Sample records for fluid flow deformation

  1. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  2. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    USGS Publications Warehouse

    Hutnak, M.; Hurwitz, S.; Ingebritsen, S.E.; Hsieh, P.A.

    2009-01-01

    Ground surface displacement (GSD) in large calderas is often interpreted as resulting from magma intrusion at depth. Recent advances in geodetic measurements of GSD, notably interferometric synthetic aperture radar, reveal complex and multifaceted deformation patterns that often require complex source models to explain the observed GSD. Although hydrothermal fluids have been discussed as a possible deformation agent, very few quantitative studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent increases in the power and availability of computing resources allow robust quantitative assessment of the complex time-variant thermal interplay between aqueous fluid flow and crustal deformation. We carry out numerical simulations of multiphase (liquid-gas), multicomponent (H 2O-CO2) hydrothermal fluid flow and poroelastic deformation using a range of realistic physical parameters and processes. Hydrothermal fluid injection, circulation, and gas formation can generate complex, temporally and spatially varying patterns of GSD, with deformation rates, magnitudes, and geometries (including subsidence) similar to those observed in several large calderas. The potential for both rapid and gradual deformation resulting from magma-derived fluids suggests that hydrothermal fluid circulation may help explain deformation episodes at calderas that have not culminated in magmatic eruption.

  3. Slow deformation of intervertebral discs.

    PubMed

    Broberg, K B

    1993-01-01

    Intervertebral discs exhibit pronounced time-dependent deformations when subjected to load variations. These deformations are caused by fluid flow to and from the disc and by viscoelastic deformation of annulus fibres. The fluid flow is caused by differences between mechanical and osmotic pressure. A mechanical model of lumbar disc functions allows one to calculate both the extent of fluid flow and its implications for disc height as well as the role played by viscoelastic deformation of annulus fibres. From such calculations changes in body height are estimated. Experimental results already documented in the literature offer bases for the determination of the parameters involved. Body height variations are studied, both those related to normal diurnal rhythmicity and those related to somewhat exceptional circumstances. The normal diurnal fluid flow is found to be about +/- 40% of the disc fluid content late in the evening. Viscoelastic deformation of annulus fibres contributes approximately one quarter of the height change obtained after several hours normal activity, but dominates during the first hour.

  4. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  5. The effect of dentinal fluid flow during loading in various directions--simulation of fluid-structure interaction.

    PubMed

    Su, Kuo-Chih; Chang, Chih-Han; Chuang, Shu-Fen; Ng, Eddie Yin-Kwee

    2013-06-01

    This study uses a fluid-structure interaction (FSI) simulation to evaluate the fluid flow in a dental intrapulpal chamber induced by the deformation of the tooth structure during loading in various directions. The FSI is used for the biomechanics simulation of dental intrapulpal responses with the force loading gradually increasing from 0 to 100N at 0°, 30°, 45°, 60°, and 90° on the tooth surface in 1s, respectively. The effect of stress or deformation on tooth and fluid flow changes in the pulp chamber are evaluated. A horizontal loading force on a tooth may induce tooth structure deformation, which increases fluid flow velocity in the coronal pulp. Thus, horizontal loading on a tooth may easily induce tooth pain. This study suggests that experiments to investigate the relationship between loading in various directions and dental pain should avoid measuring the bulk pulpal fluid flow from radicular pulp, but rather should measure the dentinal fluid flow in the dentinal tubules or coronal pulp. The FSI analysis used here could provide a powerful tool for investigating problems with coupled solid and fluid structures in dental biomechanics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Syn-deformational features of Carlin-type Au deposits

    USGS Publications Warehouse

    Peters, S.G.

    2004-01-01

    Syn-deformational ore deposition played an important role in some Carlin-type Au deposits according to field and laboratory evidence, which indicates that flow of Au-bearing fluids was synchronous with regional-scale deformation events. Gold-related deformation events linked to ore genesis were distinct from high-level, brittle deformation that is typical of many epithermal deposits. Carlin-type Au deposits, with brittle-ductile features, most likely formed during tectonic events that were accompanied by significant fluid flow. Interactive deformation-fluid processes involved brittle-ductile folding, faulting, shearing, and gouge development that were focused along illite-clay and dissolution zones caused by hydrothermal alteration. Alteration along these deformation zones resulted in increased porosity and enhancement of fluid flow, which resulted in decarbonated, significant dissolution, collapse, and volume and mass reduction. Carlin-type Au deposits commonly are hosted in Paleozoic and Mesozoic sedimentary rocks (limestone, siltstone, argillite, shale, and quartzite) on the margins of cratons. The sedimentary basins containing the host rocks underwent tectonic events that influenced the development of stratabound, structurally controlled orebodies. Published by Elsevier Ltd.

  7. Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Borhan, A.

    1996-01-01

    A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.

  8. Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

    NASA Astrophysics Data System (ADS)

    Bak, Sera; Yoo, Jaehoon; Song, Chang Yong

    2013-06-01

    Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI) analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

  9. Cardiac fluid dynamics meets deformation imaging.

    PubMed

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  10. A natural example of fluid-mediated brittle-ductile cyclicity in quartz veins from Olkiluoto Island, SW Finland

    NASA Astrophysics Data System (ADS)

    Marchesini, Barbara; Garofalo, Paolo S.; Viola, Giulio; Mattila, Jussi; Menegon, Luca

    2017-04-01

    Brittle faults are well known as preferential conduits for localised fluid flow in crystalline rocks. Their study can thus reveal fundamental details of the physical-chemical properties of the flowing fluid phase and of the mutual feedbacks between mechanical properties of faults and fluids. Crustal deformation at the brittle-ductile transition may occur by a combination of competing brittle fracturing and viscous flow processes, with short-lived variations in fluid pressure as a viable mechanism to produce this cyclicity switch. Therefore, a detailed study of the fluid phases potentially present in faults can help to better constrain the dynamic evolution of crustal strength within the seismogenic zone, as a function of varying fluid phase characteristics. With the aim to 1) better understand the complexity of brittle-ductile cyclicity under upper to mid-crustal conditions and 2) define the physical and chemical features of the involved fluid phase, we present the preliminary results of a recently launched (micro)structural and geochemical project. We study deformed quartz veins associated with brittle-ductile deformation zones on Olkiluoto Island, chosen as the site for the Finnish deep repository for spent nuclear fuel excavated in the Paleoproterozoic crust of southwestern Finland. The presented results stem from the study of brittle fault zone BFZ300, which is a mixed brittle and ductile deformation zone characterized by complex kinematics and associated with multiple generations of quartz veins, and which serves as a pertinent example of the mechanisms of fluid flow-deformation feedbacks during brittle-ductile cyclicity in nature. A kinematic and dynamic mesostructural study is being integrated with the detailed analysis of petrographic thin sections from the fault core and its immediate surroundings with the aim to reconstruct the mechanical deformation history along the entire deformation zone. Based on the observed microstructures, it was possible to recognize three distinct episodes of ductile deformation alternating with at least three brittle episodes. Preliminary fluid inclusion data show that, during crystallization and brittle-viscous deformation, quartz crystals hosted homogeneous and heterogeneous (boiling) aqueous fluids with a large salinity (11.7-0 wt% NaCleq) and Thtot (410-200 °C) range. Boiling occurred at 200-260 °C. Variations of fluid temperature and density (hence, viscosity) may thus have induced localized cyclic switches between brittle and ductile deformation in quartz, with implications on the bulk regional crustal strength. Preliminary EBSD analysis also supports the hypothesis of cyclic switches between brittle and viscous deformation.

  11. Condition of Development of Channeled Flow in Analogue Partially Molten Medium

    NASA Astrophysics Data System (ADS)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-12-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.

  12. Role of dielectric constant in electrohydrodynamics of conducting fluids

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.

    1992-01-01

    Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.

  13. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José; Comtet, Jean; de Langre, Emmanuel; Hosoi, A. E.

    2017-10-01

    We are `hairy' on the inside: beds of passive fibres anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. These hairs are soft enough to deform in response to stresses from fluid flows. Yet fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem that is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear-driven Stokes flows. We characterize this system with a theoretical model that accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers towards the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter that controls nonlinear behaviour. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps.

  14. Viscous Fingering in Deformable Systems

    NASA Astrophysics Data System (ADS)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  15. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  16. Large poroelastic deformation of a soft material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2014-11-01

    Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.

  17. Fluid-Driven Deformation of a Soft Porous Medium

    NASA Astrophysics Data System (ADS)

    Lutz, Tyler; Wilen, Larry; Wettlaufer, John

    2017-11-01

    Viscous drag forces resisting the flow of fluid through a soft porous medium are maintained by restoring forces associated with deformations in the solid matrix. We describe experimental measurements of the deformation of foam under a pressure-driven flow of water along a single axis. Image analysis techniques allow tracking of the foam displacement while pressure sensors allow measurement of the fluid pressure. Experiments are performed for a series of different pressure heads ranging from 10 to 90 psi, and the results are compared to theory. This work builds on previous measurements of the fluid-induced deformation of a bed of soft hydrogel spheres. Compared to the hydrogel system, foams have the advantage that the constituents of the porous medium do not rearrange during an experiment, but they have the disadvantage of having a high friction coefficient with any boundaries. We detail strategies to characterize and mitigate the effects of friction on the observed foam deformations.

  18. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  19. Deformation of Fluid Column by Action of Axial Vibration and Some Aspects of High-Rate Thermocapillary Convection

    NASA Technical Reports Server (NTRS)

    Feonychev, Alexander I.; Kalachinskaya, Irina S.; Pokhilko, Victor I.

    1996-01-01

    The deformation of the fluid column by an action of a low-frequency vibration is considered. It is shown that behavior of the free fluid surface depends on the frequency of applied vibration and its amplitude. In the area of very low frequencies when fluid has time to comment on travel of bounding solid walls limiting column, the harmonical oscillations of free surface with given frequency are observed. With increase of vibration frequency the steady-state relief on free fluid surface is formed. If the amplitude of vibration is very small and the frequency corresponding to the first peak in the vibration spectrum on the Mir orbital station, the deformation of free surface tends to zero. Fluid flow induced thermocapillary effect on deformed free surface is more unstable as in the case of smooth cylindrical surface. It was shown that width of heating zone affects very essentially the flow pattern and transition to oscillatory regime of thermocapillary convection.

  20. Nonlinear flow response of soft hair beds

    NASA Astrophysics Data System (ADS)

    Alvarado, José

    2017-11-01

    We are hairy inside: beds of passive fibers anchored to a surface and immersed in fluids are prevalent in many biological systems, including intestines, tongues, and blood vessels. Such hairs are soft enough to deform in response to stresses from fluid flows. Fluid stresses are in turn affected by hair deformation, leading to a coupled elastoviscous problem which is poorly understood. Here we investigate a biomimetic model system of elastomer hair beds subject to shear- driven Stokes flows. We characterize this system with a theoretical model which accounts for the large-deformation flow response of hair beds. Hair bending results in a drag-reducing nonlinearity because the hair tip lowers toward the base, widening the gap through which fluid flows. When hairs are cantilevered at an angle subnormal to the surface, flow against the grain bends hairs away from the base, narrowing the gap. The flow response of angled hair beds is axially asymmetric and amounts to a rectification nonlinearity. We identify an elastoviscous parameter which controls nonlinear behavior. Our study raises the hypothesis that biological hairy surfaces function to reduce fluid drag. Furthermore, angled hairs may be incorporated in the design of integrated microfluidic components, such as diodes and pumps. J.A. acknowledges support the U. S. Army Research Office under Grant Number W911NF-14-1-0396.

  1. A soft porous drop in linear flows

    NASA Astrophysics Data System (ADS)

    Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael

    2017-11-01

    The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.

  2. Deformation of a Capsule in a Power-Law Shear Flow

    PubMed Central

    2016-01-01

    An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid). In this method, the flexible structure (e.g., capsule) dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values. PMID:27840656

  3. The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics.

    PubMed

    Ene, Florentina; Delassus, Patrick; Morris, Liam

    2014-08-01

    The variation in computational assumptions for analysing abdominal aortic aneurysm haemodynamics can influence the desired output results and computational cost. Such assumptions for abdominal aortic aneurysm modelling include static/transient pressures, steady/transient flows and rigid/compliant walls. Six computational methods and these various assumptions were simulated and compared within a realistic abdominal aortic aneurysm model with and without intraluminal thrombus. A full transient fluid-structure interaction was required to analyse the flow patterns within the compliant abdominal aortic aneurysms models. Rigid wall computational fluid dynamics overestimates the velocity magnitude by as much as 40%-65% and the wall shear stress by 30%-50%. These differences were attributed to the deforming walls which reduced the outlet volumetric flow rate for the transient fluid-structure interaction during the majority of the systolic phase. Static finite element analysis accurately approximates the deformations and von Mises stresses when compared with transient fluid-structure interaction. Simplifying the modelling complexity reduces the computational cost significantly. In conclusion, the deformation and von Mises stress can be approximately found by static finite element analysis, while for compliant models a full transient fluid-structure interaction analysis is required for acquiring the fluid flow phenomenon. © IMechE 2014.

