Warehouse

    Nishimura, T.; Chouet, B.

    2003-01-01

    The finite difference method is used to calculate the magma dynamics, seismic radiation, and crustal deformation associated with a volcanic eruption. The model geometry consists of a cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We consider two models of eruption. In the first model, a lid caps the vent and the magma is overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In the second model, a plug at the reservoir outlet allows pressurization of only the magmatic fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure at the conduit orifice exceeds the material strength of the lid capping the vent. In both models, magma dynamics are expressed by the equations of mass and momentum conservation in a compressible fluid, in which fluid expansion associated with depressurization is accounted for by a constitutive law relating pressure and density. Crustal motions are calculated from the equations of elastodynamics. The fluid and solid are dynamically coupled by applying the continuity of wall velocities and normal stresses across the conduit and reservoir boundaries. Free slip is allowed at the fluid-solid boundary. Both models predict the gradual depletion of the magma reservoir, which causes crustal deformation observed as a long-duration dilatational signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic resonance of the reservoir-conduit system during the eruption. The volume of the reservoir, vent size, and magma properties control the duration of VLP waves and dominant periods of LP oscillations. The second model predicts that when the magmatic fluid reaches the vent, a high-pressure pulse occurs at this location in accordance with the basic theory of compressible fluid dynamics. This abrupt pressure increase just beneath the vent is consistent with observed seismograms in which pulse-like Rayleigh waves excited by a shallow source are dominant. The strength of the lid plays an important role in the character of the seismograms and in defining the type of eruption observed.

  1. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  2. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  3. The renormalization group method in statistical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    1994-09-01

    This paper gives a first principles formulation of a renormalization group (RG) method appropriate to study of turbulence in incompressible fluids governed by Navier-Stokes equations. The present method is a momentum-shell RG of Kadanoff-Wilson type based upon the Martin-Siggia-Rose (MSR) field-theory formulation of stochastic dynamics. A simple set of diagrammatic rules are developed which are exact within perturbation theory (unlike the well-known Ma-Mazenko prescriptions). It is also shown that the claim of Yakhot and Orszag (1986) is false that higher-order terms are irrelevant in the ɛ expansion RG for randomly forced Navier-Stokes (RFNS) with power-law force spectrum F̂(k)=D0k-d+(4-ɛ). In fact, as a consequence of Galilei covariance, there are an infinite number of higher-order nonlinear terms marginal by power counting in the RG analysis of the power-law RFNS, even when ɛ≪4. The difficulty does not occur in the Forster-Nelson-Stephen (FNS) RG analysis of thermal fluctuations in an equilibrium NS fluid, which justifies a linear regression law for d≳2. On the other hand, the problem occurs also at the nontrivial fixed point in the FNS Model A, or its Burgers analog, when d<2. The marginal terms can still be present at the strong-coupling fixed point in true NS turbulence. If so, infinitely many fixed points may exist in turbulence and be associated to a somewhat surprising phenomenon: nonuniversality of the inertial-range scaling laws depending upon the dissipation-range dynamics.

  4. The fluid-dynamic paradigm of the dust-acoustic soliton

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.

    2002-06-01

    In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.

  5. Comprehensive representation of the Lennard-Jones equation of state based on molecular dynamics simulation data

    NASA Astrophysics Data System (ADS)

    Pieprzyk, S.; Brańka, A. C.; Maćkowiak, Sz.; Heyes, D. M.

    2018-03-01

    The equation of state (EoS) of the Lennard-Jones fluid is calculated using a new set of molecular dynamics data which extends to higher temperature than in previous studies. The modified Benedict-Webb-Rubin (MBWR) equation, which goes up to ca. T ˜ 6, is reparametrized with new simulation data. A new analytic form for the EoS, which breaks the fluid range into two regions with different analytic forms and goes up to ca. T ≃ 35, is also proposed. The accuracy of the new formulas is at least as good as the MBWR fit and goes to much higher temperature allowing it to now encompass the Amagat line. The fitted formula extends into the high temperature range where the system can be well represented by inverse power potential scaling, which means that our specification of the equation of state covers the entire (ρ, T) plane. Accurate analytic fit formulas for the Boyle, Amagat, and inversion curves are presented. Parametrizations of the extrema loci of the isochoric, CV, and isobaric, CP, heat capacities are given. As found by others, a line maxima of CP terminates in the critical point region, and a line of minima of CP terminates on the freezing line. The line of maxima of CV terminates close to or at the critical point, and a line of minima of CV terminates to the right of the critical point. No evidence for a divergence in CV in the critical region is found.

  6. Equation of state of solid, liquid and gaseous tantalum from first principles

    DOE PAGES

    Miljacic, Ljubomir; Demers, Steven; Hong, Qi-Jun; ...

    2015-09-18

    Here, we present ab initio calculations of the phase diagram and the equation of state of Ta in a wide range of volumes and temperatures, with volumes from 9 to 180 Å 3/atom, temperature as high as 20000 K, and pressure up to 7 Mbars. The calculations are based on first principles, in combination with techniques of molecular dynamics, thermodynamic integration, and statistical modeling. Multiple phases are studied, including the solid, fluid, and gas single phases, as well as two-phase coexistences. We calculate the critical point by direct molecular dynamics sampling, and extend the equation of state to very lowmore » density through virial series fitting. The accuracy of the equation of state is assessed by comparing both the predicted melting curve and the critical point with previous experimental and theoretical investigations.« less

  7. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid

    PubMed Central

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M.; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M.; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H.; Sanvitto, Daniele

    2015-01-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174

  8. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    PubMed

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  9. Lactation in the Human Breast From a Fluid Dynamics Point of View.

    PubMed

    Negin Mortazavi, S; Geddes, Donna; Hassanipour, Fatemeh

    2017-01-01

    This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.

  10. Urine Flow Dynamics Through Prostatic Urethra With Tubular Organ Modeling Using Endoscopic Imagery

    PubMed Central

    Kambara, Yoichi; Yamanishi, Tomonori; Naya, Yukio; Igarashi, Tatsuo

    2014-01-01

    Voiding dysfunction is common in the aged male population. However, the obstruction mechanism in the lower urinary tract and critical points for obstruction remains uncertain. The aim of this paper was to develop a system to investigate the relationship between voiding dysfunction and alteration of the shape of the prostatic urethra by processing endoscopic video images of the urethra and analyzing the fluid dynamics of the urine stream. A panoramic image of the prostatic urethra was generated from cystourethroscopic video images. A virtual 3-D model of the urethra was constructed using the luminance values in the image. Fluid dynamics using the constructed model was then calculated assuming a static urethra and maximum urine flow rate. Cystourethroscopic videos from 11 patients with benign prostatic hyperplasia were recorded around administration of an alpha-1 adrenoceptor antagonist. The calculated pressure loss through the prostatic urethra in each model corresponded to the prostatic volume, and the improvements of the pressure loss after treatment correlated to the conventional clinical indices. As shown by the proposed method, the shape of the prostatic urethra affects the transporting urine fluid energy, and this paper implies a possible method for detecting critical lesions responsible for voiding dysfunction. The proposed method provides critical information about deformation of the prostatic urethra on voiding function. Detailed differences in the various types of relaxants for the lower urinary tract could be estimated. PMID:27170869

  11. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  12. A 4DCT imaging-based breathing lung model with relative hysteresis

    PubMed Central

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-01-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811

  13. A 4DCT imaging-based breathing lung model with relative hysteresis

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.

  14. Implementation of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for High Performance Computing (HPC). In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for CFD applications.

  15. Performance and Scalability of the NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Schultz, Matthew; Jin, Haoqiang; Yan, Jerry; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Several features make Java an attractive choice for scientific applications. In order to gauge the applicability of Java to Computational Fluid Dynamics (CFD), we have implemented the NAS (NASA Advanced Supercomputing) Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would position Java closer to Fortran in the competition for scientific applications.

  16. Dynamic Failure of Sandwich Beams With Fluid-Structure Interaction Under Impact Loading

    DTIC Science & Technology

    2010-12-01

    constructed using vacuum assisted transfer molding , with a 6.35 mm balsa core and symmetrical plain weave 6 oz E-glass skins. The experiment...consisted of three phases. First, using three- point bending, strain rate characteristics were examined both in air and under water. After establishing...understanding of sandwich composite characteristics subjected to underwater impact. 15. NUMBER OF PAGES 57 14. SUBJECT TERMS Sandwich Composite, Low

  17. Vortex Dynamics

    DTIC Science & Technology

    1989-08-07

    One class (I. discussed in §4) of bifurcating flows is again coiumnar. so there are no axial varations: a second class Il1. §6) consists of solitary...34Amplitude Expansion for Viscous Rotating Pipe Flow Near a Degenerate Bifurcation Point ( A . Mahalov & S. Leibovich) American Physical Society Division of...Fluid Mechanics, Buffalo, NY, November 22, 1988. "Fully Nonlinear Waves on Vortices" ( A . Kribus & S. Leibovich) Seminars "Static bifurcations of vortex

  18. Solving Navier-Stokes equations on a massively parallel processor; The 1 GFLOP performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saati, A.; Biringen, S.; Farhat, C.

    This paper reports on experience in solving large-scale fluid dynamics problems on the Connection Machine model CM-2. The authors have implemented a parallel version of the MacCormack scheme for the solution of the Navier-Stokes equations. By using triad floating point operations and reducing the number of interprocessor communications, they have achieved a sustained performance rate of 1.42 GFLOPS.

  19. The impact of CFD on development test facilities - A National Research Council projection. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Korkegi, R. H.

    1983-01-01

    The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.

  20. 20 plus Years of Computational Fluid Dynamics for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2011-01-01

    This slide presentation reviews the use of computational fluid dynamics in performing analysis of the space shuttle with particular reference to the return to flight analysis and other shuttle problems. Slides show a comparison of pressure coefficient with the shuttle ascent configuration between the wind tunnel test and the computed values. the evolution of the grid system for the space shuttle launch vehicle (SSLv) from the early 80's to one in 2004, the grid configuration of the bipod ramp redesign from the original design to the current configuration, charts with the computations showing solid rocket booster surface pressures from wind tunnel data, calculated over two grid systems (i.e., the original 14 grid system, and the enhanced 113 grid system), and the computed flight orbiter wing loads are compared with strain gage data on STS-50 during flight. The loss of STS-107 initiated an unprecedented review of all external environments. The current SSLV grid system of 600+ grids, 1.8 Million surface points and 95+ million volume points is shown. The inflight entry analyses is shown, and the use of Overset CFD as a key part to many external tank redesign and debris assessments is discussed. The work that still remains to be accomplished for future shuttle flights is discussed.

  1. Communication: Studies of the Lennard-Jones fluid in 2, 3, and 4 dimensions highlight the need for a liquid-state 1/d expansion.

    PubMed

    Costigliola, Lorenzo; Schrøder, Thomas B; Dyre, Jeppe C

    2016-06-21

    The recent theoretical prediction by Maimbourg and Kurchan [e-print arXiv:1603.05023 (2016)] that for regular pair-potential systems the virial potential-energy correlation coefficient increases towards unity as the dimension d goes to infinity is investigated for the standard 12-6 Lennard-Jones fluid. This is done by computer simulations for d = 2, 3, 4 going from the critical point along the critical isotherm/isochore to higher density/temperature. In both cases the virial potential-energy correlation coefficient increases significantly. For a given density and temperature relative to the critical point, with increasing number of dimension the Lennard-Jones system conforms better to the hidden-scale-invariance property characterized by high virial potential-energy correlations (a property that leads to the existence of isomorphs in the thermodynamic phase diagram, implying that it becomes effectively one-dimensional in regard to structure and dynamics). The present paper also gives the first numerical demonstration of isomorph invariance of structure and dynamics in four dimensions. Our findings emphasize the need for a universally applicable 1/d expansion in liquid-state theory; we conjecture that the systems known to obey hidden scale invariance in three dimensions are those for which the yet-to-be-developed 1/d expansion converges rapidly.

  2. Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  3. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  4. Numerical investigation of nonlinear fluid-structure interaction dynamic behaviors under a general Immersed Boundary-Lattice Boltzmann-Finite Element method

    NASA Astrophysics Data System (ADS)

    Gong, Chun-Lin; Fang, Zhe; Chen, Gang

    A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.

  5. Modelling droplet collision outcomes for different substances and viscosities

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Martin; Kuschel, Matthias

    2016-12-01

    The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.

  6. Data center coolant switch

    DOEpatents

    Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.

    2015-10-06

    A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.

  7. Finite Element Modeling of Non-linear Coupled Interacting Fault System

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Zhang, J.; Wyborn, D.

    2009-04-01

    PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool is developed for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials. PANDAS includes the following key components: Pandas/Pre, ESyS_Crustal, Pandas/Thermo, Pandas/Fluid and Pandas/Post as detailed in the following: • Pandas/Pre is developed to visualise the microseismicity events recorded during the hydraulic stimulation process to further evaluate the fracture location and evolution and geological setting of a certain reservoir, and then generate the mesh by it and/or other commercial graphics software (such as Patran) for the further finite element analysis of various cases; The Delaunay algorithm is applied as a suitable method for mesh generation using such a point set; • ESyS_Crustal is a finite element code developed for the interacting fault system simulation, which employs the adaptive static/dynamic algorithm to simulate the dynamics and evolution of interacting fault systems and processes that are relevant on short to mediate time scales in which several dynamic phenomena related with stick-slip instability along the faults need to be taken into account, i.e. (a). slow quasi-static stress accumulation, (b) rapid dynamic rupture, (c) wave propagation and (d) corresponding stress redistribution due to the energy release along the multiple fault boundaries; those are needed to better describe ruputure/microseimicity/earthquake related phenomena with applications in earthquake forecasting, hazard quantification, exploration, and environmental problems. It has been verified with various available experimental results[1-3]; • Pandas/Thermo is a finite element method based module for the thermal analysis of the fractured porous media; the temperature distribution is calculated from the heat transfer induced by the thermal boundary conditions without/with the coupled fluid effects and the geomechanical energy conversion for the pure/coupled thermal analysis. • Pandas/Fluid is a finite element method based module for simulating the fluid flow in the fractured porous media; the fluid flow velocity and pressure are calculated from energy equilibrium equations without/together with the coupling effects of the thermal and solid rock deformation for an independent/coupled fluid flow analysis; • Pandas/Post is to visualise the simulation results through the integration of VTK and/or Patran. All the above modules can be used independently/together to simulate individual/coupled phenomena (such as interacting fault system dynamics, heat flow and fluid flow) without/with coupling effects. PANDAS has been applied to the following issues: • visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e. the permeability) for the further numerical analysis; • interacting fault system simulation to determine the relevant complicated dynamic rupture process. • geomechanical-fluid flow coupling analysis to investigate the interactions between fluid flow and deformation in the fractured porous media under different loading conditions. • thermo-fluid flow coupling analysis of a fractured geothermal reservoir system. PANDAS will be further developed for a multiscale simulation of multiphase dynamic behaviour for a certain fractured geothermal reservoir. More details and additional application examples will be given during the presentation. References [1] Xing, H. L., Makinouchi, A. and Mora, P. (2007). Finite element modeling of interacting fault system, Physics of the Earth and Planetary Interiors, 163, 106-121.doi:10.1016/j.pepi.2007.05.006 [2] Xing, H. L., Mora, P., Makinouchi, A. (2006). An unified friction description and its application to simulation of frictional instability using finite element method. Philosophy Magazine, 86, 3453-3475 [3] Xing, H. L., Mora, P.(2006). Construction of an intraplate fault system model of South Australia, and simulation tool for the iSERVO institute seed project.. Pure and Applied Geophysics. 163, 2297-2316. DOI 10.1007/s00024-006-0127-x

  8. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  9. Chemical vapor deposition fluid flow simulation modelling tool

    NASA Technical Reports Server (NTRS)

    Bullister, Edward T.

    1992-01-01

    Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, A.

    The data presented in these tables were gathered with the use of the Fortran program FLUIDS which was provided by the National Bureau of Standards. Fluid properties at transitional boundaries and points are those obtained with the best fit equation or formula for that particular fluid. Consequently, at such divergent points as the triple and critical points, the accuracy of the properties given by FLUIDS can be off up to 10% in some cases. In listing the critical and triple point conditions within, values were taken from the National Bureau of Standards' publication ''Thermodynamic Properties of Argon'', not from FLUIDS.more » Outside of these two points, however, the error in FLUIDS is minimal, thus all other data in these tables were obtained through FLUIDS. The Temperature-Entropy Chart for Argon is also taken from NBS' ''Thermodynamic Properties of Argon''.« less

  11. Influence of the rotor-stator interaction on the dynamic stresses of Francis runners

    NASA Astrophysics Data System (ADS)

    Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.

    2012-11-01

    Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its dynamic behaviour using the CFD results are carried out. These calculations will show that the RSI on the medium head Francis runner does not create damage on the runner even if the natural frequencies are closed to the wicket gates passing frequency. The numerical results are reinforced by experimental observations done on runner prototypes showing that the wicket gates passing frequency does not have significant influence on low and medium head Francis runner behaviour.

  12. Computational Fluid Dynamics (CFD) study of the 4th generation prototype of a continuous flow Ventricular Assist Device (VAD).

    PubMed

    Song, Xinwei; Wood, Houston G; Olsen, Don

    2004-04-01

    The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.

  13. Ringin' the water bell: dynamic modes of curved fluid sheets

    NASA Astrophysics Data System (ADS)

    Kolinski, John; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran

    2015-11-01

    A water bell is formed by fluid flowing in a thin, coherent sheet in the shape of a bell. Experimentally, a water bell is created via the impact of a cylindrical jet on a flat surface. Its shape is set by the splash angle (the separation angle) of the resulting cylindrically symmetric water sheet. The separation angle is altered by adjusting the height of a lip surrounding the impact point, as in a water sprinkler. We drive the lip's height sinusoidally, altering the separation angle, and ringin' the water bell. This forcing generates disturbances on the steady-state water bell that propagate forward and backward in the fluid's reference frame at well-defined velocities, and interact, resulting in the emergence of an interference pattern unique to each steady-state geometry. We analytically model these dynamics by linearizing the amplitude of the bell's response about the underlying curved geometry. This simple model predicts the nodal structure over a wide range of steady-state water bell configurations and driving frequencies. Due to the curved water bell geometry, the nodal structure is quite complex; nevertheless, the predicted nodal structure agrees extremely well with the experimental data. When we drive the bell beyond perturbative separation angles, the nodal locations surprisingly persist, despite the strikingly altered underlying water bell shape. At extreme driving amplitudes the water sheet assumes a rich variety of tortuous, non-convex shapes; nevertheless, the fluid sheet remains intact.

