Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burstein, S.Z.; Lax, P.D.; Sod, G.A.
1978-09-01
Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
USSR and Eastern Europe Scientific Abstracts Engineering and Equipment No. 30
1977-03-18
Table 2j Biblio 4. 41 HUNGARY INVESTIGATION OF TRANSIENT PHENOMENA IN FLUID PIPELINES WITH THE AID OF THE MATRIX OPERATOR Budapest ENERGIA ES...investigated. Ill 5; Biblio 3. 48 USSR UDC 629.7.036.002.2 PROCEDURE AND SETUP FOR RENOVATING WORN-OUT PARTS OF AVIATION GAS-TURBINE ENGINES...Kiev VOPROSY POVYSHENIYA NADEZHNOSTI, DOLGOVECHNOSTI I VOSSTANOVLENIYA AVIATSIONNOY TEKHNIKI [Increasing the Reliability, Lifetime and Renovation of
Quasi-2D Unsteady Flow Solver Module for Rocket Engine and Propulsion System Simulations
2006-06-14
Conference, Sacramento, CA, 9-12 July 2006. 14. ABSTRACT A new quasi-two-dimensional procedure is presented for the transient solution of real-fluid flows...solution procedures is being developed in parallel to provide verification test cases. The solution procedure for both codes is coupled with a state-of...Davis, Davis, CA, 95616 A new quasi-two-dimensional procedure is presented for the transient solution of real- fluid flows in lines and volumes
NASA Technical Reports Server (NTRS)
2004-01-01
The proceedings of this symposium consist of abstracts of talks presented by interns at NASA Glenn Research Center (GRC). The interns assisted researchers at GRC in projects which primarily address the following topics: aircraft engines and propulsion, spacecraft propulsion, fuel cells, thin film photovoltaic cells, aerospace materials, computational fluid dynamics, aircraft icing, management, and computerized simulation.
USSR and Eastern Europe Scientific Abstracts. Engineering and Equipment, Nubmer 28.
1977-02-04
with a gas of negligibly low density^ The fluid is in a magnetic field with intensity vector H*, a gravitational field ng ( g » 9.81 m/sec , n = the...account. The^axis of symmetry of the vessel is anticollinear to the vector g . Basic equations are presented in a form that is convenient for...REQUIREMENTS OF THE NEW SNiP STANDARD MOSCOW STROITEL’STVO TRUBOPROVODOV No 8, Aug 76, pp 31-33 PROKOF’YEV, V.l., AND KAMERSHTEYN, A. G . Abstract
Research in applied mathematics, numerical analysis, and computer science
NASA Technical Reports Server (NTRS)
1984-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.
4th International Plant Biomechanics Conference Proceedings (Abstracts)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers
2003-07-20
The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.
Design of a Generator for Near-Tangential Transonic Swirling Outflow.
1984-12-01
of Turbine Blading , North American Aviation Inc, 1958. 8. Moses, H. L., Turbomachinery. Supplementary Notes, Naval Postgraduate School, 1983. 9...Streeter, V. L., and Wylie, B. E., Fluid Mqechanics, McGraw Hill, 1979 10. Vincent, E. T.,* The Theroy and Design of Gas Turbines and Jet Engines , McGraw...Radial Outflow Vanes ) Trarsonic Swirl Generation, Wedge-Arc Blading , 20. ABSTRACT (Continue on reverse side If necesary and Identify by block number
Applied Nonlinear Dynamics and Stochastic Systems Near The Millenium. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadtke, J.B.; Bulsara, A.
These proceedings represent papers presented at the Applied Nonlinear Dynamics and Stochastic Systems conference held in San Diego, California in July 1997. The conference emphasized the applications of nonlinear dynamical systems theory in fields as diverse as neuroscience and biomedical engineering, fluid dynamics, chaos control, nonlinear signal/image processing, stochastic resonance, devices and nonlinear dynamics in socio{minus}economic systems. There were 56 papers presented at the conference and 5 have been abstracted for the Energy Science and Technology database.(AIP)
Engine having multiple pumps driven by a single shaft
Blass, James R.
2001-01-01
An engine comprises an engine housing. A first engine fluid sub-system that includes a first pump and the engine housing defining a first fluid passage is also included in the engine. The engine also includes at least one additional engine fluid sub-system that includes a second pump and the engine housing defining a second fluid passage. A rotating shaft is at least partially positioned in the engine housing, the first pump and the second pump.
Jamnadass, Enakshee; Aboumarzouk, Omar; Kallidonis, Panagiotis; Emiliani, Esteban; Tailly, Thomas; Hruby, Stephan; Sanguedolce, Francesco; Atis, Gokhan; Özsoy, Mehmet; Greco, Francesco; Somani, Bhaskar K
2018-06-21
Kidney stone disease (KSD) affects millions of people worldwide and has an increasing incidence. Social media (SoMe) and search engines are both gaining in usage, whilst also being used by patients to research their conditions and aid in managing them. With this in mind, many authors have expressed the belief that SoMe and search engines can be used by patients and healthcare professionals to improve treatment compliance, and to help counselling and management of conditions such as KSD. We wanted to determine whether SoMe and search engines play a role in the management and/or prevention of KSD. The databases MEDLINE, Embase, CINAHL, Scopus and Cochrane Library were used to search for relevant English language literature from inception to December 2017. Results were screened by title, abstract, and then full text, according to the inclusion and exclusion criteria. The data was then analysed independently by the authors not involved in the original study. After initial identification of 2137 records and screening of 42 articles, 10 studies met the inclusion and exclusion criteria. The papers included focused on a variety of SoMe forms including two papers each on twitter, YouTube, smartphone apps and google search engine and one paper on google insights and google analytics. Regarding patient centered advice, while 2 papers covered advice on dietary, fluid intake and management options, two additional papers each covered advice on fluid advice and management options only, while no such advice was given by 3 of the SoMe published papers. SoMe and search engines provide valuable information to patients with kidney stone disease. However, whilst the information provided regarding dietary aspects and fluid management was good, it was not comprehensive enough to include advice on other aspects of KSD prevention.
NASA Astrophysics Data System (ADS)
yang, P.
2013-12-01
Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.
Granular Activated Carbon Performance Capability and Availability.
1983-06-01
services were surveyed to determine availability of data and to develop a strategy for later computerized searches: * Chemical Abstracts; * Engineering ...Chemical Abstracts; * Engineering Abstracts; * Environmental Abstracts; * Selected Water Resources Abstracts; * Pollution Abstracts; and * the U.S...chemicals addressed, and scientific and engineering methods used. Publications were also reviewed for quality and consistency with the bulk of available data
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications
2015-09-01
ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine
Integrated hydraulic cooler and return rail in camless cylinder head
Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO
2011-12-13
An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.
Woodman, N D; Rees-White, T C; Beaven, R P; Stringfellow, A M; Barker, J A
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5m and 20m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as ~0.02 (~4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Woodman, N. D.; Rees-White, T. C.; Beaven, R. P.; Stringfellow, A. M.; Barker, J. A.
2017-08-01
This paper describes a programme of research investigating horizontal fluid flow and solute transport through saturated municipal solid waste (MSW) landfill. The purpose is to inform engineering strategies for future contaminant flushing. Solute transport between injection/abstraction well pairs (doublets) is investigated using three tracers over five separate tests at well separations between 5 m and 20 m. Two inorganic tracers (lithium and bromide) were used, plus the fluorescent dye tracer, rhodamine-WT. There was no evidence for persistent preferential horizons or pathways at the inter-well scale. The time for tracer movement to the abstraction wells varied with well spacing as predicted for a homogeneous isotropic continuum. The time for tracer movement to remote observation wells was also as expected. Mobile porosity was estimated as 0.02 ( 4% of total porosity). Good fits to the tracer breakthrough data were achieved using a dual-porosity model, with immobile regions characterised by block diffusion timescales in the range of about one to ten years. This implies that diffusional exchanges are likely to be very significant for engineering of whole-site contaminant flushing and possibly rate-limiting.
ERIC Educational Resources Information Center
Journal of Engineering Education, 1972
1972-01-01
Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…
Pre-mixing apparatus for a turbine engine
Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC
2012-04-03
A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
Stirling cycle engine and refrigeration systems
NASA Technical Reports Server (NTRS)
Higa, W. H. (Inventor)
1976-01-01
A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
Computational fluid dynamics: An engineering tool?
NASA Astrophysics Data System (ADS)
Anderson, J. D., Jr.
1982-06-01
Computational fluid dynamics in general, and time dependent finite difference techniques in particular, are examined from the point of view of direct engineering applications. Examples are given of the supersonic blunt body problem and gasdynamic laser calculations, where such techniques are clearly engineering tools. In addition, Navier-Stokes calculations of chemical laser flows are discussed as an example of a near engineering tool. Finally, calculations of the flowfield in a reciprocating internal combustion engine are offered as a promising future engineering application of computational fluid dynamics.
An Introduction to Thermal-Fluid Engineering
NASA Astrophysics Data System (ADS)
Warhaft, Zellman
1998-01-01
This text is the first to provide an integrated introduction to basic engineering topics and the social implications of engineering practice. Aimed at beginning engineering students, the book presents the basic ideas of thermodynamics, fluid mechanics, heat transfer, and combustion through a real-world engineering situation. It relates the engine to the atmosphere in which it moves and exhausts its waste products. The book also discusses the greenhouse effect and atmospheric inversions, and the social implications of engineering in a crowded world with increasing energy demands. Students in mechanical, civil, agricultural, environmental, aerospace, and chemical engineering will welcome this engaging, well-illustrated introduction to thermal-fluid engineering.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
BULK AND FILM CONTRIBUTIONS TO FLUID/FLUID INTERFACIAL AREA IN GRANULAR MEDIA. (R827116)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Code of Federal Regulations, 2011 CFR
2011-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
Code of Federal Regulations, 2010 CFR
2010-01-01
... pod attaching structures containing flammable fluid lines. 25.1182 Section 25.1182 Aeronautics and..., and engine pod attaching structures containing flammable fluid lines. (a) Each nacelle area immediately behind the firewall, and each portion of any engine pod attaching structure containing flammable...
Education and research in fluid dynamics
NASA Astrophysics Data System (ADS)
López González-Nieto, P.; Redondo, J. M.; Cano, J. L.
2009-04-01
Fluid dynamics constitutes an essential subject for engineering, since auronautic engineers (airship flights in PBL, flight processes), industrial engineers (fluid transportation), naval engineers (ship/vessel building) up to agricultural engineers (influence of the weather conditions on crops/farming). All the above-mentioned examples possess a high social and economic impact on mankind. Therefore, the fluid dynamics education of engineers is very important, and, at the same time, this subject gives us an interesting methodology based on a cycle relation among theory, experiments and numerical simulation. The study of turbulent plumes -a very important convective flow- is a good example because their theoretical governing equations are simple; it is possible to make experimental plumes in an aesy way and to carry out the corresponding numerical simulatons to verify experimental and theoretical results. Moreover, it is possible to get all these aims in the educational system (engineering schools or institutions) using a basic laboratory and the "Modellus" software.
Engine lubrication circuit including two pumps
Lane, William H.
2006-10-03
A lubrication pump coupled to the engine is sized such that the it can supply the engine with a predetermined flow volume as soon as the engine reaches a peak torque engine speed. In engines that operate predominately at speeds above the peak torque engine speed, the lubrication pump is often producing lubrication fluid in excess of the predetermined flow volume that is bypassed back to a lubrication fluid source. This arguably results in wasted power. In order to more efficiently lubricate an engine, a lubrication circuit includes a lubrication pump and a variable delivery pump. The lubrication pump is operably coupled to the engine, and the variable delivery pump is in communication with a pump output controller that is operable to vary a lubrication fluid output from the variable delivery pump as a function of at least one of engine speed and lubrication flow volume or system pressure. Thus, the lubrication pump can be sized to produce the predetermined flow volume at a speed range at which the engine predominately operates while the variable delivery pump can supplement lubrication fluid delivery from the lubrication pump at engine speeds below the predominant engine speed range.
Performance Analysis of AN Engine Mount Featuring ER Fluids and Piezoactuators
NASA Astrophysics Data System (ADS)
Choi, S. H.; Choi, Y. T.; Choi, S. B.; Cheong, C. C.
Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts for a passenger vehicle have their own functional aims on the limited frequency band in the broad engine operating frequency range. In order to achieve high system performance over all frequency ranges of the engine operation, a new type of engine mount featuring electro-rheological(ER) fluids and piezoactuators is proposed in this study. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently adequate to model the interconnected hydromechanical system. In the low frequency domain, the ER fluid is activated upon imposing an electric field for vibration isolation while the piezoactuator is activated in the high frequency domain. A neuro-control algorithm is utilized to determine control electric field for the ER fluid, and H∞ control technique is adopted for the piezoactuator Comparative works between the proposed and single-actuating(ER fluid only or piezoactuator only) engine mounts are undertaken by evaluating force transmissibility over a wide operating frequency range.
Picasso, Car Classics, and the Engineers.
ERIC Educational Resources Information Center
Wosk, Julie H.
1982-01-01
Describes a college course which introduces engineering and business students to abstract art. Students study the relationships between abstract styles in painting and abstract styles in twentieth-century architecture and industrial design. The relevance of abstract design principles is shown by referring students to "Car and Driver"…
Secondary air injection system and method
Wu, Ko-Jen; Walter, Darrell J.
2014-08-19
According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.
Stirling engine with air working fluid
Corey, John A.
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
ERIC Educational Resources Information Center
Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert
2015-01-01
"Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
Corey, John A.
1985-01-01
A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Holt, James B.; Canabal, Francisco
1999-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Charron, Richard; Pierce, Daniel
2015-08-11
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.
Fundamentals of fluid lubrication
NASA Technical Reports Server (NTRS)
Hamrock, Bernard J.
1991-01-01
The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2005-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, re-circulation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; isc-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Automated Extraction of Flow Features
NASA Technical Reports Server (NTRS)
Dorney, Suzanne (Technical Monitor); Haimes, Robert
2004-01-01
Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design process of most fluid handling devices. In order to efficiently and effectively use the results of a CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD simulation including pre-processing, interim-processing, and post-processing, to interpret the results. Each of these stages requires visualization tools that allow one to examine the geometry of the device, as well as the partial or final results of the simulation. An engineer will typically generate a series of contour and vector plots to better understand the physics of how the fluid is interacting with the physical device. Of particular interest are detecting features such as shocks, recirculation zones, and vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues to increase the need for automated feature extraction capabilities has become vital. In the past, feature extraction and identification were interesting concepts, but not required in understanding the physics of a steady flow field. This is because the results of the more traditional tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snapshot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for (co-processing environments). Methods must be developed to abstract the feature of interest and display it in a manner that physically makes sense.
Environmentally safe fluids for hydraulics used in civil engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirzberger, E.; Rexroth, M.
1995-12-31
The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less
ERIC Educational Resources Information Center
Moore, Pam
2008-01-01
Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…
Engine with exhaust gas recirculation system and variable geometry turbocharger
Keating, Edward J.
2015-11-03
An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.
Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2001-01-01
An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.
Methane Dual Expander Aerospike Nozzle Rocket Engine
2012-03-22
include O/F ratio, thrust, and engine geometry. After thousands of iterations over the design space , the selected MDEAN engine concept has 349 s of...35 Table 7: Fluid Property Table Supported Parameters...44 Table 8: Fluid Property Input Data Independent Variable Ranges. ................................. 46 Table 9
Carbon or graphite foam as a heating element and system thereof
Ott, Ronald D [Knoxville, TN; McMillan, April D [Knoxville, TN; Choudhury, Ashok [Oak Ridge, TN
2004-05-04
A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.
Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki; Theodosoglou, E.
Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis ofmore » an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.« less
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Liquid lubricants for advanced aircraft engines
NASA Technical Reports Server (NTRS)
Loomis, William R.; Fusaro, Robert L.
1993-01-01
An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.
NASA Technical Reports Server (NTRS)
Ruf, Joseph H.; Holt, James B.; Canabal, Francisco
2001-01-01
This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.
Liquid lubricants for advanced aircraft engines
NASA Technical Reports Server (NTRS)
Loomis, William R.; Fusaro, Robert L.
1992-01-01
An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.
Double-reed exhaust valve engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Charles L.
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.
Coal slurry fuel supply and purge system
McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.
1994-01-01
A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.
Engine having hydraulic and fan drive systems using a single high pressure pump
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2000-01-01
An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.
14 CFR 25.1045 - Cooling test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... not one during which component and the engine fluid temperatures would stabilize (in which case... cooling test must be preceded by a period during which the powerplant component and engine fluid temperatures are stabilized with the engines at ground idle. (c) Cooling tests for each stage of flight must be...
Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami Nathan
Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less
Nitrous Oxide/Paraffin Hybrid Rocket Engines
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Snyder, Gary
2010-01-01
Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.
Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade
2016-11-01
turbine blades to have fluid run through them during use1—a feature which many newer engines include. A cutaway view of a typical rotorcraft engine...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade ...ARL-TR-7871 ● NOV 2016 US Army Research Laboratory Computational Fluid Dynamic (CFD) Study of an Articulating Turbine Blade Cascade by Luis
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
Second invitational well-testing symposium proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
The symposium dealt with the state of the art of injection of fluids underground, and its application to geothermal systems in particular. Separate abstracts were prepared for fourteen papers and three abstracts of papers were listed by title. Three papers were previously abstracted for EDB.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Choi, Seung-Bok
2015-02-01
In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.
An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept
ERIC Educational Resources Information Center
Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.
2007-01-01
An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…
The Transformative Experience in Engineering Education
NASA Astrophysics Data System (ADS)
Goodman, Katherine Ann
This research evaluates the usefulness of transformative experience (TE) in engineering education. With TE, students 1) apply ideas from coursework to everyday experiences without prompting (motivated use); 2) see everyday situations through the lens of course content (expanded perception); and 3) value course content in new ways because it enriches everyday affective experience (affective value). In a three-part study, we examine how engineering educators can promote student progress toward TE and reliably measure that progress. For the first study, we select a mechanical engineering technical elective, Flow Visualization, that had evidence of promoting expanded perception of fluid physics. Through student surveys and interviews, we compare this elective to the required Fluid Mechanics course. We found student interest in fluids fell into four categories: complexity, application, ubiquity, and aesthetics. Fluid Mechanics promotes interest from application, while Flow Visualization promotes interest based in ubiquity and aesthetics. Coding for expanded perception, we found it associated with students' engineering identity, rather than a specific course. In our second study, we replicate atypical teaching methods from Flow Visualization in a new design course: Aesthetics of Design. Coding of surveys and interviews reveals that open-ended assignments and supportive teams lead to increased ownership of projects, which fuels risk-taking, and produces increased confidence as an engineer. The third study seeks to establish parallels between expanded perception and measurable perceptual expertise. Our visual expertise experiment uses fluid flow images with both novices and experts (students who had passed fluid mechanics). After training, subjects sort images into laminar and turbulent categories. The results demonstrate that novices learned to sort the flow stimuli in ways similar to subjects in prior perceptual expertise studies. In contrast, the experts' significantly better results suggest they are accessing conceptual fluids knowledge to perform this new, visual task. The ability to map concepts onto visual information is likely a necessary step toward expanded perception. Our findings suggest that open-ended aesthetic experiences with engineering content unexpectedly support engineering identity development, and that visual tasks could be developed to measure conceptual understanding, promoting expanded perception. Overall, we find TE a productive theoretical framework for engineering education research.
Formal Abstraction in Engineering Education--Challenges and Technology Support
ERIC Educational Resources Information Center
Neuper, Walther A.
2017-01-01
This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...
History of the Fluids Engineering Division
Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.
2016-08-03
The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.
History of the Fluids Engineering Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Paul; Martin, C. Samuel; O'Hern, Timothy J.
The 90th Anniversary of the Fluids Engineering Division (FED) of ASME will be celebrated on July 10–14, 2016 in Washington, DC. The venue is ASME's Summer Heat Transfer Conference (SHTC), Fluids Engineering Division Summer Meeting (FEDSM), and International Conference on Nanochannels and Microchannels (ICNMM). The occasion is an opportune time to celebrate and reflect on the origin of FED and its predecessor—the Hydraulic Division (HYD), which existed from 1926–1963. Furthermore, the FED Executive Committee decided that it would be appropriate to publish concurrently a history of the HYD/FED.
Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... hydraulic fluid contamination, which can cause cracking of titanium parts in the system disconnect assembly, resulting in compromise of the engine firewall. A cracked firewall can allow fire in the engine area to enter the strut and can lead to an uncontained engine strut fire if flammable fluid is present. Cracking...
NASA Astrophysics Data System (ADS)
Carnasciali, Maria-Isabel
2017-11-01
Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.
CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruminer, J.J.
1978-07-01
This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.
FLUID TRANSPORT THROUGH POROUS MEDIA
Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...
Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charron, Richard; Pierce, Daniel
2015-02-24
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates amore » transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.« less
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
Compatibility of Elastomeric Seal Compounds with MIL-H-6083 and MIL-H- 46170 Hydraulic Fluid
1990-06-01
are also made with results obtained using NBR -L, a reference material cited in AMS 3217. 20. DISTRIBUTION/AVAILABILJTY OF ABSTRACT 21. ABSTRACT...Concurrent comparative studies were conducted using NBR -L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume...of a standard reference material such as NBR -L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of
Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation
2005-01-01
ABSTRACT Title of Dissertation: DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION Wei Hu, Doctor of...motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the...advantages of both elastomeric materials and MR flu- ids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In
ERIC Educational Resources Information Center
Engineering Education, 1976
1976-01-01
Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 398
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes - subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering: A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Fluid Inclusions in Carbonaceous Chondrites
NASA Technical Reports Server (NTRS)
Saylor, J.; Zolensky, M. E.; Bodnar, R. J.; Le L.; Schwandt, C.
2001-01-01
Fluid inclusions are present in carbonaceous chondrites. Of the chondrites studied (CI1, CM1 and 2, CV3) fluid inclusions were found only in CM2s and CI1s, and by extrapolation are most likely to be found there in the future. Additional information is contained in the original extended abstract.
Boiler and Pressure Balls Monopropellant Thermal Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2009-01-01
The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery
Overview of liquid lubricants for advanced aircraft
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1982-01-01
An overall status report on liquid lubricants for use in high-performance turbojet engines is presented. Emphasis is placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is iven of the development of turbine engine lubricants which led to synthetic oils with their inherent modification advantages. The status and state of development of some nine candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Also, alternatives to high temperature fluid development are described. The importance of of continuing work on improving high temperature lubricant candidates and encouraging development of fluid base stocks is discussed.
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
NASA Astrophysics Data System (ADS)
Mahdavi, Mahboobe
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. (Abstract shortened by ProQuest.).
Three-Dimensional Computational Fluid Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.
1998-09-01
Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.
Effect of evaporation and condensation on a thermoacoustic engine: A Lagrangian simulation approach.
Yasui, Kyuichi; Izu, Noriya
2017-06-01
Acoustic oscillations of a fluid (a mixture of gas and vapor) parcel in a wet stack of a thermoacoustic engine are numerically simulated with a Lagrangian approach taking into account Rott equations and the effect of non-equilibrium evaporation and condensation of water vapor at the stack surface. In a traveling-wave engine, the volume oscillation amplitude of a fluid parcel always increases by evaporation and condensation. As a result, pV work done by a fluid parcel is enhanced, which means enhancement of acoustic energy in a thermoacoustic engine. On the other hand, in a standing-wave engine, the volume oscillation amplitude sometimes decreases by evaporation and condensation, and pV work is suppressed. Presence of a tiny traveling-wave component, however, results in the enhancement of pV work by evaporation and condensation.
Liquid rocket engine fluid-cooled combustion chambers
NASA Technical Reports Server (NTRS)
1972-01-01
A monograph on the design and development of fluid cooled combustion chambers for liquid propellant rocket engines is presented. The subjects discussed are (1) regenerative cooling, (2) transpiration cooling, (3) film cooling, (4) structural analysis, (5) chamber reinforcement, and (6) operational problems.
Evolutionary Oseen Model for Generalized Newtonian Fluid with Multivalued Nonmonotone Friction Law
NASA Astrophysics Data System (ADS)
Migórski, Stanisław; Dudek, Sylwia
2018-03-01
The paper deals with the non-stationary Oseen system of equations for the generalized Newtonian incompressible fluid with multivalued and nonmonotone frictional slip boundary conditions. First, we provide a result on existence of a unique solution to an abstract evolutionary inclusion involving the Clarke subdifferential term for a nonconvex function. We employ a method based on a surjectivity theorem for multivalued L-pseudomonotone operators. Then, we exploit the abstract result to prove the weak unique solvability of the Oseen system.
NASA Astrophysics Data System (ADS)
Greitzer, E. M.; Tan, C. S.; Graf, M. B.
2004-06-01
Focusing on phenomena important in implementing the performance of a broad range of fluid devices, this work describes the behavior of internal flows encountered in propulsion systems, fluid machinery (compressors, turbines, and pumps) and ducts (diffusers, nozzles and combustion chambers). The book equips students and practicing engineers with a range of new analytical tools. These tools offer enhanced interpretation and application of both experimental measurements and the computational procedures that characterize modern fluids engineering.
Corey, John A.
1984-05-29
A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.
Easier Analysis With Rocket Science
NASA Technical Reports Server (NTRS)
2003-01-01
Analyzing rocket engines is one of Marshall Space Flight Center's specialties. When Marshall engineers lacked a software program flexible enough to meet their needs for analyzing rocket engine fluid flow, they overcame the challenge by inventing the Generalized Fluid System Simulation Program (GFSSP), which was named the co-winner of the NASA Software of the Year award in 2001. This paper describes the GFSSP in a wide variety of applications
Turbulent Transport at High Reynolds Numbers in an Inertial Confinement Fusion Context
2014-09-01
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794 P . Rao1 Department of Applied Mathematics and Statistics...scales, 1Corresponding author. Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING...Engineering SEPTEMBER 2014, Vol. 136 / 091206-1Copyright VC 2014 by ASME Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 415
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 407
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 408
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, a Continuing Bibliography with Indexes (NASA/SP#1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 411
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplment 394
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
NASA Technical Reports Server (NTRS)
Anderson, David J.; Mizukami, Masashi
1993-01-01
NASA has initiated the High Speed Research (HSR) program with the goal to develop technologies for a new generation, economically viable, environmentally acceptable, supersonic transport (SST) called the High Speed Civil Transport (HSCT). A significant part of this effort is expected to be in multidisciplinary systems integration, such as in propulsion airframe integration (PAI). In order to assimilate the knowledge database on PAI for SST type aircraft, a bibliography on this subject was compiled. The bibliography with over 1200 entries, full abstracts, and indexes. Related topics are also covered, such as the following: engine inlets, engine cycles, nozzles, existing supersonic cruise aircraft, noise issues, computational fluid dynamics, aerodynamics, and external interference. All identified documents from 1980 through early 1991 are included; this covers the latter part of the NASA Supersonic Cruise Research (SCR) program and the beginnings of the HSR program. In addition, some pre-1980 documents of significant merit or reference value are also included. The references were retrieved via a computerized literature search using the NASA RECON database system.
A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines
NASA Astrophysics Data System (ADS)
Backhaus, Scott; Reid, Robert S.
2005-02-01
A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.
Legacy System Engineering, VPERC Consortium
2009-09-01
REPORT Legacy System Engineering, VPERC Consortium, Final Report, University of Utah for Work Ending Joly 15, 2009. 14. ABSTRACT 16. SECURITY...Engineering, VPERC Consortium, Final Report, University of Utah for Work Ending Joly 15, 2009. Report Title ABSTRACT This paper is one of three...Sons, 1995. [3] Turner MJ, Clough RW, Martin HC, Topp LJ. “Stiffness and deflection analysis of complex structures.” Journal of the Aeronautical
Attracting Students to Fluid Mechanics with Coffee
NASA Astrophysics Data System (ADS)
Ristenpart, William
2016-11-01
We describe a new class developed at U.C. Davis titled "The Design of Coffee," which serves as a nonmathematical introduction to chemical engineering as illustrated by the process of roasting and brewing coffee. Hands-on coffee experiments demonstrate key engineering principles, including material balances, chemical kinetics, mass transfer, conservation of energy, and fluid mechanics. The experiments lead to an engineering design competition where students strive to make the best tasting coffee using the least amount of energy - a classic engineering optimization problem, but one that is both fun and tasty. "The Design of Coffee" started as a freshmen seminar in 2013, and it has exploded in popularity: it now serves 1,533 students per year, and is the largest and most popular elective course at U.C. Davis. In this talk we focus on the class pedagogy as applied to fluid mechanics, with an emphasis on how coffee serves as an engaging and exciting topic for teaching students about fluid mechanics in an approachable, hands-on manner.
BIOMARKER ASSAYS IN NIPPLE APIRATE FLUID
ABSTRACT
The noninvasive technique of nipple aspiration as a potential source of biomarkers of breast cancer risk was evaluated. The feasibility of performing mutagenesis assays, amplifying DNA and performing protein electrophoresis on nipple aspirate fluid was explored. ...
NASA Astrophysics Data System (ADS)
Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit
2012-11-01
Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.
Low pressure cooling seal system for a gas turbine engine
Marra, John J
2014-04-01
A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.
2008-08-01
SUBJECT TERMS Cancer therapy by localized immune response, Magneto -rehological Fluids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...Metastasized Breast Cancer by Localized Therapy utilizing Biocompatible Magnetic Fluids PRINCIPAL INVESTIGATOR: Cahit Evrensel...2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Immune Response Augmentation in Metastasized Breast Cancer by Localized Therapy utilizing
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 414
NASA Technical Reports Server (NTRS)
2000-01-01
This report lists reports, articles and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.
Un-Building Blocks: A Model of Reverse Engineering and Applicable Heuristics
2015-12-01
CONCLUSIONS The machine does not isolate man from the great problems of nature but plunges him more deeply into them. Antoine de Saint-Exupery— Wind ...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Reverse engineering is the problem -solving activity that ensues when one takes a...Douglas Moses, Vice Provost for Academic Affairs iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Reverse engineering is the problem -solving
Compendium of abstracts on statistical applications in geotechnical engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Deer, G. W.
1983-09-01
The results of a literature search of geotechnical and statistical abstracts are presented in tables listing specific topics, title of the abstract, main author and the file number under which the abstract can be found.
Waste heat recovery system for recapturing energy after engine aftertreatment systems
Ernst, Timothy C.; Nelson, Christopher R.
2014-06-17
The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...
Abstracts of NASA-ASRDI publications relevant to aerospace safety research
NASA Technical Reports Server (NTRS)
Mandel, G.; Mckenna, P. J.
1973-01-01
Abstracts covering the following areas are presented: (1) oxygen technology; (2) fire safety; (3) accidents/incidents; (4) toxic spills; (5) aircraft safety; (6) structural failures; (7) nuclear systems; (8) fluid flow; and (9) zero gravity combustion.
Using Computers in Fluids Engineering Education
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1998-01-01
Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.
RI: Rheology as a Tool for Understanding the Mechanics of Live Ant Aggregations, Part 1
2016-11-04
measure rheological properties of biological fluids. Using this machine, we were able to characterize non -Newtonian fluids such as frog saliva...GA 30332 -0420 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report...order to measure rheological properties of biological fluids. Using this machine, we were able to characterize non -Newtonian fluids such as frog
Hufnagel, S; Harbison, K; Silva, J; Mettala, E
1994-01-01
This paper describes a new method for the evolutionary determination of user requirements and system specifications called scenario-based engineering process (SEP). Health care professional workstations are critical components of large scale health care system architectures. We suggest that domain-specific software architectures (DSSAs) be used to specify standard interfaces and protocols for reusable software components throughout those architectures, including workstations. We encourage the use of engineering principles and abstraction mechanisms. Engineering principles are flexible guidelines, adaptable to particular situations. Abstraction mechanisms are simplifications for management of complexity. We recommend object-oriented design principles, graphical structural specifications, and formal components' behavioral specifications. We give an ambulatory care scenario and associated models to demonstrate SEP. The scenario uses health care terminology and gives patients' and health care providers' system views. Our goal is to have a threefold benefit. (i) Scenario view abstractions provide consistent interdisciplinary communications. (ii) Hierarchical object-oriented structures provide useful abstractions for reuse, understandability, and long term evolution. (iii) SEP and health care DSSA integration into computer aided software engineering (CASE) environments. These environments should support rapid construction and certification of individualized systems, from reuse libraries.
Activities report of the Department of Engineering
NASA Astrophysics Data System (ADS)
Acoustics, aerodynamics, fluid mechanics, design, electrical, materials science, mechanical, control, robotics, soil mechanics, structural engineering, thermodynamics, and turbomachine engineering research are described.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
Bennett, Charles L [Livermore, CA
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Mercado, Karla P; Langdon, Jonathan; Helguera, María; McAleavey, Stephen A; Hocking, Denise C; Dalecki, Diane
2015-08-01
The physical environment of engineered tissues can influence cellular functions that are important for tissue regeneration. Thus, there is a critical need for noninvasive technologies capable of monitoring mechanical properties of engineered tissues during fabrication and development. This work investigates the feasibility of using single tracking location shear wave elasticity imaging (STL-SWEI) for quantifying the shear moduli of tissue-mimicking phantoms and engineered tissues in tissue engineering environments. Scholte surface waves were observed when STL-SWEI was performed through a fluid standoff, and confounded shear moduli estimates leading to an underestimation of moduli in regions near the fluid-tissue interface.