  4. Numerical analysis on interactions between fluid flow and structure deformation in plate-fin heat exchanger by Galerkin method

    NASA Astrophysics Data System (ADS)

    Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen

    2018-03-01

    The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.

  5. Tectonic and hydrological controls on multiscale deformations in the Levant: numerical modeling and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Belferman, Mariana; Katsman, Regina; Agnon, Amotz; Ben Avraham, Zvi

    2016-04-01

    Understanding the role of the dynamics of water bodies in triggering deformations in the upper crust and subsequently leading to earthquakes has been attracting considerable attention. We suggest that dynamic changes in the levels of the water bodies occupying tectonic depressions along the Dead Sea Transform (DST) cause significant variations in the shallow crustal stress field and affect local fault systems in a way that eventually leads to earthquakes. This mechanism and its spatial and temporal scales differ from those in tectonically-driven deformations. In this study we present a new thermo-mechanical model, constructed using the finite element method, and extended by including a fluid flow component in the upper crust. The latter is modeled on a basis of two-way poroelastic coupling with the momentum equation. This coupling is essential for capturing fluid flow evolution induced by dynamic water loading in the DST depressions and to resolve porosity changes. All the components of the model, namely elasticity, creep, plasticity, heat transfer, and fluid flow, have been extensively verified and presented in the study. The two-way coupling between localized plastic volumetric deformations and enhanced fluid flow is addressed, as well as the role of variability of the rheological and the hydrological parameters in inducing deformations in specific faulting environments. Correlations with historical and contemporary earthquakes in the region are discussed.

  6. Coupling molecular dynamics with lattice Boltzmann method based on the immersed boundary method

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2017-11-01

    The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. We developed a partitioned approach to solve this coupled Multiphysics problem. The fluid motion was solved by Palabos (Parallel Lattice Boltzmann Solver), while the solid displacement and deformation was simulated by LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The coupling was achieved through the immersed boundary method (IBM). The code modeled both rigid and deformable solids exposed to flow. The code was validated with the classic problem of rigid ellipsoid particle orbit in shear flow, blood cell stretching test and effective blood viscosity, and demonstrated essentially linear scaling over 16 cores. An example of the fluid-solid coupling was given for flexible filaments (drug carriers) transport in a flowing blood cell suspensions, highlighting the advantages and capabilities of the developed code. NIH 1U01HL131053-01A1.

  7. Fluid and structure coupling analysis of the interaction between aqueous humor and iris.

    PubMed

    Wang, Wenjia; Qian, Xiuqing; Song, Hongfang; Zhang, Mindi; Liu, Zhicheng

    2016-12-28

    Glaucoma is the primary cause of irreversible blindness worldwide associated with high intraocular pressure (IOP). Elevated intraocular pressure will affect the normal aqueous humor outflow, resulting in deformation of iris. However, the deformation ability of iris is closely related to its material properties. Meanwhile, the passive deformation of the iris aggravates the pupillary block and angle closure. The nature of the interaction mechanism of iris deformation and aqueous humor fluid flow has not been fully understood and has been somewhat a controversial issue. The purpose here was to study the effect of IOP, localization, and temperature on the flow of the aqueous humor and the deformation of iris interacted by aqueous humor fluid flow. Based on mechanisms of aqueous physiology and fluid dynamics, 3D model of anterior chamber (AC) was constructed with the human anatomical parameters as a reference. A 3D idealized standard geometry of anterior segment of human eye was performed. Enlarge the size of the idealization geometry model 5 times to create a simulation device by using 3D printing technology. In this paper, particle image velocimetry technology is applied to measure the characteristic of fluid outflow in different inlet velocity based on the device. Numerically calculations were made by using ANSYS 14.0 Finite Element Analysis. Compare of the velocity distributions to confirm the validity of the model. The fluid structure interaction (FSI) analysis was carried out in the valid geometry model to study the aqueous flow and iris change. In this paper, the validity of the model is verified through computation and comparison. The results indicated that changes of gravity direction of model significantly affected the fluid dynamics parameters and the temperature distribution in anterior chamber. Increased pressure and the vertical position increase the velocity of the aqueous humor fluid flow, with the value increased of 0.015 and 0.035 mm/s. The results act on the iris showed that, gravity direction from horizontal to vertical decrease the equivalent stress in the normal IOP model, while almost invariably in the high IOP model. With the increased of the iris elasticity modulus, the equivalent strain and the total deformation of iris is decreased. The maximal value of equivalent strain of iris in high IOP model is higher than that of in normal IOP model. The maximum deformation of iris is lower in the high IOP model than in the normal IOP model. The valid model of idealization geometry of human eye could be helpful to study the relationship between localization, iris deformation and IOP. So far the FSI analysis was carried out in that idealization geometry model of anterior segment to study aqueous flow and iris change.

  8. Clumped isotopes reveal the influence of deformation style on fluid flow and cementation along the Moab Fault, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Bergman, S.; Crider, J. G.

    2012-12-01

    Brittle fault systems can serve as either conduits or barriers to fluid flow, impacting mass and heat transfer in the crust and influencing the potential storage and migration of hydrocarbons and geothermal fluids. For fault systems in porous sandstones, different classes of structures control both hydrological and mechanical behavior during fault evolution: while cataclastic deformation bands form zones of localized deformation and crushed grains that reduce permeability within and across fault zones, joints can act as significant conduits for fluid. We investigate the relationship between structures and fluid flow in porous sandstones by studying calcite cements along the Moab Fault, a large normal fault system in the Paradox Basin, Utah. We use clumped isotope thermometry of fault cements to independently determine both the temperature and δ18O of the water from which the cements grew, placing new constraints on the source and path of diagenetic fluids in the basin. Based on fluid inclusion micro-thermometry and stable isotopic analysis of calcite cements from the Moab Fault, previous workers have hypothesized that joints served as conduits for the ascension of warm (84-125 °C) basinal fluids and deeply circulating meteoric waters. At the minor joint-dominated fault segment from which these data were collected, clumped isotope temperatures range from 57±10 to 101±2°C (2 SE), consistent with this hypothesis. However, at the nearby intersection of two major fault segments - in a zone characterized by both deformation bands and abundant joints - we find a broad range of temperatures (12±4 to 78±4°C) that vary spatially with distance from the fault and correlate with variations in secondary deformation structures (joints and deformation bands). These data provide the first evidence for cement growth from Earth surface-temperature fluids along the Moab Fault and suggests that the Fault served as a conduit for both ascending and descending fluids. The spatial distribution of low-temperature cements argues for rapid penetration of surface waters flowing down intensely-jointed fault intersections and suggests that deformation-band faults served as low-permeability baffles, preventing lateral migration of cold fluids. This interpretation is consistent with the cathodoluminescence patterns and δ18O and δ13C values of the samples, and confirms the important role of structures in transmission and compartmentalization of fluids in porous rocks. Our study illustrates how clumped isotope thermometry can aid in understanding interactions of mechanical, chemical, and transport processes associated with fractures and faults.

  9. Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex; Manhart, Angelika

    2018-01-01

    The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.

  10. Absolute and convective instabilities in combined Couette-Poiseuille flow past a neo-Hookean solid

    NASA Astrophysics Data System (ADS)

    Patne, Ramkarn; Shankar, V.

    2017-12-01

    Temporal and spatio-temporal stability analyses are carried out to characterize the occurrence of convective and absolute instabilities in combined Couette-Poiseuille flow of a Newtonian fluid past a deformable, neo-Hookean solid layer in the creeping-flow limit. Plane Couette flow of a Newtonian fluid past a neo-Hookean solid becomes temporally unstable in the inertia-less limit when the parameter Γ = V η/(GR) exceeds a critical value. Here, V is the velocity of the top plate, η is the fluid viscosity, G is the shear modulus of the solid layer, and R is the fluid layer thickness. The Kupfer-Bers method is employed to demarcate regions of absolute and convective instabilities in the Γ-H parameter space, where H is the ratio of solid to fluid thickness in the system. For certain ranges of the thickness ratio H, we find that the flow could be absolutely unstable, and the critical Γ required for absolute instability is very close to that for temporal instability, thus making the flow absolutely unstable at the onset of temporal instability. In some cases, there is a gap in the parameter Γ between the temporal and absolute instability boundaries. The present study thus shows that absolute instabilities are possible, even at very low Reynolds numbers in flow past deformable solid surfaces. The presence of absolute instabilities could potentially be exploited in the enhancement of mixing at low Reynolds numbers in flow through channels with deformable solid walls.

  11. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  12. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    NASA Astrophysics Data System (ADS)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  13. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  14. Focusing and alignment of erythrocytes in a viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2017-01-01

    Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate the lateral migration of human erythrocytes induced by viscoelastic fluid flow in a rectangular microchannel. DIHM provides 3D spatial distributions of particles and information on particle orientation in the microchannel. The elastic forces generated in the pressure-driven flows of a viscoelastic fluid push suspended particles away from the walls and enforce erythrocytes to have a fixed orientation. Blood cell deformability influences the lateral focusing and fixed orientation in the microchannel. Different from rigid spheres and hardened erythrocytes, deformable normal erythrocytes disperse from the channel center plane, as the flow rate increases. Furthermore, normal erythrocytes have a higher angle of inclination than hardened erythrocytes in the region near the side-walls of the channel. These results may guide the label-free diagnosis of hematological diseases caused by abnormal erythrocyte deformability.

  15. Hydrothermal fluid flow models of Campi Flegrei caldera, Italy constrained by InSAR surface deformation time series observations

    NASA Astrophysics Data System (ADS)

    Lundgren, P.; Lanari, R.; Manzo, M.; Sansosti, E.; Tizzani, P.; Hutnak, M.; Hurwitz, S.

    2008-12-01

    Campi Flegrei caldera, Italy, located along the Bay of Naples, has a long history of significant vertical deformation, with the most recent large uplift (>1.5m) occurring in 1983-1984. Each episode of uplift has been followed by a period of subsidence that decreases in rate with time and may be punctuated by brief episodes of lesser uplift. The large amplitude of the major uplifts that occur without volcanic activity, and the subsequent subsidence has been argued as evidence for hydrothermal amplification of any magmatic source. The later subsidence and its temporal decay have been argued as due to diffusion of the pressurized caldera fill material into the less porous surrounding country rock. We present satellite synthetic aperture radar (SAR) interferometry (InSAR) time series analysis of ERS and Envisat data from the European Space Agency, based on exploiting the Small Baseline Subset (SBAS) approach [Berardino et al., 2002]; this allows us to generate maps of relative surface deformation though time, beginning in 1992 through 2007, that are relevant to both ascending and descending satellite orbits. The general temporal behavior is one of subsidence punctuated by several lesser uplift episodes. The spatial pattern of deformation can be modeled through simple inflation/deflation sources in an elastic halfspace. Given the evidence to suggest that fluids may play a significant role in the temporal deformation of Campi Flegrei, rather than a purely magmatic or magma chamber-based interpretation, we model the temporal and spatial evolution of surface deformation as a hydrothermal fluid flow process. We use the TOUGH2-BIOT2 set of numerical codes [Preuss et al., 1999; Hsieh, 1996], which couple multi-phase (liquid-gas) and multi-component (H2O-CO2) fluid flow in a porous or fractured media with plane strain deformation and fluid flow in a linearly elastic porous medium. We explore parameters related to the depth and temporal history of fluid injection, fluid composition, circulation geometries, and the physical properties of the media, to explain the InSAR time series. References: Berardino, P., R. Lanari, E. Sansosti (2002), A new Algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40, 11, 2375-2383. Pruess, L., C. Oldenburg, and G. Moridis (1999), TOUGH2 user's guide, version 2.0, Paper LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif. Hsieh, P. A. (1996), Deformation-induced changes in hydraulic head during ground-water withdrawal, Ground Water, 34, 1082-1089.

  16. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    NASA Astrophysics Data System (ADS)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  17. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  18. Glacial uplift: fluid injection beneath an elastic sheet on a poroelastic substrate

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Hewitt, Duncan; Chini, Greg

    2016-11-01

    Supraglacial lakes can drain to the base of glaciers extremely rapidly, causing localised uplift of the surrounding glacier and affecting its sliding velocity. The means by which large volumes of drained water interact with and leak into the subglacial hydrological system is unclear, as is the role of the basal till. A theoretical study of the spread of fluid injected below an elastic sheet (the ice) is presented, where the ice lies above, and initially compresses, a deformable poroelastic layer. As pressurized fluid is injected, the deformable layer swells to accommodate more fluid. If sufficient fluid is injected, a 'blister' of fluid forms above the layer, causing the overburden to lift off the base. The flow is controlled by the local pressure drop across the tip of this blister, which depends subtly on both the flow of fluid through the porous layer below the tip, and on poroelastic deformation in the till ahead of the tip. The spreading behaviour and dependence on key parameters is analysed. Predictions of the model are compared to field measurements of uplift from draining glacial lakes in Greenland.