  14. Stokes-Einstein relation for pure simple fluids.

    PubMed

    Cappelezzo, M; Capellari, C A; Pezzin, S H; Coelho, L A F

    2007-06-14

    The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by alpha, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (alpha=4) can be satisfied in some state points. An intermediate value of alpha=5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (alpha=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for alpha in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.

  15. Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media

    NASA Astrophysics Data System (ADS)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2018-01-01

    The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.

  16. Milestones in Rotorcraft Aeromechanics

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2011-01-01

    The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer needs: performance, loads, vibration, stability, flight dynamics, noise. These topics cover many of the key performance attributes, and many of the often-encountered problems in rotorcraft designs. A milestone is a critical achievement, a turning point, an event marking a significant change or stage in development. The milestones identified and discussed include the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, and rotor airloads tests. The focus on milestones limits the scope of the history, but allows the author to acknowledge his choices for key steps in the development of the science and engineering of rotorcraft.

  17. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  18. Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction

    DTIC Science & Technology

    2012-09-01

    fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as

  19. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra Thermal/Fluid Team

    SIERRA/Aero is a compressible fluid dynamics program intended to solve a wide variety compressible fluid flows including transonic and hypersonic problems. This document describes the commands for assembling a fluid model for analysis with this module, henceforth referred to simply as Aero for brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to provide a set of tools for handling common tasks that programmers encounter when developing a code for numerical simulation. For example, components of STK provide field allocation and management, and parallel input/output of field and mesh data. These services alsomore » allow the development of coupled mechanics analysis software for a massively parallel computing environment. In the definitions of the commands that follow, the term Real_Max denotes the largest floating point value that can be represented on a given computer. Int_Max is the largest such integer value.« less

  1. Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suga, Kazuhiko; Mori, Yuki; Moritani, Rintaro; Kaneda, Masayuki

    2018-05-01

    Molecular dynamics simulations are carried out to investigate the geometry effects of diatomic molecules on liquid flows in carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n ,n ) (n =6 -20 ) CNTs. The simulated fluid temperature and bulk pressure for the liquid state are T =133 K and ρb=1346 kg/m 3 , respectively. In the agglomerated molecular cluster, nanoconfinement-induced structural changes are observed. As the CNT diameter decreases, it is confirmed that the flow rate significantly increases with irregular trends (discontinuity points in the profiles). From the discussion of the structure of the agglomerated fluid molecules, it is found that those trends are not simply caused by the structural changes. The main factor to induce the irregularity is confirmed to be the interlayer molecular movement affected by the combination of the molecular geometry and the arrangement of the multilayered structure.

  2. Advanced Multigrid Solvers for Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Brandt, Achi

    1999-01-01

    The main objective of this project has been to support the development of multigrid techniques in computational fluid dynamics that can achieve "textbook multigrid efficiency" (TME), which is several orders of magnitude faster than current industrial CFD solvers. Toward that goal we have assembled a detailed table which lists every foreseen kind of computational difficulty for achieving it, together with the possible ways for resolving the difficulty, their current state of development, and references. We have developed several codes to test and demonstrate, in the framework of simple model problems, several approaches for overcoming the most important of the listed difficulties that had not been resolved before. In particular, TME has been demonstrated for incompressible flows on one hand, and for near-sonic flows on the other hand. General approaches were advanced for the relaxation of stagnation points and boundary conditions under various situations. Also, new algebraic multigrid techniques were formed for treating unstructured grid formulations. More details on all these are given below.

  3. Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers

    NASA Astrophysics Data System (ADS)

    Newton, P. K.; Meiburg, Eckart

    1991-05-01

    The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.

  4. ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems.

    PubMed

    Niethammer, Christoph; Becker, Stefan; Bernreuther, Martin; Buchholz, Martin; Eckhardt, Wolfgang; Heinecke, Alexander; Werth, Stephan; Bungartz, Hans-Joachim; Glass, Colin W; Hasse, Hans; Vrabec, Jadran; Horsch, Martin

    2014-10-14

    The molecular dynamics simulation code ls1 mardyn is presented. It is a highly scalable code, optimized for massively parallel execution on supercomputing architectures and currently holds the world record for the largest molecular simulation with over four trillion particles. It enables the application of pair potentials to length and time scales that were previously out of scope for molecular dynamics simulation. With an efficient dynamic load balancing scheme, it delivers high scalability even for challenging heterogeneous configurations. Presently, multicenter rigid potential models based on Lennard-Jones sites, point charges, and higher-order polarities are supported. Due to its modular design, ls1 mardyn can be extended to new physical models, methods, and algorithms, allowing future users to tailor it to suit their respective needs. Possible applications include scenarios with complex geometries, such as fluids at interfaces, as well as nonequilibrium molecular dynamics simulation of heat and mass transfer.

  5. Fluid Dynamics Lagrangian Simulation Model

    DTIC Science & Technology

    1994-02-08

    In recent experimental studies by Ramberg where all variables are non -dimensionalised by h and et al.6 and Swean et al.s.7 single-point hot-film mea- 0...determining the effect on the vortex street of superimposing a small perturbation on the incident mean flow upstream of the cylinder. Experimental work...region. The results were compared with experimental data and with data obtained numerically by other 0 investigators, who had not attempted to define the

  6. Implementation of NAS Parallel Benchmarks in Java

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Schultz, Matthew; Jin, Hao-Qiang; Yan, Jerry

    2000-01-01

    A number of features make Java an attractive but a debatable choice for High Performance Computing (HPC). In order to gauge the applicability of Java to the Computational Fluid Dynamics (CFD) we have implemented NAS Parallel Benchmarks in Java. The performance and scalability of the benchmarks point out the areas where improvement in Java compiler technology and in Java thread implementation would move Java closer to Fortran in the competition for CFD applications.

  7. Turbulence and deterministic chaos. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1992-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, largest Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low Reynolds number fully developed turbulence are compared. Several flows are noted: fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, only fully chaotic is classified as turbulent. Besides the sustained flows, a flow which decays as it becomes turbulent is examined. For the finest grid, 128(exp 3) points, the spatial resolution appears to be quite good. As a final note, the variation of the velocity derivatives skewness of a Navier-Stokes flow as the Reynolds number goes to zero is calculated numerically. The value of the skewness is shown to become small at low Reynolds numbers, in agreement with intuitive arguments that nonlinear terms should be negligible.

  8. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  9. Equilibrium points of the tilted perfect fluid Bianchi VIh state space

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Pantelis S.

    2005-05-01

    We present the full set of evolution equations for the spatially homogeneous cosmologies of type VIh filled with a tilted perfect fluid and we provide the corresponding equilibrium points of the resulting dynamical state space. It is found that only when the group parameter satisfies h > -1 a self-similar solution exists. In particular we show that for h > -{1/9} there exists a self-similar equilibrium point provided that γ ∈ ({2(3+sqrt{-h})/5+3sqrt{-h}},{3/2}) whereas for h < -{frac 19} the state parameter belongs to the interval γ ∈(1,{2(3+sqrt{-h})/5+3sqrt{-h}}). This family of new exact self-similar solutions belongs to the subclass nαα = 0 having non-zero vorticity. In both cases the equilibrium points have a six-dimensional stable manifold and may act as future attractors at least for the models satisfying nαα = 0. Also we give the exact form of the self-similar metrics in terms of the state and group parameter. As an illustrative example we provide the explicit form of the corresponding self-similar radiation model (γ = {frac 43}), parametrised by the group parameter h. Finally we show that there are no tilted self-similar models of type III and irrotational models of type VIh.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattari, Sulimon, E-mail: ssattari2@ucmerced.edu; Chen, Qianting, E-mail: qchen2@ucmerced.edu; Mitchell, Kevin A., E-mail: kmitchell@ucmerced.edu

    Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding ofmore » ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.« less

  11. Dynamical system analysis for DBI dark energy interacting with dark matter

    NASA Astrophysics Data System (ADS)

    Mahata, Nilanjana; Chakraborty, Subenoy

    2015-01-01

    A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.

  12. Aeroelastic Modeling of a Nozzle Startup Transient

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2014-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,

  13. Splashing Droplets

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Kizito, John Patrick; Berger, Gordon M.; Iwan, J.; Alexander, D.; Tryggvason, Gretar

    2002-01-01

    Current data on droplet breakup is scarce for the sizes and velocities typical of practical applications such as in spray combustion processes and coating processes. While much more representative of practical applications, the small spatial scales and rapid time-scales prevent detailed measurement of the internal fluid dynamics and liquid property gradients produced by impinging upon surfaces. Realized through the extended spatial and temporal scales afforded by a microgravity environment, an improved understanding of drop breakup dynamics is sought to understand and ultimately control the impingement dynamics of droplets upon surfaces in practical situations. The primary objective of this research will be to mark the onset of different 'splashing modes' and to determine their temperature, pressure and angle dependence for impinging droplets representative of practical fluids. In addition, we are modeling the evolution of droplets that do not initially splash but rather undergo a 'fingering' evolution observed on the spreading fluid front and the transformation of these fingers into splashed products. An example of our experimental data is presented below. These images are of Isopar V impacting a mirror-polished surface. They were acquired using a high-speed camera at 1000 frames per second. They show the spreading of a single droplet after impact and ensuing finger instabilities. Normal gravity experimental data such as this will guide low gravity measurements in the 2.2 second drop tower and KC-135 aircraft as available. Presently we are in the process of comparing the experimental data of droplet shape evolution to numerical models, which can also capture the internal fluid dynamics and liquid property gradients such as produced by impingement upon a heated surface. To-date isothermal numerical data has been modeled using direct numerical simulations of representative splashing droplets. The data obtained so far indicates that the present model describes well the droplet wall interactions to a point in time just before splash. Additional information is included in the original extended abstract.

  14. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  15. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  16. Twitter and Non-Elites: Interpreting Power Dynamics in the Life Story of the (#)BRCA Twitter Stream

    PubMed Central

    Vicari, Stefania

    2017-01-01

    In May 2013 and March 2015, actress Angelina Jolie wrote in the New York Times about her choice to undergo preventive surgery. In her two op-eds, she explained that − as a carrier of the BRCA1 gene mutation − preventive surgery was the best way to lower her heightened risk of developing breast and ovarian cancer. By applying a digital methods approach to BRCA-related tweets from 2013 and 2015, before, during, and after the exposure of Jolie’s story, this study maps and interprets Twitter discursive dynamics at two time points of the BRCA Twitter stream. Findings show an evolution in curation and framing dynamics occurring between 2013 and 2015, with individual patient advocates replacing advocacy organizations as top curators of BRCA content and coming to prominence as providers of specialist illness narratives. These results suggest that between 2013 and 2015, Twitter went from functioning primarily as an organization-centered news reporting mechanism, to working as a crowdsourced specialist awareness system. This article advances a twofold contribution. First, it points at Twitter’s fluid functionality for an issue public and suggests that by looking at the life story—rather than at a single time point—of an issue-based Twitter stream, we can track the evolution of power roles underlying discursive practices and better interpret the emergence of non-elite actors in the public arena. Second, the study provides evidence of the rise of activist cultures that rely on fluid, non-elite, collective, and individual social media engagement. PMID:29278246

  17. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow

    NASA Astrophysics Data System (ADS)

    Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.

    2018-02-01

    The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

  18. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0250] Computational Fluid Dynamics Best Practice... public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask... System (ADAMS): You may access publicly-available documents online in the NRC Library at http://www.nrc...

  19. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Experimental and computational fluid dynamic activities in rocket propulsion were discussed. The workshop was an open meeting of government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  20. Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1992-01-01

    Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  1. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  2. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1

    NASA Technical Reports Server (NTRS)

    Williams, Robert W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  3. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  4. Fluid Structure Interaction in a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.

    2004-01-01

    An unsteady, three dimensional Navier-Stokes solution in rotating frame formulation for turbomachinery applications is presented. Casting the governing equations in a rotating frame enabled the freezing of grid motion and resulted in substantial savings in computer time. The turbine blade was computationally simulated and probabilistically evaluated in view of several uncertainties in the aerodynamic, structural, material and thermal variables that govern the turbine blade. The interconnection between the computational fluid dynamics code and finite element structural analysis code was necessary to couple the thermal profiles with the structural design. The stresses and their variations were evaluated at critical points on the Turbine blade. Cumulative distribution functions and sensitivity factors were computed for stress responses due to aerodynamic, geometric, mechanical and thermal random variables.

  5. Numerical Simulation of the ``Fluid Mechanical Sewing Machine''

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2011-11-01

    A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.

  6. An Interpretation of the Laminar-Turbulent Transition Startup against the Consideration of the Transverse Viscosity Factor

    NASA Astrophysics Data System (ADS)

    Kolodezhnov, V. N.

    2018-03-01

    This paper proposes a rheological model of a fluid having the Newtonian model applicability limit and a potential for further “addition” of the transverse viscosity factor. The dynamic equations for a fluid that has such rheological model are discussed, the analysis of which demonstrates the possibility of “generating” the cross stream velocity components. The transition to the dimensionless notation introduces four dimensionless complexes of local characterization for the transition conditions in the neighborhood of the flow region point in question. Based on such dimensionless complexes and using the known experimental data, the empiric conditions of “generating” the cross stream velocity components and starting the laminar-turbulent transition are proposed.

  7. Hydrodynamic model for conductivity in graphene.

    PubMed

    Mendoza, M; Herrmann, H J; Succi, S

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.

  8. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature

    NASA Astrophysics Data System (ADS)

    Demmel, F.; Tani, A.

    2018-06-01

    For liquid rubidium the Stokes-Einstein (SE) relation is well fulfilled near the melting point with an effective hydrodynamic diameter, which agrees well with a value from structural investigations. A wealth of thermodynamic and microscopic data exists for a wide range of temperatures for liquid rubidium and hence it represents a good test bed to challenge the SE relation with rising temperature from an experimental point of view. We performed classical molecular dynamics simulations to complement the existing experimental data using a pseudopotential, which describes perfectly the structure and dynamics of liquid rubidium. The derived SE relation from combining experimental shear viscosity data with simulated diffusion coefficients reveals a weak violation at about 1.3 Tmelting≈400 K. The microscopic relaxation dynamics on nearest neighbor distances from neutron spectroscopy demonstrate distinct changes in the amplitude with rising temperature. The derived average relaxation time for density fluctuations on this length scale shows a non-Arrhenius behavior, with a slope change around 1.5 Tmelting≈450 K. Combining the simulated macroscopic self-diffusion coefficient with that microscopic average relaxation time, a distinct violation of the SE relation in the same temperature range can be demonstrated. One can conclude that the changes in the collective dynamics, a mirror of the correlated movements of the particles, are at the origin for the violation of the SE relation. The changes in the dynamics can be understood as a transition from a more viscous liquid metal to a more fluid-like liquid above the crossover temperature range of 1.3-1.5 Tmelting. The decay of the amplitude of density fluctuations in liquid aluminium, lead, and rubidium demonstrates a remarkable agreement and points to a universal thermal crossover in the dynamics of liquid metals.

  9. Boiling point measurement of a small amount of brake fluid by thermocouple and its application.

    PubMed

    Mogami, Kazunari

    2002-09-01

    This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.

  10. Fluid Mechanics.

    ERIC Educational Resources Information Center

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  11. Historical evolution of vortex-lattice methods

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1976-01-01

    A review of the beginning and some orientation of the vortex-lattice method were given. The historical course of this method was followed in conjunction with its field of computational fluid dynamics, spanning the period from L.F. Richardson's paper in 1910 to 1975. The following landmarks were pointed out: numerical analysis of partial differential equations, lifting-line theory, finite-difference method, 1/4-3/4 rule, block relaxation technique, application of electronic computers, and advanced panel methods.

  12. Engineering Design Handbook. Explosions in Air. Part One

    DTIC Science & Technology

    1974-07-15

    Characteristics in the 6. R. E. Shear, Detonation Properties of Calculation of Non-Steady Compressible Pentolite, BRL Rept. No. 1159, 1961. Flows, Los Alamos ...6 (June 1955). Particle-and-Force Method, Los Alamos Sci. Lab., LA 3144, September 1964. 19. H. L Brode, Point Source Explosion in Air, The Rand Corp...RM-1824-AEC, 29. F. H. Harlow and B. D. Meixner, The December 3, 1956. Particle-and-Force Computing Method in Fluid Dynamics, Los Alamos Scientific

  13. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    DTIC Science & Technology

    2016-04-01

    fields associated with these control mechanisms for US Army weapons are complex, involving 3-dimensional (3-D) shock- boundary layer interactions...distribution over the rear finned section and thus produce control forces and moments. Dykes et al.6 used a flat - plate fin interaction design of...cells—tetrahedrals, triangular prisms, and pyramids—were used in the mesh. Grid points shown in Fig. 3a were clustered in the boundary layer region

  14. Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade

    DTIC Science & Technology

    2016-11-01

    turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis

  15. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  16. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  17. Fluid transport properties by equilibrium molecular dynamics. I. Methodology at extreme fluid states

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.; Fuchs, A. H.; Rousseau, B.

    1999-02-01

    The Green-Kubo formalism for evaluating transport coefficients by molecular dynamics has been applied to flexible, multicenter models of linear and branched alkanes in the gas phase and in the liquid phase from ambient conditions to close to the triple point. The effects of integration time step, potential cutoff and system size have been studied and shown to be small compared to the computational precision except for diffusion in gaseous n-butane. The RATTLE algorithm is shown to give accurate transport coefficients for time steps up to a limit of 8 fs. The different relaxation mechanisms in the fluids have been studied and it is shown that the longest relaxation time of the system governs the statistical precision of the results. By measuring the longest relaxation time of a system one can obtain a reliable error estimate from a single trajectory. The accuracy of the Green-Kubo method is shown to be as good as the precision for all states and models used in this study even when the system relaxation time becomes very long. The efficiency of the method is shown to be comparable to nonequilibrium methods. The transport coefficients for two recently proposed potential models are presented, showing deviations from experiment of 0%-66%.