Reorientation of rotating fluid in microgravity environment with and without gravity jitters
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Shyu, K. L.
1990-01-01
In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellant transfer. The requirement to settle or to position liquid fuel over the outlet end of the spacecraft propellant tank prior main engine restart poses a microgravity fluid behavior problem. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellant resettling have been carried out through the execution of supercomputer CRAY X-MP to simulate the fluid management in a microgravity environment. Results show that the resettlement of fluid can be accomplished more efficiently for fluid in rotating tank than in nonrotating tank, and also better performance for gravity jitters imposed on fluid settlement than without gravity jitters based on the amount of time needed to carry out resettlement period of time between the initiation and termination of geysering.
COUPLING CHEMICAL DERIVATIZATION REACTIONS WITH SUPERCRITICAL FLUID EXTRACTION (R821195)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ORGANIC REACTIONS IN SUPERCRITICAL POLAR FLUIDS. (R825513C004)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops
NASA Technical Reports Server (NTRS)
Steele, John W.
2016-01-01
John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.
mechanical engineering (design) and physical engineering (fluid and system dynamics), and a Ph.D. in modeling Ph.D. in Engineering, University College Cork (Ireland); M.S. and B.S. in Physical Engineering
Aeronautical engineering, a special bibliography, September 1971 (supplement 10)
NASA Technical Reports Server (NTRS)
1971-01-01
This supplement to Aeronautical Engineering-A Special Bibliography (NASA SP-7037) lists 413 reports, journal articles, and other documents originally announced in September 1971 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA). The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the bibliography consists of a standard bibliographic citation accompanied by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries in that order. The citations and abstracts are reproduced exactly as they appeared originally in IAA or STAR, including the original accession numbers from the respective announcement journals.
14 CFR 33.91 - Engine system and component tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., reliability, and durability. (c) Each unpressurized hydraulic fluid tank may not fail or leak when subjected to a maximum operating temperature and an internal pressure of 5 p.s.i., and each pressurized hydraulic fluid tank must meet the requirements of § 33.64. (d) For an engine type certificated for use in...
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2010-10-01 2010-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2014-10-01 2014-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2013-10-01 2013-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2011-10-01 2011-10-01 false Requirements for miscellaneous fluid power and control...
46 CFR 58.30-50 - Requirements for miscellaneous fluid power and control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-50 Requirements for miscellaneous fluid power and control systems. (a) All fluid power and control... 46 Shipping 2 2012-10-01 2012-10-01 false Requirements for miscellaneous fluid power and control...
Preliminary results from a four-working space, double-acting piston, Stirling engine controls model
NASA Technical Reports Server (NTRS)
Daniele, C. J.; Lorenzo, C. F.
1980-01-01
A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.
AQUEOUS SAMPLE PREPARATION FOR BIOASSAY USING SUPERCRITICAL FLUID EXTRACTION. (R825433)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-01-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Astrophysics Data System (ADS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-06-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segool, H. D.
1979-05-01
The crucial interrelationships of engineering manpower, technological innovation, productivity and capital re-formaton were keynoted. Near-term, a study has indicated a much larger New England energy demand-reduction/economic/market potential, with a probably larger engineering manpower requirement, for energy-conservation measures characterized by technological innovation and cost-effective capital services than for alternative energy-supply measures. Federal, regional, and state energy program responsibilities described a wide-ranging panorama of activities among many possible energy options which conveyed much endeavor without identifiable engineering manpower demand coefficients. Similarly, engineering manpower assessment data was described as uneven and unfocused to the energy program at the national level, disaggregated data asmore » non-existent at the regional/state levels, although some qualitative inferences were drawn. A separate abstract was prepared for each of the 16 individual presentations for the DOE Energy Data Base (EDB); 14 of these were selected for Energy Abstracts for Policy Analysis (EAPA) and 2 for Energy Research Abstracts (ERA).« less
Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.
van Netten, C; Leung, V
2001-01-01
Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 406
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 413
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 419
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 404
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 420
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography With Indexes. Supplement 418
NASA Technical Reports Server (NTRS)
2000-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-2000-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Aeronautical Engineering: A Continuing Bibliography with Indexes. Supplement 396
NASA Technical Reports Server (NTRS)
1999-01-01
This supplemental issue of Aeronautical Engineering, A Continuing Bibliography with Indexes (NASA/SP-1999-7037) lists reports, articles, and other documents recently announced in the NASA STI Database. The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.
Computational fluid dynamics - An introduction for engineers
NASA Astrophysics Data System (ADS)
Abbott, Michael Barry; Basco, David R.
An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
Concept of planetary gear system to control fluid mixture ratio
NASA Technical Reports Server (NTRS)
Mcgroarty, J. D.
1966-01-01
Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.
Variable mixture ratio performance through nitrogen augmentation
NASA Technical Reports Server (NTRS)
Beichel, R.; Obrien, C. J.; Bair, E. K.
1988-01-01
High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.
Engine control system having pressure-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2011-10-04
A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.
Magnetically stimulated fluid flow patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2018-05-23
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Abstraction and Concreteness in the Everyday Mathematics of Structural Engineers.
ERIC Educational Resources Information Center
Gainsburg, Julie
The everyday mathematics processes of structural engineers were studied and analyzed in terms of abstraction. A main purpose of the study was to explore the degree to which the notion of a gap between school and everyday mathematics holds when the scope of practices considered "everyday" is extended. J. Lave (1988) promoted a methodology…
76 FR 34918 - Airworthiness Directives; The Boeing Company Model 767 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require modification of the fluid drain path in the leading edge area of the wing. This proposed AD was prompted by a design review following a ground fire incident and reports of flammable fluid leaks from the wing leading edge area onto the engine exhaust area. We are proposing this AD to prevent flammable fluid from leaking onto the engine exhaust nozzle which could result in a fire.
NASA Technical Reports Server (NTRS)
Blotzer, Michael J.; Woods, Jody L.
2009-01-01
This viewgraph presentation reviews computational fluid dynamics as a tool for modelling the dispersion of carbon monoxide at the Stennis Space Center's A3 Test Stand. The contents include: 1) Constellation Program; 2) Constellation Launch Vehicles; 3) J2X Engine; 4) A-3 Test Stand; 5) Chemical Steam Generators; 6) Emission Estimates; 7) Located in Existing Test Complex; 8) Computational Fluid Dynamics; 9) Computational Tools; 10) CO Modeling; 11) CO Model results; and 12) Next steps.
The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.
Transport theory and fluid dynamics
NASA Astrophysics Data System (ADS)
Greenberg, W.; Zweifel, P. F.
We report progress in various areas of applied mathematics relevant to transport theory under the subjects: abstract transport theory, explicit transport models and computation, and fluid dynamics. We present a brief review of progress during the past year and personnel supported, and we indicate the direction of our future research.
78 FR 38798 - Request for Comments on a New Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
...., Washington, DC 20590. SUPPLEMENTARY INFORMATION: Title: 49 CFR 571.116, Motor Vehicle Brake Fluids. OMB Control Number: 2127-0521. Type of Request: New Information Collection. Abstract: Federal Motor Vehicle Safety Standard No. 116, Motor Vehicle Brake Fluids, specifies performance and design requirements for...
Exhaust bypass flow control for exhaust heat recovery
Reynolds, Michael G.
2015-09-22
An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.
Endwall Treatment and Method for Gas Turbine
NASA Technical Reports Server (NTRS)
Hathaway, Michael D. (Inventor); Strazisar, Anthony J. (Inventor); Suder, Kenneth L. (Inventor)
2006-01-01
An endwall treatment for a gas turbine engine having at least one rotor blade extending from a rotatable hub and a casing circumferentially surrounding the rotor and the hub, the endwall treatment including, an inlet formed in an endwall of the gas turbine engine adapted to ingest fluid from a region of a higher-pressure fluid, an outlet formed in the endwall and located in a region of lower pressure than the inlet, wherein the inlet and the outlet are in a fluid communication with each other, the outlet being adapted to inject the fluid from the inlet in the region of lower pressure, and wherein the outlet is at least partially circumferentially offset relative to the inlet.
Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.
Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando
2006-03-01
The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
A SUPERCRITICAL FLUID EXTRACTION BASED CLOSED LOOP SYSTEM FOR DECONTAMINATION OF SOIL. (R825549C011)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Cooling system with compressor bleed and ambient air for gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, Jan H.; Marra, John J.
A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed airmore » through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.« less
Multidisciplinary Analysis of a Hypersonic Engine
NASA Technical Reports Server (NTRS)
Stewart, M. E. M.; Suresh, A.; Liou, M. S.; Owen, A. K.; Messitt, D. G.
2002-01-01
This paper describes implementation of a technique used to obtain a high fidelity fluid-thermal-structural solution of a combined cycle engine at its scram design point. Single-discipline simulations are insufficient here since interactions from other disciplines are significant. Using off-the-shelf, validated solvers for the fluid, chemistry, thermal, and structural solutions, this approach couples together their results to obtain consistent solutions.
On the Unsteady Shock Wave Interaction with a Backward-Facing Step: Viscous Analysis
NASA Astrophysics Data System (ADS)
Mendoza, N.; Bowersox, R. D. W.
Unsteady shock propagation through ducts with varying cross-sectional area occurs in many engineering applications, such as explosions in underground tunnels, blast shelter design, engine exhaust systems, and high-speed propulsion systems. These complex, transient flows are rich in fundamental fluid-dynamic phenomena and are excellent testbeds for improving our understanding of unsteady fluid dynamics
Synthesis and characterization of low cost magnetorheological (MR) fluids
NASA Astrophysics Data System (ADS)
Sukhwani, V. K.; Hirani, H.
2007-04-01
Magnetorheological fluids have great potential for engineering applications due to their variable rheological behavior. These fluids find applications in dampers, brakes, shock absorbers, and engine mounts. However their relatively high cost (approximately US600 per liter) limits their wide usage. Most commonly used magnetic material "Carbonyl iron" cost more than 90% of the MR fluid cost. Therefore for commercial viability of these fluids there is need of alternative economical magnetic material. In the present work synthesis of MR fluid has been attempted with objective to produce low cost MR fluid with high sedimentation stability and greater yield stress. In order to reduce the cost, economical electrolytic Iron powder (US 10 per Kg) has been used. Iron powder of relatively larger size (300 Mesh) has been ball milled to reduce their size to few microns (1 to 10 microns). Three different compositions have been prepared and compared for MR effect produced and stability. All have same base fluid (Synthetic oil) and same magnetic phase i.e. Iron particles but they have different additives. First preparation involves organic additives Polydimethylsiloxane (PDMS) and Stearic acid. Other two preparations involve use of two environmental friendly low-priced green additives guar gum (US 2 per Kg) and xanthan gum (US 12 per Kg) respectively. Magnetic properties of Iron particles have been measured by Vibrating Sample Magnetometer (VSM). Morphology of Iron particles and additives guar gum and xanthan gum has been examined by Scanning Electron Microscopy (SEM) and Particles Size Distribution (PSD) has been determined using Particle size analyzer. Microscopic images of particles, MH plots and stability of synthesized MR fluids have been reported. The prepared low cost MR fluids showed promising performance and can be effectively used for engineering applications demanding controllability in operations.
An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine
NASA Technical Reports Server (NTRS)
Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.
1983-01-01
A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.
NASA Technical Reports Server (NTRS)
Stewart, Mark E.; Schnitzler, Bruce G.
2015-01-01
This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.
Shipley, Rebecca J; Waters, Sarah L
2012-12-01
A model for fluid and mass transport in a single module of a tissue engineering hollow fibre bioreactor (HFB) is developed. Cells are seeded in alginate throughout the extra-capillary space (ECS), and fluid is pumped through a central lumen to feed the cells and remove waste products. Fluid transport is described using Navier-Stokes or Darcy equations as appropriate; this is overlaid with models of mass transport in the form of advection-diffusion-reaction equations that describe the distribution and uptake/production of nutrients/waste products. The small aspect ratio of a module is exploited and the option of opening an ECS port is explored. By proceeding analytically, operating equations are determined that enable a tissue engineer to prescribe the geometry and operation of the HFB by ensuring the nutrient and waste product concentrations are consistent with a functional cell population. Finally, results for chondrocyte and cardiomyocyte cell populations are presented, typifying two extremes of oxygen uptake rates.
46 CFR 52.25-15 - Fired thermal fluid heaters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...
46 CFR 52.25-15 - Fired thermal fluid heaters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...
46 CFR 52.25-15 - Fired thermal fluid heaters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David B
2012-06-07
Development of a fractional step, a Predictor-Corrector Split (PCS), or what is often known as a projection method combining hp-adaptive system in a Finite Element Method (FEM) for combustion modeling has been achieved. This model will advance the accuracy and range of applicability of the KIVA combustion model and software used typically for internal combustion engine modeling. This abstract describes a PCS hp-adaptive FEM model for turbulent reactive flow spanning all velocity regimes and fluids that is being developed for the new KIVA combustion algorithm, particularly for internal combustion engines. The method and general solver is applicable to Newtonian andmore » non- Newtonian fluids and also for incompressible solids, porous media, solidification modeling, and fluid structure interaction problems. The fuel injection and injector modeling could easily benefit from the capability of solving the fluid structure interaction problem in an injector, helping to understand cycle to cycle variation and cavitation. This is just one example where the new algorithm differs from the old, in addition to handling Conjugate Heat Transfer (CHT), although there a numerous features that makes the new system more robust and accurate. In these ways, the PCS hp-adaptive algorithm does not compete with commercial software packages, those often used in conjunction with the currently distributed KIVA codes for engine combustion modeling. In addition, choosing a local ALE method on immersed moving parts represented by overset grid that is 2nd order spatially accurate, allows for easy grid generation from CAD to fluid grid while also provide for robustness in handling any possible moving parts configuration without any code modifications. The combined methods employed produce a minimal amount of computational effort as compared to fully resolved grids at the same accuracy. We demonstrate the solver on benchmark problems for the all flow regimes as follows: (1) 2-D backward-facing step using h-adaption, (2) 2-D driven cavity, (3) 2-D natural convection in a differentially heat cavity with h-adaptation, (4) NACA 0012 airfoil in 2-D, (5) supersonic flows over compression ramps, (6) 2-D natural convection in a differentially heat cavity with hp-adaptation, (7) 3-D natural convection in a differentially heat sphere with hp-adaptation. In addition, we show the new moving parts algorithm for working for a 2-D piston; the immersed moving parts method also for valves and pistons, vanes, etc... The movement is performed using an overset grid method and is 2nd order accurate in space, and never produces a tangle grid, that is, robust system at any resolution and any parts configuration. We also show CHT for the currently distributed KIVA-4mpi software and some fairly automatic grid generation using Sandia's Cubit unstructured grid generator. A new electronic web-based manual for KIVA-4 has been developed as well.« less
Statistical Analysis Tools for Learning in Engineering Laboratories.
ERIC Educational Resources Information Center
Maher, Carolyn A.
1990-01-01
Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…
NASA Technical Reports Server (NTRS)
Chou, J. L.; Stad, N. J.; Gay, E.; West, G. I.; Barnes, P. R.; Greenleaf, J. E.
1997-01-01
This compendium includes abstracts and synopses of clinical observations and of more basic studies involving physiological mechanisms concerning interaction of water metabolism and fluid compartment volumes in humans during altitude exposure. If the author's abstract or summary was appropriate, it was included. In other cases a more detailed synopsis of the paper was prepared under the subheadings Purpose, Methods, Results, and Conclusions. Author and subject indices are provided, plus an additional selected bibliography of related work of those papers received after the volume was being prepared for publication. This volume includes material published from 1914 through 1995.
Split radiator design for heat rejection optimization for a waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-10-18
A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, part 2
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1992-01-01
Presented here are 59 abstracts and presentations and three invited presentations given at the Tenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 28-30, 1992. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed, including a computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion, Part 1
NASA Technical Reports Server (NTRS)
Williams, Robert W. (Compiler)
1993-01-01
Conference publication includes 79 abstracts and presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at the George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of this workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics
NASA Astrophysics Data System (ADS)
Weyer, K.
2013-12-01
Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi
2013-01-01
Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
...We propose to adopt a new airworthiness directive (AD) for the products listed above. This proposed AD would require modification of the fluid drain path in the leading edge area of the wing. This proposed AD was prompted by a design review following a ground fire incident and reports of flammable fluid leaks from the wing leading edge area onto the engine exhaust area. We are proposing this AD to prevent flammable fluid from leaking onto the engine exhaust nozzle, which could result in a fire.