  19. Postseismic rebound in fault step-overs caused by pore fluid flow

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1996-01-01

    Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.

  20. [Individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography data].

    PubMed

    Wang, Fuyu; Xu, Bainan; Sun, Zhenghui; Liu, Lei; Wu, Chen; Zhang, Xiaojun

    2012-10-01

    To establish an individualized fluid-solid coupled model of intracranial aneurysms based on computed tomography angiography (CTA) image data. The original Dicom format image data from a patient with an intracranial aneurysm were imported into Mimics software to construct the 3D model. The fluid-solid coupled model was simulated with ANSYS and CFX software, and the sensitivity of the model was analyzed. The difference between the rigid model and fluid-solid coupled model was also compared. The fluid-solid coupled model of intracranial aneurysm was established successfully, which allowed direct simulation of the blood flow of the intracranial aneurysm and the deformation of the solid wall. The pressure field, stress field, and distribution of Von Mises stress and deformation of the aneurysm could be exported from the model. A small Young's modulus led to an obvious deformation of the vascular wall, and the walls with greater thicknesses had smaller deformations. The rigid model and the fluid-solid coupled model showed more differences in the wall shear stress and blood flow velocity than in pressure. The fluid-solid coupled model more accurately represents the actual condition of the intracranial aneurysm than the rigid model. The results of numerical simulation with the model are reliable to study the origin, growth and rupture of the aneurysms.

  1. Fluid Mechanics of Wing Adaptation for Separation Control

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.

  2. Subwavelength prestressed microcantilevers based metamaterials for efficient manipulation of terahertz waves

    DTIC Science & Technology

    2015-07-01

    for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min

  3. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    NASA Astrophysics Data System (ADS)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  4. Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps

    NASA Astrophysics Data System (ADS)

    Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan

    2013-11-01

    Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.

  5. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    PubMed

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  6. Modelling of reactive fluid transport in deformable porous rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a representative volume element and subsequent averaging of microscopic constitutive laws. Micromechanical and thermodynamic modelling is performed in such a way that the consistency of the obtained rheology and thermodynamically admissible closed system of equations with the exact Gassman's relationship and Terzaghi effective stress law in the simplified case of poroelasticity is guaranteed. In such environments as subduction zones or mid-ocean ridge, metamorphic rocks exhibit a lack of chemical homogenisation. Geochemistry suggests that in order to produce chemical heterogeneity, the fluids generated during high-pressure metamorphism must have been strongly channelled. The following three major mechanisms of fluid flow focusing have been proposed: fluid flow in open fractures and two different types of flow instabilities that do not require the pre-existing fracture network. Of the latter, the first represents a purely mechanical instability of Darcian flow through the deformable porous rock while the second is reactive infiltration instability. Both mechanical and reactive instabilities are expected to occur in the mantle and should probably reinforce each other. However, little research has been done in this direction. In order to investigate how the focusing of a fluid flow occurs, how mechanical and reactive infiltration instabilities influence each other, and what their relative importance in rocks with different rheologies is, linear and non-linear stability analysis is applied to derived governing equations.

  7. Simulation of Tsunami Resistance of a Pinus Thunbergii tree in Coastal Forest in Japan

    NASA Astrophysics Data System (ADS)

    Nanko, K.; Suzuki, S.; Noguchi, H.; Hagino, H.

    2015-12-01

    Forests reduce fluid force of tsunami, whereas extreme tsunami sometimes breaks down the forest trees. It is difficult to estimate the interactive relationship between the fluid and the trees because fluid deform tree architecture and deformed tree changes flow field. Dynamic tree deformation and fluid behavior should be clarified by fluid-structure interaction analysis. For the initial step, we have developed dynamic simulation of tree sway and breakage caused by tsunami based on a vibrating system with multiple degrees of freedom. The target specie of the simulation was Japanese black pine (pinus thunbergii), which is major specie in the coastal forest to secure livelihood area from the damage by blown sand and salt in Japanese coastal area. For the simulation, a tree was segmented into 0.2 m long circular truncated cones. Turning moment induced by tsunami and self-weight was calculated at each segment bottom. Tree deformation was computed on multi-degree-of-freedom vibration equation. Tree sway was simulated by iterative calculation of the tree deformation with time step 0.05 second with temporally varied flow velocity of tsunami. From the calculation of bending stress and turning moment at tree base, we estimated resistance of a Pinus thunbergii tree from tsunami against tree breakage.

  8. Black hole acoustics in the minimal geometric deformation of a de Laval nozzle

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão

    2017-05-01

    The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eötvös-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied.

  9. Deformation band clusters on Mars and implications for subsurface fluid flow

    USGS Publications Warehouse

    Okubo, C.H.; Schultz, R.A.; Chan, M.A.; Komatsu, G.

    2009-01-01

    High-resolution imagery reveals unprecedented lines of evidence for the presence of deformation band clusters in layered sedimentary deposits in the equatorial region of Mars. Deformation bands are a class of geologic structural discontinuity that is a precursor to faults in clastic rocks and soils. Clusters of deformation bands, consisting of many hundreds of individual subparallel bands, can act as important structural controls on subsurface fluid flow in terrestrial reservoirs, and evidence of diagenetic processes is often preserved along them. Deformation band clusters are identified on Mars based on characteristic meter-scale architectures and geologic context as observed in data from the High-Resolution Imaging Science Experiment (HiRISE) camera. The identification of deformation band clusters on Mars is a key to investigating the migration of fluids between surface and subsurface reservoirs in the planet's vast sedimentary deposits. Similar to terrestrial examples, evidence of diagenesis in the form of light- and dark-toned discoloration and wall-rock induration is recorded along many of the deformation band clusters on Mars. Therefore, these structures are important sites for future exploration and investigations into the geologic history of water and water-related processes on Mars. ?? 2008 Geological Society of America.

  10. Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.

    2013-12-01

    In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.

  11. Creep cavitation bands control porosity and fluid flow in lower crustal shear zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegon, Luca; Fusseis, Florian; Stunitz, Holger

    2015-03-01

    Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in bothmore » domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less

  12. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  13. Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Tan, Jifu; Sinno, Talid; Diamond, Scott

    2016-11-01

    Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.

  14. Infiltration of MHD liquid into a deformable porous material

    NASA Astrophysics Data System (ADS)

    Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng

    2018-03-01

    We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.

  15. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Quinteros, J.; Sobolev, S. V.

    2015-12-01

    It is well known that fluids play a crucial role in subduction evolution. For example, mechanical weakening along tectonic interfaces, due to high fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the down-going plate and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. Ultimately, the evolution of porosity is governed by a compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  16. Study of non-linear deformation of vocal folds in simulations of human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2014-11-01

    Direct numerical simulation is performed on a two-dimensional compressible, viscous fluid interacting with a non-linear, viscoelastic solid as a model for the generation of the human voice. The vocal fold (VF) tissues are modeled as multi-layered with varying stiffness in each layer and using a finite-strain Standard Linear Solid (SLS) constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The large non-linear mesh deformation is handled using an elliptic/poisson smoothening technique. Supra-glottal flow shows asymmetry in the flow, which in turn has a coupling effect on the motion of the VF. The fully compressible simulations gives direct insight into the sound produced as pressure distributions and the vocal fold deformation helps study the unsteady vortical flow resulting from the fluid-structure interaction along the full phonation cycle. Supported by the National Science Foundation (CAREER Award Number 1150439).

  17. Numerical and experimental study of expiratory flow in the case of major upper airway obstructions with fluid structure interaction

    NASA Astrophysics Data System (ADS)

    Chouly, F.; van Hirtum, A.; Lagrée, P.-Y.; Pelorson, X.; Payan, Y.

    2008-02-01

    This study deals with the numerical prediction and experimental description of the flow-induced deformation in a rapidly convergent divergent geometry which stands for a simplified tongue, in interaction with an expiratory airflow. An original in vitro experimental model is proposed, which allows measurement of the deformation of the artificial tongue, in condition of major initial airway obstruction. The experimental model accounts for asymmetries in geometry and tissue properties which are two major physiological upper airway characteristics. The numerical method for prediction of the fluid structure interaction is described. The theory of linear elasticity in small deformations has been chosen to compute the mechanical behaviour of the tongue. The main features of the flow are taken into account using a boundary layer theory. The overall numerical method entails finite element solving of the solid problem and finite differences solving of the fluid problem. First, the numerical method predicts the deformation of the tongue with an overall error of the order of 20%, which can be seen as a preliminary successful validation of the theory and simulations. Moreover, expiratory flow limitation is predicted in this configuration. As a result, both the physical and numerical models could be useful to understand this phenomenon reported in heavy snorers and apneic patients during sleep.

  18. FEM modeling of postseismic deformation of poroelastic material

    NASA Astrophysics Data System (ADS)

    Kawamoto, S.; Ito, T.; Hirahara, K.

    2004-12-01

    Following a large earthquake, postseismic deformation in the focal region has been observed by GPS, leveling measurements and the other geodetic measurements. To explain the postseismic deformation, researchers have proposed and well investigated two physical mechanisms of afterslip and viscoelastic relaxation. In some cases, however, there have been observed postseismic deformation which can not be explained by these mechanisms. Therefore, another mechanism has been proposed, where the crust is treated as "poroelastic material". This concept is called "poroelasticity". In this concept, postseismic deformation is caused by pore fluid flow due to the coseismic stress redistribution. We explored, therefore, the postseismic deformation due to pore fluid flow in a poroelastic material using finite element method (FEM), which can easily handle lateral variations of hydraulic diffusivity and elastic or plastic property. We used the FEM program 'CAMBIOT3D' originally developed by Geotech. Lab. Gunma University, Japan (2003). Because this program was developed for soil mechanics, we must have modified so as to calculate deformation due to earthquake faulting. We implemented the 'split node technique' (Melosh and Refsky, 1981) to calculate the coseismic deformation. In addition to this, we modified the program to calculate the deformation taking into account the Skempton's B. This coefficient B determines what fraction of the coseismic stress due to an earthquake is allotted to pore pressure. Without Skempton's B, coseismic pore pressure becomes too large and hence postseismic deformation is calculated too large. We evaluated the postseismic deformation in a poroelastic material to show that the poroelastic deformation is quite different from that of afterslip and viscoelastic relaxation models. In this presentation, we show the postseismic deformation due to pore fluids flow in a poroelastic material and the effect of Skempton's B. Especially, we discuss what different pattern of postseismic deformation is produced depending on the lateral variation of hydraulic diffusivity structures in and around the fault zone, which structures have been differently inferred from fault zone core sampling researches and so on.

  19. Deformation of a 3D granular media caused by fluid invasion

    NASA Astrophysics Data System (ADS)

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  20. Deformation of a 3D granular media caused by fluid invasion

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2016-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing. Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  1. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  2. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.

  3. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    NASA Astrophysics Data System (ADS)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  4. The effect of syntectonic hydration on rock strength, fabric evolution, and polycrystalline flow in mafic lower continental crust rocks

    NASA Astrophysics Data System (ADS)

    Getsinger, A.; Hirth, G.

    2014-12-01

    Strain localization is significantly enhanced by the influx of fluid; however, processes associated with deformation in polycrystalline material, fluid infiltration, and the evolution of creep processes and rock fabric with increasing strain localization are not well constrained for many lower crust lithologies. We combine field and experimental observations of mafic rocks deforming at lower crust pressure, temperature, and water conditions to examine strain localization processes associated with the influx of fluid, strength dependence of fabric evolution, and flow law parameters for amphibolite. General shear experiments were conducted in a Griggs rig on powdered basalt (≤5 µm starting grain size) with up to 1 wt% water at lower continental crust conditions (750˚ to 850˚C, 1GPa). Amphibole formed during deformation exhibits both a strong shape preferred orientation (SPO) and lattice preferred orientation (LPO). With increasing strain, the amphibole (and clinopyroxene) LPO strengthens and rotates to [001] maximum aligned sub-parallel to the flow direction and SPO, which indicates grain rotation during deformation. Plagioclase LPO increases from random to very weak in samples deformed to high strain. As the amphibole LPO rotates and strengthens, the mechanical strength decreases. The correlation of the SPO and LPO coupled with the rheological evidence for diffusion creep (n ≈ 1.5) indicates that the amphibole fabric results from grain growth and rigid grain rotation during deformation. The coevolution of LPO (and grain rotation) and mechanical weakening coupled with the absence of grain size reduction in our samples suggests that strength depends on the formation of a strong mineral LPO. Both our field and experimental data demonstrate that fluid intrusion into the mafic lower crust initiates syn-deformational, water-consuming reactions, creating a rheological contrast between wet and dry lithologies that promotes strain localization. Additionally, the rheology of both naturally deformed amphibolite shear zones and our fine-grained experimental amphibolite is comparable to that predicted using flow laws for wet anorthite. Thus, both our experimental and field analyses indicate that wet plagioclase rheology provides a good constraint on the strength of hydrated lower continental crust.