  18. Modeling and Simulation of Cardiogenic Embolic Particle Transport to the Brain

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debanjan; Jani, Neel; Shadden, Shawn C.

    2015-11-01

    Emboli are aggregates of cells, proteins, or fatty material, which travel along arteries distal to the point of their origin, and can potentially block blood flow to the brain, causing stroke. This is a prominent mechanism of stroke, accounting for about a third of all cases, with the heart being a prominent source of these emboli. This work presents our investigations towards developing numerical simulation frameworks for modeling the transport of embolic particles originating from the heart along the major arteries supplying the brain. The simulations are based on combining discrete particle method with image based computational fluid dynamics. Simulations of unsteady, pulsatile hemodynamics, and embolic particle transport within patient-specific geometries, with physiological boundary conditions, are presented. The analysis is focused on elucidating the distribution of particles, transport of particles in the head across the major cerebral arteries connected at the Circle of Willis, the role of hemodynamic variables on the particle trajectories, and the effect of considering one-way vs. two-way coupling methods for the particle-fluid momentum exchange. These investigations are aimed at advancing our understanding of embolic stroke using computational fluid dynamics techniques. This research was supported by the American Heart Association grant titled ``Embolic Stroke: Anatomic and Physiologic Insights from Image-Based CFD.''

  19. Large effect of membrane tension on the fluid-solid phase transitions of two-component phosphatidylcholine vesicles.

    PubMed

    Chen, Dong; Santore, Maria M

    2014-01-07

    Model phospholipid membranes and vesicles have long provided insight into the nature of confined materials and membranes while also providing a platform for drug delivery. The rich thermodynamic behavior and interesting domain shapes in these membranes have previously been mapped in extensive studies that vary temperature and composition; however, the thermodynamic impact of tension on bilayers has been restricted to recent reports of subtly reduced fluid-fluid transition temperatures. In two-component phosphatidylcholine unilamellar vesicles [1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)], we report a dramatic influence of tension on the fluid-solid transition and resulting phases: At fixed composition, systematic variations in tension produce differently shaped solid domains (striped or irregular hexagons), shift fluid-solid transition temperatures, and produce a triple-point-like intersection of coexistence curves at elevated tensions, about 3 mN/m for 30% DOPC/70% DPPC. Tension therefore represents a potential switch of microstructure in responsive engineered materials; it is an important morphology-determining variable in confined systems, and, in biological membranes, it may provide a means to regulate dynamic structure.

  20. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  1. Numerical Study of the Cerebro-Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

    DTIC Science & Technology

    2001-10-25

    THE CEREBRO -SPINAL FLUID (CSF) DYNAMICS UNDER QUASI- STATIC CONDITION DURING A CARDIAC CYCLE Loïc FIN, Reinhard GREBE, Olivier BALÉDENT, Ilana...from... to) - Title and Subtitle Numerical Study of the Cerebro -Spinal Fluid (CSF) Dynamics Under Quasistatic Condition During a Cardiac Cycle

  2. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; ...

    2015-11-05

    We report that supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only alongmore » isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.« less

  3. SAGE: The Self-Adaptive Grid Code. 3

    NASA Technical Reports Server (NTRS)

    Davies, Carol B.; Venkatapathy, Ethiraj

    1999-01-01

    The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.

  4. Results of Microgravity Fluid Dynamics Captured With the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  5. Result of Microgravity Fluid Dynamics Captured with the SPHERES-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  6. Experimental study of the heated contact line region for a pure fluid and binary fluid mixture in microgravity.

    PubMed

    Nguyen, Thao T T; Kundan, Akshay; Wayner, Peter C; Plawsky, Joel L; Chao, David F; Sicker, Ronald J

    2017-02-15

    Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Results of Microgravity Fluid Dynamics Captured with the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel Robert; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Jeffrey Moder

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  8. Relativistic Fluid Dynamics Far From Local Equilibrium

    NASA Astrophysics Data System (ADS)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  9. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kannappan, K. Thiruppathi, E-mail: thiruppathi.ka@gmail.com; Laherisheth, Zarana; Parekh, Kinnari

    2015-06-24

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe{sub 3}O{sub 4} nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe{sub 3}O{sub 4} particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles alignmore » along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.« less

  10. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  11. Crowding of Interacting Fluid Particles in Porous Media through Molecular Dynamics: Breakdown of Universality for Soft Interactions.

    PubMed

    Schnyder, Simon K; Horbach, Jürgen

    2018-02-16

    Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.

  12. Crowding of Interacting Fluid Particles in Porous Media through Molecular Dynamics: Breakdown of Universality for Soft Interactions

    NASA Astrophysics Data System (ADS)

    Schnyder, Simon K.; Horbach, Jürgen

    2018-02-01

    Molecular dynamics simulations of interacting soft disks confined in a heterogeneous quenched matrix of soft obstacles show dynamics which is fundamentally different from that of hard disks. The interactions between the disks can enhance transport when their density is increased, as disks cooperatively help each other over the finite energy barriers in the matrix. The system exhibits a transition from a diffusive to a localized state, but the transition is strongly rounded. Effective exponents in the mean-squared displacement can be observed over three decades in time but depend on the density of the disks and do not correspond to asymptotic behavior in the vicinity of a critical point, thus, showing that it is incorrect to relate them to the critical exponents in the Lorentz model scenario. The soft interactions are, therefore, responsible for a breakdown of the universality of the dynamics.

  13. Study on hydraulic characteristics of mine dust-proof water supply network

    NASA Astrophysics Data System (ADS)

    Deng, Quanlong; Jiang, Zhongan; Han, Shuo; Fu, Enqi

    2018-01-01

    In order to study the hydraulic characteristics of mine dust-proof water supply network and obtain the change rule of water consumption and water pressure, according to the similarity principle and the fluid continuity equation and energy equation, the similarity criterion of mine dust-proof water supply network is deduced, and a similar model of dust-proof water supply network is established based on the prototype of Kailuan Group, the characteristics of hydraulic parameters in water supply network are studied experimentally. The results show that water pressure at each point is a dynamic process, and there is a negative correlation between water pressure and water consumption. With the increase of water consumption, the pressure of water points show a decreasing trend. According to the structure of the pipe network and the location of the water point, the influence degree on the pressure of each point is different.

  14. Pressure Ratio to Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro; Wang, Winston

    2012-01-01

    A pressure ratio to thermal environments (PRatTlE.pl) program is a Perl language code that estimates heating at requested body point locations by scaling the heating at a reference location times a pressure ratio factor. The pressure ratio factor is the ratio of the local pressure at the reference point and the requested point from CFD (computational fluid dynamics) solutions. This innovation provides pressure ratio-based thermal environments in an automated and traceable method. Previously, the pressure ratio methodology was implemented via a Microsoft Excel spreadsheet and macro scripts. PRatTlE is able to calculate heating environments for 150 body points in less than two minutes. PRatTlE is coded in Perl programming language, is command-line-driven, and has been successfully executed on both the HP and Linux platforms. It supports multiple concurrent runs. PRatTlE contains error trapping and input file format verification, which allows clear visibility into the input data structure and intermediate calculations.

  15. Computational and Experimental Investigations of the Molecular Scale Structure and Dynamics of Gologically Important Fluids and Mineral-Fluid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Geoffrey

    United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).

  16. The role of surface vorticity during unsteady separation

    NASA Astrophysics Data System (ADS)

    Melius, Matthew S.; Mulleners, Karen; Cal, Raúl Bayoán

    2018-04-01

    Unsteady flow separation in rotationally augmented flow fields plays a significant role in a variety of fundamental flows. Through the use of time-resolved particle image velocimetry, vorticity accumulation and vortex shedding during unsteady separation over a three-dimensional airfoil are examined. The results of the study describe the critical role of surface vorticity accumulation during unsteady separation and reattachment. Through evaluation of the unsteady characteristics of the shear layer, it is demonstrated that the buildup and shedding of surface vorticity directly influence the dynamic changes of the separation point location. The quantitative characterization of surface vorticity and shear layer stability enables improved aerodynamic designs and has a broad impact within the field of unsteady fluid dynamics.

  17. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  18. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

    PubMed Central

    Kwee, Ingrid L.

    2017-01-01

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics. PMID:28820467

  19. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow.

    PubMed

    Nakada, Tsutomu; Kwee, Ingrid L; Igarashi, Hironaka; Suzuki, Yuji

    2017-08-18

    The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pressure created by the systolic force of the heart, essential for interstitial circulation and lymphatic flow in systemic circulation, is effectively impeded from propagating into the interstitial fluid inside the BBB by the tightly sealed endothelium of brain capillaries. Instead, fluid dynamics inside the BBB is realized by aquaporin-4 (AQP-4), the water channel that connects astrocyte cytoplasm and extracellular (interstitial) fluid. Brain interstitial fluid dynamics, and therefore AQP-4, are now recognized as essential for two unique functions, namely, neurovascular coupling and glymphatic flow, the brain equivalent of systemic lymphatics.

  20. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  1. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  2. CFD Validation with LDV Test Data for Payload/Fairing Internal Flow

    NASA Technical Reports Server (NTRS)

    Kandula, max; Hammad, Khaled; Schallhorn, Paul

    2005-01-01

    Flowfield testing of a 1/5th scale model of a payload/fairing configuration, typical of an expendable launch vehicle, has been performed. Two-dimensional (planar) velocity measurements were carried out in four planes with the aid of Laser Doppler Velocimetry (LDV). Computational Fluid Dynamics (CFD) analysis results for the scale model flowfleld are compared with the test data. The CFD results are in general agreement with the test data. The ability of the CFD methodology in identifying the global flow features (including critical points such as vortex, saddle point, etc.) has been demonstrated. Practical problems and difficulties associated with the LDV method applied to the complex geometry under consideration have been summarized.

  3. Three-dimensional elliptic grid generation technique with application to turbomachinery cascades

    NASA Technical Reports Server (NTRS)

    Chen, S. C.; Schwab, J. R.

    1988-01-01

    Described is a numerical method for generating 3-D grids for turbomachinery computational fluid dynamic codes. The basic method is general and involves the solution of a quasi-linear elliptic partial differential equation via pointwise relaxation with a local relaxation factor. It allows specification of the grid point distribution on the boundary surfaces, the grid spacing off the boundary surfaces, and the grid orthogonality at the boundary surfaces. A geometry preprocessor constructs the grid point distributions on the boundary surfaces for general turbomachinery cascades. Representative results are shown for a C-grid and an H-grid for a turbine rotor. Two appendices serve as user's manuals for the basic solver and the geometry preprocessor.

  4. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  5. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  6. F*** Yeah Fluid Dynamics: Lessons from online outreach

    NASA Astrophysics Data System (ADS)

    Sharp, Nicole

    2013-11-01

    The fluid dynamics education outreach blog FYFD features photos, videos, and research along with concise, accessible explanations of phenomena every weekday. Over the past three years, the blog has attracted an audience of roughly 200,000 online followers. Reader survey results indicate that over half of the blog's audience works or studies in non-fluids fields. Twenty-nine percent of all survey respondents indicate that FYFD has been a positive influence on their desire to pursue fluid dynamics in their education or career. Of these positively influenced readers, over two-thirds have high-school or undergraduate-level education, indicating a significant audience of potential future fluid dynamicists. This talk will utilize a mixture of reader metrics, web analytics, and anecdotal evidence to discuss what makes science outreach successful and how we, as a community, can benefit from promoting fluid dynamics to a wider audience. http://tinyurl.com/azjjgj2

  7. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  8. Wall shear stress fixed points in cardiovascular fluid mechanics.

    PubMed

    Arzani, Amirhossein; Shadden, Shawn C

    2018-05-17

    Complex blood flow in large arteries creates rich wall shear stress (WSS) vectorial features. WSS acts as a link between blood flow dynamics and the biology of various cardiovascular diseases. WSS has been of great interest in a wide range of studies and has been the most popular measure to correlate blood flow to cardiovascular disease. Recent studies have emphasized different vectorial features of WSS. However, fixed points in the WSS vector field have not received much attention. A WSS fixed point is a point on the vessel wall where the WSS vector vanishes. In this article, WSS fixed points are classified and the aspects by which they could influence cardiovascular disease are reviewed. First, the connection between WSS fixed points and the flow topology away from the vessel wall is discussed. Second, the potential role of time-averaged WSS fixed points in biochemical mass transport is demonstrated using the recent concept of Lagrangian WSS structures. Finally, simple measures are proposed to quantify the exposure of the endothelial cells to WSS fixed points. Examples from various arterial flow applications are demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Orbit Transfer Vehicle (OTV) advanced expander cycle engine point design study. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.

  10. Mingus Discontinuous Multiphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pat Notz, Dan Turner

    Mingus provides hybrid coupled local/non-local mechanics analysis capabilities that extend several traditional methods to applications with inherent discontinuities. Its primary features include adaptations of solid mechanics, fluid dynamics and digital image correlation that naturally accommodate dijointed data or irregular solution fields by assimilating a variety of discretizations (such as control volume finite elements, peridynamics and meshless control point clouds). The goal of this software is to provide an analysis framework form multiphysics engineering problems with an integrated image correlation capability that can be used for experimental validation and model

  11. The Influence of Dynamic Contact Angle on Wetting Dynamics

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Steven

    2005-01-01

    When surface tension forces dominate, and regardless of whether the situation is static or dynamic, the contact angle (the angle the interface between two immiscible fluids makes when it contacts a solid) is the key parameter that determines the shape of a fluid-fluid interface. The static contact angle is easy to measure and implement in models predicting static capillary surface shapes and such associated quantities as pressure drops. By contrast, when the interface moves relative to the solid (as in dynamic wetting processes) the dynamic contact angle is not identified unambiguously because it depends on the geometry of the system Consequently, its determination becomes problematic and measurements in one geometry cannot be applied in another for prediction purposes. However, knowing how to measure and use the dynamic contact angle is crucial to determine such dynamics as a microsystem throughput reliably. In this talk we will present experimental and analytical efforts aimed at resolving modeling issues present in dynamic wetting. We will review experiments that show the inadequacy of the usual hydrodynamic model when a fluid-fluid meniscus moves over a solid surface such as the wall of a small tube or duct. We will then present analytical results that show how to parametrize these problems in a predictive manner. We will illustrate these ideas by showing how to implement the method in numerical fluid mechanical calculations.

  12. Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.

    2017-04-01

    The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.

  13. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  14. Automated Static Culture System Cell Module Mixing Protocol and Computational Fluid Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,

    2004-01-01

    This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.

  15. Fluid Dynamics Lagrangian Simulation Model

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1994-02-01

    The work performed by Science Applications International Corporation (SAIC) on this contract, Fluid Dynamics Lagrangian Simulation Model, Contract Number N00014-89-C-2106, SAIC Project Number 01-0157-03-0768, focused on a number of research topics in fluid dynamics. The work was in support of the programs of NRL's Laboratory for Computational Physics and Fluid Dynamics and covered the period from 10 September 1989 to 9 December 1993. In the following sections, we describe each of the efforts and the results obtained. Much of the research work has resulted in journal publications. These are included in Appendices of this report for which the reader is referred for complete details.

  16. On the diverse roles of fluid dynamic drag in animal swimming and flying

    PubMed Central

    2018-01-01

    Questions of energy dissipation or friction appear immediately when addressing the problem of a body moving in a fluid. For the most simple problems, involving a constant steady propulsive force on the body, a straightforward relation can be established balancing this driving force with a skin friction or form drag, depending on the Reynolds number and body geometry. This elementary relation closes the full dynamical problem and sets, for instance, average cruising velocity or energy cost. In the case of finite-sized and time-deformable bodies though, such as flapping flyers or undulatory swimmers, the comprehension of driving/dissipation interactions is not straightforward. The intrinsic unsteadiness of the flapping and deforming animal bodies complicates the usual application of classical fluid dynamic forces balance. One of the complications is because the shape of the body is indeed changing in time, accelerating and decelerating perpetually, but also because the role of drag (more specifically the role of the local drag) has two different facets, contributing at the same time to global dissipation and to driving forces. This causes situations where a strong drag is not necessarily equivalent to inefficient systems. A lot of living systems are precisely using strong sources of drag to optimize their performance. In addition to revisiting classical results under the light of recent research on these questions, we discuss in this review the crucial role of drag from another point of view that concerns the fluid–structure interaction problem of animal locomotion. We consider, in particular, the dynamic subtleties brought by the quadratic drag that resists transverse motions of a flexible body or appendage performing complex kinematics, such as the phase dynamics of a flexible flapping wing, the propagative nature of the bending wave in undulatory swimmers, or the surprising relevance of drag-based resistive thrust in inertial swimmers. PMID:29445037

  17. Granular materials flow like complex fluids

    NASA Astrophysics Data System (ADS)

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax even when the driving strain is weak.

  18. Simultaneous Multiple-Location Separation Control

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2009-01-01

    A method of controlling a shear layer for a fluid dynamic body introduces first periodic disturbances into the fluid medium at a first flow separation location. Simultaneously, second periodic disturbances are introduced into the fluid medium at a second flow separation location. A phase difference between the first and second periodic disturbances is adjusted to control flow separation of the shear layer as the fluid medium moves over the fluid dynamic body.

  19. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    PubMed

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating".

  20. Hydrodynamic Model for Conductivity in Graphene

    PubMed Central

    Mendoza, M.; Herrmann, H. J.; Succi, S.

    2013-01-01

    Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277

  1. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Brian; Jackson, R. Brian

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less

  2. Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement

    NASA Astrophysics Data System (ADS)

    Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali

    2018-02-01

    Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.

  3. Contamination control in HVAC systems for aseptic processing area. Part I: Case study of the airflow velocity in a unidirectional airflow workstation with computational fluid dynamics.