Age differences in relationships between crystallized and fluid intelligences and problem solving.
Hayslip, B; Sterns, H L
1979-05-01
One hundred and sixty-two subjects at three age levels were tested to examine the relationship between crystallized (Gc) and fluid (Gf) abilities and three problem solving tasks varying in the abstractness concreteness of their stimuli and emphasis on past experience. It was predicted that the difference in correlations between crystallized and fluid abilities and each of these tasks would increase with increased age. The hypotheses were partially supported in the young and elderly groups of subjects. On tasks using concrete stimuli, emphasizing past experience, where no cross-sectional decline was observed, Gc (relative to Gf) accounted for an increasing proportion of variance in performance with increased age. On tasks using abstract stimuli, de-emphasizing past experience, where significant cross-sectional declines were obtained, Gf (relative to Gc) correlated more highly with performance. Contrary to previous research, relationships between Gf and Bc supported a reintegration of abilities in old age.
46 CFR 58.30-20 - Fluid power hose and fittings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a...
46 CFR 58.30-20 - Fluid power hose and fittings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Fluid power hose and fittings. 58.30-20 Section 58.30-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-20 Fluid power hose and fittings. (a...
Dermal, Eye, and Oral Toxicological Evaluations.
1985-06-01
whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and...standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful. I. Block 20. Abstract. The abstract...contains a significant bibliography or literature survey, mentioni, it here. For information on preparing abstracts see "Abstracting Scientific and
Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".
Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon
2015-09-23
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.
ERIC Educational Resources Information Center
O'Leary, James P., Ed.; O'Reagan, James R., Ed.
This document contains abstracts of all papers presented at the conference. The papers demonstrate how the results of rehabilitation engineering activities have increased the independence of handicapped people and enabled them to more easily integrate their lives into the mainstream of society. The 136 abstracts are organized into the following…
NASA Astrophysics Data System (ADS)
Jayanthi, Aditya; Coker, Christopher
2016-11-01
In the last decade, CFD simulations have transitioned from the stage where they are used to validate the final designs to the main stream development of products driven by the simulation. However, there are still niche areas of applications liking oiling simulations, where the traditional CFD simulation times are probative to use them in product development and have to rely on experimental methods, which are expensive. In this paper a unique example of Sprocket-Chain simulation will be presented using nanoFluidx a commercial SPH code developed by FluiDyna GmbH and Altair Engineering. The grid less nature of the of SPH method has inherent advantages in the areas of application with complex geometry which pose severe challenge to classical finite volume CFD methods due to complex moving geometries, moving meshes and high resolution requirements leading to long simulation times. The simulations times using nanoFluidx can be reduced from weeks to days allowing the flexibility to run more simulation and can be in used in main stream product development. The example problem under consideration is a classical Multiphysics problem and a sequentially coupled solution of Motion Solve and nanoFluidX will be presented. This abstract is replacing DFD16-2016-000045.
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
14 CFR 23.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... engine. (4) For turbocharged engines, each turbocharger must be operated through that part of the climb profile for which operation with the turbocharger is requested. (5) For a reciprocating engine, the... than 100 degrees F. (c) Correction factor (except cylinder barrels). Temperatures of engine fluids and...
Kuipers during replacement of the Marangoni Surface Fluid Dynamics Experiment
2012-03-15
ISS030-E-142827 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142784 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
Kuipers works to remove the Marangoni Suface Fluid Physics Experiment
2012-03-15
ISS030-E-142785 (15 March 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, works to remove the Marangoni Surface fluid physics experiment from the Fluid Physics Experiment Facility (FPEF) in the Kibo laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
1980-01-01
The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.
Thermoacoustics of solids: A pathway to solid state engines and refrigerators
NASA Astrophysics Data System (ADS)
Hao, Haitian; Scalo, Carlo; Sen, Mihir; Semperlotti, Fabio
2018-01-01
Thermoacoustic oscillations have been one of the most exciting discoveries of the physics of fluids in the 19th century. Since its inception, scientists have formulated a comprehensive theoretical explanation of the basic phenomenon which has later found several practical applications to engineering devices. To date, all studies have concentrated on the thermoacoustics of fluid media where this fascinating mechanism was exclusively believed to exist. Our study shows theoretical and numerical evidence of the existence of thermoacoustic instabilities in solid media. Although the underlying physical mechanism exhibits some interesting similarities with its counterpart in fluids, the theoretical framework highlights relevant differences that have important implications on the ability to trigger and sustain the thermoacoustic response. This mechanism could pave the way to the development of highly robust and reliable solid-state thermoacoustic engines and refrigerators.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Advanced High Pressure O2/H2 Technology
NASA Technical Reports Server (NTRS)
Morea, S. F. (Editor); Wu, S. T. (Editor)
1985-01-01
Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Pulse detonation engines and components thereof
NASA Technical Reports Server (NTRS)
Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)
2009-01-01
A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.
Fuel injection assembly for use in turbine engines and method of assembling same
Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho
2015-12-15
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.
NASA Astrophysics Data System (ADS)
Douvartzides, S.; Karmalis, I.
2016-11-01
Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.
Why Industry Must Step In to Train Engineers.
ERIC Educational Resources Information Center
Business Week, 1981
1981-01-01
Suggests industrial training of Japanese engineers since engineering education in Japan focuses on abstract science and rote learning of fundamental principles and not on practical laboratory experiences characteristic of training in the United States. (SK)
76 FR 77854 - Notice of Intent To Seek Approval To Establish an Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... Reporting Requirements for the Engineering Research Centers (ERCs). OMB Number: 3145-NEW. Expiration Date of.... Abstract Proposed Project The Engineering Research Centers (ERC) program supports an integrated, interdisciplinary research environment to advance fundamental engineering knowledge and engineered systems; educate...
The transformation of heat in an engine
NASA Technical Reports Server (NTRS)
Neumann, Kurt
1929-01-01
This report presents a thermodynamic basis for rating heat engines. The production of work by a heat engine rests on the operation of supplying heat, under favorable conditions, to a working fluid and then taking it away.
NASA Technical Reports Server (NTRS)
Berdahl, C. M.; Thiele, C. L. (Inventor)
1979-01-01
For use in combination with a heat engine, a thermal energy transformer is presented. It is comprised of a flux receiver having a first wall defining therein a radiation absorption cavity for converting solar flux to thermal energy, and a second wall defining an energy transfer wall for the heat engine. There is a heat pipe chamber interposed between the first and second walls having a working fluid disposed within the chamber and a wick lining the chamber for conducting the working fluid from the second wall to the first wall. Thermal energy is transferred from the radiation absorption cavity to the heat engine.
NASA Technical Reports Server (NTRS)
Fast, Ronald W. (Editor)
1991-01-01
The present volume on advances in cryogenic engineering discusses heat and mass transfer in helium, heat transfer in cryogenic fluids, thermoacoustic oscillations, and insulation. Attention is given to applications of superconductivity with reference to magnetic stability and coil protection, cryogenic techniques, and refrigeration for electronics and superconducting systems. Topics addressed include compressors, expanders, and pumps for liquid helium, magnetic refrigerators, pulse tube refrigerators, and cryocoolers. Also examined are properties of cryogenic fluids, cryogenic applications in transportion and space science and technology, and cryogenic instrumentation.
NASA Astrophysics Data System (ADS)
Kudrin, O. I.
1993-10-01
Relationships are presented which describe changes in the thrust and specific impulse of a solar thermal rocket engine due to a change in the flow rate of the working fluid (hydrogen). Expressions are also presented which describe the variation of the STRE thrust and specific impulse with the distance between the flight vehicle and the sun. Results of calculations are presented for an STRE with afterburning of the working fluid (hydrogen + oxygen) using hydrogen heating by solar energy to a temperature of 2360 K.
FSS (Fluid Servicer System) from the Kibo module to the ESA COL
2009-07-08
ISS020-E-017933 (8 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) and the Fluid Control Pump Assembly (FCPA) in the Columbus laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Mehdipour, R.; Baniamerian, Z.; Delauré, Y.
2016-05-01
An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.
Novel design of a self powered and self sensing magneto-rheological damper
NASA Astrophysics Data System (ADS)
Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.
2013-12-01
Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.
Alcohol-to-Jet (ATJ) Fuel Blending Study
2015-09-01
distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The U.S. Army sought to study the effect of blending highly iso-paraffinic ATJ blending...stock into JP-8 in order to understand the effect ATJ fuel blends will have on ground vehicle engines and support equipment. This subtask under Work... Synthetic Fuel, JP-8, diesel engine, combustion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF
USSR and Eastern Europe Scientific Abstracts, Engineering and Equipment, Number 32
1977-05-25
serial publication contains abstracts of articles and news items from USSR and Eastern Europe scientific and technical journals on the specific...loads ( internal pressure plus pure bending). A study is made of a broad range of problems involved in the design of torroidal, spherical and...and protec- tion system are regulated by the International Electrical Engineering Com- mission. Figure 1; tables 2; references 12. 18 Construction
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2013 CFR
2013-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2014 CFR
2014-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
7 CFR 3201.54 - Heat transfer fluids.
Code of Federal Regulations, 2012 CFR
2012-01-01
... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
NASA Astrophysics Data System (ADS)
Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.
2016-12-01
This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.
Teaching fluid mechanics to high schoolers: methods, challenges, and outcome
NASA Astrophysics Data System (ADS)
Manikantan, Harishankar
2017-11-01
This talk will summarize the goals, methods, and both short- and long-term feedback from two high-school-level courses in fluid mechanics involving 43 students and cumulatively spanning over 100 hours of instruction. The goals of these courses were twofold: (a) to spark an interest in science and engineering and attract a more diverse demographic into college-level STEM programs; and (b) to train students in a `college-like' method of approaching the physics of common phenomena, with fluid mechanics as the context. The methods of instruction included classes revolving around the idea of dispelling misconceptions, group activities, `challenge' rounds and mock design projects to use fluid mechanics phenomena to achieve a specified goal, and simple hands-on experiments. The feedback during instruction was overwhelmingly positive, particularly in terms of a changing and favorable attitude towards math and engineering. Long after the program, a visible impact lies in a diverse group of students acknowledging that the course had a positive effect in their decision to choose an engineering or science major in a four-year college.
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1977-01-01
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.
Engine having a high pressure hydraulic system and low pressure lubricating system
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2000-01-01
An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.
NASA Technical Reports Server (NTRS)
1992-01-01
Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.
NASA Technical Reports Server (NTRS)
Williams, R. W. (Compiler)
1996-01-01
This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2003-10-01
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less
THE STUDY OF HYDROMAGNETIC PROBLEMS BEARING ON GEOMAGNETISM. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekhar, S.
1962-01-01
The thermal instability of fluid spheres, hydrodynamic and hydromagnetic stability of fluid flows, and configurations in gravitational equilibrium have been studied over a number of years, together with associated topics in plasma physics and mathematics. The publications arising from these studies are listed, and abstracts are presented for thirty-eight papers published. (D.C.W.)
Age Differences in Relationships Between Crystallized and Fluid Intelligences and Problem Solving.
ERIC Educational Resources Information Center
Hayslip, Bert, Jr.; Sterns, Harvey L.
One hundred and sixty-two subjects of three age levels were tested to examine the relationship between crystallized and fluid abilities and three problem solving tasks varying in the abstractness/concreteness of their stimuli and emphasis on past experience. These dimensions have been used by Davis to distinguish between Type "O" and Type "C"…
Ethylene/acrylic elastomers (EAE): sealing application candidates for the automotive industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, J.; Ginn, A.
1979-01-01
EAE, based on experimental elastomers developed by Du Pont and called ''Vamac'' (formerly ''MPE''), are ethylene/methyl acrylate copolymers compounded with appropriate plasticizers, fillers, and other additives. They function satisfactorily at -54/sup 0/ to +177/sup 0/C and have excellent tensile strength, elongation, and resistance to compression set, corrosion, tear, and weathering. They show good resistance to automatic transmission fluids, engine oil, some gear lubricants and hydrocarbon greases, water, engine coolants, and dilute acids and bases, but should not be used with gasoline, concentrated acids, high-pressure steam, automotive brake fluids, phosphate ester-based hydraulic fluids, diester-based synthetic lubricants, or chlorinated hydrocarbons. They needmore » no solid-lubricant or antiwear additives, but special mold-release preparations are necessary. They should be useful as seals for the transmission front pump, the clutch, and the engine front crankshaft and possibly for other sealing and nonseal applications (e.g., spark-plug boots).« less
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Transforming Systems Engineering through Model Centric Engineering
2017-08-08
12 Figure 5. Semantic Web Technologies related to Layers of Abstraction ................................. 23 Figure 6. NASA /JPL Instantiation...of OpenMBEE (circa 2014) ................................................. 24 Figure 7. NASA /JPL Foundational Ontology for Systems Engineering...Engineering (DE) Transformation initiative, and our relationship that we have fostered with National Aeronautics and Space Administration ( NASA ) Jet
Engineering Research Division publication report, calendar year 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, E.K.; Livingston, P.L.; Rae, D.C.
Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.
2009-07-08
ISS020-E-018121 (8 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) in the Columbus laboratory of the International Space Station.
2009-07-08
ISS020-E-018118 (8 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, works with the Fluid Servicing System (FSS) in the Columbus laboratory of the International Space Station.
Synthetic biology: new engineering rules for an emerging discipline
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572
Synthetic biology: new engineering rules for an emerging discipline.
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.
46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and test. 61.30-5 Section 61.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for...
STEM Education Related Dissertation Abstracts: A Bounded Qualitative Meta-Study
ERIC Educational Resources Information Center
Banning, James; Folkestad, James E.
2012-01-01
This article utilizes a bounded qualitative meta-study framework to examine the 101 dissertation abstracts found by searching the ProQuest Dissertation and Theses[TM] digital database for dissertations abstracts from 1990 through 2010 using the search terms education, science, technology, engineer, and STEM/SMET. Professional search librarians…
NASA Astrophysics Data System (ADS)
1995-05-01
English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.
Thermal stratification potential in rocket engine coolant channels
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.
1992-01-01
The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.
Using the World's Tallest Barometer as a Demonstration Apparatus
NASA Astrophysics Data System (ADS)
Bennett, T. E.
2016-12-01
The barometer has been around since the early 1640's when Italian scientists Berte inadvertently made a water barometer and Torricelli purposely made a mercury barometer. A water barometer has the problem of high vapor pressure, so that it does not maintain a good vacuum above the water column unless continually vacuum pumped. The high density of mercury and its low vapor pressure allows a mercury barometer to be a compact and accurate lab apparatus. The tall barometer at Portland State University's Maseeh College of Engineering atrium makes use of doubly distilled synthetic vacuum pump oil as the working fluid. The fluid has a specific gravity of 0.83 and very low vapor pressure. The nominal height of this barometer is 12.45m, with excursions of +/- 0.40m. This barometer is used in the Civil Engineering Fluids Lab as a lab apparatus and it is also used during general tours of the building. With the placement of the tall barometer in the atrium of the Engineering Building, the barometer is very visible to all PSU engineering students and visitors to the building.
Military Tactical Aircraft Engine Noise Matching to Infrared Signatures
2016-12-16
Modulation,” Naval Postgraduate School MS thesis (1990). [8] Sinha, N., Ungewitter, R. J ., Kenzakowski, D. C ., and Seiner, J . M., “Gas Turbine Engine Jet...11] Harley, Jacob L., Rolling, August J ., Wisniewski, Charles F., and Gross, Kevin C ., “Spatially resolved infrared spectra of F109 turbofan exhaust...SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF
The Development of Ada (Trademark) Software for Secure Environments
1986-05-23
Telecommunications environment, This paper discusses software socurity and seeks to demostrate how the Ada programming language can be utilizec as a tool...complexity 4 . We use abstraction in our lives every day to control complexity; the principles of abstraction for software engineering are ro different...systems. These features directly sup,) )-t t.ie m odernp software engineering principles d1 s I , , 1 t, thne previous section. This is not surprising
77 FR 9272 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Engineering Research Centers (ERCs). OMB Number: 3145-New. Type of Request: Intent to seek approval to establish an information collection. Abstract: Proposed Project: The Engineering Research Centers (ERC) program supports an integrated, interdisciplinary research environment to advance fundamental engineering...