  5. Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Dennis, D. J.

    2014-12-01

    Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.

  6. Strain localization in usnaturated soils with large deformation

    NASA Astrophysics Data System (ADS)

    Song, X.; Borja, R. I.

    2014-12-01

    Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability and bifurcation in partially saturated porous media. 2014. to be submitted. [4] Song X, Strain localization in unsaturated porous media. 2014. Ph.D. Dissertation, Stanford University, California.

  7. Translator for Optimizing Fluid-Handling Components

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2007-01-01

    A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.

  8. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula

    2008-07-07

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects ofmore » droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally, experimental data are compared with 3D simulations, performed with a volume-of-fluid algorithm.« less

  9. A Lattice Boltzmann Fictitious Domain Method for Modeling Red Blood Cell Deformation and Multiple-Cell Hydrodynamic Interactions in Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang; Zou, Jianfeng

    To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less

  10. The dynamics of magma ascent in the crust: Characterising fluid flow and host-rock deformation using scaled analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine; Dennis, David

    2015-04-01

    We present the results from a series of analogue experiments that use gelatine injected by water to study magma ascent dynamics in the crust. Gelatine is a viscoelastic material that displays predominantly elastic deformation when used at low temperatures (5-10 °C) and mid-to-low concentrations (2-5 wt%). To study dyke propagation we have used a combination of Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) to characterise the dynamics of fluid flow within the intrusion and contemporaneous deformation of the host gelatine. Experiments are prepared by filling a 40 cm x 40 cm x 30 cm clear-Perspex tank with a gelatine mixture that has been seeded with neutrally buoyant fluorescent particles. Water, also seeded with tracer particles, is then injected into the solid gelatine from below under a constant flux or constant head pressure. This causes a vertical penny-shaped crack (dyke) to propagate through the gelatine and erupt at the surface. During the experiment, a vertical high-power laser sheet positioned along the centre of the tank is triggered to illuminate the seeding particles with short intense pulses, and two Dantec CCD cameras record successive images. Using PIV and DIC, vector fields of fluid flow within the intrusion and strain within the gelatine host is calculated by cross-correlation between successive images at a defined time interval. The experiments indicate that, prior to eruption, dyke propagation is characterised by rapid centralised and upwards fluid flow with accompanying downwards motion at the intrusion margin. Deformation of the gelatine solid is focused at a small head region, with the tail remaining relatively static as the dyke grows. Upon eruption, rapid centralised fluid evacuation occurs with contemporaneous contraction of the dyke and relaxation of the host gelatine. Models that can couple fluid dynamics and host deformation during magma ascent and eruption will make an important step towards improving our understanding of the dynamics of magma transport through the crust, and may help to constrain the tendency for eruption.

  11. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  12. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.

    PubMed

    Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N

    2016-07-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.

  13. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation

    PubMed Central

    Zografos, K.; Oliveira, M. S. N.

    2016-01-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  14. Location and extent of Tertiary structures in Cook Inlet Basin, Alaska, and mantle dynamics that focus deformation and subsidence

    USGS Publications Warehouse

    Haeussler, Peter J.; Saltus, Richard W.

    2011-01-01

    Subduction of the buoyant Yakutat microplate likely caused deformation to be focused preferentially in upper Cook Inlet. The upper Cook Inlet region has both the highest degree of shortening and the deepest part of the Neogene basin. This forearc region has a long-wavelength magnetic high, a large isostatic gravity low, high conductivity in the lower mantle, low p-wave velocity (Vp), and a high p-wave to shear-wave velocity ratio (Vp/Vs). These data suggest that fluids in the mantle wedge caused serpentinization of mafic rocks, which may, at least in part, contribute to the long-wavelength magnetic anomaly. This area lies adjacent to the subducting and buoyant Yakutat microplate slab. We suggest the buoyant Yakutat slab acts much like a squeegee to focus mantle-wedge fluid flow at the margins of the buoyant slab. Such lateral flow is consistent with observed shear-wave splitting directions. The additional fluid in the adjacent mantle wedge reduces the wedge viscosity and allows greater corner flow. This results in focused subsidence, deformation, and gravity anomalies in the forearc region.

  15. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  16. Three-dimensional simulation of pseudopod-driven swimming of amoeboid cells

    NASA Astrophysics Data System (ADS)

    Campbell, Eric; Bagchi, Prosenjit

    2016-11-01

    Pseudopod-driven locomotion is common in eukaryotic cells, such as amoeba, neutrophils, and cancer cells. Pseudopods are protrusions of the cell body that grow, bifurcate, and retract. Due to the dynamic nature of pseudopods, the shape of a motile cell constantly changes. The actin-myosin protein dynamics is a likely mechanism for pseudopod growth. Existing theoretical models often focus on the acto-myosin dynamics, and not the whole cell shape dynamics. Here we present a full 3D simulation of pseudopod-driven motility by coupling a surface-bound reaction-diffusion (RD) model for the acto-myosin dynamics, a continuum model for the cell membrane deformation, and flow of the cytoplasmic and extracellular fluids. The whole cell is represented as a viscous fluid surrounded by a membrane. A finite-element method is used to solve the membrane deformation, and the RD model on the deforming membrane, while a finite-difference/spectral method is used to solve the flow fields inside and outside the cell. The fluid flow and cell deformation are coupled by the immersed-boundary method. The model predicts pseudopod growth, bifurcation, and retraction as observed for a swimming amoeba. The work provides insights on the role of membrane stiffness and cytoplasmic viscosity on amoeboid swimming. Funded by NSF CBET 1438255.

  17. The Lavrion Pb-Zn-Fe-Cu-Ag detachment-related district (Attica, Greece): Structural control on hydrothermal flow and element transfer-deposition

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier; Voudouris, Panagiotis; Rigaudier, Thomas; Photiades, Adonis; Morin, Denis; Alloucherie, Alison

    2017-10-01

    The impact of lithological heterogeneities on deformation, fluid flow and ore deposition is discussed based on the example of the Lavrion low-angle detachment partly accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula is characterised by a multiphase Pb-Zn-Fe-Cu-Ag ore system with a probable pre-concentration before subduction followed by progressive remobilisation and deposition coeval with the development of a low-angle ductile to brittle shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, carbonaceous material). Ductile mylonitic deformation is more pervasive in the less competent impure blue marble. We propose that localised deformation in the impure marble is associated with fluid circulation and dolomitisation, which in turn causes an increase in competence of these layers. Mineralised cataclastic zones, crosscutting the mylonitic fabric, are preferentially localised in the more competent dolomitic layers. Oxygen and carbon isotopic signatures of marble invaded by carbonate replacement deposits during ductile to ductile-brittle deformation are consistent with decarbonation coeval with the invasion of magmatic fluids. Mineralised cataclastic zones reflecting brittle deformation evolve from low 13C to low 18O signatures, interpreted as local interaction with carbonaceous material that trends toward the contribution of a surface-derived fluid. These features indicate that the Lavrion area records a complex deposition history influenced by the evolution of fluid reservoirs induced by the thermal and mechanical evolution of the marble nappe stack. Ore remobilisation and deposition associated with the activity of the low-angle detachment is (i) firstly related to the intrusion of the Plaka granodiorite leading to porphyry-type and carbonate replacement mineralisation during ductile-brittle deformation and (ii) then marked by progressive penetration of surface-derived fluids guided by strain localisation in the more competent levels leading to epithermal mineralisation associated with brittle deformation.

  18. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  19. Experimental analysis on viscoelasticity-induced migration of RBCs using digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon

    2016-11-01

    Migration of particles in viscoelastic fluids has recently received large attention, because the generated elastic forces in viscoelastic fluids give rise to a simple focusing pattern over a wide range of flow rates. In this study, the vertical focusing and alignment of rigid spherical particles, normal and hardened RBCs in a viscoelastic fluid were experimentally investigated by employing a digital in-line holographic microscopy (DIHM). By the elastic forces, the three different particles are pushed away from the walls and concentrated in the midplane of the rectangular microchannel. Furthermore, most of both RBCs maintain face-on orientation in the microchannel. The effects of deformability of RBC on the viscoelasticity-induced migration and orientation in the channel were also examined. In contrary to non-deformable particles, normal RBCs are dispersed as flow rate increases. In the region near side wall of the microchannel, normal RBCs have edge-on orientation with a large angle of inclination, compared to hardened RBCs. These findings have a strong potential in the design of microfluidic devices for deformability-based separation of cells in viscoelastic fluid flows and label-free diagnoses of certain hematological diseases. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2008-0061991).

  20. Parallel computation of three-dimensional aeroelastic fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mani

    This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.

  1. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  2. Fundamentals of fluid sealing

    NASA Technical Reports Server (NTRS)

    Zuk, J.

    1976-01-01

    The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.

  3. Multicomponent model of deformation and detachment of a biofilm under fluid flow

    PubMed Central

    Tierra, Giordano; Pavissich, Juan P.; Nerenberg, Robert; Xu, Zhiliang; Alber, Mark S.

    2015-01-01

    A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between and m s−1 which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than . Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations. PMID:25808342

  4. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  5. Transient electrohydrodynamics of a liquid drop.

    PubMed

    Esmaeeli, Asghar; Sharifi, Payam

    2011-09-01

    The transient behavior of a leaky dielectric liquid drop under a uniform electric field of small strength is investigated. It is shown that for small distortion from a spherical shape, the drop deforms to an ellipsoid, and the deformation time history is represented by D=D(∞)[1-exp(-t/τ)], where D(∞) is the steady-state deformation and τ=(aμ(o)/γ)(19μ+16)(2μ+3)/(40μ+40)is the characteristic time, a, γ, μ(o) and μ being the drop radius, the surface tension, the viscosity of ambient fluid, and ratio of the drop viscosity to that of the ambient fluid, respectively. The contributions of the net normal and tangential electrical stresses in the degree of deformation and fluid flow strength are also determined.

  6. Infiltration of meteoric fluids in an extensional detachment shear zone (Kettle dome, WA, USA): How quartz dynamic recrystallization relates to fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Quilichini, Antoine; Siebenaller, Luc; Nachlas, William O.; Teyssier, Christian; Vennemann, Torsten W.; Heizler, Matthew T.; Mulch, Andreas

    2015-02-01

    We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (δD) from synkinematic muscovite fish are constant (δD ˜ -130‰) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of ˜365 ± 30 °C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging recrystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica 40Ar/39Ar ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz δ18O values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall.

  7. Thermal environment of the Southern Washington region of the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Salmi, Marie S.; Johnson, H. Paul; Harris, Robert N.

    2017-08-01

    Eleven recently collected multichannel seismic (MCS) profiles from the Cascadia Open-Access Seismic Transects experiment offshore Washington State are used to characterize the distribution of bottom-simulating reflectors (BSRs) from seaward of the deformation front onto the continental shelf of the Cascadia Subduction Zone. The 11 MCS lines consisted of nine lines perpendicular and two lines parallel to the Cascadia margin covering a 100 km along-strike region of the accretionary wedge. From these MCS profiles we generated a 3-D view of the Cascadia margin thermal structure by interpreting 40,232 individual BSR picks in terms of temperature and heat flow. Overall BSR-derived heat flow values decrease from approximately 95 mW m-2 10 km east of the deformation front to approximately 60 mW m-2 located 60 km landward of the deformation front. Anomalously low heat flow values near 25 mW m-2 on a prominent midmargin terrace indicate recent sediment failure within the accretionary prism. Localized differences between BSR heat flow and numerical models reflect an estimated regional mean vertical fluid flow of +0.53 cm yr-1 for the survey area, with localized fluid flow approaching a maximum of +3.8 cm yr-1. Distinct finite element models for the nine MCS profiles perpendicular to the deformation front reproduce BSR heat flow values, producing an overall root-mean-square misfit of 10.2 mW m-2. At the deformation front, the incoming oceanic sediment/crust interface temperatures vary from 164°C to 179°C, indicating the updip limit of the Cascadia seismogenic zone.

  8. Dynamics of Solid-Liquid Composite Beams

    NASA Astrophysics Data System (ADS)

    Matia, Yoav; Gat, Amir

    2017-11-01

    Solid-liquid composite structures received considerable attention in recent years in various fields such as smart materials, sensors, actuators and soft-robotics. We examine a beam-like appendage embedded with a set of a fluid-filled bladders, interconnected via elastic slender channels; a common arrangement in the abovementioned fields. Viscous flow within such structures is coupled with the elastic deformation of the solid. Beam deformation both creates, and is induced by, a fluidic pressure gradient and viscous flow which deforms the bladders and thus the surrounding solid. Applying concepts from poroelastic analysis, we obtain a set of three interdependent equations relating the fluidic pressure within the channel to the transverse and longitudinal displacements of the beam. Exact and approximate solutions are presented for various configurations. The results are validated and supplemented by a transient three-dimensional numerical study of the fluid-structure-interaction. The two-way coupled fluid-structure-interaction model allows the analysis and design of soft smart-metamaterials with unique mechanical properties, to applications such as touch-sensing surfaces, energy harvesting and protective gear.