    PubMed

    Ogawa, M

    2000-01-01

    A unidirectional airflow workstation for processing a sterile pharmaceutical product is required to be "Grade A," according to EU-GMP and WHO-GMP. These regulations have employed the wording of "laminar airflow" for unidirectional airflow, with an unclear definition given. This seems to have allowed many reports to describe discussion of airflow velocity only. The guidance values as to the velocity are expressed in various words of 90 ft/min, 0.45 m/sec, 0.3 m/sec, +/- 20%, or "homogeneous air speed." It has been also little clarified how variation in airflow velocity gives influences on contamination control of a workstation working with varying key characteristics, such as ceiling height, internal heat load, internal particle generation, etc. The present author has revealed following points from a case study using Computational Fluid Dynamics: the airflow characteristic in Grade A area shows no significant changes with varying the velocity of supplied airflow, and the particles generated from the operator will be exhausted outside Grade A area without contamination.

  4. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  5. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  6. Application of wave mechanics theory to fluid dynamics problems: Fundamentals

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.

  7. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  8. Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.

  9. The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tree, Mike; Fagan, Kiley; Yoganathan, Ajit

    2014-11-01

    The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.

  10. Chaotic Fluid Mixing in Crystalline Sphere Arrays

    NASA Astrophysics Data System (ADS)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2017-12-01

    We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.

  11. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  12. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  13. Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, Massimiliano, E-mail: massimiliano.rinaldi@unitn.it

    We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to mattermore » domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.« less

  14. Dark energy as a fixed point of the Einstein Yang-Mills Higgs equations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano

    2015-10-01

    We study the Einstein Yang-Mills Higgs equations in the SO(3) representation on a isotropic and homogeneous flat Universe, in the presence of radiation and matter fluids. We map the equations of motion into an autonomous dynamical system of first-order differential equations and we find the equilibrium points. We show that there is only one stable fixed point that corresponds to an accelerated expanding Universe in the future. In the past, instead, there is an unstable fixed point that implies a stiff-matter domination. In between, we find three other unstable fixed points, corresponding, in chronological order, to radiation domination, to matter domination, and, finally, to a transition from decelerated expansion to accelerated expansion. We solve the system numerically and we confirm that there are smooth trajectories that correctly describe the evolution of the Universe, from a remote past dominated by radiation to a remote future dominated by dark energy, passing through a matter-dominated phase.

  15. Non-Ideal Compressible-Fluid Dynamics of Fast-Response Pressure Probes for Unsteady Flow Measurements in Turbomachinery

    NASA Astrophysics Data System (ADS)

    Gori, G.; Molesini, P.; Persico, G.; Guardone, A.

    2017-03-01

    The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.

  16. Investigation on the pinch point position in heat exchangers

    NASA Astrophysics Data System (ADS)

    Pan, Lisheng; Shi, Weixiu

    2016-06-01

    The pinch point is important for analyzing heat transfer in thermodynamic cycles. With the aim to reveal the importance of determining the accurate pinch point, the research on the pinch point position is carried out by theoretical method. The results show that the pinch point position depends on the parameters of the heat transfer fluids and the major fluid properties. In most cases, the pinch point locates at the bubble point for the evaporator and the dew point for the condenser. However, the pinch point shifts to the supercooled liquid state in the near critical conditions for the evaporator. Similarly, it shifts to the superheated vapor state with the condensing temperature approaching the critical temperature for the condenser. It even can shift to the working fluid entrance of the evaporator or the supercritical heater when the heat source fluid temperature is very high compared with the absorbing heat temperature. A wrong position for the pinch point may generate serious mistake. In brief, the pinch point should be founded by the iterative method in all conditions rather than taking for granted.

  17. Fundamental Study on Quantum Nanojets

    DTIC Science & Technology

    2004-08-01

    Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical

  18. Fluid Dynamics for Physicists

    NASA Astrophysics Data System (ADS)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  19. The Development of Point Doppler Velocimeter Data Acquisition and Processing Software

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.

    2008-01-01

    In order to develop efficient and quiet aircraft and validate Computational Fluid Dynamic predications, aerodynamic researchers require flow parameter measurements to characterize flow fields about wind tunnel models and jet flows. A one-component Point Doppler Velocimeter (pDv), a non-intrusive, laser-based instrument, was constructed using a design/develop/test/validate/deploy approach. A primary component of the instrument is software required for system control/management and data collection/reduction. This software along with evaluation algorithms, advanced pDv from a laboratory curiosity to a production level instrument. Simultaneous pDv and pitot probe velocity measurements obtained at the centerline of a flow exiting a two-inch jet, matched within 0.4%. Flow turbulence spectra obtained with pDv and a hot-wire detected the primary and secondary harmonics with equal dynamic range produced by the fan driving the flow. Novel,hardware and software methods were developed, tested and incorporated into the system to eliminate and/or minimize error sources and improve system reliability.

  20. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  1. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier–Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    DOE PAGES

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; ...

    2017-05-18

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier–Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in themore » street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H d/H u) and street canyon-width to building-width aspect ratio (S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Ultimately, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. But, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.« less

  2. Comprehensive Evaluation of Fast-Response, Reynolds-Averaged Navier-Stokes, and Large-Eddy Simulation Methods Against High-Spatial-Resolution Wind-Tunnel Data in Step-Down Street Canyons

    NASA Astrophysics Data System (ADS)

    Hayati, Arash Nemati; Stoll, Rob; Kim, J. J.; Harman, Todd; Nelson, Matthew A.; Brown, Michael J.; Pardyjak, Eric R.

    2017-08-01

    Three computational fluid dynamics (CFD) methods with different levels of flow-physics modelling are comprehensively evaluated against high-spatial-resolution wind-tunnel velocity data from step-down street canyons (i.e., a short building downwind of a tall building). The first method is a semi-empirical fast-response approach using the Quick Urban Industrial Complex (QUIC-URB) model. The second method solves the Reynolds-averaged Navier-Stokes (RANS) equations, and the third one utilizes a fully-coupled fluid-structure interaction large-eddy simulation (LES) model with a grid-turbulence inflow generator. Unlike typical point-by-point evaluation comparisons, here the entire two-dimensional wind-tunnel dataset is used to evaluate the dynamics of dominant flow topological features in the street canyon. Each CFD method is scrutinized for several geometric configurations by varying the downwind-to-upwind building-height ratio (H_d/H_u) and street canyon-width to building-width aspect ratio ( S / W) for inflow winds perpendicular to the upwind building front face. Disparities between the numerical results and experimental data are quantified in terms of their ability to capture flow topological features for different geometric configurations. Overall, all three methods qualitatively predict the primary flow topological features, including a saddle point and a primary vortex. However, the secondary flow topological features, namely an in-canyon separation point and secondary vortices, are only well represented by the LES method despite its failure for taller downwind building cases. Misrepresentation of flow-regime transitions, exaggeration of the coherence of recirculation zones and wake fields, and overestimation of downwards vertical velocity into the canyon are the main defects in QUIC-URB, RANS and LES results, respectively. All three methods underestimate the updrafts and, surprisingly, QUIC-URB outperforms RANS for the streamwise velocity component, while RANS is superior to QUIC-URB for the vertical velocity component in the street canyon.

  3. Fluid Dynamics of the Heart and its Valves

    NASA Astrophysics Data System (ADS)

    Peskin, Charles S.

    1997-11-01

    The fluid dynamics of the heart involve the interaction of blood, a viscous incompressible fluid, with the flexible, elastic, fiber-reinforced heart valve leaflets that are immersed in that fluid. Neither the fluid motion nor the valve leaflet motion are known in advance: both must be computed simultaneously by solving their coupled equations of motion. This can be done by the immersed boundary method(Peskin CS and McQueen DM: A general method for the computer simulation of biological systems interacting with fluids. In: Biological Fluid Dynamics (Ellington CP and Pedley TJ, eds.), The Company of Biologists Limited, Cambridge UK, 1995, pp. 265-276.), which can be extended to incorporate the contractile fiber architecture of the muscular heart walls as well as the valve leaflets and the blood. In this way we arrive at a three-dimensional computer model of the heart(Peskin CS and McQueen DM: Fluid dynamics of the heart and its valves. In: Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (Othmer HG, Adler FR, Lewis MA, and Dallon JC, eds.), Prentice-Hall, Englewood Cliffs NJ, 1996, pp. 309-337.), which can be used as a test chamber for the design of prosthetic cardiac valves, and also to study the function of the heart in health and in disease. Numerical solutions of the equations of cardiac fluid dynamics obtained by the immersed boundary method will be presented in the form of a video animation of the beating heart.

  4. Cellular fluid mechanics.

    PubMed

    Kamm, Roger D

    2002-01-01

    The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.

  5. Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, E.; Niemi, H.; Rischke, D. H.

    2016-12-01

    In Molnár et al. Phys. Rev. D 93, 114025 (2016) the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution function. In this paper we make a particular choice for this distribution function and consider the boost-invariant expansion of a fluid in one dimension. In order to close the conservation equations, we need to choose an additional moment of the Boltzmann equation. We discuss the influence of the choice of this moment on the time evolution of fluid-dynamical variables and identify the moment that provides the best match of anisotropic fluid dynamics to the solution of the Boltzmann equation in the relaxation-time approximation.

  6. Improving students’ conceptions on fluid dynamics through peer teaching model with PDEODE (PTM-PDEODE)

    NASA Astrophysics Data System (ADS)

    Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.

    2018-05-01

    This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.

  7. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an analytical dynamic model of intrusion of magma or injection of supercritical fluids in the PTE. Propagation is governed by a Navier-Stokes equation for magma intrusion and modelled as creeping flow in porous media (Darcy's law) for supercritical fluids injection. In both cases the ground deformation pattern is constant over time. Using Finite Element Modeling, we also show that the presence of a viscoelastic shell surrounding the PTE amplifies ground deformation, with no appreciable effect on the ground deformation pattern. Thus, our model satisfies the observed CF deformation pattern stationarity both using a purely elastic medium or allowing for stress relaxation close to the PTE, caused by the rock temperature. Amoruso et al. (2014a), J. Geophys. Res., 119 (2), 858-879 Amoruso et al. (2014b), Geophys. Res. Lett., 41 (9), 3081-3088

  8. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Griffin, Lisa W.

    2012-01-01

    The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.

  9. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  10. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation.

    PubMed

    Furukawa, Akira; Tateno, Michio; Tanaka, Hajime

    2018-05-16

    Colloid dynamics is significantly influenced by many-body hydrodynamic interactions mediated by a suspending fluid. However, theoretical and numerical treatments of such interactions are extremely difficult. To overcome this situation, we developed a fluid particle dynamics (FPD) method [H. Tanaka and T. Araki, Phys. Rev. Lett., 2000, 35, 3523], which is based on two key approximations: (i) a colloidal particle is treated as a highly viscous particle and (ii) the viscosity profile is described by a smooth interfacial profile function. Approximation (i) makes our method free from the solid-fluid boundary condition, significantly simplifying the treatment of many-body hydrodynamic interactions while satisfying the incompressible condition without the Stokes approximation. Approximation (ii) allows us to incorporate an extra degree of freedom in a fluid, e.g., orientational order and concentration, as an additional field variable. Here, we consider two fundamental problems associated with these approximations. One is the introduction of thermal noise and the other is the incorporation of coupling of the colloid surface with an order parameter introduced into a fluid component, which is crucial when considering colloidal particles suspended in a complex fluid. Here, we show that our FPD method makes it possible to simulate colloid dynamics properly while including full hydrodynamic interactions, inertia effects, incompressibility, thermal noise, and additional degrees of freedom of a fluid, which may be relevant for wide applications in colloidal and soft matter science.

  11. Interfacial gauge methods for incompressible fluid dynamics

    DOE PAGES

    Saye, R.

    2016-06-10

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work,more » high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena.« less

  12. Individual-Environment Interactions in Swimming: The Smallest Unit for Analysing the Emergence of Coordination Dynamics in Performance?

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic

    2017-08-01

    Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.

  13. Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis

    PubMed Central

    Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor

    2012-01-01

    Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209

  14. Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.

    PubMed

    Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor

    2012-10-01

    To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.

  15. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  16. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  17. nth-Nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: a hierarchical approach.

    PubMed

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a nu-dimensional space. The nth-NND functions, W(n,r) (for n=1,2,3, em leader) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  18. nth-nearest-neighbor distribution functions of an interacting fluid from the pair correlation function: A hierarchical approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Biplab

    2003-04-01

    The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a ν-dimensional space. The nth-NND functions, W(n,r¯) (for n=1,2,3,…) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r¯) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.

  19. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  20. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-01

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  1. A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization.

    PubMed

    Li, Zhen; Bian, Xin; Yang, Xiu; Karniadakis, George Em

    2016-07-28

    We construct effective coarse-grained (CG) models for polymeric fluids by employing two coarse-graining strategies. The first one is a forward-coarse-graining procedure by the Mori-Zwanzig (MZ) projection while the other one applies a reverse-coarse-graining procedure, such as the iterative Boltzmann inversion (IBI) and the stochastic parametric optimization (SPO). More specifically, we perform molecular dynamics (MD) simulations of star polymer melts to provide the atomistic fields to be coarse-grained. Each molecule of a star polymer with internal degrees of freedom is coarsened into a single CG particle and the effective interactions between CG particles can be either evaluated directly from microscopic dynamics based on the MZ formalism, or obtained by the reverse methods, i.e., IBI and SPO. The forward procedure has no free parameters to tune and recovers the MD system faithfully. For the reverse procedure, we find that the parameters in CG models cannot be selected arbitrarily. If the free parameters are properly defined, the reverse CG procedure also yields an accurate effective potential. Moreover, we explain how an aggressive coarse-graining procedure introduces the many-body effect, which makes the pairwise potential invalid for the same system at densities away from the training point. From this work, general guidelines for coarse-graining of polymeric fluids can be drawn.

  2. Convection-Enhanced Transport into Open Cavities : Effect of Cavity Aspect Ratio.

    PubMed

    Horner, Marc; Metcalfe, Guy; Ottino, J M

    2015-09-01

    Recirculating fluid regions occur in the human body both naturally and pathologically. Diffusion is commonly considered the predominant mechanism for mass transport into a recirculating flow region. While this may be true for steady flows, one must also consider the possibility of convective fluid exchange when the outer (free stream) flow is transient. In the case of an open cavity, convective exchange occurs via the formation of lobes at the downstream attachment point of the separating streamline. Previous studies revealed the effect of forcing amplitude and frequency on material transport rates into a square cavity (Horner in J Fluid Mech 452:199-229, 2002). This paper summarizes the effect of cavity aspect ratio on exchange rates. The transport process is characterized using both computational fluid dynamics modeling and dye-advection experiments. Lagrangian analysis of the computed flow field reveals the existence of turnstile lobe transport for this class of flows. Experiments show that material exchange rates do not vary linearly as a function of the cavity aspect ratio (A = W/H). Rather, optima are predicted for A ≈ 2 and A ≈ 2.73, with a minimum occurring at A ≈ 2.5. The minimum occurs at the point where the cavity flow structure bifurcates from a single recirculating flow cell into two corner eddies. These results have significant implications for mass transport environments where the geometry of the flow domain evolves with time, such as coronary stents and growing aneurysms. Indeed, device designers may be able to take advantage of the turnstile-lobe transport mechanism to tailor deposition rates near newly implanted medical devices.

  3. Structural behavior of supercritical fluids under confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.

  4. Structural behavior of supercritical fluids under confinement.

    PubMed

    Ghosh, Kanka; Krishnamurthy, C V

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P=5000 bar, 240K≤T≤1500K) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features not significantly different from that due to normal gas regime. The heterogeneity across the Frenkel line, found to be present both in bulk and confined systems, might cause the breakdown of the universal scaling between structure and dynamics of fluids necessitating the determination of a unique relationship between them.

  5. Highs and lows of 30 years research of fluid physics in microgravity, a personal memory

    NASA Astrophysics Data System (ADS)

    Straub, Johannes

    2006-09-01

    On October 4th 1957 the western world was shocked from the news that a Russian satellite, called Sputnik, had been launched and revolves the earth within 90 minutes periodically. This was the starting signal for the race to monde and stars; the "Star War" began. Just at that time I started with the investigation of the static and dynamic behavior of fluids at and near their critical point [1]. With an optical method I measured density stratifications caused by the diverging compressibility of critical fluids in the earth gravity field. There, the real critical state is compressed by its own weight to a layer of the order of the correlation length. I was myself aware that in a satellite a weightlessness environment exists. Thus a dream waked up within me; if it would be possible to perform critical point experiments in such a satellite our knowledge and understanding of its physics must be much improved, and questions violently discussed at that moment should find an answer. But I would never had thoughts that such a dream could be realized within my lifetime. However, in 1975 the German ministry for development and research instructed the DLR to inquiry scientists if weightlessness can support their research. Based on my experience I proposed two research programs: • Study of critical phenomenon, and

  6. Rayleigh-Taylor instability-fascinating gateway to the study of fluid dynamics

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert F.

    1999-09-01

    A series of low-cost simple, "kitchen-physics" experiments demonstrates Rayleigh-Taylor Instability (RTI), the growth of ripples at an interface between fluids when the higher-density fluid is on top. We also describe the importance of RTI in ocean dynamics and commercial products.

  7. Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.

    2001-01-01

    NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.

  8. Dynamic stabilization of Rayleigh-Taylor instability: Experiments with Newtonian fluids as surrogates for ablation fronts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Prieto, G.; Piriz, A. R.; Lopez Cela, J. J.

    2013-01-15

    A previous theory on dynamic stabilization of Rayleigh-Taylor instability at interfaces between Newtonian fluids is reformulated in order to make evident the analogy of this problem with the related one on dynamic stabilization of ablation fronts in the framework of inertial confinement fusion. Explicit analytical expressions are obtained for the boundaries of the dynamically stable region which turns out to be completely analogue to the stability charts obtained for the case of ablation fronts. These results allow proposing experiments with Newtonian fluids as surrogates for studying the case of ablation fronts. Experiments with Newtonian fluids are presented which demonstrate themore » validity of the theoretical approach and encourage to pursue experimental research on ablation fronts to settle the feasibility of dynamic stabilization in the inertial confinement fusion scenario.« less

  9. Molecular dynamics simulations of field emission from a planar nanodiode

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  10. Molecular dynamics simulations of field emission from a planar nanodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid likemore » model is also developed and its results are in qualitative agreement with the simulations.« less

  11. General dynamical density functional theory for classical fluids.

    PubMed

    Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim

    2012-09-21

    We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.