Optimization of new magnetorheological fluid mount for vibration control of start/stop engine mode
NASA Astrophysics Data System (ADS)
Chung, Jye Ung; Phu, Do Xuan; Choi, Seung-Bok
2015-04-01
The technologies related to saving energy/or green vehicles are actively researched. In this tendency, the problem for reducing exhausted gas is in development with various ways. Those efforts are directly related to the operation of engine which emits exhausted gas. The auto start/stop of vehicle engine when a vehicle stop at road is currently as a main stream of vehicle industry resulting in reducing exhausted gas. However, this technology automatically turns on and off engine frequently. This motion induces vehicle engine to transmit vibration of engine which has large displacement, and torsional impact to chassis. These vibrations causing uncomfortable feeling to passengers are transmitted through the steering wheel and the gear knob. In this work, in order to resolve this vibration issue, a new proposed magnetorheological (MR) fluid based engine mount (MR mount in short) is presented. The proposed MR mount is designed to satisfy large damping force in various frequency ranges. It is shown that the proposed mount can have large damping force and large force ratio which is enough to control unwanted vibrations of engine start/stop mode.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.; Farmer, R.
1985-01-01
An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.
Free-piston regenerative hot gas hydraulic engine
NASA Technical Reports Server (NTRS)
Beremand, D. G. (Inventor)
1980-01-01
A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.
Applied Fluid Mechanics. Lecture Notes.
ERIC Educational Resources Information Center
Gregg, Newton D.
This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…
NASA Astrophysics Data System (ADS)
Liang, Y. H.
2017-06-01
This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.
Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling
NASA Technical Reports Server (NTRS)
Tew, Roy C., Jr.
1988-01-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
Particle sedimentation in a sheared viscoelastic fluid
NASA Astrophysics Data System (ADS)
Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca
2017-11-01
Particle suspensions are ubiquitous in engineered processes, biological systems, and natural settings. For an engineering application - whether the intent is to suspend and transport particles (e.g., in hydraulic fracturing fluids) or allow particles to sediment (e.g., in industrial separations processes) - understanding and prediction of the particle mobility is critical. This task is often made challenging by the complex nature of the fluid phase, for example, due to fluid viscoelasticity. In this talk, we focus on a fully 3D flow problem in a viscoelastic fluid: a settling particle with a shear flow applied in the plane perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that an orthogonal shear flow can reduce the settling rate of particles in viscoelastic fluids. Using experiments and numerical simulations across a wide range of sedimentation and shear Weissenberg number, this talk will address the underlying physical mechanism responsible for the additional drag experienced by a rigid sphere settling in a confined viscoelastic fluid with orthogonal shear. We will then explore multiple particle effects, and discuss the implications and extensions of this work for particle suspensions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747 (WLM).
Calculating Mass Diffusion in High-Pressure Binary Fluids
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth
2004-01-01
A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.
SERS internship Fall 1992--Spring 1993: Abstract and research papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-05
This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
Epistemology, Ontology and Ethics: "Galaxies Away from the Engineering World"?
ERIC Educational Resources Information Center
Christensen, Steen Hyldgaard; Erno-Kjolhede, Erik
2008-01-01
Philosophy of technology/philosophy of science has recently become part of the curriculum of engineering degree programmes in Denmark. However, to what extent do teachers of engineering see it as meaningful for students to work with relatively abstract philosophical concepts such as epistemology, ontology and ethics as part of engineering degree…
Single-ion quantum Otto engine with always-on bath interaction
NASA Astrophysics Data System (ADS)
Chand, Suman; Biswas, Asoka
2017-06-01
We demonstrate how the reciprocating heat cycle of a quantum Otto engine (QOE) can be implemented using a single ion and an always-on thermal environment. The internal degree of freedom of the ion is chosen as the working fluid, while the motional degree of freedom can be used as the cold bath. We show, that by adiabatically changing the local magnetic field, the work efficiency can be asymptotically made unity. We propose a projective measurement of the internal state of the ion that mimics the release of heat from the working fluid during the engine cycle. In our proposal, the coupling to the hot and the cold baths need not be switched off and on in an alternate fashion during the engine cycle, unlike other existing proposals of QOE. This renders the proposal experimentally feasible using the available tapped-ion engineering technology.
Automated Fluid Feature Extraction from Transient Simulations
NASA Technical Reports Server (NTRS)
Haimes, Robert; Lovely, David
1999-01-01
In the past, feature extraction and identification were interesting concepts, but not required to understand the underlying physics of a steady flow field. This is because the results of the more traditional tools like iso-surfaces, cuts and streamlines were more interactive and easily abstracted so they could be represented to the investigator. These tools worked and properly conveyed the collected information at the expense of much interaction. For unsteady flow-fields, the investigator does not have the luxury of spending time scanning only one "snap-shot" of the simulation. Automated assistance is required in pointing out areas of potential interest contained within the flow. This must not require a heavy compute burden (the visualization should not significantly slow down the solution procedure for co-processing environments like pV3). And methods must be developed to abstract the feature and display it in a manner that physically makes sense. The following is a list of the important physical phenomena found in transient (and steady-state) fluid flow: (1) Shocks, (2) Vortex cores, (3) Regions of recirculation, (4) Boundary layers, (5) Wakes. Three papers and an initial specification for the (The Fluid eXtraction tool kit) FX Programmer's guide were included. The papers, submitted to the AIAA Computational Fluid Dynamics Conference, are entitled : (1) Using Residence Time for the Extraction of Recirculation Regions, (2) Shock Detection from Computational Fluid Dynamics results and (3) On the Velocity Gradient Tensor and Fluid Feature Extraction.
Aithal, S. M.
2018-01-01
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
Instabilities in a Relativistic Viscous Fluid
NASA Astrophysics Data System (ADS)
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
Magnetic Fluids Deliver Better Speaker Sound Quality
NASA Technical Reports Server (NTRS)
2015-01-01
In the 1960s, Glenn Research Center developed a magnetized fluid to draw rocket fuel into spacecraft engines while in space. Sony has incorporated the technology into its line of slim speakers by using the fluid as a liquid stand-in for the speaker's dampers, which prevent the speaker from blowing out while adding stability. The fluid helps to deliver more volume and hi-fidelity sound while reducing distortion.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Cryogenic foam insulation: Abstracted publications
NASA Technical Reports Server (NTRS)
Williamson, F. R.
1977-01-01
A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.
Electrorheological fluids and methods
Green, Peter F.; McIntyre, Ernest C.
2015-06-02
Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.
77 FR 16143 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-20
...We are adopting a new airworthiness directive (AD) for certain The Boeing Company Model 747-100, 747-100B, 747-100B SUD, 747-200B, 747-200C, 747-200F, 747-300, 747-400, 747-400D, 747-400F, 747SR, and 747SP series airplanes. This AD was prompted by a design review following a ground fire incident and reports of flammable fluid leaks from the wing leading edge area onto the engine exhaust area. This AD requires modifying the fluid drain path in the leading edge area of the wing. We are issuing this AD to prevent flammable fluid from leaking onto the engine exhaust nozzle, which could result in a fire.
Engine having a variable valve actuation system
Hefler, Gregory W [Chillicothe, IL
2004-10-12
An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.
Engine having a variable valve actuation system
Hefler, Gregory W.
2005-10-12
An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.
Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.
1992-01-01
boost plenum which houses the camshaft . The compressed mixture is metered by a throttle to intake valves of the engine. The engine is constructed from...difficulties associated with a time-tagged fault tree . In particular, recent work indicates that the multi-layer perception architecture can give good fdi...Abstract: In the past decade, wastepaper recycling has gained a wider acceptance. Depletion of tree stocks, waste water treatment demands and
Engine structures: A bibliography of Lewis Research Center's research for 1980-1987
NASA Technical Reports Server (NTRS)
1988-01-01
This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Structures Division of the NASA Lewis Research Center from 1980 through 1987. All the publications were announced in the l980 to 1987 issues of STAR (Scientific and Technical Aerospace Reports) and or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses.
14 CFR 25.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...
14 CFR 25.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be the minimum grade approved for the engines, and the mixture settings... engine fluids and powerplant components (except cylinder barrels) for which temperature limits are...
Research in Applied Mathematics, Fluid Mechanics and Computer Science
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.
[Research activities in applied mathematics, fluid mechanics, and computer science
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.
Schroeck, Florian R; Patterson, Olga V; Alba, Patrick R; Pattison, Erik A; Seigne, John D; DuVall, Scott L; Robertson, Douglas J; Sirovich, Brenda; Goodney, Philip P
2017-12-01
To take the first step toward assembling population-based cohorts of patients with bladder cancer with longitudinal pathology data, we developed and validated a natural language processing (NLP) engine that abstracts pathology data from full-text pathology reports. Using 600 bladder pathology reports randomly selected from the Department of Veterans Affairs, we developed and validated an NLP engine to abstract data on histology, invasion (presence vs absence and depth), grade, the presence of muscularis propria, and the presence of carcinoma in situ. Our gold standard was based on an independent review of reports by 2 urologists, followed by adjudication. We assessed the NLP performance by calculating the accuracy, the positive predictive value, and the sensitivity. We subsequently applied the NLP engine to pathology reports from 10,725 patients with bladder cancer. When comparing the NLP output to the gold standard, NLP achieved the highest accuracy (0.98) for the presence vs the absence of carcinoma in situ. Accuracy for histology, invasion (presence vs absence), grade, and the presence of muscularis propria ranged from 0.83 to 0.96. The most challenging variable was depth of invasion (accuracy 0.68), with an acceptable positive predictive value for lamina propria (0.82) and for muscularis propria (0.87) invasion. The validated engine was capable of abstracting pathologic characteristics for 99% of the patients with bladder cancer. NLP had high accuracy for 5 of 6 variables and abstracted data for the vast majority of the patients. This now allows for the assembly of population-based cohorts with longitudinal pathology data. Published by Elsevier Inc.
Do we need more famous fluid dynamicists?
NASA Astrophysics Data System (ADS)
Reckinger, Shanon; Brinkman, Bethany; Fenner, Raenita; London, Mara
2015-11-01
One of the main reasons students do not join the STEM fields is that they lack interest in technical topics. But do people (young students, the general public, or even our own engineering students) know what an engineer is and/or does? In this talk, results from a recent study on the perceptions of different professions will be presented. The study was designed based off of ``draw-an-engineer'' and ``draw-a-scientist'' tests used on elementary schools kids. The idea is to have participants visualize professionals (engineers, lawyers, and medical doctors were chosen for this study), and determine if there are any patterns within different demographic groups. The demographics that were focused on include gender, race, age, college major, highest level of education, and profession. One of the main findings of this survey was that participants had the most difficult time visualizing an engineer compared to a lawyer or a medical doctor. Therefore, maybe we need more famous engineers (and fluid dynamicists)?
Characterization and Evaluation of Re-Refined Engine Lubricating Oil.
1981-12-01
performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
NASA Astrophysics Data System (ADS)
Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.
2009-07-01
An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).
NASA Astrophysics Data System (ADS)
Niswatin, C.; Latief, M. A.; Suharyadi, S.
2018-02-01
This research aims to uncover the fact about engineering students in dealing with composing abstracts for their final projects. The research applies a descriptive qualitative quantitative design. The data were collected through questioners involving 104 engineering students, including the alumni at Politeknik Kota Malang, Indonesia. Furthermore, interviews were carried out to explain the details where necessary to support the primary data. It is found that the common problems faced by engineering students include 1) combining words into sentences, 2) identifying the most appropriate technical terms in engineering, and 3) applying grammar in context. To cope with those difficulties they demanded translation application machines, supported by peer-proofreaders. In addition, they considerably engaged personal tutoring with the lectures more than three times.
Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review
NASA Astrophysics Data System (ADS)
Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.
2014-02-01
Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.
Ninth Thermal and Fluids Analysis Workshop Proceedings
NASA Technical Reports Server (NTRS)
Sakowski, Barbara (Compiler)
1999-01-01
The Ninth Thermal and Fluids Analysis Workshop (TFAWS 98) was held at the Ohio Aerospace Institute in Cleveland, Ohio from August 31 to September 4, 1998. The theme for the hands-on training workshop and conference was "Integrating Computational Fluid Dynamics and Heat Transfer into the Design Process." Highlights of the workshop (in addition to the papers published herein) included an address by the NASA Chief Engineer, Dr. Daniel Mulville; a CFD short course by Dr. John D. Anderson of the University of Maryland; and a short course by Dr. Robert Cochran of Sandia National Laboratories. In addition, lectures and hands-on training were offered in the use of several cutting-edge engineering design and analysis-oriented CFD and Heat Transfer tools. The workshop resulted in international participation of over 125 persons representing aerospace and automotive industries, academia, software providers, government agencies, and private corporations. The papers published herein address issues and solutions related to the integration of computational fluid dynamics and heat transfer into the engineering design process. Although the primary focus is aerospace, the topics and ideas presented are applicable to many other areas where these and other disciplines are interdependent.
Fuel supply device for supplying fuel to an engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, M.H.; Kerr, W.B.
1990-05-29
This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Computer-aided-engineering system for modeling and analysis of ECLSS integration testing
NASA Technical Reports Server (NTRS)
Sepahban, Sonbol
1987-01-01
The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.
The Aerothermodynamics of Aircraft Gas Turbine Engines
1978-07-01
engine will deteriorate. 1.6.2 Experimental Testing It is easy to fall int9 the organiza- tional trap of four isolated groups . One group does the... Quasi -Dne-Dimensional Fluid Flows The First Law for a F1mdng System-- The Control Volume • . • The Channel Flow Equations Stagnation Properties...exit to control volume (Eq • 2. 14 . 2) CHAPTER TWO THERMODYNAMICS AND QUASI -ONE-DUlENSIONAL FLUID FLO’’{S 2.0 INTRODUCTION This chapter "ill be
Research Abstracts of ACE 2001 Research Paper Presentations.
ERIC Educational Resources Information Center
Journal of Applied Communications, 2001
2001-01-01
Provides abstracts of nine research papers presented at the 2001 Agricultural Communication in Education annual conference. Includes papers on food safety, critical thinking, distance education, information technologies, agricultural news sources, and genetically engineered foods. (JOW)
14 CFR 27.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...
14 CFR 27.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (a)(1) of this section may exceed established limits. (3) For reciprocating engines, the fuel used during the cooling tests must be of the minimum grade approved for the engines, and the mixture settings... applies, temperatures of engine fluids and power-plant components (except cylinder barrels) for which...
Integrated gas turbine engine-nacelle
NASA Technical Reports Server (NTRS)
Adamson, A. P.; Sargisson, D. F.; Stotler, C. L., Jr. (Inventor)
1979-01-01
A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine.
2013-11-11
ISS038-E-000269 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
2013-11-11
ISS038-E-000263 (11 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, conducts a session with the Capillary Flow Experiment (CFE) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids move up surfaces in microgravity. The results aim to improve current computer models that are used by designers of low gravity fluid systems and may improve fluid transfer systems for water on future spacecraft.
Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa; Williams, Robert
2002-01-01
This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.
The Variety of Fluid Dynamics.
ERIC Educational Resources Information Center
Barnes, Francis; And Others
1980-01-01
Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011438 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011443 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
View of FE Stott installing hardware on the Fluids Integrated Rack (FIR)
2009-10-22
ISS021-E-011440 (22 Oct. 2009) --- NASA astronaut Nicole Stott, Expedition 21 flight engineer, installs hardware in the Fluids Integrated Rack (FIR) in the Destiny laboratory of the International Space Station.
Aeronautical engineering. A continuing bibliography with indexes, supplement 127, October 1980
NASA Technical Reports Server (NTRS)
1980-01-01
A bibliography containing 431 abstracts addressing various topics in aeronautical engineering is given. The coverage includes engineering and theoretical aspects of design. construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
Fuel injection assembly for use in turbine engines and method of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2015-03-24
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.
Combustor assembly for use in a turbine engine and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2013-05-14
A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.
Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun
2013-03-01
Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.
The Molecular Design of High-Performance Carbon Materials
2008-06-30
Thies MC. Control of mesophase pitch properties by supercritical fluid extraction. Carbon 1998; 36(7-8):953-61. 7] Zhuang M, Gast K, Thies MC...pitch with supercritical toluene. J Supercrit Fluids 1991; 4(1):7-14. 16] Herod AA, Bartle KD, Kandiyoti R. Characterization of heavy...MALDI, mass spectrometry, mesophase, extraction, supercritical , fractionation. 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS
Transonic Axial Splittered Rotor Tandem Stator Stage
2016-12-01
CODE 13. ABSTRACT (maximum 200 words) Development of a procedure to model the hot shape of a rotor blade and a comparison analysis of the transonic...fluid-structure interaction. Rotational forces as well as gas loading forces were observed as an influence on blade deformation. Utilizing the...Turbomachinery, splittered rotor, tandem stator, transonic compressor, blade deformation, fluid-structure interaction 15. NUMBER OF PAGES 87 16. PRICE
Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications
Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali
2013-01-01
Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771
Contributions Regarding the Aircraft Nuclear Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian
2010-01-21
The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for themore » nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.« less
FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer
NASA Astrophysics Data System (ADS)
Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica
2015-11-01
The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.