  9. The role of chemical processes and brittle deformation during shear zone formation and its potential geophysical implications

    NASA Astrophysics Data System (ADS)

    Goncalves, Philippe; Leydier, Thomas; Mahan, Kevin; Albaric, Julie; Trap, Pierre; Marquer, Didier

    2017-04-01

    Ductile shear zones in the middle and lower continental crust are the locus of interactions between mechanical and chemical processes. Chemical processes encompass metamorphic reactions, fluid-rock interactions, fluid flow and chemical mass-transfer. Studying these processes at the grain scale, and even the atom scale, on exposed inactive shear zones can give insights into large-scale geodynamics phenomena (e.g. crustal growth and mountain building through the reconstruction of P-T-t-D-Ɛ evolutionary paths. However, other major issues in earth sciences can be tackled through these studies as well. For instance, the mechanism of fluid flow and mass transfer in the deep crust where permeability should be small and transient is still largely debated. Studying exhumed inactive shear zones can also help to interpret several new geophysical observations like (1) the origin of tremor and very low frequency earthquakes observed in the ductile middle and lower crust, (2) mechanisms for generating slow slip events and (3) the physical origin of puzzling crustal anisotropy observed in major active crustal shear zones. In this contribution, we present a collection of data (deformation, petrology, geochemistry, microtexture) obtained on various shear zones from the Alps that were active within the viscous regime (T > 450°C). Our observations show that the development of a shear zone, from its nucleation to its growth and propagation, is not only governed by ductile deformation coeval with reactions but also involves brittle deformation. Although brittle deformation is a very short-lived phenomenon, our petrological and textural observations show that brittle failure is also associated with fluid flow, mass transfer, metasomatic reactions and recrystallization. We speculate that the fluids and the associated mineralogical changes involved during this brittle failure in the ductile crust might play a role in earthquake / tremor triggering below the brittle - ductile transition. Furthermore, the occurrence of micro-fracturing in the ductile crust must have an influence on elastic wave propagation. While in the upper crust, fractures are believed to be the primary contributor to seismic anisotropy, at high pressure, the intrinsic rock Vp and Vs velocities are largely a function of the shape and crystallographic preferred orientation of minerals. However, if microfracturing is involved during ductile deformation, it may have a stronger influence on seismic properties (velocity and anisotropy) than the SPO and CPO of the main mineral phases, particularly if the microfractures are preferentially oriented. Thus, in major active ductile shear zones, like the Main Himalayan Thrust, the speculated transient but pervasive micro-fracturing during ongoing ductile deformation should be considered when interpreting seismic anisotropy. Finding evidences for brittle deformation, and associated fluid flow, in the ductile crust is a major challenge because many of these textural and mineralogical features tend to be obliterated by the pro-eminent ductile deformation. However, in order to fully understand the causes of some of these geophysical observations, the chemical and physical characterization of exhumed "fossil" ductile shear zones remains essential.

  10. Dust emission modelling around a stockpile by using computational fluid dynamics and discrete element method

    NASA Astrophysics Data System (ADS)

    Derakhshani, S. M.; Schott, D. L.; Lodewijks, G.

    2013-06-01

    Dust emissions can have significant effects on the human health, environment and industry equipment. Understanding the dust generation process helps to select a suitable dust preventing approach and also is useful to evaluate the environmental impact of dust emission. To describe these processes, numerical methods such as Computational Fluid Dynamics (CFD) are widely used, however nowadays particle based methods like Discrete Element Method (DEM) allow researchers to model interaction between particles and fluid flow. In this study, air flow over a stockpile, dust emission, erosion and surface deformation of granular material in the form of stockpile are studied by using DEM and CFD as a coupled method. Two and three dimensional simulations are respectively developed for CFD and DEM methods to minimize CPU time. The standard κ-ɛ turbulence model is used in a fully developed turbulent flow. The continuous gas phase and the discrete particle phase link to each other through gas-particle void fractions and momentum transfer. In addition to stockpile deformation, dust dispersion is studied and finally the accuracy of stockpile deformation results obtained by CFD-DEM modelling will be validated by the agreement with the existing experimental data.

  11. Numerical modeling of fluid migration in subduction zones

    NASA Astrophysics Data System (ADS)

    Walter, Marius J.; Quinteros, Javier; Sobolev, Stephan V.

    2015-04-01

    It is well known that fluids play a crucial role in subduction evolution. For example, excess mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies have also shown a correlation between the location of slab dehydration and intermediate seismic activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, consequently, contributing to partial melting in the wedge above the downgoing plate, and resulting in chemical changes in earth interior and extensive volcanism. In summary, fluids have a great impact on tectonic processes and therefore should be incorporated into geodynamic numerical models. Here we use existing approaches to couple and solve fluid flow equations in the SLIM-3D thermo-mechanical code. SLIM-3D is a three-dimensional thermo-mechanical code capable of simulating lithospheric deformation with elasto-visco-plastic rheology. It incorporates an arbitrary Lagrangian Eulerian formulation, free surface, and changes in density and viscosity, due to endothermic and exothermic phase transitions. It has been successfully applied to model geodynamic processes at different tectonic settings, including subduction zones. However, although SLIM-3D already includes many features, fluid migration has not been incorporated into the model yet. To this end, we coupled solid and fluid flow assuming that fluids flow through a porous and deformable solid. Thereby, we introduce a two-phase flow into the model, in which the Stokes flow is coupled with the Darcy law for fluid flow. This system of equations becomes, however, nonlinear, because the rheology and permeability are depended on the porosity (fluid fraction of the matrix). Ultimately, the evolution of porosity is governed by the compaction pressure and the advection of the porous solid. We show the details of our implementation of the fluid flow into the existing thermo-mechanical finite element code and present first results of benchmarks (e.g. solitary wave) and experiments. We are especially interested in the coupling of subduction processes and the evolution of the magmatic arc. Thereby, we focus on the key factors controlling magma emplacement and its influence on subduction processes.

  12. Microgravity

    NASA Image and Video Library

    2001-01-24

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  13. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  14. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  15. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  16. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary

    NASA Astrophysics Data System (ADS)

    Burmasheva, N. V.; Prosviryakov, E. Yu.

    2017-12-01

    A new exact analytical solution of a system of thermal convection equations in the Boussinesq approximation describing layered flows in an incompressible viscous fluid is obtained. A fluid flow in an infinite layer is considered. Convection in the fluid is induced by tangential stresses specified on the upper non-deformable boundary. At the fixed lower boundary, the no-slip condition is satisfied. Temperature corrections are given on the both boundaries of the fluid layer. The possibility of physical field stratification is investigated.

  17. A stable partitioned FSI algorithm for incompressible flow and deforming beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu

    2016-05-01

    An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less

  18. Key issues, observations and goals for coupled, thermodynamic/geodynamic models

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2017-12-01

    In coupled, thermodynamic/geodynamic models, focus should be on processes involving major rock forming minerals and simple fluid compositions, and parameters with first-order effects on likely dynamic processes: In a given setting, will fluid mass increase or decrease? How about solid density? Will flow become localized or diffuse? Will rocks flow or break? How do reactions affect global processes such as formation and evolution of the plates, plate boundary deformation, metamorphism, weathering, climate and geochemical cycles. Important reaction feedbacks in geodynamics include formation of dissolution channels and armored channels; divergence of flow and formation of permeability barriers due to crystallization in pore space; localization of fluid transport and ductile deformation in shear zones; reaction-driven cracking; mechanical channels granular media; shear heating; density instabilities; viscous fluid-weakening; fluid-induced frictional failure; and hydraulic fracture. Density instabilities often lead to melting, and there is an interesting dialectic between porous flow and diapirs. The best models provide a simple but comprehensive framework that can account for the general features in many or most of these phenomena. Ideally, calculations based on thermodynamic data and rheological observations alone should delineate the regimes in which each of these processes will occur and the boundaries between them. These often start with "toy models" and lab experiments on analog systems, with highly approximate scaling to simplified geological conditions and materials. Geologic observations provide the best constraints where `frozen' fluid transport pathways or deformation processes are preserved. Inferences about completed processes based on fluid or solid products alone is more challenging and less unique. Not all important processes have good examples in outcrop, so directed searches for specific phenomena may fail. A highly generalized approach provides a way forward, allowing serendipitous discoveries of iconic examples wherever they are best developed. These then constrain and inspire the overall "phase diagram" of geodynamic processes.

  19. Progressive evolution of deformation band populations during Laramide fault-propagation folding: Navajo Sandstone, San Rafael monocline, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Zuluaga, Luisa F.; Fossen, Haakon; Rotevatn, Atle

    2014-11-01

    Monoclinal fault propagation folds are a common type of structure in orogenic foreland settings, particularly on the Colorado Plateau. We have studied a portion of the San Rafael monocline, Utah, assumed to have formed through pure thrust- or reverse-slip (blind) fault movement, and mapped a particular sequence of subseismic cataclastic deformation structures (deformation bands) that can be related in terms of geometry, density and orientation to the dip of the forelimb or fold interlimb angle. In simple terms, deformation bands parallel to bedding are the first structures to form, increasing exponentially in number as the forelimb gets steeper. At about 30° rotation of the forelimb, bands forming ladder structures start to cross-cut bedding, consolidating themselves into a well-defined and regularly spaced network of deformation band zones that rotate with the layering during further deformation. In summary, we demonstrate a close relationship between limb dip and deformation band density that can be used to predict the distribution and orientation of such subseismic structures in subsurface reservoirs of similar type. Furthermore, given the fact that these cataclastic deformation bands compartmentalize fluid flow, this relationship can be used to predict or model fluid flow across and along comparable fault-propagation folds.

  20. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    PubMed

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Research on the porous flow of the mechanism of viscous-elastic fluids displacing residual oil droplets in micro pores

    NASA Astrophysics Data System (ADS)

    Dong, Guanyu

    2018-03-01

    In order to analyze the microscopic stress field acting on residual oil droplets in micro pores, calculate its deformation, and explore the hydrodynamic mechanism of viscous-elastic fluids displacing oil droplets, the viscous-elastic fluid flow equations in micro pores are established by choosing the Upper Convected Maxwell constitutive equation; the numerical solutions of the flow field are obtained by volume control and Alternate Direction Implicit methods. From the above, the velocity field and microscopic stress field; the forces acting on residual oil droplets; the deformations of residual oil droplets by various viscous-elastic displacing fluids and at various Wiesenberg numbers are calculated and analyzed. The result demonstrated that both the normal stress and horizontal force acting on the residual oil droplets by viscous-elastic fluids are much larger compared to that of inelastic fluid; the distribution of normal stress changes abruptly; under the condition of the same pressure gradient in the system under investigation, the ratio of the horizontal forces acting on the residual oil droplets by different displacing fluids is about 1:8:20, which means that under the above conditions, the driving force on a oil droplet is 20 times higher for a viscous-elastic fluid compared to that of a Newtonian Fluid. The conclusions are supportive of the mechanism that viscous-elastic driving fluids can increase the Displacement Efficiency. This should be of help in designing new chemicals and selecting Enhanced Oil Recovery systems.

  2. Droplet Deformation in an Extensional Flow: The Role of Surfactant Physical Chemistry

    NASA Technical Reports Server (NTRS)

    Stebe, Kathleen J.

    1996-01-01

    Surfactant-induced Marangoni effects strongly alter the stresses exerted along fluid particle interfaces. In low gravity processes, these stresses can dictate the system behavior. The dependence of Marangoni effects on surfactant physical chemistry is not understood, severely impacting our ability to predict and control fluid particle flows. A droplet in an extensional flow allows the controlled study of stretching and deforming interfaces. The deformations of the drop allow both Marangoni stresses, which resist tangential shear, and Marangoni elasticities, which resist surface dilatation, to develop. This flow presents an ideal model system for studying these effects. Prior surfactant-related work in this flow considered a linear dependence of the surface tension on the surface concentration, valid only at dilute surface concentrations, or a non-linear framework at concentrations sufficiently dilute that the linear approximation was valid. The linear framework becomes inadequate for several reasons. The finite dimensions of surfactant molecules must be taken into account with a model that includes surfaces saturation. Nonideal interactions between adsorbed surfactant molecules alter the partitioning of surfactant between the bulk and the interface, the dynamics of surfactant adsorptive/desorptive exchange, and the sensitivity of the surface tension to adsorbed surfactant. For example, cohesion between hydrocarbon chains favors strong adsorption. Cohesion also slows the rate of desorption from interfaces, and decreases the sensitivity of the surface tension to adsorbed surfactant. Strong cohesive interactions result in first order surface phase changes with a plateau in the surface tension vs surface concentration. Within this surface concentration range, the surface tension is decoupled from surface concentration gradients. We are engaged in the study of the role of surfactant physical chemistry in determining the Marangoni stresses on a drop in an extensional flow in a numerical and experimental program. Using surfactants whose dynamics and equilibrium behavior have been characterized in our laboratory, drop deformation will be studied in ground-based experiment. In an accompanying numerical study, predictive drop deformations will be determined based on the isotherm and equation of state determined in our laboratory. This work will improve our abilities to predict and control all fluid particle flows.