  12. Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.; Chang, Clarence T.

    2016-01-01

    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.

  13. Electric Field Induced Interfacial Instabilities

    NASA Technical Reports Server (NTRS)

    Kusner, Robert E.; Min, Kyung Yang; Wu, Xiao-lun; Onuki, Akira

    1999-01-01

    The study of the interface in a charge-free, critical and near-critical binary fluid in the presence of an externally applied electric field is presented. At sufficiently large fields, the interface between the two phases of the binary fluid should become unstable and exhibit an undulation with a predefined wavelength on the order of the capillary length. As the critical point is approached, this wavelength is reduced, potentially approaching length-scales such as the correlation length or critical nucleation radius. At this point the critical properties of the system may be affected. In this paper, the flat interface of a marginally polar binary fluid mixture is stressed by a perpendicular alternating electric field and the resulting instability is characterized by the critical electric field E(sub c) and the pattern observed. The character of the surface dynamics at the onset of instability is found to be strongly dependent on the frequency f of the field applied. The plot of E(sub c) vs. f for a fixed temperature shows a sigmoidal shape, whose low and high frequency limits are well described by a power-law relationship, E(sub c) = epsilon(exp zeta) with zeta = 0.35 and zeta = 0.08, respectively. The low-limit exponent compares well with the value zeta = 4 for a system of conducting and non-conducting fluids. On the other hand, the high-limit exponent coincides with what was first predicted by Onuki. The instability manifests itself as the conducting phase penetrates the non-conducting phase. As the frequency increases, the shape of the pattern changes from an array of bifurcating strings to an array of column-like (or rod-like) protrusions, each of which spans the space between the plane interface and one of the electrodes. For an extremely high frequency, the disturbance quickly grows into a parabolic cone pointing toward the upper plate. As a result, the interface itself changes its shape from that of a plane to that of a high sloping pyramid.

  14. The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare

    2014-06-01

    In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.

  15. Fluid dynamic and thermodynamic analysis of a model pertaining to cryogenic fluid management in low gravity environments for a system with dynamically induced settling

    NASA Technical Reports Server (NTRS)

    Rios, J.

    1982-01-01

    The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.

  16. Techniques for grid manipulation and adaptation. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Eisemann, Peter R.; Lee, Ki D.

    1992-01-01

    Two approaches have been taken to provide systematic grid manipulation for improved grid quality. One is the control point form (CPF) of algebraic grid generation. It provides explicit control of the physical grid shape and grid spacing through the movement of the control points. It works well in the interactive computer graphics environment and hence can be a good candidate for integration with other emerging technologies. The other approach is grid adaptation using a numerical mapping between the physical space and a parametric space. Grid adaptation is achieved by modifying the mapping functions through the effects of grid control sources. The adaptation process can be repeated in a cyclic manner if satisfactory results are not achieved after a single application.

  17. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  18. Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.

    We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.

  19. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  20. Formation of curvature singularities on the interface between dielectric liquids in a strong vertical electric field.

    PubMed

    Kochurin, Evgeny A; Zubarev, Nikolay M; Zubareva, Olga V

    2013-08-01

    The nonlinear dynamics of the interface between two deep dielectric fluids in the presence of a vertical electric field is studied. We consider the limit of a strong external electric field where electrostatic forces dominate over gravitational and capillary forces. The nonlinear integrodifferential equations for the interface motion are derived under the assumption of small interfacial slopes. It is shown in the framework of these equations that, in the generic case, the instability development leads to the formation of root singularities at the interface in a finite time. The interfacial curvature becomes infinite at singular points, while the slope angles remain relatively small. The curvature is negative in the vicinity of singularities if the ratio of the permittivities of the fluids exceeds the inverse ratio of their densities, and it is positive in the opposite case (we consider that the lower fluid is heavier than the upper one). In the intermediate case, the interface evolution equations describe the formation and sharpening of dimples at the interface. The results obtained are applicable for the description of the instability of the interface between two magnetic fluids in a vertical magnetic field.

  1. Widom Lines in Binary Mixtures of Supercritical Fluids.

    PubMed

    Raju, Muralikrishna; Banuti, Daniel T; Ma, Peter C; Ihme, Matthias

    2017-06-08

    Recent experiments on pure fluids have identified distinct liquid-like and gas-like regimes even under supercritical conditions. The supercritical liquid-gas transition is marked by maxima in response functions that define a line emanating from the critical point, referred to as Widom line. However, the structure of analogous state transitions in mixtures of supercritical fluids has not been determined, and it is not clear whether a Widom line can be identified for binary mixtures. Here, we present first evidence for the existence of multiple Widom lines in binary mixtures from molecular dynamics simulations. By considering mixtures of noble gases, we show that, depending on the phase behavior, mixtures transition from a liquid-like to a gas-like regime via distinctly different pathways, leading to phase relationships of surprising complexity and variety. Specifically, we show that miscible binary mixtures have behavior analogous to a pure fluid and the supercritical state space is characterized by a single liquid-gas transition. In contrast, immiscible binary mixture undergo a phase separation in which the clusters transition separately at different temperatures, resulting in multiple distinct Widom lines. The presence of this unique transition behavior emphasizes the complexity of the supercritical state to be expected in high-order mixtures of practical relevance.

  2. Dynamic response of fluid inside a penny shaped crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kazuo; Seki, Hitoshi

    1997-12-31

    In order to discuss the method for estimating the geometric characteristics of geothermal reservoir cracks, a theoretical study is performed on the dynamic response of the fluid inside a reservoir crack in a rock mass subjected to a dynamic excitation due to propagation of an elastic wave. As representative models of reservoir cracks, a penny shaped crack and a two-dimensional crack which are connected to a borehole are considered. It is found that the resonance frequency of the fluid motion is dependent on the crack size, the fluid`s viscosity and the permeability of the formation. The intensity of the resonancemore » is dependent on the fluid`s viscosity when the size, the aperture and the permeability are fixed. It is also found that, at a value of the fluid`s viscosity, the resonance of fluid pressure becomes strongest. The optimum value of the fluid`s viscosity is found to be almost perfectly determined by the permeability of the formation. Furthermore, it is revealed that, if the fluid`s viscosity is fixed to be the optimum value, the resonance frequency is almost independent of the permeability and aperture, but is dependent on the size of crack. Inversely speaking, this implies that the size of the reservoir crack can be estimated from the resonance frequency, if the fluid with the above mentioned optimum value of viscosity is employed for hydraulic fracturing.« less

  3. Effect of fluid compressibility on journal bearing performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    An analysis was undertaken to determine the effect of fluid film compressibility on the performance of fluid film bearings. A new version of the Reynolds equation was developed, using a polytropic expansion, for both steady-state and dynamic conditions. Polytropic exponents from 1 (isothermal) to 1000 (approaching an incompressible liquid) were evaluated for two bearing numbers, selected from a range of practical interest for cryogenic application, and without cavitation. Bearing loads were insensitive to fluid compressibility for low bearing numbers, as was expected. The effect of compressibility on attitude angle was significant, even when the bearing number was low. A small amount of fluid compressibility was enough to obtain stable running conditions. Incompressible liquid lacked stability at all conditions. Fluid compressibility can be used to control the bearing dynamic coefficients, thereby influencing the dynamic behavior of the rotor-bearing system.

  4. The application of the constants of motion to nonlinear stationary waves in complex plasmas: a unified fluid dynamic viewpoint

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Dubinin, E.; Sauer, K.; Doyle, T. B.

    2004-08-01

    Perturbation reductive procedures, as used to analyse various weakly nonlinear plasma waves (solitons and periodic waves), normally lead to the dynamical system being described by KdV, Burgers' or a nonlinear Schrödinger-type equation, with properties that can be deduced from an array of mathematical techniques. Here we develop a fully nonlinear theory of one-dimensional stationary plasma waves, which elucidates the common nature of various diverse wave phenomena. This is accomplished by adopting an essentially fluid dynamic viewpoint. In this unified treatment the constants of the motion (for mass, momentum and energy) lead naturally to the construction of the wave structure equations. It is shown, for example, that electrostatic, Hall magnetohydrodynamic and ion cyclotron acoustic nonlinear waves all obey first-order differential equations of the same generic type for the longitudinal flow field of the wave. The equilibrium points, which define the soliton amplitude, are given by the compressive and/or rarefactive roots of a total plasma ‘energy’ or ‘momentum’ function characterizing the wave type. This energy function, which is an algebraic combination of the Bernoulli momentum and energy functions for the longitudinal flow field, is the fluid dynamic counterpart of the pseudo-potentials, which are characteristic of system structure equations formulated in other than fluid variables. Another general feature of the structure equation is the phenomenon of choked flow, which occurs when the flow speed becomes sonic. It is this trans-sonic property that limits the soliton amplitudes and defines the critical collective Mach numbers of the waves. These features are also obtained in multi-component plasmas where, for example, in a bi-ion plasma, momentum exchanges between protons and heavier ions are mediated by the Maxwell magnetic stresses. With a suitable generalization of the concept of a sonic point in a bi-ion system and the corresponding choked flow feature, the wave structures, although now more complicated, can also be understood within this overall fluid framework. Particularly useful tools in this context are the momentum hodograph (an algebraic relation between the bi-ion speeds and the electron speed, or magnetic field, which follows from the conservation of mass, momentum and charge-neutrality) and a generalized Bernoulli energy density for each species. Analysis shows that the bi-ion solitons are essentially compressive, but contain the remarkable feature of the presence of a proton rarefactive core. A new type of soliton, called an ‘oscilliton’ because embedded spatial oscillations are superimposed on the classical soliton, is also described and discussed. A necessary condition for the existence of this type of wave is that the linear phase velocity must exhibit an extremum where the phase speed matches the group speed. The remarkable properties of this wave are illustrated for the case of both whistler waves and bi-ion waves where, for the latter, the requisite condition is met near the cross-over frequencies. In the case of the whistler oscilliton, which propagates at speeds in excess of one half of the Alfvén speed (based on the electrons), an analytic solution has been constructed through a phase-portrait integral of the system in which the proton and electron dynamics must be placed on the same footing. The relevance of the different wave structures to diverse space environments is briefly discussed in relation to recently available high-time and spatial resolution data from satellite observations.

  5. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    DOT National Transportation Integrated Search

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  6. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  7. Molecular Dynamics Simulation of the Thermophysical Properties of Quantum Liquid Helium Using the Feynman-Hibbs Potential

    NASA Astrophysics Data System (ADS)

    Liu, J.; Lu, W. Q.

    2010-03-01

    This paper presents the detailed MD simulation on the properties including the thermal conductivities and viscosities of the quantum fluid helium at different state points. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach and the properties are calculated using the Green-Kubo equations. A comparison is made among the numerical results using LJ and QFH potentials and the existing database and shows that the LJ model is not quantitatively correct for the supercritical liquid helium, thereby the quantum effect must be taken into account when the quantum fluid helium is studied. The comparison of the thermal conductivity is also made as a function of temperatures and pressure and the results show quantum effect correction is an efficient tool to get the thermal conductivities.

  8. Curvature induced phase stability of an intensely heated liquid

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Liang, Zhi; Cahill, David G.; Keblinski, Pawel

    2014-06-01

    We use non-equilibrium molecular dynamics simulations to study the heat transfer around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. We focus our studies on the role of the nanoparticle curvature on the liquid phase stability under steady-state heating. For small nanoparticles we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, for particles with radius smaller than a critical radius of 2 nm we do not observe formation of vapor even above the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain the stability in terms of the Laplace pressure associated with the formation of a vapor nanocavity and the associated effect on the Gibbs free energy.

  9. Static and dynamic stress analyses of the prototype high head Francis runner based on site measurement

    NASA Astrophysics Data System (ADS)

    Huang, X.; Oram, C.; Sick, M.

    2014-03-01

    More efforts are put on hydro-power to balance voltage and frequency within seconds for primary control in modern smart grids. This requires hydraulic turbines to run at off-design conditions. especially at low load or speed-no load. Besides. the tendency of increasing power output and decreasing weight of the turbine runners has also led to the high level vibration problem of the runners. especially high head Francis runners. Therefore. it is important to carry out the static and dynamic stress analyses of prototype high head Francis runners. This paper investigates the static and dynamic stresses on the prototype high head Francis runner based on site measurements and numerical simulations. The site measurements are performed with pressure transducers and strain gauges. Based on the measured results. computational fluid dynamics (CFD) simulations for the flow channel from stay vane to draft tube cone are performed. Static pressure distributions and dynamic pressure pulsations caused by rotor-stator interaction (RSI) are obtained under various operating conditions. With the CFD results. static and dynamic stresses on the runner at different operating points are calculated by means of the finite element method (FEM). The agreement between simulation and measurement is analysed with linear regression method. which indicates that the numerical result agrees well with that of measurement. Furthermore. the maximum static and dynamic stresses on the runner blade are obtained at various operating points. The relations of the maximum stresses and the power output are discussed in detail. The influences of the boundary conditions on the structural behaviour of the runner are also discussed.

  10. Dynamical Heterogeneity in Granular Fluids and Structural Glasses

    NASA Astrophysics Data System (ADS)

    Avila, Karina E.

    Our current understanding of the dynamics of supercooled liquids and other similar slowly evolving (glassy) systems is rather limited. One aspect that is particularly poorly understood is the origin and behavior of the strong non trivial fluctuations that appear in the relaxation process toward equilibrium. Glassy systems and granular systems both present regions of particles moving cooperatively and at different rates from other regions. This phenomenon is known as spatially heterogeneous dynamics. A detailed explanation of this phenomenon may lead to a better understanding of the slow relaxation process, and perhaps it could even help to explain the presence of the glass transition. This dissertation concentrates on studying dynamical heterogeneity by analyzing simulation data for models of granular materials and structural glasses. For dissipative granular fluids, the growing behavior of dynamical heterogeneities is studied for different densities and different degrees of inelasticity in the particle collisions. The correlated regions are found to grow rapidly as the system approaches dynamical arrest. Their geometry is conserved even when probing at different cutoff length in the correlation function or when the energy dissipation in the system is increased. For structural glasses, I test a theoretical framework that models dynamical heterogeneity as originated in the presence of Goldstone modes, which emerge from a broken continuous time reparametrization symmetry. This analysis is based on quantifying the size and the spatial correlations of fluctuations in the time variable and of other kinds of fluctuations. The results obtained here agree with the predictions of the hypothesis. In particular, the fluctuations associated to the time reparametrization invariance become stronger for low temperatures, long timescales, and large coarse graining lengths. Overall, this research points to dynamical heterogeneity to be described for granular systems similarly than for other glassy systems and it provides evidence in favor of a particular theory for the origin of dynamical heterogeneity.

  11. Gravity Probe-B Spacecraft attitude control based on the dynamics of slosh wave-induced fluid stress distribution on rotating dewar container of cryogenic propellant

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.; Leslie, F. W.

    1991-01-01

    The dynamical behavior of fluids, in particular the effect of surface tension on partially-filled rotating fluids, in a full-scale Gravity Probe-B Spacecraft propellant dewar tank imposed by various frequencies of gravity jitters have been investigated. Results show that fluid stress distribution exerted on the outer and inner walls of rotating dewar are closely related to the characteristics of slosh waves excited on the liquid-vapor interface in the rotating dewar tank. This can provide a set of tool for the spacecraft dynamic control leading toward the control of spacecraft unbalance caused by the uneven fluid stress distribution due to slosh wave excitations.

  12. A Nonlinear Modal Aeroelastic Solver for FUN3D

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.

    2016-01-01

    A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.

  13. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  14. Critical fluid light scattering

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.

    1988-01-01

    The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.

  15. Falling, flapping, flying, swimming,...: High-Re fluid-solid interactions with vortex shedding

    NASA Astrophysics Data System (ADS)

    Michelin, Sebastien Honore Roland

    The coupling between the motion of a solid body and the dynamics of the surrounding flow is essential to the understanding of a large number of engineering and physical problems, from the stability of a slender structure exposed to the wind to the locomotion of insects, birds and fishes. Because of the strong coupling on a moving boundary of the equations for the solid and fluid, the simulation of such problems is computationally challenging and expensive. This justifies the development of simplified models for the fluid-solid interactions to study their physical properties and behavior. This dissertation proposes a reduced-order model for the interaction of a sharp-edged solid body with a strongly unsteady high Reynolds number flow. In such a case, viscous forces in the fluid are often negligible compared to the fluid inertia or the pressure forces, and the thin boundary layers separate from the solid at the edges, leading to the shedding of large and persistent vortices in the solid's wake. A general two-dimensional framework is presented based on complex potential flow theory. The formation of the solid's vortical wake is accounted for by the shedding of point vortices with unsteady intensity from the solid's sharp edges, and the fluid-solid problem is reformulated exclusively as a solid-vortex interaction problem. In the case of a rigid solid body, the coupled problem is shown to reduce to a set of non-linear ordinary differential equations. This model is used to study the effect of vortex shedding on the stability of falling objects. The solid-vortex model is then generalized to study the fluttering instability and non-linear flapping dynamics of flexible plates or flags. The uttering instability and resulting flapping motion result from the competing effects of the fluid forcing and of the solid's flexural rigidity and inertia. Finally, the solid-vortex model is applied to the study of the fundamental effect of bending rigidity on the flapping performance of flapping appendages such as insect wings or fish fins.

  16. [Study on the dynamic model with supercritical CO2 fluid extracting the lipophilic components in Panax notoginseng].