Annual Quality Assurance Conference Abstracts by Barbara Marshik
25th Annual Quality Assurance Conference. Abstracts: Material and Process Conditions for Successful Use of Extractive Sampling Techniques and Certification Methods Errors in the Analysis of NMHC and VOCs in CNG-Based Engine Emissions by Barbara Marshik
14 CFR 29.1189 - Shutoff means.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine; (2) For oil systems for turbine engine installations in which all components of the system, including oil tanks, are fireproof or located in areas not subject to engine fire conditions; or (3) For...) There must be means to shut off or otherwise prevent hazardous quantities of fuel, oil, de-icing fluid...
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
NASA Technical Reports Server (NTRS)
Adams, A.
1973-01-01
The Interface Control Document contains engine information necessary for installation of the baseline RL10 Derivative engines in the Space Tug vehicle. The ICD presents a description of the baseline engines and their operating characteristics, mass and load characteristics, and environmental criteria. The document defines the engine/vehicle mechanical, electrical, fluid and pneumatic interface requirements.
Fluid Film Bearing Code Development
NASA Technical Reports Server (NTRS)
1995-01-01
The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the user inputs information that relates the fluid transport properties to the temperature.
Flowmeter for Clear and Translucent Fluids
NASA Technical Reports Server (NTRS)
White, P. R.
1985-01-01
Transducer with only three moving parts senses flow of clear or translucent fluid. Displacement of diaphragm by force of flow detected electrooptically and displayed by panel meter or other device. Transducer used to measure flow of gasoline to automobile engine.
Surfactants in lubrication – Recent developments
USDA-ARS?s Scientific Manuscript database
Lubricants are used in a wide range of industries and applications including: manufacturing (stamping, grinding, drilling, rolling, etc.,); transportation (e.g., engine oils, gear oils, transmission fluids, greases etc.); mining and construction (e.g., hydraulic fluids); medical and personal care (e...
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative benefits of this technique. For the offline approximation, latin hypercube sampling (LHS) was used for design space filling across four (4) independent design variable degrees of freedom (DOF). Flow solutions at the mapped test sites were converged using STAR-CCM+ with aerodynamic forces from the CFD models then functionally approximated using Kriging interpolation. For the closed-form approximation, the problem was interpreted as an ideal 2-D converging-diverging (C-D) nozzle, where aerodynamic forces were directly mapped by application of the Euler equation solutions for isentropic compression/expansion. A cost-weighting procedure was finally established for creating model-selective discretionary logic, with a synthesized parallel simulation resource summary provided.
Role of fin material and nanofluid in performance enhancement of automobile radiator
NASA Astrophysics Data System (ADS)
Jadar, Raju; Shashishekar, K. S.; Channa Keshava Naik, N.
2018-04-01
An effective cooling system can avoid engine and its components from overheating and helps in achieving optimum engine performance. This work deals with the fabrication and performance evaluation of an automobile radiator with i) Aluminum fins and ii) Al-MWCNT fins using 0.1 w/v% f-MWCNT nanofluid. F-MWCNT nanoparticles in the base fluid improves the rate of heat transfer in an automobile radiator integrated with Al-MWCNT fins. The enhancement of heat transfer mainly depends on the quantity of F-MWCNT nanoparticles added to the host fluid. During the study it was found that at a low weight by volume concentration of nanofluid the heat transfer enhancement of 8% was achieved using Al-MWCNT fins compared to base fluid.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.
1995-01-01
This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.
ERIC Educational Resources Information Center
Wei, Tie; Ford, Julie
2015-01-01
This article provides information about the integration of innovative hands-on activities within a sophomore-level Fluid Mechanics course at New Mexico Tech. The course introduces students to the fundamentals of fluid mechanics with emphasis on teaching key equations and methods of analysis for solving real-world problems. Strategies and examples…
ERIC Educational Resources Information Center
Tang, Shensheng
2014-01-01
Microcontrollers is a required course in most Electrical, Computer, and Mechanic Engineering (Technology) programs at U.S. universities. Most engineering courses (e.g., microcontrollers), by nature, introduce abstract concepts, definitions, and models, and use primarily lectures and readings (words, symbols) to transmit information. This…
Integrating Computational Science Tools into a Thermodynamics Course
ERIC Educational Resources Information Center
Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew
2018-01-01
Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of…
Fluid-film foil bearings control engine heat
NASA Astrophysics Data System (ADS)
O'Connor, Leo
1993-05-01
The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.
Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps
NASA Astrophysics Data System (ADS)
Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.
2017-04-01
Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.
Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.
1983-09-01
research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly...probability, statistics, soil mechanics, rock mechanics, and engineering geology. 2. The purpose of this report is to make available to the U. S...Deformation Dynamic Response Analysis Seepage, Soil Permeability and Piping Earthquake Engineering, Seismology, Settlement and Heave Seismic Risk Analysis
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, No. 43.
1978-11-16
WISOWSKI, JANUSZ; STOLARSKI, EDWARD and CZERWINSKI, ANDRZEJ , Institute of Electronic Technology NPCP [Scientific-Production Center for...PINTER (Mrs DUDAS ), MARTA [Abstract] Some theoretical considerations are presented concerning the design of small coaxial cables with
NASA Technical Reports Server (NTRS)
Singh, Bhim (Compiler)
2002-01-01
The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This CP (conference proceeding) is a compilation of the abstracts, presentations, and posters presented at the conference.
ENGINEERING BULLETIN: IN SITU SOIL FLUSHING
In situ soil flushing is the extraction of contaminants from the soil with water or other suitable aqueous solutions. Soil flushing is accomplished by passing the extraction fluid through in-place soils using an injection or infiltration process. Extraction fluids must be recover...
Biobased extreme pressure additives: Structure-property considerations
USDA-ARS?s Scientific Manuscript database
Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions
NASA Astrophysics Data System (ADS)
Rüttgers, Alexander; Griebel, Michael
2012-11-01
The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.
NASA Astrophysics Data System (ADS)
Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z. H.; Noor, N. F. M.
2015-01-01
In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT.
Cooling of in-situ propellant rocket engines for Mars mission. M.S. Thesis - Cleveland State Univ.
NASA Technical Reports Server (NTRS)
Armstrong, Elizabeth S.
1991-01-01
One propulsion option of a Mars ascent/descent vehicle is multiple high-pressure, pump-fed rocket engines using in-situ propellants, which have been derived from substances available on the Martian surface. The chosen in-situ propellant combination for this analysis is carbon monoxide as the fuel and oxygen as the oxidizer. Both could be extracted from carbon dioxide, which makes up 96 percent of the Martian atmosphere. A pump-fed rocket engine allows for higher chamber pressure than a pressure-fed engine, which in turn results in higher thrust and in higher heat flux in the combustion chamber. The heat flowing through the wall cannot be sufficiently dissipated by radiation cooling and, therefore, a regenerative coolant may be necessary to avoid melting the rocket engine. The two possible fluids for this coolant scheme, carbon monoxide and oxygen, are compared analytically. To determine their heat transfer capability, they are evaluated based upon their heat transfer and fluid flow characteristics.
Principles of liquids working in heat engines
Allen, P. C.; Knight, W. R.; Paulson, D. N.; Wheatley, J. C.
1980-01-01
The thermodynamic and thermophysical properties of liquids suggest that they should be powerful working fluids in heat engines. Their use requires heat engines based conceptually on the Stirling and Malone principles. The principles are explained, and then experiments on propylene are presented that demonstrate the principles and confirm the thermodynamic analysis. PMID:16592756
Hydrostatic Pressure Project: Linked-Class Problem-Based Learning in Engineering
ERIC Educational Resources Information Center
Davis, Freddie J.; Lockwood-Cooke, Pamela; Hunt, Emily M.
2011-01-01
Over the last few years, WTAMU Mathematics, Engineering and Science faculty has used interdisciplinary projects as the basis for implementation of a linked-class approach to Problem-Based Learning (PBL). A project that has significant relevance to engineering statics, fluid mechanics, and calculus is the Hydrostatic Pressure Project. This project…
Acoustical heat pumping engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.
Acoustical heat pumping engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.
Computational Pollutant Environment Assessment from Propulsion-System Testing
NASA Technical Reports Server (NTRS)
Wang, Ten-See; McConnaughey, Paul; Chen, Yen-Sen; Warsi, Saif
1996-01-01
An asymptotic plume growth method based on a time-accurate three-dimensional computational fluid dynamics formulation has been developed to assess the exhaust-plume pollutant environment from a simulated RD-170 engine hot-fire test on the F1 Test Stand at Marshall Space Flight Center. Researchers have long known that rocket-engine hot firing has the potential for forming thermal nitric oxides, as well as producing carbon monoxide when hydrocarbon fuels are used. Because of the complex physics involved, most attempts to predict the pollutant emissions from ground-based engine testing have used simplified methods, which may grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work has been to develop a computational fluid dynamics-based methodology that replicates the underlying test-stand flow physics to accurately and efficiently assess pollutant emissions from ground-based rocket-engine testing. A nominal RD-170 engine hot-fire test was computed, and pertinent test-stand flow physics was captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.
ECONOMIC-ENGINEERING OPTIMIZATION FOR CALIFORNIA WATER MANAGEMENT. (R825285)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Viscous Fingering in Multiport Hele Shaw Cell for Controlled Shaping of Fluids.
Islam, Tanveer Ul; Gandhi, Prasanna S
2017-11-30
The pursuit of mimicking complex multiscale systems has been a tireless effort with many successes but a daunting task ahead. A new perspective to engineer complex cross-linked meshes and branched/tree-like structures at different scales is presented here. Control over Saffman-Taylor instability which otherwise randomly rearranges viscous fluid in a 'lifted Hele-Shaw cell' is proposed for the same. The proposed control employs multiple-ports or source-holes in this cell, to spontaneously shape a stretched fluid film into a network of well defined webs/meshes and ordered multiscale tree-like patterns. Use of multiple ports enables exercising strong control to fabricate such structures, in a robust and repeated fashion, which otherwise are completely non-characteristic to viscous fingering process. The proposed technique is capable of fabricating spontaneously families of wide variety of structures over micro and very large scale in a period of few seconds. Thus the proposed method forms a solid foundation to new pathways for engineering multiscale structures for several scientific applications including efficient gas exchange, heat transport, tissue engineering, organ-on-chip, and so on. Proposal of multi-port Hele-Shaw cell also opens new avenues for investigation of complex multiple finger interactions resulting in interesting fluid patterns.
Watanabe, Miho; Li, Hiaying; Roybal, Jessica; Santore, Matthew; Radu, Antonetta; Jo, Jun-Ichiro; Kaneko, Michio; Tabata, Yasuhiko; Flake, Alan
2011-04-01
Myelomeningocele (MMC) is a common and devastating malformation. As an alternative to fetal surgical repair, tissue engineering has the potential to provide a less invasive approach for tissue coverage applicable at an earlier stage of gestation. We have previously evaluated the use of gelatin hydrogel composites composed of gelatin sponges and sheets as a platform for tissue coverage of the MMC defect in the retinoic acid induced fetal rat model of MMC. In the current study, we compare our previous composite with gelatin microspheres as a scaffold for tissue ingrowth and cellular adhesion within the amniotic fluid environment. We also examine the relative efficacy of various bioactive protein coatings on the adhesion of amniotic fluid cells to the construct within the amniotic cavity. We conclude from this study that gelatin microspheres are as effective as gelatin sponges as a scaffold for cellular ingrowth and amniotic fluid cell adhesion and that collagen type I and fibronectin coatings enhance amniotic fluid cell adhesion to the gelatin-based scaffolds. These findings support the potential for the development of a tissue-engineered injectable scaffold that could be applied by ultrasound-guided injection, much earlier and less invasively than sponge or sheet-based composites.
Mechanical design problems associated with turbopump fluid film bearings
NASA Technical Reports Server (NTRS)
Evces, Charles R.
1990-01-01
Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.
System and method for improving performance of a fluid sensor for an internal combustion engine
Kubinski, David [Canton, MI; Zawacki, Garry [Livonia, MI
2009-03-03
A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.
[Research Conducted at the Institute for Computer Applications in Science and Engineering
NASA Technical Reports Server (NTRS)
1997-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period 1 Oct. 1996 - 31 Mar. 1997.
Aqueous Ethanol Ignition and Engine Studies, Phase I
DOT National Transportation Integrated Search
2010-09-01
Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...
[Activities of Institute for Computer Applications in Science and Engineering (ICASE)
NASA Technical Reports Server (NTRS)
1999-01-01
This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics. fluid mechanics, and computer science during the period April 1, 1999 through September 30. 1999.
A Graduate Course in Polymer Processing.
ERIC Educational Resources Information Center
Middleman, Stanley
1978-01-01
This course, offered by the departments of chemical engineering and polymer science and engineering at the University of Massachusetts, is mainly a course in applied fluid dynamics with an emphasis on flow pressures dominated by viscous effects. (BB)
46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). 52.25-10 Section 52.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). (a) Organic...
46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). 52.25-10 Section 52.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). (a) Organic...
46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). 52.25-10 Section 52.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). (a) Organic...
46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). 52.25-10 Section 52.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). (a) Organic...
46 CFR 52.25-10 - Organic fluid vaporizer generators (modifies PVG-1 through PVG-12).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). 52.25-10 Section 52.25-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-10 Organic fluid vaporizer generators (modifies PVG-1 through PVG-12). (a) Organic...
NASA Technical Reports Server (NTRS)
Stinson, Henry; Turner, James (Technical Monitor)
2002-01-01
In this viewgraph presentation, information and diagrams are provided on rocket engine turbopumps. These turbomachines are highly complex and have several unique features: (1) They are generally very high power density machines; (2) They experience high fluid dynamic loads; (3) They are exposed to severe thermal shocks in terms of rapid starts and stops and extremely high heat transfer coefficients; (4) They have stringent suction performance requirements to minimize tank weight; (5) Their working fluids significantly impact the design: oxidizers are generally explosive, they afford almost no lubrication for bearings and seals, some fuels can degrade material properties, cryogenics result in severe thermal gradients; (6) Their life requirements are short relative to other turbomachines in that there are hundreds of cycles and a few hours of operation for reusable systems. The design of rocket engine turbomachines is a systems engineering challenge because multiple engineering disciplines must be integrated to deal with issues pertaining to stress, structural dynamics, hydrodynamics, aerodynamics, thermodynamics, and materials and process selection.
Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold
Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall
2010-01-01
Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254
Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.
Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P
2010-05-01
Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.
Fluid Servicing System (FSS) in the US Lab
2009-11-05
ISS021-E-021416 (5 Nov. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.
FPEF (Fluid Physics Experiment Facility) for the planned MS (Marangoni Surface) experiment
2009-07-01
ISS020-E-016214 (1 July 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 20 flight engineer, prepares the Fluid Physics Experiment Facility (FPEF) for the planned Marangoni Surface experiment in the Kibo laboratory of the International Space Station.
research interests in fluid mechanics, rheology, separation science, reaction engineering, mathematical -established Newtonian fluid mechanics and solution reaction kinetics do not apply to these biomass slurries , and reaction kinetics of the biomass slurries in order to develop predictive modeling capabilities
Hopkins in U.S. Lab with FIR/FCF
2013-10-15
ISS037-E-013951 (14 Oct. 2013) --- NASA astronaut Michael Hopkins, Expedition 37 flight engineer, works at the Light Microscopy Module (LMM) in the Fluids Integrated Rack / Fluids Combustion Facility (FIR/FCF) located in the Destiny laboratory of the International Space Station.
NASA Technical Reports Server (NTRS)
Schmidt, A. F. (Editor)
1972-01-01
Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.
NASA Technical Reports Server (NTRS)
Stier, Bernd; Falco, R. E.
1994-01-01
Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.
NASA Technical Reports Server (NTRS)
Huang, C. J.; Motard, R. L.