  3. Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation

    PubMed Central

    Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward

    2012-01-01

    A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985

  4. Critical Viscosity of Xenon

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.

  5. Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation.

    PubMed

    Ramani-Mohan, Ram-Kumar; Schwedhelm, Ivo; Finne-Wistrand, Anna; Krug, Melanie; Schwarz, Thomas; Jakob, Franz; Walles, Heike; Hansmann, Jan

    2018-03-01

    Mesenchymal stem cells play a major role during bone remodelling and are thus of high interest for tissue engineering and regenerative medicine applications. Mechanical stimuli, that is, deformation strain and interstitial fluid-flow-induced shear stress, promote osteogenic lineage commitment. However, the predominant physical stimulus that drives early osteogenic cell maturation is not clearly identified. The evaluation of each stimulus is challenging, as deformation and fluid-flow-induced shear stress interdepend. In this study, we developed a bioreactor that was used to culture mesenchymal stem cells harbouring a strain-responsive AP-1 luciferase reporter construct, on porous scaffolds. In addition to the reporter, mineralization and vitality of the cells was investigated by alizarin red staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Quantification of the expression of genes associated to bone regeneration and bone remodelling was used to confirm alizarin red measurements. Controlled perfusion and deformation of the 3-dimensional scaffold facilitated the alteration of the expression of osteogenic markers, luciferase activity, and calcification. To isolate the specific impact of scaffold deformation, a computational model was developed to derive a perfusion flow profile that results in dynamic shear stress conditions present in periodically loaded scaffolds. In comparison to actually deformed scaffolds, a lower expression of all measured readout parameters indicated that deformation strain is the predominant stimulus for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Numerical simulation of an elastic structure behavior under transient fluid flow excitation

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Irina N.; Lantsova, Irina Yu.

    2017-01-01

    This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.

  7. Peristaltic pumping in an elastic tube: feeding the hungry python

    NASA Astrophysics Data System (ADS)

    Takagi, Daisuke; Balmforth, Neil

    2010-11-01

    Biological ducts convey contents like food in the digestive system by peristaltic action, propagating waves of muscular contraction and relaxation. The motion is investigated theoretically by considering a radial force of sinusoidal or Gaussian form moving steadily down a fluid-filled axisymmetric tube. Effects of the prescribed force on the resultant fluid flow and elastic deformation of the tube wall are presented. The flow can induce a rigid object suspended in the fluid to propel in different ways, as demonstrated in numerous examples.

  8. Pore-scale investigation on stress-dependent characteristics of granular packs and the impact of pore deformation on fluid distribution

    DOE PAGES

    Yoon, Hongkyu; Klise, Katherine A.; Torrealba, Victor A.; ...

    2015-05-25

    Understanding the effect of changing stress conditions on multiphase flow in porous media is of fundamental importance for many subsurface activities including enhanced oil recovery, water drawdown from aquifers, soil confinement, and geologic carbon storage. Geomechanical properties of complex porous systems are dynamically linked to flow conditions, but their feedback relationship is often oversimplified due to the difficulty of representing pore-scale stress deformation and multiphase flow characteristics in high fidelity. In this work, we performed pore-scale experiments of single- and multiphase flow through bead packs at different confining pressure conditions to elucidate compaction-dependent characteristics of granular packs and their impactmore » on fluid flow. A series of drainage and imbibition cycles were conducted on a water-wet, soda-lime glass bead pack under varying confining stress conditions. Simultaneously, X-ray micro-CT was used to visualize and quantify the degree of deformation and fluid distribution corresponding with each stress condition and injection cycle. Micro-CT images were segmented using a gradient-based method to identify fluids (e.g., oil and water), and solid phase redistribution throughout the different experimental stages. Changes in porosity, tortuosity, and specific surface area were quantified as a function of applied confining pressure. Results demonstrate varying degrees of sensitivity of these properties to confining pressure, which suggests that caution must be taken when considering scalability of these properties for practical modeling purposes. Changes in capillary number with confining pressure are attributed to the increase in pore velocity as a result of pore contraction. Furthermore, this increase in pore velocity was found to have a marginal impact on average phase trapping at different confining pressures.« less

  9. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.

  10. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Keer, L.M.; Mura, T.

    1976-01-01

    The deformation and growth of a crack, fractured hydraulically, is investigated when fluid is injected from an inlet into the crack at a constant flow rate. The total flow rate at the inlet is divided as follows: flow rate extracted from an outlet hole; fluid loss rate from the crack surface; and total fluid mass change in the crack. Two cases are considered: (1) inlet flow rate is initially greater than the sum of the outlet flow and fluid loss rates; and (2) the reverse holds true. Ranges are shown for which the crack attains stationary states for given inletmore » flow rate and outlet pressure. For these two cases reasonable outlet flow rates are obtained when the outlet pressure is less than or equal to the difference between the tectonic stress and the fluid head at the inlet. Results are expected to be of use in considerations of heat extraction from hot, dry rock.« less

  11. Plastic deformation treated as material flow through adjustable crystal lattice

    NASA Astrophysics Data System (ADS)

    Minakowski, P.; Hron, J.; Kratochvíl, J.; Kružík, M.; Málek, J.

    2014-08-01

    Looking at severe plastic deformation experiments, it seems that crystalline materials at yield behave as a special kind of anisotropic, highly viscous fluids flowing through an adjustable crystal lattice space. High viscosity provides a possibility to describe the flow as a quasi-static process, where inertial and other body forces can be neglected. The flow through the lattice space is restricted to preferred crystallographic planes and directions causing anisotropy. In the deformation process the lattice is strained and rotated. The proposed model is based on the rate form of the decomposition rule: the velocity gradient consists of the lattice velocity gradient and the sum of the velocity gradients corresponding to the slip rates of individual slip systems. The proposed crystal plasticity model allowing for large deformations is treated as the flow-adjusted boundary value problem. As a test example we analyze a plastic flow of an single crystal compressed in a channel die. We propose three step algorithm of finite element discretization for a numerical solution in the Arbitrary Lagrangian Eulerian (ALE) configuration.

  12. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    NASA Astrophysics Data System (ADS)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.

  13. An immersed boundary method for fluid-structure interaction with compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Wang, Li; Currao, Gaetano M. D.; Han, Feng; Neely, Andrew J.; Young, John; Tian, Fang-Bao

    2017-10-01

    This paper presents a two-dimensional immersed boundary method for fluid-structure interaction with compressible multiphase flows involving large structure deformations. This method involves three important parts: flow solver, structure solver and fluid-structure interaction coupling. In the flow solver, the compressible multiphase Navier-Stokes equations for ideal gases are solved by a finite difference method based on a staggered Cartesian mesh, where a fifth-order accuracy Weighted Essentially Non-Oscillation (WENO) scheme is used to handle spatial discretization of the convective term, a fourth-order central difference scheme is employed to discretize the viscous term, the third-order TVD Runge-Kutta scheme is used to discretize the temporal term, and the level-set method is adopted to capture the multi-material interface. In this work, the structure considered is a geometrically non-linear beam which is solved by using a finite element method based on the absolute nodal coordinate formulation (ANCF). The fluid dynamics and the structure motion are coupled in a partitioned iterative manner with a feedback penalty immersed boundary method where the flow dynamics is defined on a fixed Lagrangian grid and the structure dynamics is described on a global coordinate. We perform several validation cases (including fluid over a cylinder, structure dynamics, flow induced vibration of a flexible plate, deformation of a flexible panel induced by shock waves in a shock tube, an inclined flexible plate in a hypersonic flow, and shock-induced collapse of a cylindrical helium cavity in the air), and compare the results with experimental and other numerical data. The present results agree well with the published data and the current experiment. Finally, we further demonstrate the versatility of the present method by applying it to a flexible plate interacting with multiphase flows.

  14. Communications: Mechanical Deformation of Dendrites by Fluid Flow

    NASA Technical Reports Server (NTRS)

    Pilling, J.; Hellawell, A.

    1996-01-01

    It is generally accepted that liquid agitation during alloy solidification assists in crystal multiplication, as in dendrite fragmentation and the detachment of side arms in the mushy region of a casting. Even without deliberate stirring by electromagnetic or mechanical means, there is often vigorous interdendritic fluid flow promoted by natural thermosolutal convection. In this analysis, we shall estimate the stress at the root of a secondary dendrite arm of aluminum arising from the action of a flow of molten metal past the dendrite arm.

  15. Pore-Scale Investigation on Stress-Dependent Characteristics of Granular Packs and Their Impact on Multiphase Fluid Distribution

    NASA Astrophysics Data System (ADS)

    Torrealba, V.; Karpyn, Z.; Yoon, H.; Hart, D. B.; Klise, K. A.

    2013-12-01

    The pore-scale dynamics that govern multiphase flow under variable stress conditions are not well understood. This lack of fundamental understanding limits our ability to quantitatively predict multiphase flow and fluid distributions in natural geologic systems. In this research, we focus on pore-scale, single and multiphase flow properties that impact displacement mechanisms and residual trapping of non-wetting phase under varying stress conditions. X-ray micro-tomography is used to image pore structures and distribution of wetting and non-wetting fluids in water-wet synthetic granular packs, under dynamic load. Micro-tomography images are also used to determine structural features such as medial axis, surface area, and pore body and throat distribution; while the corresponding transport properties are determined from Lattice-Boltzmann simulations performed on lattice replicas of the imaged specimens. Results are used to investigate how inter-granular deformation mechanisms affect fluid displacement and residual trapping at the pore-scale. This will improve our understanding of the dynamic interaction of mechanical deformation and fluid flow during enhanced oil recovery and geologic CO2 sequestration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. The semi-brittle to ductile transition in peridotite on oceanic faults: mechanisms and P-T condition

    NASA Astrophysics Data System (ADS)

    Prigent, C.; Warren, J. M.; Kohli, A. H.; Teyssier, C. P.

    2017-12-01

    Experimental and geological-petrological studies suggest that the transition from brittle faulting to ductile flow of olivine, i.e. from seismic to aseismic behavior of mantle rocks (peridotites), occurs close to 600°C. However, recent seismological studies on oceanic transform faults (TFs) and ridges have documented earthquakes to temperatures (T) up to 700-800°C. In this study, we carried out a petrological, microstructural and geochemical analysis of natural samples of peridotites dredged at 3 different oceanic TFs of the Southwest Indian Ridge: Shaka, Prince Edward and Atlantis II. We selected samples displaying variable amounts of ductile deformation (from porphyroclastic tectonites to ultramylonites) prior to serpentinization in order to characterize their relatively high-T mechanical behavior. We find that the most deformed samples record cycles of ductile and brittle deformation. Peridotite ductile flow is characterized by drastic grain size reduction and the development of (ultra)mylonitic shear zones. In these zones, a switch in olivine deformation mechanism from dislocation creep to grain-size sensitive creep is associated with dissolution/precipitation processes. Brittle deformation of these samples is evidenced by the presence of (at least centimetric) transgranular and intragranular fractures that fragment coarser grained minerals. Both kinds of fractures are filled with the same phase assemblage as in the ultramylonitic bands: olivine + amphibole ± orthopyroxene ± Al-phase (plagioclase and/or spinel) ± sulfides. The presence of amphibole indicates that this semi-brittle deformation was assisted by hydrous fluids and its composition (e.g. high concentration of chlorine) suggests that the fluids have most likely a hydrothermal origin. We interpret these fractures to have formed under fluid-assisted conditions, recording paleo-seismic activity that alternated with periods of relatively slow interseismic ductile flow. The presence of Mg-hornblende (amphibole) suggests that the fractures nucleated between 700-850°C. Our study thus provides an estimate of the temperature at the transition from semi-brittle (seismic/aseismic) to fully ductile (aseismic) deformation in the oceanic mantle.