    PubMed

    Duan, Xian-Chun; Wang, Yong-Zhong; Zhang, Jun-Ru; Luo, Huan; Zhang, Heng; Xia, Lun-Zhu

    2011-08-01

    To establish a dynamics model for extracting the lipophilic components in Panax notoginseng with supercritical carbon dioxide (CO2). Based on the theory of counter-flow mass transfer and the molecular mass transfer between the material and the supercritical CO2 fluid under differential mass-conservation equation, a dynamics model was established and computed to compare forecasting result with the experiment process. A dynamics model has been established for supercritical CO2 to extract the lipophilic components in Panax notoginseng, the computed result of this model was consistent with the experiment process basically. The supercritical fluid extract dynamics model established in this research can expound the mechanism in the extract process of which lipophilic components of Panax notoginseng dissolve the mass transfer and is tallied with the actual extract process. This provides certain instruction for the supercritical CO2 fluid extract' s industrialization enlargement.

  17. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  18. Hydroelastic effects in the aorta bifurcation zone

    NASA Technical Reports Server (NTRS)

    Volmir, A. S.; Gersheyn, M. S.; Purinya, B. A.

    1980-01-01

    The mechanical behavior of the vessels and blood is mathematically analyzed at the point of aortic bifurcation using a homogeneous single layer channel as a model of the aorta. Allowance is made for the fact that the aortic intima is considerably less rigid than the other layers. For analysis of blood flow in the major arteries, the blood is treated as a viscous Newtonian fluid whose movements are described by Navier-Stokes equations and a continuity equation. Blood flow dynamics at the aortic bifurcation are discussed on the basis of the results.

  19. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    NASA Astrophysics Data System (ADS)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  20. Feasibility of using Extreme Ultraviolet Explorer (EUVE) reaction wheels to satisfy Space Infrared Telescope Facility (SIRTF) maneuver requirements

    NASA Technical Reports Server (NTRS)

    Lightsey, W. D.

    1990-01-01

    A digital computer simulation is used to determine if the extreme ultraviolet explorer (EUVE) reaction wheels can provide sufficient torque and momentum storage capability to meet the space infrared telescope facility (SIRTF) maneuver requirements. A brief description of the pointing control system (PCS) and the sensor and actuator dynamic models used in the simulation is presented. A model to represent a disturbance such as fluid sloshing is developed. Results developed with the simulation, and a discussion of these results are presented.

  1. On the Use of CAD-Native Predicates and Geometry in Surface Meshing

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.

    1999-01-01

    Several paradigms for accessing computer-aided design (CAD) geometry during surface meshing for computational fluid dynamics are discussed. File translation, inconsistent geometry engines, and nonnative point construction are all identified as sources of nonrobustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing.

  2. Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.

    2008-04-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  3. Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2001-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.

  4. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  5. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    PubMed

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  6. An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.

    PubMed

    Xia, Guohua; Lin, Ching-Long

    2008-04-01

    A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.

  7. Ice Detector and Deicing Fluid Effectiveness Monitoring System

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1996-01-01

    An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.

  8. Quartz Microbalance Study of 400-angstrom Thick Films near the lambda Point

    NASA Technical Reports Server (NTRS)

    Chan, Moses H. W.

    2003-01-01

    In a recent measurement we observed the thinning of an adsorbed helium film induced by the confinement of critical fluctuations a few millikelvin below the lambda point. A capacitor set-up was used to measure this Casimir effect. In this poster we will present our measurement of an adsorbed helium film of 400 angstroms near the lambda point with a quartz microbalance. For films this thick, we must take into account the non-linear dynamics of the shear waves in the fluid. In spite of the added complications, we were able to confirm the thinning of the film due to the Casimir effect and the onset of the superfluid transition. In addition, we observe a sharp anomaly at the bulk lambda point, most likely related to critical dissipation of the first sound. This work is carried out in collaboration with Rafael Garcia, Stephen Jordon and John Lazzaretti. This work is funded by NASA's Office of Biological and Physical Research under grant.

  9. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  10. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  11. Technical Competencies Applied in Experimental Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2017-11-01

    The practical design, construction, and operation of fluid dynamics experiments require a broad range of competencies. Three types are instrumental, procedural, and design. Respective examples would be operation of a spectrum analyzer, soft-soldering or brazing flow plumbing, and design of a small wind tunnel. Some competencies, such as the selection and installation of pumping systems, are unique to fluid dynamics and fluids engineering. Others, such as the design and construction of electronic amplifiers or optical imaging systems, overlap with other fields. Thus the identification and development of learning materials and methods for instruction are part of a larger effort to identify competencies needed in active research and technical innovation.

  12. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  13. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  14. A Textbook for a First Course in Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zingg, D. W.; Pulliam, T. H.; Nixon, David (Technical Monitor)

    1999-01-01

    This paper describes and discusses the textbook, Fundamentals of Computational Fluid Dynamics by Lomax, Pulliam, and Zingg, which is intended for a graduate level first course in computational fluid dynamics. This textbook emphasizes fundamental concepts in developing, analyzing, and understanding numerical methods for the partial differential equations governing the physics of fluid flow. Its underlying philosophy is that the theory of linear algebra and the attendant eigenanalysis of linear systems provides a mathematical framework to describe and unify most numerical methods in common use in the field of fluid dynamics. Two linear model equations, the linear convection and diffusion equations, are used to illustrate concepts throughout. Emphasis is on the semi-discrete approach, in which the governing partial differential equations (PDE's) are reduced to systems of ordinary differential equations (ODE's) through a discretization of the spatial derivatives. The ordinary differential equations are then reduced to ordinary difference equations (O(Delta)E's) using a time-marching method. This methodology, using the progression from PDE through ODE's to O(Delta)E's, together with the use of the eigensystems of tridiagonal matrices and the theory of O(Delta)E's, gives the book its distinctiveness and provides a sound basis for a deep understanding of fundamental concepts in computational fluid dynamics.

  15. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  16. Study on heat transfer coefficients during cooling of PET bottles for food beverages

    NASA Astrophysics Data System (ADS)

    Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco

    2016-08-01

    The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.

  17. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Publisher’s Version)

    DTIC Science & Technology

    2014-08-01

    performance computing, smoothed particle hydrodynamics, rigid body dynamics, flexible body dynamics ARMAN PAZOUKI ∗, RADU SERBAN ∗, DAN NEGRUT ∗ A...HIGH PERFORMANCE COMPUTING APPROACH TO THE SIMULATION OF FLUID-SOLID INTERACTION PROBLEMS WITH RIGID AND FLEXIBLE COMPONENTS This work outlines a unified...are implemented to model rigid and flexible multibody dynamics. The two- way coupling of the fluid and solid phases is supported through use of

  18. Geophysical Fluid Dynamics Outreach Films

    NASA Astrophysics Data System (ADS)

    Aurnou, J. M.; Schwarz, J. W.; Noguez, G.

    2012-12-01

    Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.

  19. Variational principles for stochastic fluid dynamics

    PubMed Central

    Holm, Darryl D.

    2015-01-01

    This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations. PMID:27547083

  20. Nouvelles techniques pratiques pour la modelisation du comportement dynamique des systèmes eau-structure

    NASA Astrophysics Data System (ADS)

    Miquel, Benjamin

    The dynamic or seismic behavior of hydraulic structures is, as for conventional structures, essential to assure protection of human lives. These types of analyses also aim at limiting structural damage caused by an earthquake to prevent rupture or collapse of the structure. The particularity of these hydraulic structures is that not only the internal displacements are caused by the earthquake, but also by the hydrodynamic loads resulting from fluid-structure interaction. This thesis reviews the existing complex and simplified methods to perform such dynamic analysis for hydraulic structures. For the complex existing methods, attention is placed on the difficulties arising from their use. Particularly, interest is given in this work on the use of transmitting boundary conditions to simulate the semi infinity of reservoirs. A procedure has been developed to estimate the error that these boundary conditions can introduce in finite element dynamic analysis. Depending on their formulation and location, we showed that they can considerably affect the response of such fluid-structure systems. For practical engineering applications, simplified procedures are still needed to evaluate the dynamic behavior of structures in contact with water. A review of the existing simplified procedures showed that these methods are based on numerous simplifications that can affect the prediction of the dynamic behavior of such systems. One of the main objectives of this thesis has been to develop new simplified methods that are more accurate than those existing. First, a new spectral analysis method has been proposed. Expressions for the fundamental frequency of fluid-structure systems, key parameter of spectral analysis, have been developed. We show that this new technique can easily be implemented in a spreadsheet or program, and that its calculation time is near instantaneous. When compared to more complex analytical or numerical method, this new procedure yields excellent prediction of the dynamic behavior of fluid-structure systems. Spectral analyses ignore the transient and oscillatory nature of vibrations. When such dynamic analyses show that some areas of the studied structure undergo excessive stresses, time history analyses allow a better estimate of the extent of these zones as well as a time notion of these excessive stresses. Furthermore, the existing spectral analyses methods for fluid-structure systems account only for the static effect of higher modes. Thought this can generally be sufficient for dams, for flexible structures the dynamic effect of these modes should be accounted for. New methods have been developed for fluid-structure systems to account for these observations as well as the flexibility of foundations. A first method was developed to study structures in contact with one or two finite or infinite water domains. This new technique includes flexibility of structures and foundations as well as the dynamic effect of higher vibration modes and variations of the levels of the water domains. Extension of this method was performed to study beam structures in contact with fluids. These new developments have also allowed extending existing analytical formulations of the dynamic properties of a dry beam to a new formulation that includes effect of fluid-structure interaction. The method yields a very good estimate of the dynamic behavior of beam-fluid systems or beam like structures in contact with fluid. Finally, a Modified Accelerogram Method (MAM) has been developed to modify the design earthquake into a new accelerogram that directly accounts for the effect of fluid-structure interaction. This new accelerogram can therefore be applied directly to the dry structure (i.e. without water) in order to calculate the dynamic response of the fluid-structure system. This original technique can include numerous parameters that influence the dynamic response of such systems and allows to treat analytically the fluid-structure interaction while keeping the advantages of finite element modeling.

  1. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE PAGES

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  2. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  3. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.

    PubMed

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.

  4. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  5. From viscous to elastic sheets: Dynamics of smectic freely floating films

    NASA Astrophysics Data System (ADS)

    Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf

    2015-03-01

    Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.

  6. Dynamic Modeling of Solar Dynamic Components and Systems

    NASA Technical Reports Server (NTRS)

    Hochstein, John I.; Korakianitis, T.

    1992-01-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  7. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind turbine (VAWT) system

    NASA Astrophysics Data System (ADS)

    Kao, Jui-Hsiang; Tseng, Po-Yuan

    2018-01-01

    The objective of this paper is to describe the application of CFD (Computational fluid dynamics) technology in the matching of turbine blades and generator to increase the efficiency of a vertical axis wind turbine (VAWT). A VAWT is treated as the study case here. The SST (Shear-Stress Transport) k-ω turbulence model with SIMPLE algorithm method in transient state is applied to solve the T (torque)-N (r/min) curves of the turbine blades at different wind speed. The T-N curves of the generator at different CV (constant voltage) model are measured. Thus, the T-N curves of the turbine blades at different wind speed can be matched by the T-N curves of the generator at different CV model to find the optimal CV model. As the optimal CV mode is selected, the characteristics of the operating points, such as tip speed ratio, revolutions per minute, blade torque, and efficiency, can be identified. The results show that, if the two systems are matched well, the final output power at a high wind speed of 9-10 m/s will be increased by 15%.

  8. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study.

    PubMed

    Saho, Tatsunori; Onishi, Hideo

    2016-07-01

    In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (<30 Pa) and volunteer (<50 Pa) models] were lower than those in the inner region (>100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.

  9. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.

    2009-07-01

    An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).

  10. Response to “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’” [Phys. Fluids 26, 119101 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorder, Robert A., E-mail: rav@knights.ucf.edu

    2014-11-15

    In R. A. Van Gorder, “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014) I discussed properties of generalized vortex filaments exhibiting purely rotational motion under the low-temperature Svistunov model of the local induction approximation. Such solutions are stationary in terms of translational motion. In the Comment [N. Hietala, “Comment on ‘General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation’ [Phys. Fluids 26, 065105 (2014)],” Phys. Fluids 26, 119101 (2014)], the author criticizes my paper for not including translational motion (although it wasmore » clearly stated that the filament motion was assumed rotational). As it turns out, if one is interested in studying the geometric structure of solutions (which was the point of my paper), one obtains the needed qualitative results on the structure of such solutions by studying the purely rotational case. Nevertheless, in this Response I shall discuss the vortex filaments that have both rotational and translational motions. I then briefly discuss why one might want to study such generalized rotating filament solutions, in contrast to simple the standard helical or planar examples (which are really special cases). I also discuss how one can study the time evolution of filaments which exhibit more complicated dynamics than pure translation and rotation. Doing this, one can study non-stationary solutions which initially appear purely rotational and gradually display other dynamics as the filaments evolve.« less

  11. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this paper, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that the (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.

  12. Grain scale observations of stick-slip dynamics in fluid saturated granular fault gouge

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Dorostkar, O.; Guyer, R. A.; Marone, C.; Carmeliet, J.

    2017-12-01

    We are studying granular mechanics during slip. In the present work, we conduct coupled computational fluid dynamics (CFD) and discrete element method (DEM) simulations to study grain scale characteristics of slip instabilities in fluid saturated granular fault gouge. The granular sample is confined with constant normal load (10 MPa), and sheared with constant velocity (0.6 mm/s). This loading configuration is chosen to promote stick-slip dynamics, based on a phase-space study. Fluid is introduced in the beginning of stick phase and characteristics of slip events i.e. macroscopic friction coefficient, kinetic energy and layer thickness are monitored. At the grain scale, we monitor particle coordination number, fluid-particle interaction forces as well as particle and fluid kinetic energy. Our observations show that presence of fluids in a drained granular fault gouge stabilizes the layer in the stick phase and increases the recurrence time. In saturated model, we observe that average particle coordination number reaches higher values compared to dry granular gouge. Upon slip, we observe that a larger portion of the granular sample is mobilized in saturated gouge compared to dry system. We also observe that regions with high particle kinetic energy are correlated with zones of high fluid motion. Our observations highlight that spatiotemporal profile of fluid dynamic pressure affects the characteristics of slip instabilities, increasing macroscopic friction coefficient drop, kinetic energy release and granular layer compaction. We show that numerical simulations help characterize the micromechanics of fault mechanics.

  13. Effectiveness of surface enhanced Raman spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Endo, T.; Imai, H.; Kido, M.; Jeong, H.; Ohno, Y.

    2016-03-01

    We have developed the point-of-care therapeutic drug monitoring kit based on Raman Spectroscopy of tear fluid. In this study, we were examined a soft substrate for an optimal lattice based on nanoimprint lithography using cyclo-olefin polymer to improve the sensitivity for measuring drug concentration in tear fluid. This is photonics crystal which is one of the nano-photonics based device was fabricated. Target is Sodium Phenobarbital which is an anticonvulsant agent. We show the effectiveness of Surface Enhanced Raman Spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring.

  14. Nanoscale hydrodynamics near solids

    NASA Astrophysics Data System (ADS)

    Camargo, Diego; de la Torre, J. A.; Duque-Zumajo, D.; Español, Pep; Delgado-Buscalioni, Rafael; Chejne, Farid

    2018-02-01

    Density Functional Theory (DFT) is a successful and well-established theory for the study of the structure of simple and complex fluids at equilibrium. The theory has been generalized to dynamical situations when the underlying dynamics is diffusive as in, for example, colloidal systems. However, there is no such a clear foundation for Dynamic DFT (DDFT) for the case of simple fluids in contact with solid walls. In this work, we derive DDFT for simple fluids by including not only the mass density field but also the momentum density field of the fluid. The standard projection operator method based on the Kawasaki-Gunton operator is used for deriving the equations for the average value of these fields. The solid is described as featureless under the assumption that all the internal degrees of freedom of the solid relax much faster than those of the fluid (solid elasticity is irrelevant). The fluid moves according to a set of non-local hydrodynamic equations that include explicitly the forces due to the solid. These forces are of two types, reversible forces emerging from the free energy density functional, and accounting for impenetrability of the solid, and irreversible forces that involve the velocity of both the fluid and the solid. These forces are localized in the vicinity of the solid surface. The resulting hydrodynamic equations should allow one to study dynamical regimes of simple fluids in contact with solid objects in isothermal situations.

  15. Heat exchange assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  16. Hear Exchange Assembly

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2003-05-27

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  17. Confinement effects on liquid oxygen flows in carbon nanotubes: A MD simulation study

    NASA Astrophysics Data System (ADS)

    Suga, Kazuhiko; Moritani, Rintaro; Mori, Yuki; Kaneda, Masayuki

    2017-11-01

    Molecular dynamics simulations are performed to investigate the liquid flow mechanism of diatomic molecules in armchair carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n,n) (n=6-20) CNTs at a temperature of 133[K] and a bulk density of 1680[kg /m3] for the liquid state. The velocity profiles and slip lengths are discussed considering the radial distributions of the fluid density by the finite difference-based velocity fitting method. It is shown that as the diameter of the CNT increases, the slip length and the flow rate enhancement generally become smaller while irregular tendencies (discontinuity points) are observed in the distribution profiles. Between the (7,7) and (8,8) CNTs, a steep drop can be seen in the profiles. Between the (9,9) and (11,11) CNTs, and between the (12,12) and (14,14) CNTs transitional profiles are observed. It is confirmed that those phenomena are caused by an instability of the fluid molecule cluster due to the discontinuous confinement of the CNTs. Professor.

  18. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  19. A numerical investigation of the fluid mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, P.-T.; Ribe, N. M.; Audoly, B.

    2012-04-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here, we simulate this experiment numerically using the discrete viscous threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia and of deformation by stretching, bending, and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory and agree closely with the experimental phase diagram of Morris et al. [Phys. Rev. E 77, 066218 (2008)], 10.1103/PhysRevE.77.066218. We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency Ωc of steady coiling obtained in the limit of zero belt speed. In particular, the intriguing "alternating loops" pattern is produced by combining the first five multiples of Ωc/3.

  20. Original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian

    2016-12-01

    The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.

  1. An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.

    1983-01-01

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.