1978-01-01
The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 41
1978-08-08
ELEKTRICHESKIYE STANTSII In Russian No 3, Mar 78 pp 70-71 KUZNETSOV, Vi P., Z0B0LÖTNIK0V, V. I. and MAKEYEV , V. P., engineers, Doltekhenergo...after completion 25 Mar 76 LEYTMAN, MIKHAIL BORISOVICH, candidate in technical sciences, dotsent, Smolensk Affiliate of Moscow Power Engineering
1992-08-27
Materials Science Center of Excellence REPORT NUMBER Howard University School of Engineering MSRCE ONR 1 2300 6th St., N.W. Washington, D.C. 20059 9...Research Center of Excellence, Department of Electrical Engineering, School of Engineering, Howard University , Washington, D.C., USA Abstract We report
NASA Astrophysics Data System (ADS)
Brereton, Margot Felicity
A series of short engineering exercises and design projects was created to help students learn to apply abstract knowledge to physical experiences with hardware. The exercises involved designing machines from kits of materials and dissecting and analyzing familiar household products. Students worked in teams. During the activities students brought their knowledge of engineering fundamentals to bear. Videotape analysis was used to identify and characterize the ways in which hardware contributed to learning fundamental concepts. Structural and qualitative analyses of videotaped activities were undertaken. Structural analysis involved counting the references to theory and hardware and the extent of interleaving of references in activity. The analysis found that there was much more discussion linking fundamental concepts to hardware in some activities than in others. The analysis showed that the interleaving of references to theory and hardware in activity is observable and quantifiable. Qualitative analysis was used to investigate the dialog linking concepts and hardware. Students were found to advance their designs and their understanding of engineering fundamentals through a negotiation process in which they pitted abstract concepts against hardware behavior. Through this process students sorted out theoretical assumptions and causal relations. In addition they discovered design assumptions, functional connections and physical embodiments of abstract concepts in hardware, developing a repertoire of familiar hardware components and machines. Hardware was found to be integral to learning, affecting the course of inquiry and the dynamics of group interaction. Several case studies are presented to illustrate the processes at work. The research illustrates the importance of working across the boundary between abstractions and experiences with hardware in order to learn engineering and physical sciences. The research findings are: (a) the negotiation process by which students discover fundamental concepts in hardware (and three central causes of negotiation breakdown); (b) a characterization of the ways that material systems contribute to learning activities, (the seven roles of hardware in learning); (c) the characteristics of activities that support discovering fundamental concepts in hardware (plus several engineering exercises); (d) a research methodology to examine how students learn in practice.
Superconducting-circuit quantum heat engine with frequency resolved thermal baths
NASA Astrophysics Data System (ADS)
Hofer, Patrick P.; Souquet, Jean-René; Clerk, Aashish A.
The study of quantum heat engines promises to unravel deep, fundamental concepts in quantum thermodynamics. With this in mind, we propose a novel, realistic device that efficiently converts heat into work while maintaining reasonably large output powers. The key concept in our proposal is a highly peaked spectral density in both the thermal baths as well as the working fluid. This allows for a complete separation of the heat current from the working fluid. In our setup, Cooper pairs tunnelling across a Josephson junction serve as the the working fluid, while two resonant cavities coupled to the junction act as frequency-resolved thermal baths. The device is operated such that a heat flux carried entirely by the photons induces an electrical current against a voltage bias, providing work.
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2000-01-01
This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
Study of Software Tools to Support Systems Engineering Management
2015-06-01
Management 15. NUMBER OF PAGES 137 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) According to a...PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540–01–280–5500 Standard Form 298
GENETIC ENGINEERING OF ESCHERICHIA COLI FOR ENHANCED BIOACCUMULATION OF MERCURY. (R827227)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
BIOREMEDIATION: A CHALLENGING APPLICATION OF BIOCHEMICAL ENGINEERING PRINCIPLES. (R825549C019)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...
Nutrition and Healthy Eating: How Much Water Should You Drink Each Day?
... temperate climate need? The National Academies of Sciences, Engineering, and Medicine determined that an adequate daily fluid ... Electrolytes and water. The National Academies of Science, Engineering, and Medicine. http://www.nationalacademies.org/hmd/Activities/ ...
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
NASA Technical Reports Server (NTRS)
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy
NASA Astrophysics Data System (ADS)
Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke
2011-06-01
Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.
Experiment for validation of fluid-structure interaction models and algorithms.
Hessenthaler, A; Gaddum, N R; Holub, O; Sinkus, R; Röhrle, O; Nordsletten, D
2017-09-01
In this paper a fluid-structure interaction (FSI) experiment is presented. The aim of this experiment is to provide a challenging yet easy-to-setup FSI test case that addresses the need for rigorous testing of FSI algorithms and modeling frameworks. Steady-state and periodic steady-state test cases with constant and periodic inflow were established. Focus of the experiment is on biomedical engineering applications with flow being in the laminar regime with Reynolds numbers 1283 and 651. Flow and solid domains were defined using computer-aided design (CAD) tools. The experimental design aimed at providing a straightforward boundary condition definition. Material parameters and mechanical response of a moderately viscous Newtonian fluid and a nonlinear incompressible solid were experimentally determined. A comprehensive data set was acquired by using magnetic resonance imaging to record the interaction between the fluid and the solid, quantifying flow and solid motion. Copyright © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
NASA Technical Reports Server (NTRS)
Das, Digendra K.
1991-01-01
The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.
Engine control system having speed-based timing
Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL
2012-02-14
A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.
Science and Technology Text Mining: Electric Power Sources
2004-04-01
Transactions of Power Systems), Thermal Engineering (Applied Thermal Engineering, JSME International Journal Series B – Fluids Thermal Engineering...Renewables ( International Journal of Hydrogen Energy, Biomass and Bioenergy, Solar Energy), Electrochemistry (Solid State Ionics, Journal of the...pollutants, with balanced emphasis given to solar and biomass systems. The papers in International Journal of Energy Research focus on performance of total
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
14 CFR 27.1093 - Induction system icing protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
...— (i) 100 degrees F.; or (ii) If a fluid deicing system is used, at least 40 degrees F. (b) Turbine engine. (1) It must be shown that each turbine engine and its air inlet system can operate throughout the.... (2) Each turbine engine must idle for 30 minutes on the ground, with the air bleed available for...
A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S M; Flowers, D L; Martinez-Frias, J
2000-11-29
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. Thismore » procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.« less
Advanced Stimulated Scattering Measurements in Supercritical Fluids
2006-09-01
supercritical fluid measurement techniques. Ajay Agrawal, optical diagnostics. Mel Roquemore, turbine engines. Fred Schauer, pulse detonation propulsion...Lett. 87, 233902 (2001). 11. R. W. Gammon, H. L. Swinney, and H. Z. Cummins, "Brillouin scattering in carbon dioxide in the critical region," Phys. Rev...Stimulated Scattering Measurements in Supercritical F49620-03-C-0015 Fluids 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d
Fluid valve with wide temperature range
NASA Technical Reports Server (NTRS)
Kast, Howard Berdolt (Inventor)
1976-01-01
A fluid valve suitable for either metering or pressure regulating fluids at various temperatures is provided for a fuel system as may be utilized in an aircraft gas turbine engine. The valve includes a ceramic or carbon pad which cooperates with a window in a valve plate to provide a variable area orifice which remains operational during large and sometimes rapid variations in temperature incurred from the use of different fuels.
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Fifth German-American Frontiers of Engineering Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2002-05-01
The agenda book for the Fifth German-American Frontiers of Engineering Symposium contains abstracts of the 16 presentations as well as information on the program, bios of the speakers, contact information for all attendees, and background on the activity.
Branch Detonation of a Pulse Detonation Engine With Flash Vaporized JP-8
2006-12-01
Mark F. Reeder (Member) date iii Abstract Pulse Detonation Engines ( PDE ) operating on liquid hydrocarbon fuels are... Detonation Transition FF – Fill Fraction FN – Flow Number NPT – National Pipe Thread OH – Hydroxyl PDE – Pulse Detonation Engine PF – Purge...Introduction Motivation Research on Pulsed Detonation Engines ( PDE ) has increased over the past ten years due to the potential for increased
Engine Throat/Nozzle Optics for Plume Spectroscopy
1991-02-01
independent of the external plume characteristics so operation can be achieved on diffuser test stands and with the engine exhausting to a variable... combustion chamber operates at 205 atmospheres during 109% power conditions with a mixture ratio of 6:1. The engine is overexpanded at sea level and...LeRC/500-219. 16. Abstract The throat and combustion chamber of an operating rocket engine provide a preferred signal source for optical spectroscopy
SERS internship: Spring 1994 abstracts and research papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, B.
1994-05-06
This document contains abstracts from the science and engineering research semester from the Lawrence Livermore National Laboratory. Projects cover many areas in the fields of contaminant removal from the environment, physics, and genetics research. Individual projects were processed separately for the Department of Energy databases.
RSV PATHOGENESIS IS EXACERBATED BY EXPOSURE TO INHALED DIESEL ENGINE EMISSIONS. (R826442)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
INCREASED SUSCEPTIBILITY TO RSV INFECTION BY EXPOSURE TO INHALED DIESEL ENGINE EMISSIONS. (R826442)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Scholarly Information Extraction Is Going to Make a Quantum Leap with PubMed Central (PMC).
Matthies, Franz; Hahn, Udo
2017-01-01
With the increasing availability of complete full texts (journal articles), rather than their surrogates (titles, abstracts), as resources for text analytics, entirely new opportunities arise for information extraction and text mining from scholarly publications. Yet, we gathered evidence that a range of problems are encountered for full-text processing when biomedical text analytics simply reuse existing NLP pipelines which were developed on the basis of abstracts (rather than full texts). We conducted experiments with four different relation extraction engines all of which were top performers in previous BioNLP Event Extraction Challenges. We found that abstract-trained engines loose up to 6.6% F-score points when run on full-text data. Hence, the reuse of existing abstract-based NLP software in a full-text scenario is considered harmful because of heavy performance losses. Given the current lack of annotated full-text resources to train on, our study quantifies the price paid for this short cut.
Engineering Graphene Mechanical Systems
2012-07-05
strength material. On the basis of chemical /defect manipulation and recrystallization this technique allows wide-range engineering of mechanical... Engineering Graphene Mechanical Systems Maxim K. Zalalutdinov,† Jeremy T. Robinson,*,† Chad E. Junkermeier,‡ James C. Culbertson, Thomas L. Reinecke...Information ABSTRACT: We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically
ERIC Educational Resources Information Center
Jehopio, Peter J.; Wesonga, Ronald
2017-01-01
Background: The main objective of the study was to examine the relevance of engineering mathematics to the emerging industries. The level of abstraction, the standard of rigor, and the depth of theoretical treatment are necessary skills expected of a graduate engineering technician to be derived from mathematical knowledge. The question of whether…
An assessment of thermodynamic merits for current and potential future engine operating strategies
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; ...
2017-02-01
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
An assessment of thermodynamic merits for current and potential future engine operating strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuon, S R; Misencik, J A
1981-01-01
High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of thesemore » gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.« less
DOT National Transportation Integrated Search
2013-06-01
The sedimentation behavior of fine grained soil is largely dependent on its pore fluid chemistry. Physicochemical properties of the : pore fluid, such as ionic strength and pH, could greatly influence the micro structure of kaolinite which in turn in...
Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.
ERIC Educational Resources Information Center
McKechnie, R. E.; Vickers, G. W.
1981-01-01
Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…
Compaction within the South Belridge diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase C.A. Jr.; Dietrich, J.K.
1989-11-01
Compaction is incorporated into a field-scale finite-difference thermal simulator to allow practical engineering analysis of reservoir compaction caused by fluid withdrawal. Capabilities new to petroleum applications include hysteresis in the form of limited rebound during fluid injection and the concept of relaxation time (i.e., creep).
ERIC Educational Resources Information Center
Luyben, William L.; Tuzla, Kemal
2010-01-01
Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…
ERIC Educational Resources Information Center
Hauck, George F.
1981-01-01
Lists engineering textbooks that use SI units. Includes author(s), title, publisher, year, and author's or publisher's comments on the use of the SI units. Books are categorized by topic, such as engineering mechanics, mechanics of materials, fluid mechanics, thermodynamics, structural design, and hydrology. (CS)
Integrated exhaust gas recirculation and charge cooling system
Wu, Ko-Jen
2013-12-10
An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.
Exhaust gas recirculation system for an internal combustion engine
Wu, Ko-Jen
2013-05-21
An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.
Long-term health experience of jet engine manufacturing workers: VII: occupational exposures.
Kennedy, Kathleen J; Esmen, Nurtan A; Hancock, Roger P; Lacey, Steven E; Marsh, Gary M; Buchanich, Jeanine M; Youk, Ada O
2013-06-01
To reconstruct agent-specific occupational exposures for a cohort of jet engine manufacturing workers for use in an epidemiological mortality study. Potential chemical and physical exposures at eight jet engine manufacturing and overhaul/repair plants were evaluated for the period 1952 to 2001. Eleven agents were selected for detailed examination, and a job-exposure matrix was constructed. Quantitative exposure estimates were generated for metalworking fluids, nickel, cobalt, chromium, solvents, and incomplete combustion aerosol from metalworking fluids. Qualitative exposure estimates were assigned for ionizing radiation, electromagnetic fields, polychlorinated biphenyls, and lead-cadmium. All exposures showed decreasing trends over the study period. The quantitative exposure levels generated in this study were lower than early contemporaneous professional practice recommendations and were similar to or lower than published data from other industries.
Device to lower NOx in a gas turbine engine combustion system
Laster, Walter R; Schilp, Reinhard; Wiebe, David J
2015-02-24
An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).
Experimental Flow Models for SSME Flowfield Characterization
NASA Technical Reports Server (NTRS)
Abel, L. C.; Ramsey, P. E.
1989-01-01
Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.
Efficiency of the rocket engines with a supersonic afterburner
NASA Astrophysics Data System (ADS)
Sergienko, A. A.
1992-08-01
The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.
A General Approach for Fluid Patterning and Application in Fabricating Microdevices.
Huang, Zhandong; Yang, Qiang; Su, Meng; Li, Zheng; Hu, Xiaotian; Li, Yifan; Pan, Qi; Ren, Wanjie; Li, Fengyu; Song, Yanlin
2018-06-19
Engineering the fluid interface such as the gas-liquid interface is of great significance for solvent processing applications including functional material assembly, inkjet printing, and high-performance device fabrication. However, precisely controlling the fluid interface remains a great challenge owing to its flexibility and fluidity. Here, a general method to manipulate the fluid interface for fluid patterning using micropillars in the microchannel is reported. The principle of fluid patterning for immiscible fluid pairs including air, water, and oils is proposed. This understanding enables the preparation of programmable multiphase fluid patterns and assembly of multilayer functional materials to fabricate micro-optoelectronic devices. This general strategy of fluid patterning provides a promising platform to study the fundamental processes occurring on the fluid interface, and benefits applications in many subjects, such as microfluidics, microbiology, chemical analysis and detection, material synthesis and assembly, device fabrication, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ishii, Katsuya
2011-08-01
This issue includes a special section on computational fluid dynamics (CFD) in memory of the late Professor Kunio Kuwahara, who passed away on 15 September 2008, at the age of 66. In this special section, five articles are included that are based on the lectures and discussions at `The 7th International Nobeyama Workshop on CFD: To the Memory of Professor Kuwahara' held in Tokyo on 23 and 24 September 2009. Professor Kuwahara started his research in fluid dynamics under Professor Imai at the University of Tokyo. His first paper was published in 1969 with the title 'Steady Viscous Flow within Circular Boundary', with Professor Imai. In this paper, he combined theoretical and numerical methods in fluid dynamics. Since that time, he made significant and seminal contributions to computational fluid dynamics. He undertook pioneering numerical studies on the vortex method in 1970s. From then to the early nineties, he developed numerical analyses on a variety of three-dimensional unsteady phenomena of incompressible and compressible fluid flows and/or complex fluid flows using his own supercomputers with academic and industrial co-workers and members of his private research institute, ICFD in Tokyo. In addition, a number of senior and young researchers of fluid mechanics around the world were invited to ICFD and the Nobeyama workshops, which were held near his villa, and they intensively discussed new frontier problems of fluid physics and fluid engineering at Professor Kuwahara's kind hospitality. At the memorial Nobeyama workshop held in 2009, 24 overseas speakers presented their papers, including the talks of Dr J P Boris (Naval Research Laboratory), Dr E S Oran (Naval Research Laboratory), Professor Z J Wang (Iowa State University), Dr M Meinke (RWTH Aachen), Professor K Ghia (University of Cincinnati), Professor U Ghia (University of Cincinnati), Professor F Hussain (University of Houston), Professor M Farge (École Normale Superieure), Professor J Y Yong (National Taiwan University), and Professor H S Kwak (Kumoh National Institute of Technology). For his contributions to CFD, Professor Kuwahara received Awards from the Japan Society of Automobile Engineers and the Japan Society of Mechanical Engineers in 1992, the Computational Mechanics Achievement Award from the Japan Society of Mechanical Engineers in 1993, and the Max Planck Research Award in 1993. He received the Computational Mechanics Award from the Japan Society of Mechanical Engineers again in 2008. Professor Kuwahara also supported the development of the Japan Society of Fluid Mechanics, whose office is located in the same building as ICFD. In the proceedings of the 6th International Nobeyama Workshop on CFD to commemorate the 60th birthday of Professor Kuwahara, Professor Jae Min Hyun of KAIST wrote 'The major professional achievement of Professor Kuwahara may be compressed into two main categories. First and foremost, Professor Kuwahara will long be recorded as the front-line pioneer in using numerical computations to tackle complex problems in fluid mechanics. ...Another important contribution of Professor Kuwahara was in the training and fostering of talented manpower of computational mechanics research.'[1] Among the various topics of the five papers in this special section are examples of Professor Kuwahara's works mentioned by Professor Hyun. The main authors of all papers have grown up in the research circle of Professor Kuwahara. All the papers demostrate the challenge of new aspects of computational fluid dynamics; a new numerical method for compressible flows, thermo-acoustic flows of helium gas in a small tube, electro-osmic flows in a micro/nano channel, MHD flows over a wavy disk, and a new extraction method of multi-object aircraft design rules. Last but not least, this special section is cordially dedicated to the late Professor Kuwahara and his family. Reference [1] Hyun J M 2005 Preface of New Developments in Computational Fluid Dynamics vol 90 Notes on Numerical Fluid Mechanics and Multidisciplinary Design ed K Fujii et al (Berlin: Springer)
Abstracts and research accomplishments of university coal research projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
NASA Astrophysics Data System (ADS)
Toy, Virginia; Billia, Marco; Easingwood, Richard; Kirilova, Martina; Kluge, Emma; Sauer, Katrina; Sutherland, Rupert; Timms, Nicholas; Townend, John
2017-04-01
Our current knowledge of microstructural and mechanical controls on rock resistivity is such that identical magnetotelluric (MT) anomalies could result from a highly mineralized but extinct shear zone, or from an unmineralized, fluid saturated, active shear zone. In pursuit of the ability to interpret the structure and activity (rather than just the presence) of buried geological structures from electromagnetic data, we are investigating correlations between rock structure and electrical properties of ductile shear zone rocks recovered from the active Alpine Fault Zone, New Zealand. Multi-scale measurements of resistivity exist for this zone: its ductile portions have anomalously high electrical conductivity identified in MT models constructed as part of the South Island Geophysical Transect (SIGHT). Additionally wireline resistivities were measured in situ to 820 m depth during the recent Deep Fault Drilling Project (DFDP-2), and resisistivity of hand samples has been measured at laboratory conditions [Kluge et al., Abstract EGU2017-10139]. In exhumed and borehole samples, the distributions and arrangements of conductivity carriers - graphite, amorphous carbon, and grain boundary pores that would have contained brines or other conductive fluids at depth, have been characterised. These vary systematically according to the total ductile shear strain they have accommodated [Kirilova et al., Abstract EGU2017-5773; Sauer et al., Abstract EGU2017-10485]. Transmission electron microscopy analyses of grain boundaries also indicate that they contain carbon. The next phases of our investigation involve: (i) construction of crustal fluid composition models by quantitative microstructural and compositional/mineralogical mapping of fluid remnants and their solid residues and calibration of these using in situ measurements of fluid composition in DFDP-2 at depths to 820 m; (ii) calculation of resistivities for real microstructures based on electrical properties of the individual component minerals and fluids - for microstructures fully characterised in three-dimensions; (iii) measurement of the effects of dynamic linking of phases during ductile creep of solid rock on complex resistivity of DFDP samples at a range of realistic crustal temperatures and pressures. A particular challenge in this study is to determine appropriate scaling relationships of electrical properties among samples, boreholes, and MT models because dielectric constants of minerals depend on frequency of the imposed current, which varies with scale and, consequently, measurement method. We invite discussion of strategies to overcome this.