  17. A computational model of amoeboid cell swimming

    NASA Astrophysics Data System (ADS)

    Campbell, Eric J.; Bagchi, Prosenjit

    2017-10-01

    Amoeboid cells propel by generating pseudopods that are finger-like protrusions of the cell body that continually grow, bifurcate, and retract. Pseudopod-driven motility of amoeboid cells represents a complex and multiscale process that involves bio-molecular reactions, cell deformation, and cytoplasmic and extracellular fluid motion. Here we present a 3D model of pseudopod-driven swimming of an amoeba suspended in a fluid without any adhesion and in the absence of any chemoattractant. Our model is based on front-tracking/immersed-boundary methods, and it combines large deformation of the cell, a coarse-grain model for molecular reactions, and cytoplasmic and extracellular fluid flow. The predicted shapes of the swimming cell from our model show similarity with experimental observations. We predict that the swimming behavior changes from random-like to persistent unidirectional motion, and that the swimming speed increases, with increasing cell deformability and protein diffusivity. The unidirectionality in cell swimming is observed without any external cues and as a direct result of a change in pseudopod dynamics. We find that pseudopods become preferentially focused near the front of the cell and appear in greater numbers with increasing cell deformability and protein diffusivity, thereby increasing the swimming speed and making the cell shape more elongated. We find that the swimming speed is minimum when the cytoplasm viscosity is close to the extracellular fluid viscosity. We further find that the speed increases significantly as the cytoplasm becomes less viscous compared with the extracellular fluid, resembling the viscous fingering phenomenon observed in interfacial flows. While these results support the notion that softer cells migrate more aggressively, they also suggest a strong coupling between membrane elasticity, membrane protein diffusivity, and fluid viscosity.

  18. A New Mechanism for Upper Crustal Fluid Flow Driven by Solitary Porosity Waves in Rigid Reactive Media?

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumit

    2017-10-01

    The equations governing the interaction of viscous deformation with porous flow of fluids give rise to wave-like solutions. Such solutions have been explored in the context of melt and fluid flow in the mantle and crust at high temperatures, where ductile behavior occurs. Now it has been shown that the coupling of the kinetics of chemical reactions with fluid flow may give rise to similar solutions. This opens intriguing new possibilities. Porosity waves may arise in low-temperature regimes, and may become more accessible to observation, or they may remain mathematical curiosities because other modes of transport dominate in such settings. A number of possibilities, questions, and future courses of research have been opened up by Omlin et al. (2017).

  19. Fluid Mechanics of the Vascular Basement Membrane in the Brain

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Hui, Jonathan; Chiarot, Paul; Huang, Peter; Carare, Roxana; McLeod, Kenneth; Schaffer, David

    2013-11-01

    Beta-amyloid is a normal product of brain metabolic function and is found within the interstitial fluid of the brain. Failure of the clearance of beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. The vascular basement membrane (VBM) within the walls of cerebral arteries surrounds the spirally arranged smooth muscle cells and represents an essential pathway for removal of beta-amyloid from the brain. This process fails with the stiffening of arterial walls associated with aging. In this study we hypothesize that the deformation of the VBM associated with arterial pulsations drives the interstitial fluid to drain in the direction opposite of the arterial blood flow. This hypothesis is theoretically investigated by modeling the VBM as a thin, coaxial, fluid-filled porous medium surrounding a periodically deforming cylindrical tube. Flow and boundary conditions required to achieve such a backward clearance are derived through a control volume analysis of mass, momentum, and energy.

  20. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  1. Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film

    NASA Astrophysics Data System (ADS)

    Burgess, John Matthew

    The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~2 . In our soap film experiment, we find a critical value Rc~70 . This discrepancy can be ascribed to frictional effects from viscous coupling of gas to the film, which is neglected in the idealized model. The kinematic viscosity of the surrounding gas and the thickness of gas layers on each side of the soap film are varied in the experiments to better understand these frictional effects. We conclude that flows in soap films cannot be decoupled from flows in the surrounding gas.

  2. Characterization of microscopic deformation through two-point spatial correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  3. Characterization of microscopic deformation through two-point spatial correlation functions.

    PubMed

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  4. Viscoelastic fluid-structure interactions between a flexible cylinder and wormlike micelle solution

    NASA Astrophysics Data System (ADS)

    Dey, Anita A.; Modarres-Sadeghi, Yahya; Rothstein, Jonathan P.

    2018-06-01

    It is well known that when a flexible or flexibly mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable even at infinitesimal Reynolds numbers due to a purely elastic flow instability that can occur at large Weissenberg numbers. Recent work has shown that these elastic flow instabilities can drive the motion of flexible sheets. The fluctuating fluid forces exerted on the structure from the elastic flow instabilities can lead to a coupling between an oscillatory structural motion and the state of stress in the fluid flow. In this paper, we present the results of an investigation into the flow of a viscoelastic wormlike micelle solution past a flexible circular cylinder. The time variation of the flow field and the state of stress in the fluid are shown using a combination of particle image tracking and flow-induced birefringence images. The static and dynamic responses of the flexible cylinder are presented for a range of flow velocities. The nonlinear dynamics of the structural motion is studied to better understand an observed transition from a symmetric to an asymmetric structural deformation and oscillation behavior.

  5. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat [NE Albuquerque, NM

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  6. A fluid–structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems

    PubMed Central

    Vaughan, T. J.; Haugh, M. G.; McNamara, L. M.

    2013-01-01

    Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid–structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell–substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo. PMID:23365189

  7. Self-sustained lift and low friction via soft lubrication

    PubMed Central

    Saintyves, Baudouin; Jules, Theo; Salez, Thomas; Mahadevan, L.

    2016-01-01

    Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts. A simple scaling approach that couples the cylinder-induced flow to substrate deformation allows us to explain the elastohydrodynamic lift that underlies the self-sustained lubricated motion of the cylinder, consistent with recent theoretical predictions. Our results suggest an explanation for a range of effects such as reduced wear in animal joints and long-runout landslides, and can be couched as a design principle for low-friction interfaces. PMID:27162361

  8. Effect of infiltrated water on rheology of plagioclase feldspar under lower crustal condition

    NASA Astrophysics Data System (ADS)

    Kido, M.; Muto, J.; Koizumi, S.; Nagahama, H.

    2016-12-01

    Fluids in the deep crust have an important role in deformation of lithosphere and seismicity. In this study, we performed deformation experiments to reveal rheological properties of plagioclase feldspars as a main constituent of crustal materials with infilitrated water. Axial compression tests on synthetic polycrystalline anorthite (An) were performed in a Griggs-type deformation apparatus at temparature of 900 °C, strain rates of roughly about 10-5 s-1 and various confining pressures of 0.8-1.4 GPa. Distilled water was added on samples before tests. Times for infiltration of water into samples were changed to investigate the variation of strength associated with diffusion of water. Strengths of wet An tended to decrease with infiltration time or strain magnitude. If other conditions such as temperature, time and strain being the same, strengths increase with confining pressures. Recovered samples show that deformation was concentrated in the lower part of samples. Differential stresses were significantly lower than predicted values by a previous flow law for wet An obtained by low pressure gas apparatus ( 0.4 GPa, Rybacki et al., 2006). This implies that the effect of water on mechanical behavior in higher pressure might be larger than those predicted by lower pressure experiments. Ideal water concentration and strength profile of internal of samples were estimated by one-dimensional model of grain boundary diffusion. Estimated strength of internal part of samples was significant higher than measured stresses. There is possibility that cataclastic flow partially occurred in samples. In addition, deformation-enhanced fluid flow probably occurred. In conclusion, strength of wet An depends on water infiltration time, strain magnitude and confining pressure. The results suggest that the strength of fluid-rich regions in the lower crust becomes lower than that predicted by previous studies.

  9. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  10. Feedbacks Between Deformation and Fluid Flow in Mantle Shear Zones from Zabargad, Red Sea

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Boudier, F. I.; Vauchez, A. R.; Zaderatzky, M.

    2016-12-01

    Peridotites in the Zabargad island, Red Sea, record different stages of lithospheric thinning and asthenospheric upwelling during rifting. Field mapping highlights a pervasive high-temperature NW-SE, subvertical foliation with lineations pluning 50°NW. This foliation is overprinted by a series of lower-temperature mylonitic zones with slightly oblique foliations and subhorizontal lineations, which record progressive strain localization under retrogressive conditions during the final exhumation of the peridotites (Nicolas and Boudier, JGR 1987). We performed a petrostructural study of ca. 50 samples collected by A. Nicolas and F. Boudier in the 80s from the different deformation facies. This study highlights: (1) a rather pervasive, but highly heterogeneous distribution of the LT deformation and (2) a feedback between deformation and fluid flow. The HT deformation is recorded in medium grained plagioclase- and spinel-peridotites by a homogeneous foliation and lineation marked by a shape-preferred orientation of plagioclase and olivine and a consistent CPO of all major-rock forming phases. The LT temperature deformation results in dynamic recrystallization of olivine leading to a marked grain size reduction by dynamic recrystallization of olivine, remobilization of orthopyroxene by dissolution-precipitation, and crystallization of amphibole. Increasing finite strain is recorded by the increase in the volume of the fine-grained material and of the amphibole proportion. The latter may attain in totally recrystallized cm-wide ultramylonite bands up to 30%. This together with the strong amphibole SPO and CPO corroborate fluid focusing and enhanced reaction rates into active shear zones. In the LT shear zones we also document: (1) changes in the olivine CPO, indicating changes in the dominant slip system and (2) unusual orthopyroxene CPO, which we interpret as due to oriented crystallization. Static replacement of pyroxenes by amphibole with no associated LT deformation is also observed indicating that the presence of fluids does not suffice to trigger strain localization.

  11. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    NASA Astrophysics Data System (ADS)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  12. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  13. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  14. Fluid dynamics of aortic valve stenosis

    NASA Astrophysics Data System (ADS)

    Keshavarz-Motamed, Zahra; Maftoon, Nima

    2009-11-01

    Aortic valve stenosis, which causes considerable constriction of the flow passage, is one of the most frequent cardiovascular diseases and is the most common cause of the valvular replacements which take place for around 100,000 per year in North America. Furthermore, it is considered as the most frequent cardiac disease after arterial hypertension and coronary artery disease. The objective of this study is to develop an analytical model considering the coupling effect between fluid flow and elastic deformation with reasonable boundary conditions to describe the effect of AS on the left ventricle and the aorta. The pulsatile and Newtonian blood flow through aortic stenosis with vascular wall deformability is analyzed and its effects are discussed in terms of flow parameters such as velocity, resistance to flow, shear stress distribution and pressure loss. Meanwhile we developed analytical expressions to improve the comprehension of the transvalvular hemodynamics and the aortic stenosis hemodynamics which is of great interest because of one main reason. To medical scientists, an accurate knowledge of the mechanical properties of whole blood flow in the aorta can suggest a new diagnostic tool.

  15. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers

    PubMed Central

    Nève, Nathalie; Kohles, Sean S.; Winn, Shelley R.; Tretheway, Derek C.

    2010-01-01

    Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics. PMID:20824110

  16. Lattice Boltzmann heat transfer model for permeable voxels

    NASA Astrophysics Data System (ADS)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  17. Neogene rotations and quasicontinuous deformation of the Pacific Northwest continental margin

    USGS Publications Warehouse

    England, Philip; Wells, Ray E.

    1991-01-01

    Paleomagnetically determined rotations about vertical axes of 15 to 12 Ma flows of the Miocene Columbia River Basalt Group of Oregon and Washington decrease smoothly with distance from the plate margin, consistent with a simple physical model for continental deformation that assumes the lithosphere behaves as a thin layer of fluid. The average rate of northward translation of the continental margin since 15 Ma calculated from the rotations, using this model, is about 15 mm/yr, which suggests that much of the tangential motion between the Juan de Fuca and North American plates since middle Miocene time has been taken up by deformation of North America. The fluid-like character of the large-scale deformation implies that the brittle upper crust follows the motions of the deeper parts of the lithosphere.

  18. Modeling quasi-static poroelastic propagation using an asymptotic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.

    2007-11-01

    Since the formulation of poroelasticity (Biot(1941)) and its reformulation (Rice & Cleary(1976)), there have been many efforts to solve the coupled system of equations. Perhaps because of the complexity of the governing equations, most of the work has been directed towards finding numerical solutions. For example, Lewis and co-workers published early papers (Lewis & Schrefler(1978); Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with finite-element methods for computing consolidation, subsidence, and examining the importance of coupling. Other early work dealt with flow in a deformable fractured medium (Narasimhan & Witherspoon 1976); Noorishad et al.(1984)Noorishad, Tsang, & Witherspoon. This effort eventually evolvedmore » into a general numerical approach for modeling fluid flow and deformation (Rutqvist et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of this and other work, numerous coupled, computer-based algorithms have emerged, typically falling into one of three categories: one-way coupling, loose coupling, and full coupling (Minkoff et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In one-way coupling the fluid flow is modeled using a conventional numerical simulator and the resulting change in fluid pressures simply drives the deformation. In loosely coupled modeling distinct geomechanical and fluid flow simulators are run for a sequence of time steps and at the conclusion of each step information is passed between the simulators. In full coupling, the fluid flow and geomechanics equations are solved simultaneously at each time step (Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez & Lewis(2002)). One disadvantage of a purely numerical approach to solving the governing equations of poroelasticity is that it is not clear how the various parameters interact and influence the solution. Analytic solutions have an advantage in that respect; the relationship between the medium and fluid properties is clear from the form of the solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.« less

  19. Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.