  2. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  3. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  4. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  5. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  6. Equation of state and some structural and dynamical properties of the confined Lennard-Jones fluid into carbon nanotube: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Abbaspour, Mohsen; Akbarzadeh, Hamed; Salemi, Sirous; Abroodi, Mousarreza

    2016-11-01

    By considering the anisotropic pressure tensor, two separate equations of state (EoS) as functions of the density, temperature, and carbon nanotube (CNT) diameter have been proposed for the radial and axial directions for the confined Lennard-Jones (LJ) fluid into (11,11), (12,10), and (19,0) CNTs from 120 to 600 K using molecular dynamics (MD) simulations. We have also investigated the effects of the pore size, pore loading, chirality, and temperature on some of the structural and dynamical properties of the confined LJ fluid into (11,11), (12,10), (19,0), and (19,19) CNTs such as the radial density profile and self-diffusion coefficient. We have also determined the EoS for the confined LJ fluid into double and triple walled CNTs.

  7. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  8. A 4DCT imaging-based breathing lung model with relative hysteresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less

  9. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  10. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  11. Static and dynamic properties of smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  12. An Application-Based Performance Characterization of the Columbia Supercluster

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Djomehri, Jahed M.; Hood, Robert; Jin, Hoaqiang; Kiris, Cetin; Saini, Subhash

    2005-01-01

    Columbia is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processors each, and currently ranked as the second-fastest computer in the world. In this paper, we present the performance characteristics of Columbia obtained on up to four computing nodes interconnected via the InfiniBand and/or NUMAlink4 communication fabrics. We evaluate floating-point performance, memory bandwidth, message passing communication speeds, and compilers using a subset of the HPC Challenge benchmarks, and some of the NAS Parallel Benchmarks including the multi-zone versions. We present detailed performance results for three scientific applications of interest to NASA, one from molecular dynamics, and two from computational fluid dynamics. Our results show that both the NUMAlink4 and the InfiniBand hold promise for application scaling to a large number of processors.

  13. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  14. Follicular Fluid redox involvement for ovarian follicle growth.

    PubMed

    Freitas, Cláudia; Neto, Ana Catarina; Matos, Liliana; Silva, Elisabete; Ribeiro, Ângela; Silva-Carvalho, João Luís; Almeida, Henrique

    2017-07-12

    As the human ovarian follicle enlarges in the course of a regular cycle or following controlled ovarian stimulation, the changes in its structure reveal the oocyte environment composed of cumulus oophorus cells and the follicular fluid (FF).In contrast to the dynamic nature of cells, the fluid compartment appears as a reservoir rich in biomolecules. In some aspects, it is similar to the plasma, but it also exhibits differences that likely relate to its specific localization around the oocyte. The chemical composition indicates that the follicular fluid is able to detect and buffer excessive amounts of reactive oxygen species, employing a variety of antioxidants, some of them components of the intracellular milieu.An important part is played by albumin through specific cysteine residues. But the fluid contains other molecules whose cysteine residues may be involved in sensing and buffering the local oxidative conditions. How these molecules are recruited and regulated to intervene such process is unknown but it is a critical issue in reproduction.In fact, important proteins in the FF, that regulate follicle growth and oocyte quality, exhibit cysteine residues at specific points, whose untoward oxidation would result in functional loss. Therefore, preservation of controlled oxidative conditions in the FF is a requirement for the fine-tuned oocyte maturation process. In contrast, its disturbance enhances the susceptibility to the establishment of reproductive disorders that would require the intervention of reproductive medicine technology.

  15. Molecular dynamics simulations of fluid methane properties using ab initio intermolecular interaction potentials.

    PubMed

    Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D

    2009-09-01

    Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.

  16. Comparative Computed Flow Dynamic Analysis of Different Optimization Techniques in Left Main Either Provisional or Culotte Stenting.

    PubMed

    Rigatelli, Gianluca; Dell'Avvocata, Fabio; Zuin, Marco; Giatti, Sara; Duong, Khanh; Pham, Trung; Tuan, Nguyen Si; Vassiliev, Dobrin; Daggubati, Ramesh; Nguyen, Thach

    2017-12-01

    Provisional and culotte are the most commonly used techniques in left main (LM) stenting. The impact of different post-dilation techniques on fluid dynamic of LM bifurcation has not been yet investigated. The aim of this study is to evaluate, by means of computational fluid dynamic analysis (CFD), the impact of different post-dilation techniques including proximal optimization technique (POT), kissing balloon (KB), POT-Side-POT and POT-KB-POT, 2-steps Kissing (2SK) and Snuggle Kissing balloon (SKB) on flow dynamic profile after LM provisional or culotte stenting. We considered an LM-LCA-LCX bifurcation reconstructed after reviewing 100 consecutive patients (mean age 71.4 ± 9.3 years, 49 males) with LM distal disease. The diameters of LAD and LCX were modelled according to the Finnet's law as following: LM 4.5 mm, LAD 3.5 mm, LCX 2.75 mm, with bifurcation angle set up at 55°. Xience third-generation stent (Abbot Inc., USA) was reconstructed and virtually implanted in provisional/cross-over and culotte fashion. POT, KB, POT-side-POT, POT-KB-POT, 2SK and SKB were virtually applied and analyzed in terms of the wall shear stress (WSS). Analyzing the provisional stenting, the 2SK and KB techniques had a statistically significant lower impact on the WSS at the carina, while POT seemed to obtain a neutral effect. In the wall opposite to the carina, the more physiological profile has been obtained by KB and POT with higher WSS value and smaller surface area of the lower WSS. In culotte stenting, at the carina, POT-KB-POT and 2SK had a very physiological profile; while at the wall opposite to the carina, 2SK and POT-KB-POT decreased significantly the surface area of the lower WSS compared to the other techniques. From the fluid dynamic point of view in LM provisional stenting, POT, 2SK and KB showed a similar beneficial impact on the bifurcation rheology, while in LM culotte stenting, POT-KB-POT and 2SK performed slightly better than the other techniques, probably reflecting a better strut apposition.

  17. Workshop on Engineering Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Stephen J.; Ni, Guangjian

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motionmore » will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.« less

  19. Coupled numerical simulation of fire in tunnel

    NASA Astrophysics Data System (ADS)

    Pesavento, F.; Pachera, M.; Schrefler, B. A.; Gawin, D.; Witek, A.

    2018-01-01

    In this work, a coupling strategy for the analysis of a tunnel under fire is presented. This strategy consists in a "one-way" coupling between a tool considering the computational fluid dynamics and radiation with a model treating concrete as a multiphase porous material exposed to high temperature. This global approach allows for taking into account in a realistic manner the behavior of the "system tunnel", composed of the fluid and the solid domain (i.e. the concrete structures), from the fire onset, its development and propagation to the response of the structure. The thermal loads as well as the moisture exchange between the structure surface and the environment are calculated by means of computational fluid dynamics. These set of data are passed in an automatic way to the numerical tool implementing a model based on Multiphase Porous Media Mechanics. Thanks to this strategy the structural verification is no longer based on the standard fire curves commonly used in the engineering practice, but it is directly related to a realistic fire scenario. To show the capability of this strategy some numerical simulations of a fire in the Brenner Base Tunnel, under construction between Italy and Austria, is presented. The numerical simulations show the effects of a more realistic distribution of the thermal loads with respect to the ones obtained by using the standard fire curves. Moreover, it is possible to highlight how the localized thermal load generates a non-uniform pressure rise in the material, which results in an increase of the structure stress state and of the spalling risk. Spalling is likely the most dangerous collapse mechanism for a concrete structure. This coupling approach still represents a "one way" strategy, i.e. realized without considering explicitly the mass and energy exchange from the structure to the fluid through the interface. This results in an approximation, but from physical point of view the current form of the solid-fluid coupling is considered sufficiently accurate in this first phase of the research.

  20. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  1. Cerebrospinal Fluid Mechanics and Its Coupling to Cerebrovascular Dynamics

    NASA Astrophysics Data System (ADS)

    Linninger, Andreas A.; Tangen, Kevin; Hsu, Chih-Yang; Frim, David

    2016-01-01

    Cerebrospinal fluid (CSF) is not stagnant but displays fascinating oscillatory flow patterns inside the ventricular system and reversing fluid exchange between the cranial vault and spinal compartment. This review provides an overview of the current knowledge of pulsatile CSF motion. Observations contradicting classical views about its bulk production and clearance are highlighted. A clinical account of diseases of abnormal CSF flow dynamics, including hydrocephalus, syringomyelia, Chiari malformation type 1, and pseudotumor cerebri, is also given. We survey medical imaging modalities used to observe intracranial dynamics in vivo. Additionally, we assess the state of the art in predictive models of CSF dynamics. The discussion addresses open questions regarding CSF dynamics as they relate to the understanding and management of diseases.

  2. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain

    2017-04-01

    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical analysis of fluid samples, which were taken at every temperature level. Both physical and chemical data indicate only slight fluid-rock interactions at T < 250° C and the increase in bulk conductivity is most probably dominated by a T-dependence of the surface conductance. At higher temperatures, the decreasing fluid density causes the decrease of dielectric constant, which in turn leads to the precipitation of minerals due to a promoted association between oppositely charged ions. This is intensified at the critical point, indicated by a sharp decrease in conductivity, when regarding pure fluids. The opposite was observed in experiments, where fluid-solid interaction was allowed. In this case, the conductivity of the bulk system has increased within seconds nearly by factor 7. This points to a massive release of charge carriers due to an extensive and spontaneous increase in rock solubility, what counterbalances the effect of mineral precipitation. Moreover, the permanent oscillation of conductivities at supercritical conditions may indicate a dynamic interplay of ion depletion by mineral precipitation and the input of new charge carriers due to mineral dissolution. Regarding the permeability we can resolve the influence of mineral precipitation only, which is indicated by a decrease in rock permeability by about 5 % after the sample was exposed to supercritical conditions for 4 hours. Especially, for Si a continuous increase of ion concentration in the fluid samples is revealed for increasing temperatures, indicating a beginning mineral dissolution above 150° C. At near-critical conditions also Al and Pb as well as the rare earth elements (REE) are more intensively dissolved. From SEM analyses it is apparent that the alteration of the solid material is most effective where fresh fluid is continuously flowing around the solid, while stagnant fluids led to a much less pervasive alteration of the material. In this case, solid dissolution seems to slow down considerably or even comes to an end, what can be explained by the adjustment of a chemical equilibrium and the stabilisation of the reaction front.

  3. Validation of Slosh Model Parameters and Anti-Slosh Baffle Designs of Propellant Tanks by Using Lateral Slosh Testing

    NASA Technical Reports Server (NTRS)

    Perez, Jose G.; Parks, Russel, A.; Lazor, Daniel R.

    2012-01-01

    The slosh dynamics of propellant tanks can be represented by an equivalent mass-pendulum-dashpot mechanical model. The parameters of this equivalent model, identified as slosh mechanical model parameters, are slosh frequency, slosh mass, and pendulum hinge point location. They can be obtained by both analysis and testing for discrete fill levels. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random excitation testing and free-decay testing, are performed to validate the slosh mechanical model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures were used to extract the parameters from the experimental data. Test setup of sub-scale tanks will be described. A comparison between experimental results and analysis will be presented.

  4. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist. [computer systems design

    NASA Technical Reports Server (NTRS)

    Yoshihara, H.

    1978-01-01

    The problem of designing the wing-fuselage configuration of an advanced transonic commercial airliner and the optimization of a supercruiser fighter are sketched, pointing out the essential fluid mechanical phenomena that play an important role. Such problems suggest that for a numerical method to be useful, it must be able to treat highly three dimensional turbulent separations, flows with jet engine exhausts, and complex vehicle configurations. Weaknesses of the two principal tools of the aerodynamicist, the wind tunnel and the computer, suggest a complementing combined use of these tools, which is illustrated by the case of the transonic wing-fuselage design. The anticipated difficulties in developing an adequate turbulent transport model suggest that such an approach may have to suffice for an extended period. On a longer term, experimentation of turbulent transport in meaningful cases must be intensified to provide a data base for both modeling and theory validation purposes.

  5. Competition between anisotropic viscous fingers

    NASA Astrophysics Data System (ADS)

    Pecelerowicz, M.; Budek, A.; Szymczak, P.

    2014-09-01

    We consider viscous fingers created by injection of low viscosity fluid into the network of capillaries initially filled with a more viscous fluid (motor oil). Due to the anisotropy of the system and its geometry, such a setup promotes the formation of long-and-thin fingers which then grow and compete for the available flow, interacting through the pressure field. The interaction between the fingers is analyzed using the branched growth formalism of Halsey and Leibig (Phys. Rev. A 46, 7723, 1992) using a number of simple, analytically tractable models. It is shown that as soon as the fingers are allowed to capture the flow from one another, the fixed point appears in the phase space, corresponding to the asymptotic state in which the growth of one of the fingers in hindered by the other. The properties of phase space flows in such systems are shown to be remarkably insensitive to the details of the dynamics.

  6. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  7. Fish gotta swim, Birds gotta fly, I gotta do Feynmann Graphs 'til I die: A continuum Theory of Flocking

    NASA Astrophysics Data System (ADS)

    Toner, John; Tu, Yu-Hai

    2002-05-01

    We have developed a new continuum dynamical model for the collective motion of large "flocks" of biological organisms (e.g., flocks of birds, schools of fish, herds of wildebeest, hordes of bacteria, slime molds, etc.) . This model does for flocks what the Navier-Stokes equation does for fluids. The model predicts that, unlike simple fluids, flocks show huge fluctuation effects in spatial dimensions d < 4 that radically change their behavior. In d=2, it is only these effects that make it possible for the flock to move coherently at all. This explains why a million wildebeest can march together across the Serengeti plain, despite the fact that a million physicists gathered on the same plane could NOT all POINT in the same direction. Detailed quantitative predictions of this theory agree beautifully with computer simulations of flock motion.

  8. Dynamic Mesh CFD Simulations of Orion Parachute Pendulum Motion During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Halstrom, Logan D.; Schwing, Alan M.; Robinson, Stephen K.

    2016-01-01

    This paper demonstrates the usage of computational fluid dynamics to study the effects of pendulum motion dynamics of the NASAs Orion Multi-Purpose Crew Vehicle parachute system on the stability of the vehicles atmospheric entry and decent. Significant computational fluid dynamics testing has already been performed at NASAs Johnson Space Center, but this study sought to investigate the effect of bulk motion of the parachute, such as pitching, on the induced aerodynamic forces. Simulations were performed with a moving grid geometry oscillating according to the parameters observed in flight tests. As with the previous simulations, OVERFLOW computational fluid dynamics tool is used with the assumption of rigid, non-permeable geometry. Comparison to parachute wind tunnel tests is included for a preliminary validation of the dynamic mesh model. Results show qualitative differences in the flow fields of the static and dynamic simulations and quantitative differences in the induced aerodynamic forces, suggesting that dynamic mesh modeling of the parachute pendulum motion may uncover additional dynamic effects.

  9. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  10. Nonlinear dynamics of coiling, and mounding in viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Majmudar, Trushant; Ober, Thomas; McKinley, Gareth

    2009-11-01

    Free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes like bottle filling, remain poorly understood in terms of fundamental fluid dynamics. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities, and model yield-stress fluids. We systematically vary the height of the drop and the flow rate in order to study the effects of varying geometric and kinematic parameters. We observe that for fluids with higher elastic relaxation times, folding is the preferred mode. In contrast, for low elasticity fluids we observe complex nonlinear dynamics consisting of coiling, folding, and irregular meandering as the height of the fall increases. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo" or the Kaye effect. Upon increasing the flow rate to very high values, the ``leaping shampoo" state disappears and is replaced by a pronounced mounding or ``heaping". A subsequent increase in the flow rate results in finger-like protrusions to emerge out of the mound and climb up towards the nozzle. This novel transition is currently under investigation and remains a theoretical challenge.

  11. Fluid property measurements study

    NASA Technical Reports Server (NTRS)

    Devaney, W. E.

    1976-01-01

    Fluid properties of refrigerant-21 were investigated at temperatures from the freezing point to 423 Kelvin and at pressures to 1.38 x 10 to the 8th power N/sq m (20,000 psia). The fluid properties included were: density, vapor pressure, viscosity, specific heat, thermal conductivity, thermal expansion coefficient, freezing point and bulk modulus. Tables of smooth values are reported.

  12. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  13. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  14. Application of wave mechanics theory to fluid dynamics problems: Boundary layer on a circular cylinder including turbulence

    NASA Technical Reports Server (NTRS)

    Krzywoblocki, M. Z. V.

    1974-01-01

    The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.

  15. Fluid Mechanics of Spinning Rockets.

    DTIC Science & Technology

    1987-01-01

    A177 358 FLUID MECHANICS OF SPINNING ROCKETS(U) UTAH UNIV SACT 1d𔃼 LAKCE CITY FLUID DYNAMICS LAB G A FLANDRO ET AL JAN087 AFRPL-TR-86-872 F846ii-81...ELECTEFEB 2 5 198m D January 1987 Authors: University of Utah G. A. Flandro Fluid Dynamics Laboratory W. K. VanMoorhem Salt Lake City, Utah 84112 in0...was Mr Gary L. Vogt. This technical report has been reviewed and is approved for publication and distribution in accordance with the distribution

  16. SPAR improved structure/fluid dynamic analysis capability

    NASA Technical Reports Server (NTRS)

    Oden, J. T.; Pearson, M. L.

    1983-01-01

    The capability of analyzing a coupled dynamic system of flowing fluid and elastic structure was added to the SPAR computer code. A method, developed and adopted for use in SPAR utilizes the existing assumed stress hybrid plan element in SPAR. An operational mode was incorporated in SPAR which provides the capability for analyzing the flaw of a two dimensional, incompressible, viscous fluid within rigid boundaries. Equations were developed to provide for the eventual analysis of the interaction of such fluids with an elastic solid.

  17. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.

  18. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  19. Modeling Potential Carbon Monoxide Exposure Due to Operation of a Major Rocket Engine Altitude Test Facility Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Blotzer, Michael J.; Woods, Jody L.

    2009-01-01

    This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.