NASA Astrophysics Data System (ADS)
Faber, T. E.
1995-08-01
This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.
The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Griffin, Lisa W.
2012-01-01
Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.
The Better Mousetrap...Can Be Built by Engineers.
ERIC Educational Resources Information Center
McBride, Matthew
2003-01-01
Describes the growth of the INSPEC database developed by the Institution of Electrical Engineers. Highlights include an historical background of its growth from "Science Abstracts"; production methods, including computerization; indexing, including controlled (thesaurus-based), uncontrolled, chemical, and numerical indexing; and the…
USSR Space Life Sciences Digest, issue 20
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1988-01-01
Abstracts of research in the areas of biological rhythms, body fluids, botany, endrocrinology, enzymology, exobiology, genetics, human performance, immunology, life support systems, mathematical modeling, and numerous other topics related to space and life sciences are given.
Geothermal systems materials: a workshop/symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
Sixteen papers are included. A separate abstract was prepared for each. Summaries of workshops on the following topics are also included in the report: non-metallic materials, corrosion, materials selection, fluid chemistry, and failure analysis. (MHR)
The Shock and Vibration Digest. Volume 7, Number 5, May 1975.
Contents: Dynamic response of fluid-filled shells; News briefs; Short courses; Abstracts from the current literature -- (Analysis and design, computer programs, environments, phenomenology, experimentation, components, systems); Author index ; Literature review; Book reviews.
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
Rykaczewski, Konrad; Paxson, Adam T.; Staymates, Matthew; Walker, Marlon L.; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H.; Chinn, Jeff; Scott, John Henry J.; Varanasi, Kripa K.
2014-01-01
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient. PMID:24595171
Dropwise condensation of low surface tension fluids on omniphobic surfaces.
Rykaczewski, Konrad; Paxson, Adam T; Staymates, Matthew; Walker, Marlon L; Sun, Xiaoda; Anand, Sushant; Srinivasan, Siddarth; McKinley, Gareth H; Chinn, Jeff; Scott, John Henry J; Varanasi, Kripa K
2014-03-05
Compared to the significant body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam, much less attention has been dedicated to fluids with lower interfacial tension. A vast array of low-surface tension fluids such as hydrocarbons, cryogens, and fluorinated refrigerants are used in a number of industrial applications, and the development of passive means for increasing their condensation heat transfer coefficients has potential for significant efficiency enhancements. Here we investigate condensation behavior of a variety of liquids with surface tensions in the range of 12 to 28 mN/m on three types of omniphobic surfaces: smooth oleophobic, re-entrant superomniphobic, and lubricant-impregnated surfaces. We demonstrate that although smooth oleophobic and lubricant-impregnated surfaces can promote dropwise condensation of the majority of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also demonstrate that on the lubricant-impregnated surfaces, the choice of lubricant and underlying surface texture play a crucial role in stabilizing the lubricant and reducing pinning of the condensate. With properly engineered surfaces to promote dropwise condensation of low-surface tension fluids, we demonstrate a four to eight-fold improvement in the heat transfer coefficient.
Finite element study of scaffold architecture design and culture conditions for tissue engineering.
Olivares, Andy L; Marsal, Elia; Planell, Josep A; Lacroix, Damien
2009-10-01
Tissue engineering scaffolds provide temporary mechanical support for tissue regeneration and transfer global mechanical load to mechanical stimuli to cells through its architecture. In this study the interactions between scaffold pore morphology, mechanical stimuli developed at the cell microscopic level, and culture conditions applied at the macroscopic scale are studied on two regular scaffold structures. Gyroid and hexagonal scaffolds of 55% and 70% porosity were modeled in a finite element analysis and were submitted to an inlet fluid flow or compressive strain. A mechanoregulation theory based on scaffold shear strain and fluid shear stress was applied for determining the influence of each structures on the mechanical stimuli on initial conditions. Results indicate that the distribution of shear stress induced by fluid perfusion is very dependent on pore distribution within the scaffold. Gyroid architectures provide a better accessibility of the fluid than hexagonal structures. Based on the mechanoregulation theory, the differentiation process in these structures was more sensitive to inlet fluid flow than axial strain of the scaffold. This study provides a computational approach to determine the mechanical stimuli at the cellular level when cells are cultured in a bioreactor and to relate mechanical stimuli with cell differentiation.
ERIC Educational Resources Information Center
Physiologist, 1976
1976-01-01
Presented are abstracts of papers arranged in alphabetical order by first-named author. The proceedings of the American Physiological Society were held jointly with the American Society of Zoologists (ASZ) and the Biomedical Engineering Society (BMES). (EB)
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
2011-09-13
ISS028-E-048923 (13 Sept. 2011) --- Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 28 flight engineer, works with the Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.
Williams working on the JAXA MS (Marangoni Surface) Experiment
2009-11-05
ISS021-E-020299 (5 Nov. 2009) --- NASA astronaut Jeffrey Williams, Expedition 21 flight engineer, works with Fluid Physics Experiment Facility/Marangoni Surface (FPEF MS) Core hardware in the Kibo laboratory of the International Space Station. The Marangoni convection experiment in the FPEF examines fluid tension flow in micro-G.
Theoretical Insights for Practical Handling of Pressurized Fluids
ERIC Educational Resources Information Center
Aranda, Alfonso; Rodriguez, Maria del Prado
2006-01-01
The practical scenarios discussed in a chemistry or chemical engineering course that use solid or liquid reactants are presented. Important ideas to be considered when handling pressurized fluids are provided and three typical examples are described to enable students develop secondary skills such as the selective search of data, identification of…
CURTIS TAYLOR, PRESIDENT OF LINC RESEARCH CORP.
2016-04-27
CURTIS O. TAYLOR, PRESIDENT OF LINC RESEARCH CORP, (L), AND JEFF LINDNER, CHIEF ENGINEER, POSE WITH HARDWARE FOR THEIR PATENTED TECHNOLOGY, FLUID STRUCTURE COUPLING, WHICH USES SIMPLE PHYSICS TO DAMPEN POTENTIALLY HARMFUL SHAKING IN STRUCTURES. INSTALLATION OF THE FLUID STRUCTURE COUPLING TECHNOLOGY IN A BUILDING WILL TAKE PLACE IN SUMMER OF 2016.
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2013 CFR
2013-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2014 CFR
2014-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2012 CFR
2012-07-01
... absence of H2S has been confirmed. Well-control fluid means drilling mud and completion or workover fluid... information such as geologic and geophysical data and correlations, well logs, formation tests, cores and... concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect personnel from SO2; and (21...
30 CFR 250.490 - Hydrogen sulfide.
Code of Federal Regulations, 2011 CFR
2011-07-01
... where neither the presence nor absence of H2S has been confirmed. Well-control fluid means drilling mud..., well logs, formation tests, cores and analysis of formation fluids; and (4) Submit a request for... initiate when the SO2 concentration in the atmosphere reaches 5 ppm; (20) Engineering controls to protect...
Kuipers during photo documentation of the fluid and electrical interfaces on the UIA
2012-01-27
ISS030-E-156468 (27 Jan. 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, is pictured in the Quest airlock of the International Space Station during photo documentation of the fluid and electrical interfaces on the Umbilical Interface Assembly (UIA) Connector Shelf.
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-40 Plans. (a) Diagrammatic plans and lists of materials must be submitted for each of the fluid power and control systems listed in § 58.30-1(a) that is...
Tribological performance of ultra-low viscosity composite base fluid with bio-derived fluid
USDA-ARS?s Scientific Manuscript database
One obvious approach to increase efficiencies in many lubricated systems such as ICE and gearbox is the reduction in viscosity of oil lubricant. Indeed, ultra-low viscosity engine oils are now commercially available. One approach to the development of ultra-low viscosity lubricants without compromis...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
46 CFR 58.30-10 - Hydraulic fluid.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...
2009-01-05
ISS018-E-017796 (5 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works on the Fluids and Combustion Facility (FCF) Combustion Integration Rack (CIR) Passive Rack Isolation System (PaRIS) in the Destiny laboratory of the International Space Station.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-40 Plans. (a) Diagrammatic plans and lists of materials must be submitted for each of the fluid power and control systems listed in § 58.30-1(a) that is...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-40 Plans. (a) Diagrammatic plans and lists of materials must be submitted for each of the fluid power and control systems listed in § 58.30-1(a) that is...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Fluid Power and Control Systems § 58.30-40 Plans. (a) Diagrammatic plans and lists of materials must be submitted for each of the fluid power and control systems listed in § 58.30-1(a) that is...
A Parametric Cycle Analysis of a Separate-Flow Turbofan with Interstage Turbine Burner
NASA Technical Reports Server (NTRS)
Marek, C. J. (Technical Monitor); Liew, K. H.; Urip, E.; Yang, S. L.
2005-01-01
Today's modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. This study focuses on a parametric cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The JTB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, linear relation between high- and low-pressure turbines, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB.
Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber
NASA Astrophysics Data System (ADS)
Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.
2011-03-01
Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.
Feasibility Study for a Practical High Rotor Tip Clearance Turbine.
GAS TURBINE BLADES ), (* TURBINE BLADES , TOLERANCES(MECHANICS)), (* TURBOFAN ENGINES , GAS TURBINES , AXIAL FLOW TURBINES , AXIAL FLOW TURBINE ROTORS...AERODYNAMIC CONFIGURATIONS, LEAKAGE(FLUID), MEASUREMENT, TEST METHODS, PERFORMANCE( ENGINEERING ), MATHEMATICAL PREDICTION, REDUCTION, PRESSURE, PREDICTIONS, NOZZLE GAS FLOW, COMBUSTION CHAMBER GASES, GAS FLOW.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Lubricants. 1065.740 Section 1065.740 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.740 Lubricants...
Aeronautical engineering. A continuing bibliography with indexes
NASA Technical Reports Server (NTRS)
1982-01-01
This bibliography lists 326 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1982. Topics on aeronautical engineering and aerodynamics such as flight control systems, avionics, computer programs, computational fluid dynamics and composite structures are covered.
Computational thermo-fluid dynamics contributions to advanced gas turbine engine design
NASA Technical Reports Server (NTRS)
Graham, R. W.; Adamczyk, J. J.; Rohlik, H. E.
1984-01-01
The design practices for the gas turbine are traced throughout history with particular emphasis on the calculational or analytical methods. Three principal components of the gas turbine engine will be considered: namely, the compressor, the combustor and the turbine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Overview. 1065.101 Section 1065.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING... equipment includes three broad categories-dynamometers, engine fluid systems (such as fuel and intake-air...
NASA Astrophysics Data System (ADS)
Phu, D. X.; Choi, S. B.; Lee, Y. S.; Han, M. S.
2014-10-01
This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
2014-06-19
ISS040-E-015539 (19 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Capillary Flow Experiment (CFE-2) in the Harmony node of the International Space Station. CFE is a suite of fluid physics experiments that investigate how fluids behave in microgravity which could benefit water and fuel delivery systems on future spacecraft. Scientists designed the CFE-2 to study properties of fluids and bubbles inside containers with a specific 3-D geometry.
NASA Technical Reports Server (NTRS)
1974-01-01
Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.
Digest of Russian Space Life Sciences, issue 33
NASA Technical Reports Server (NTRS)
Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)
1993-01-01
This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.
HBCUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1997-01-01
The purpose of this Historically Black Colleges and Universities (HBCUS) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUS. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
HBCUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1998-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
HBCUs Research Conference agenda and abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1995-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
Diagnostics of Flow Suppression on Rotor Blades: Final Report
2009-09-30
8217 16. SECURIlY CLASSrnCATION OF: 17. LIMITATION OF 15. NUMBER 19a NAME OF RESPONSIBLE PERSON a REPORT b.ABSTRACT c. nnSPAGE ABSTRACT OF PAGES...generate a strong velocity gradient which changes rapidly as the spanwise component comes to zero at 270 degrees azimuth. Thus, the correct fluid...attack can be changed rapidly by other means. To summarize the guidance from the above, we see that to study the issues discussed above, it is
USSR Space Life Sciences Digest, issue 25
NASA Technical Reports Server (NTRS)
Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)
1990-01-01
This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.
Progress toward an optimized hydrogen series hybrid engine
NASA Astrophysics Data System (ADS)
Smith, J. Ray; Aceves, Salvador M.; Johnson, Norman L.; Amsden, Anthony A.
1995-06-01
The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO(sub x) production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.
Primi, Ricardo
2014-09-01
Ability testing has been criticized because understanding of the construct being assessed is incomplete and because the testing has not yet been satisfactorily improved in accordance with new knowledge from cognitive psychology. This article contributes to the solution of this problem through the application of item response theory and Susan Embretson's cognitive design system for test development in the development of a fluid intelligence scale. This study is based on findings from cognitive psychology; instead of focusing on the development of a test, it focuses on the definition of a variable for the creation of a criterion-referenced measure for fluid intelligence. A geometric matrix item bank with 26 items was analyzed with data from 2,797 undergraduate students. The main result was a criterion-referenced scale that was based on information from item features that were linked to cognitive components, such as storage capacity, goal management, and abstraction; this information was used to create the descriptions of selected levels of a fluid intelligence scale. The scale proposed that the levels of fluid intelligence range from the ability to solve problems containing a limited number of bits of information with obvious relationships through the ability to solve problems that involve abstract relationships under conditions that are confounded with an information overload and distraction by mixed noise. This scale can be employed in future research to provide interpretations for the measurements of the cognitive processes mastered and the types of difficulty experienced by examinees. PsycINFO Database Record (c) 2014 APA, all rights reserved.