  20. Fluid Dynamic Mechanisms and Interactions within Separated Flows.

    DTIC Science & Technology

    1986-07-01

    Vol. 42, Series E, No., pp. 197, pp. 387-39S. b5-bD, March N95, 18. Warpinski , N. R., and Chow, W. L., "Base Pres- 27. Chow, W. L., "Base Pressure of a...lied Rocket/Plume Fluid Dynamic Interactions, Vol. Mechanics, Vol. 46, No. 3, Sept. 197. 1, Base Flows, Fluid Dynamic Lab Report 63-101, 19. Warpinski ...34Surface Pressure Measurements ’" Warpinski , N. R. and Chow, W. L., "Base Pressure Associated on a Boattailed Projectile Shape at Transonic Speeds," ARBRL

  1. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  2. Translational and rotational diffusion of Janus nanoparticles at liquid interfaces

    NASA Astrophysics Data System (ADS)

    Rezvantalab, Hossein; Shojaei-Zadeh, Shahab

    2014-11-01

    We use molecular dynamics simulations to understand the thermal motion of nanometer-sized Janus particles at the interface between two immiscible fluids. We consider spherical nanoparticles composed of two sides with different affinity to fluid phases, and evaluate their dynamics and changes in fluid structure as a function of particle size and surface chemistry. We show that as the amphiphilicity increases upon enhancing the wetting of each side with its favored fluid, the in-plane diffusivity at the interface becomes slower. Detail analysis of the fluid structure reveals that this is mainly due to formation of a denser adsorption layer around more amphiphilic particles, which leads to increased drag acting against nanoparticle motion. Similarly, the rotational thermal motion of Janus particles is reduced compared to their homogeneous counterparts as a result of the higher resistance of neighboring fluid species against rotation. We also incorporate the influence of fluid density and surface tension on the interfacial dynamics of such Janus nanoparticles. Our findings may have implications in understanding the adsorption mechanism of drugs and protein molecules with anisotropic surface properties to biological interfaces including cell membranes.

  3. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  4. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach: STICK-SLIP IN SATURATED FAULT GOUGE

    DOE PAGES

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...

    2017-05-01

    The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less

  5. On hydrodynamic phase field models for binary fluid mixtures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi

    2018-05-01

    Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.

  6. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation

    PubMed Central

    Ma, Xianghong

    2016-01-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914

  7. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.

    PubMed

    Wu, Zhangming; Ma, Xianghong

    2016-03-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

  8. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    NASA Astrophysics Data System (ADS)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  9. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  10. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  11. Cavitation and bubble dynamics: the Kelvin impulse and its applications

    PubMed Central

    Blake, John R.; Leppinen, David M.; Wang, Qianxi

    2015-01-01

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141

  12. The Variety of Fluid Dynamics.

    ERIC Educational Resources Information Center

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  13. Fluid dynamics computer programs for NERVA turbopump

    NASA Technical Reports Server (NTRS)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  14. Dynamic behavior of microscale particles controlled by standing bulk acoustic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhall, J.; Raeymaekers, B., E-mail: bart.raeymaekers@utah.edu; Guevara Vasquez, F.

    2014-10-06

    We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium, driven to the node of a standing bulk acoustic wave created by two opposing transducers. We derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and the time-dependent and time-independent drag force acting on the particle. Using this dynamic model, we characterize the transient and steady-state behavior of the fluid-particle system as a function of the particle and fluid properties and the transducer operating parameters. The results show that the settling time and percent overshoot of the particle trajectory are dependentmore » on the ratio of the acoustic radiation force and time-independent damping force. In addition, we show that the particle oscillates around the node of the standing wave with an amplitude that depends on the ratio of the time-dependent drag forces and the particle inertia.« less

  15. FDNS CFD Code Benchmark for RBCC Ejector Mode Operation

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Ruf, Joe

    1999-01-01

    Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.

  16. Lagrangian coherent structures separate dynamically distinct regions in fluid flows.

    PubMed

    Kelley, Douglas H; Allshouse, Michael R; Ouellette, Nicholas T

    2013-07-01

    Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional, weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of the scale-to-scale energy flux changes significantly. In particular, its features appear to correlate with the positions of Lagrangian coherent structures (LCS's). We show that the LCS's tend to lie at zeros of the scale-to-scale flux, and therefore that the LCS's separate regions that have qualitatively different dynamics. Since LCS's are also known to be impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of an LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS's by making clear the role they play in the flow dynamics in addition to the kinematics.

  17. Droplet bubbling evaporatively cools a blowfly.

    PubMed

    Gomes, Guilherme; Köberle, Roland; Von Zuben, Claudio J; Andrade, Denis V

    2018-04-19

    Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.

  18. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  19. Development of a Linear Stirling System Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  20. Viscosity of Xenon Examined in Microgravity

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  1. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.

    PubMed

    Spruijt, E; Biesheuvel, P M

    2014-02-19

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state. Finally, we demonstrate that our model is not limited to hard spheres, by extending it to charged spherical particles, and to dumbbells, trimers and short chains of connected beads.

  2. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    PubMed

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.

  3. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    DOE PAGES

    Reed, K. A.; Bacmeister, J. T.; Rosenbloom, N. A.; ...

    2015-05-13

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral elementmore » core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty« less

  4. Parameterized Linear Longitudinal Airship Model

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Bayard, David; Quadrelli, Marco; Johnson, Joseph

    2010-01-01

    A parameterized linear mathematical model of the longitudinal dynamics of an airship is undergoing development. This model is intended to be used in designing control systems for future airships that would operate in the atmospheres of Earth and remote planets. Heretofore, the development of linearized models of the longitudinal dynamics of airships has been costly in that it has been necessary to perform extensive flight testing and to use system-identification techniques to construct models that fit the flight-test data. The present model is a generic one that can be relatively easily specialized to approximate the dynamics of specific airships at specific operating points, without need for further system identification, and with significantly less flight testing. The approach taken in the present development is to merge the linearized dynamical equations of an airship with techniques for estimation of aircraft stability derivatives, and to thereby make it possible to construct a linearized dynamical model of the longitudinal dynamics of a specific airship from geometric and aerodynamic data pertaining to that airship. (It is also planned to develop a model of the lateral dynamics by use of the same methods.) All of the aerodynamic data needed to construct the model of a specific airship can be obtained from wind-tunnel testing and computational fluid dynamics

  5. AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.

    2018-06-01

    The program AqSo_NaCl has been developed to calculate pressure - molar volume - temperature - composition (p-V-T-x) properties, enthalpy, and heat capacity of the binary H2O-NaCl system. The algorithms are designed in BASIC within the Xojo programming environment, and can be operated as stand-alone project with Macintosh-, Windows-, and Unix-based operating systems. A series of ten self-instructive interfaces (modules) are developed to calculate fluid inclusion properties and pore fluid properties. The modules may be used to calculate properties of pure NaCl, the halite-liquidus, the halite-vapourus, dew-point and bubble-point curves (liquid-vapour), critical point, and SLV solid-liquid-vapour curves at temperatures above 0.1 °C (with halite) and below 0.1 °C (with ice or hydrohalite). Isochores of homogeneous fluids and unmixed fluids in a closed system can be calculated and exported to a.txt file. Isochores calculated for fluid inclusions can be corrected according to the volumetric properties of quartz. Microthermometric data, i.e. dissolution temperatures and homogenization temperatures, can be used to calculated bulk fluid properties of fluid inclusions. Alternatively, in the absence of total homogenization temperature the volume fraction of the liquid phase in fluid inclusions can be used to obtain bulk properties.

  6. Modeling the relaxation dynamics of fluids in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Edison, John R.

    Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced metastabilities and large equilibration times in certain classes of mesoporous materials, and the approach to the metastable/stable equilibrium is of tremendous interest. Secondly, understanding the transport resistances in a microscopic scale will help better engineer heterogeneous catalysts and separation processes. Here we present some of our preliminary studies on dynamics of fluids in ideal pore geometries. The tool that we have used extensively to investigate the relaxation dynamics of fluids in pores is the dynamic mean field theory (DMFT) as developed by Monson [P. A. Monson, J. Chem. Phys., 128, 084701 (2008)]. The theory is based on a lattice gas model of the system and can be viewed as a highly computationally efficient approximation to the dynamics averaged over an ensemble of Kawasaki dynamics Monte Carlo trajectories of the system. It provides a theory of the dynamics of the system consistent with the thermodynamics in mean field theory. The nucleation mechanisms associated with confined fluid phase transitions are emergent features in the calculations. We begin by describing the details of the theory and then present several applications of DMFT. First we present applications to three model pore networks (a) a network of slit pores with a single pore width; (b) a network of slit pores with two pore widths arranged in intersecting channels with a single pore width in each channel; (c) a network of slit pores with two pore widths forming an array of ink-bottles. The results illustrate the effects of pore connectivity upon the dynamics of vapor liquid phase transformations as well as on the mass transfer resistances to equilibration. We then present an application to a case where the solid-fluid interactions lead to partial wetting on a planar surface. The pore filling process in such systems features an asymmetric density distribution where a liquid droplet appears on one of the walls. We also present studies on systems where there is partial drying or drying associated with weakly attractive or repulsive interactions between the fluid and the pore walls. We describe the symmetries exhibited by the lattice model between pore filling for wetting states and pore emptying for drying states, for both the thermodynamics and dynamics. We then present an extension of DMFT to mixtures and present some examples that illustrate the utility of the approach. Finally we present an assessment the accuracy of the DMFT through comparisons with a higher order approximation based on the path probability method as well as Kawasaki dynamics.

  7. Aeroelastic, CFD, and Dynamic Computation and Optimization for Buffet and Flutter Application

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    The work presented in this paper include: 'Coupled and Uncoupled Bending-Torsion Responses of Twin-Tail Buffet'; 'Fluid/Structure Twin Tail Buffet Response Over a Wide Range of Angles of Attack'; 'Resent Advances in Multidisciplinary Aeronautical Problems of Fluids/Structures/Dynamics Interaction'; and'Development of a Coupled Fluid/Structure Aeroelastic Solver with Applications to Vortex Breakdown induced Twin Tail Buffeting.

  8. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  9. The dynamic two-fluid model OLGA; Theory and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendiksen, K.H.; Maines, D.; Moe, R.

    1991-05-01

    Dynamic two-fluid models have found a wide range of application in the simulation of two-phase-flow systems, particularly for the analysis of steam/water flow in the core of a nuclear reactor. Until quite recently, however, very few attempts have been made to use such models in the simulation of two-phase oil and gas flow in pipelines. This paper presents a dynamic two-fluid model, OLGA, in detail, stressing the basic equations and the two-fluid models applied. Predictions of steady-state pressure drop, liquid hold-up, and flow-regime transitions are compared with data from the SINTEF Two-Phase Flow Laboratory and from the literature. Comparisons withmore » evaluated field data are also presented.« less

  10. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  11. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  12. Metalworking fluids: oil mist and beyond.

    PubMed

    Gauthier, Stephen L

    2003-11-01

    This article is based upon my own experiences with metalworking fluids and the adverse health effects and medical conditions associated with exposure to metalworking fluids. I have researched and witnessed the benefits that can be achieved when metalworking fluids are properly maintained and managed. My experiences have provided insight into how a shop operates, including comprehension of the equipment used, processes, mist generating points, engineering controls currently being adopted, and procedures that are used to maintain metalworking fluids. I have been able to share my personal experiences with the country's leading experts in the field of metalworking fluids. I have presented my insights on the topic in Washington, D.C., to the Standard Advisory Committee of OSHA, as well as at many other conferences nationwide. I have provided awareness training for a number of union and nonunion workers. Being a part of developing successful metal removal fluid programs, I realize the importance of transferring and sharing information. Many times an organization is not fully aware of certain conditions and how to combat them. My mission and intent is to properly educate those who are exposed to the harm that metalworking fluids can invoke and to inform those involved of the possible methods of reducing long- and short-term risk. One thing that must be kept in mind is the way we view these fluids. Many shops categorize the fluids as a type of "operating expense" when they should actually be seen as a sort of investment. Just as performing a scheduled maintenance on a machine promises the best possible longevity of that machine, the upkeep of metalworking fluid also provides longer "tool life." Monitoring and maintaining the fluids also provides for more effective and efficient productivity. If we fail to consider that proper management of the fluids can cut cost dramatically, then we will miss out on the financial impact they can have on a company. Try looking at the fluids as a liquid tool. Doing so I believe will bring a better understanding of the value of a successful metalworking fluids program. With this new understanding, it can be seen just who must play a role in the management of metalworking fluids. The employees who deal with the daily tasks involving the coolant play a major part. They are on the floor where these metalworking fluids are being used. In many shops, it is assumed that the environmental health & safety departments are responsible for standard operating procedures and management of fluids. The EH&S department should only be responsible for the protection from exposure and the transfer of information regarding policy and procedure to their employees. Not all shops have the resources required to develop and implement the proper standard operating procedure. Therefore, we must understand that what is feasible for one may not be for another. Companies that lack the sufficient resources should not be neglected. It is crucial that awareness of proper standard operating procedure is shared with everyone involved with the fluids in order to provide proper metalworking fluids management. Fluids are as dynamic as the formulations themselves (complex & dynamic). These fluids can quickly become contaminated with foreign materials and chemicals, thereby become aerosolized into mist. With proper education and training, one will be able to control what gets aerosolized.

  13. Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories

    NASA Astrophysics Data System (ADS)

    Spillane, Michael

    In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T << m.. Additionally, we calculate thermal corrections to Renyi entropies for free massless fermions on R x S d-1. By expanding the density matrix in a Boltzmann sum, the problem of finding the Renyi entropies can be mapped to the problem of calculating a two point function on an n-sheeted cover of the sphere. We map the problem on the sphere to a conical region in Euclidean space. By using the method of images, we calculate the two point function and recover the Renyi entropies. At large length scales hydrodynamics is a useful way to study quantum field theories. We review recent interest in the Riemann problem as a method for generating a non-equilibrium steady state. The initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The resulting fluid flow contains a fixed temperature region with a nonzero flux. We briefly discuss the effects of a conserved charge. Next we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids. Finally, we study properties of a non-equilibrium steady state generated when two heat baths are initially in contact with one another. The dynamics of the system in question are governed by holographic duality to a blackhole. We discuss the "phase diagram" associated with the steady state of the dual, dynamical black hole and its relation to the fluid/gravity correspondence.

  14. Solid-like features in dense vapors near the fluid critical point

    NASA Astrophysics Data System (ADS)

    Ruppeiner, George; Dyjack, Nathan; McAloon, Abigail; Stoops, Jerry

    2017-06-01

    The phase diagram (pressure versus temperature) of the pure fluid is typically envisioned as being featureless apart from the presence of the liquid-vapor coexistence curve terminating at the critical point. However, a number of recent authors have proposed that this simple picture misses important features, such as the Widom line, the Fisher-Widom line, and the Frenkel line. In our paper, we discuss another way of augmenting the pure fluid phase diagram, lines of zero thermodynamic curvature R = 0 separating regimes of fluid solid-like behavior (R > 0) from gas-like or liquid-like behavior (R < 0). We systematically evaluate R for the 121 pure fluids in the NIST/REFPROP (version 9.1) fluid database near the saturated vapor line from the triple point to the critical point. Our specific goal was to identify regions of positive R abutting the saturated vapor line ("feature D"). We found the following: (i) 97/121 of the NIST/REFPROP fluids have feature D. (ii) The presence and character of feature D correlates with molecular complexity, taken to be the number of atoms Q per molecule. (iii) The solid-like properties of feature D might be attributable to a mesoscopic model based on correlations among coordinated spinning molecules, a model that might be testable with computer simulations. (iv) There are a number of correlations between thermodynamic quantities, including the acentric factor ω , but we found little explicit correlation between ω and the shape of a molecule. (v) Feature D seriously constrains the size of the asymptotic fluid critical point regime, possibly resolving a long-standing mystery about why these are so small. (vi) Feature D correlates roughly with regimes of anomalous sound propagation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garifullin, R. N., E-mail: rustem@matem.anrb.ru; Suleimanov, B. I., E-mail: bisul@mail.r

    An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.

  16. Characterization of microscopic deformation through two-point spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  17. Characterization of microscopic deformation through two-point spatial correlation functions.

    PubMed

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  18. Unstructured grid research and use at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.

  19. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  20. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process.

    PubMed

    Guo, Ce; Zhu, Xijing

    2018-03-01

    The effect of ultrasound on generating and controlling the cavitation bubble of the grinding fluid during ultrasonic vibration honing was investigated. The grinding fluid on the surface of the honing stone was measured by utilizing the digital microscope VHX-600ESO. Based on analyzing the cavitation mechanism of the grinding fluid, the bubble dynamics model under conventional honing (CH) and ultrasonic vibration honing (UVH) was established respectively. Difference of dynamic behaviors of the bubble between the cases in UVH and CH was compared respectively, and the effects of acoustic amplitude and ultrasonic frequency on the bubble dynamics were simulated numerically using the Runge-Kutta fourth order method with variable step size adaptive control. Finally, the cavitation intensity of grinding fluids under ultrasound was measured quantitatively using acoustimeter. The results showed that the grinding fluid subjected to ultrasound can generate many bubbles and further forms numerous groups of araneose cavitation bubbles on the surface of the honing stone. The oscillation of the bubble under UVH is more intense than the case under CH, and the maximum velocity of the bubble wall under UVH is higher two magnitudes than the case under CH. For lower acoustic amplitude, the dynamic behaviors of the bubble under UVH are similar to that case under CH. As increasing acoustic amplitude, the cavitation intensity of the bubble is growing increased. Honing pressure has an inhabitation effect on cavitation effect of the grinding fluid. The perfect performance of cavitation of the grinding fluid can be obtained when the device of UVH is in the resonance. However, the cavitation intensity of the grinding fluid can be growing weakened with increasing ultrasonic frequency, when the device of UVH is in the off-resonance. The experimental results agree with the theoretical and numerical analysis, which provides a method for exploring applications of the cavitation effect in ultrasonic assisted machining. Copyright © 2017 Elsevier B.V. All rights reserved.

Top