    NASA Astrophysics Data System (ADS)

    Spetzler, H.; Snieder, R.; Zhang, J.

    2006-12-01

    The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.

  20. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  1. Fluid Enhanced Deformation and Metamorphism in Exhumed Lower Crust from the Northern Madison Range, Southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Condit, Cailey Brown

    Deep crustal processes during collisional orogenesis exert first-order controls on the development, scale and behavior of an orogenic belt. The presence or absence of fluids play important roles in these processes by enhancing deformation, catalyzing chemical reactions, and facilitating wholesale alteration of lithologic properties. However, the scales over which these fluid-related interactions occur and the specific feedbacks among them remain poorly constrained. The late Paleoproterozoic Big Sky orogen, expressed as high-grade deep crust exposed in the Laramide basement-cored uplifts of SW Montana, USA, offers an exceptional natural laboratory to address some of these questions. New data are presented from field and structural analysis, petrology, geochemistry, and geochronology in the Northern Madison Range, a key locality for constraining the hinterland-foreland transition of the orogen. Combined with other regional data, the age of high-grade metamorphism youngs by 80-40 Myr across an 100 km transect suggesting propagation of the orogenic core towards its foreland over time. In the southeastern part of the Northern Madison Range, two domains separated by a km-scale ductile shear zone, were transformed by hydrous fluids at significantly different spatial scales. The Gallatin Peak terrane was widely metamorphosed, metasomatized, and penetratively deformed in the presence of fluids at upper amphibolite facies during the Big Sky orogeny. Together, these data suggest that this area was pervasively hydrated and deformed over scales of several kilometers during thermotectonism at 30-25 km paleodepths. In the Moon Lake block, fluid flow at similar crustal depths and temperatures played a more localized but equally important role. Discrete flow along brittle fractures in metagabbronorite dikes led to nucleation of cm-scale ductile shear zones and metasomatic alteration. A model for shear zone evolution is presented that requires feedbacks between mechanical and chemical processes for strain localization. Seismic anisotropy was calculated for one of these shear zones. Deformation-induced crystallographic preferred orientation (CPO) of anisotropic minerals typically produces seismic anisotropy in the deep crust. However, this shear zone deformed by mechanisms that yielded no significant CPO, in part due to the fluid-rich environment, and very low seismic anisotropy, suggesting that high anisotropy does not always correlate with high strain.

  2. Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model

    NASA Astrophysics Data System (ADS)

    Raziperchikolaee, Samin

    The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.

  3. Flow over a membrane-covered, fluid-filled cavity.

    PubMed

    Thomson, Scott L; Mongeau, Luc; Frankel, Steven H

    2007-01-01

    The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.

  4. Bubble deformations and segmented flows in corrugated microchannels at large capillary numbers

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2018-03-01

    We experimentally investigate the interaction between individual bubble deformations and collective distortions of segmented flows in nonlinear microfluidic geometries. Using highly viscous carrier fluids, we study the evolution of monodisperse trains of gas bubbles from a square to a smoothly corrugated microchannel characterized with a series of extensions and constrictions along the flow path. The hysteresis in the bubble shape between accelerating and decelerating flow fields is shown to increase with the capillary number. Measurements of instantaneous bubble velocities reveal the presence of a capillary pull that produces a nonmonotonic behavior for the front velocity in accelerating flow regions. Functional relationships are developed for predicting the morphology and dynamics of viscous multiphase flow patterns at the pore scale.

  5. Towards the Early Detection of Breast Cancer in Young Women

    DTIC Science & Technology

    2006-10-01

    approach. 4. Poroelastic model for tissue deformation: We have implemented the model of Netti et al. in a finite element program in order to simulate...changes would not be expected. 44Interstitial Fluid Flow 5. Conclusions A poroelastic model that includes the effects of fluid flow and the possibility of...images to produce a displacement field. Using this displacement field, and an assumed linear elastic model for the tissue, an inverse problem is solved

  6. Effects of Deformation on Drag and Lift Forces Acting on a Droplet in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Suh, Youngho; Lee, Changhoon

    2010-11-01

    The droplet behavior in a linear shear flow is studied numerically to investigate the effect of deformation on the drag and lift acting on droplet. The droplet shape is calculated by a level set method which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid- gas interface. By adopting the feedback forces which can maintain the droplet at a fixed position, we determine the acting force on a droplet in shear flow field with efficient handling of deformation. Based on the numerical results, drag and lift forces acting on a droplet are observed to depend strongly on the deformation. Droplet shapes are observed to be spherical, deformed, and oscillating depending on the Reynolds number. Also, the present method is proven to be applicable to a three- dimensional deformation of droplet in the shear flow, which cannot be properly analyzed by the previous studies. Comparisons of the calculated results by the current method with those obtained from body-fitted methods [Dandy and Leal, J. Fluid Mech. 208, 161 (1989)] and empirical models [Feng and Beard, J. Atmos. Sci. 48, 1856 (1991)] show good agreement.

  7. Numerical investigation of hyperelastic wall deformation characteristics in a micro-scale stenotic blood vessel

    NASA Astrophysics Data System (ADS)

    Cheema, Taqi Ahmad; Park, Cheol Woo

    2013-08-01

    Stenosis is the drastic reduction of blood vessel diameter because of cholesterol accumulation in the vessel wall. In addition to the changes in blood flow characteristics, significant changes occur in the mechanical behavior of a stenotic blood vessel. We conducted a 3-D study of such behavior in micro-scale blood vessels by considering the fluid structure interaction between blood flow and vessel wall structure. The simulation consisted of one-way coupled analysis of blood flow and the resulting structural deformation without a moving mesh. A commercial code based on a finite element method with a hyperelastic material model (Neo-Hookean) of the wall was used to calculate wall deformation. Three different cases of stenosis severity and aspect ratios with and without muscles around the blood vessel were considered. The results showed that the wall deformation in a stenotic channel is directly related to stenosis severity and aspect ratio. The presence of muscles reduces the degree of deformation even in very severe stenosis.

  8. CFD study of fluid flow changes with erosion

    NASA Astrophysics Data System (ADS)

    López, Alejandro; Stickland, Matthew T.; Dempster, William M.

    2018-06-01

    For the first time, a three dimensional mesh deformation algorithm is used to assess fluid flow changes with erosion. The validation case chosen is the Jet Impingement Test, which was thoroughly analysed in previous works by Hattori et al. (Kenichi Sugiyama and Harada, 2008), Gnanavelu et al. in (Gnanavelu et al., 2009, 2011), Lopez et al. in (Lopez et al., 2015) and Mackenzie et al. in (Mackenzie et al., 2015). Nguyen et al. (2014) showed the formation of a new stagnation area when the wear scar is deep enough by performing a three-dimensional scan of the wear scar after 30 min of jet impingement test. However, in the work developed here, this stagnation area was obtained solely by computational means. The procedure consisted of applying an erosion model in order to obtain a deformed geometry, which, due to the changes in the flow pattern lead to the formation of a new stagnation area. The results as well as the wear scar were compared to the results by Nguyen et al. (2014) showing the same trend. OpenFOAM® was the software chosen for the implementation of the deforming mesh algorithm as well as remeshing of the computational domain after deformation. Different techniques for mesh deformation and approaches to erosion modelling are discussed and a new methodology for erosion calculation including mesh deformation is developed. This new approach is independent of the erosion modelling approach, being applicable to both Eulerian and Lagrangian based equations for erosion calculation. Its different applications such as performance decay in machinery subjected to erosion as well as modelling of natural erosion processes are discussed here.

  9. Modelling Earthquakes Using a Poro-Elastic Two-Phase Flow Formulation

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; van Dinther, Y.; Connolly, J. A.; Madonna, C.

    2017-12-01

    Seismicity along subduction zones ranges from large devastating megathrust earthquakes to aseismic slow slip events. These different slip phenomena are widely believed to be influenced by fluids and interactions of fluids with the host rock. To understand the slip or strain mode along the megathrust interface, it is thus crucial to understand the role of fluids. Considering the spatiotemporal limitations of observations, a promising approach is to develop a numerical model that couples the deformation of both fluids and solids in a single framework. The objective of this study is the development of such a seismo-hydro-mechanical approach and the subsequent identification of parameters that control the mode of slip. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples inertial mechanical deformation and fluid flow. It allows for the accurate treatment of localised brittle/plastic deformation through global iterations. To accurately simulate both long- and short-term deformation an adaptive time step is introduced. This makes it possible to resolve seismic event with time steps on the order of milliseconds. We use this new tool to investigate how the presence of fluids in the pore space of an visco-elasto-brittle/plastic (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model is able to simulate spontaneous quasi-periodic seismic events, nucleating near the brittle-ductile transition zone, along self-consistently forming highly localized ruptures, which accommodate shear displacement between two plates. The generated elastic rebound events show slip velocities on the order of m/s. The governing gradual strength decrease along the propagating fracture is related to a drop in total pressure due to shear localization in combination with an increase in fluid pressure due to elastic compaction of the pore space in a rock with low permeability (6e-19 m2). Reduction of the differential pressure decreases brittle/plastic strength of fluid-bearing rocks along the rupture, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  10. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  11. Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve.

    PubMed

    Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L

    2014-01-01

    A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

  12. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.

  13. Localization and diffusion of tracer particles in viscoelastic media with active force dipoles

    NASA Astrophysics Data System (ADS)

    Yasuda, Kento; Okamoto, Ryuichi; Komura, Shigeyuki; Mikhailov, Alexander S.

    2017-02-01

    Optical tracking in vivo experiments reveal that diffusion of particles in biological cells is strongly enhanced in the presence of ATP and the experimental data for animal cells could previously be reproduced within a phenomenological model of a gel with myosin motors acting within it (Fodor É. et al., EPL, 110 (2015) 48005). Here, the two-fluid model of a gel is considered where active macromolecules, described as force dipoles, cyclically operate both in the elastic and the fluid components. Through coarse-graining, effective equations of motions for idealized tracer particles displaying local deformations and local fluid flows are derived. The equation for deformation tracers coincides with the earlier phenomenological model and thus confirms it. For flow tracers, diffusion enhancement caused by active force dipoles in the fluid component, and thus due to metabolic activity, is found. The latter effect may explain why ATP-dependent diffusion enhancement could also be observed in bacteria that lack molecular motors in their skeleton or when the activity of myosin motors was chemically inhibited in eukaryotic cells.

  14. Fundamental Processes of Atomization in Fluid-Fluid Flows

    NASA Technical Reports Server (NTRS)

    McCready, M. J.; Chang, H.-C.; Leighton, D. T.

    2001-01-01

    This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.

  15. Hydro-mechanical pressure response to fluid injection into finite aquifers highlights the non-local behavior of storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesus

    2017-04-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equals elastic storage to medium compressibility, which is a constant-in-time and locally-defined parameter. This allows simplifying the flow equation into a linear diffusion equation that is relatively easy to solve. However, the hydraulic gradients, generated by fluid injection or pumping, act as forces that push the medium in the direction of flow causing it to deform, even in regions where pressure has not changed. Actual deformation depends on the elastic properties of the medium, but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Therefore the storage results to be non-local (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer) and the proper evaluation of transient pressure requires acknowledging the hydro-mechanical (HM) coupling, which is generally disregarded by conventional hydrogeology. Here we discuss whether HM coupling effects are relevant, which is of special interest for the activities of enhanced geothermics, waste disposal, CO2 storage or shale gas extraction. We propose analytic solutions to the HM problem of fluid injection (or extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that the deviation respect to traditional purely hydraulic solutions is significant when the aquifer has limited capacity to deform. The most relevant implications are that the response time is faster and the pressure variation greater than expected, which may be relevant for aquifer characterization and for the evaluation of pressure build-up due to fluid injection.

  16. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.

    PubMed

    Tsubota, Ken-Ichi; Wada, Shigeo; Liu, Hao

    2014-08-01

    Direct numerical simulations of the mechanics of a single red blood cell (RBC) were performed by considering the nonuniform natural state of the elastic membrane. A RBC was modeled as an incompressible viscous fluid encapsulated by an elastic membrane. The in-plane shear and area dilatation deformations of the membrane were modeled by Skalak constitutive equation, while out-of-plane bending deformation was formulated by the spring model. The natural state of the membrane with respect to in-plane shear deformation was modeled as a sphere ([Formula: see text]), biconcave disk shape ([Formula: see text]) and their intermediate shapes ([Formula: see text]) with the nonuniformity parameter [Formula: see text], while the natural state with respect to out-of-plane bending deformation was modeled as a flat plane. According to the numerical simulations, at an experimentally measured in-plane shear modulus of [Formula: see text] and an out-of-plane bending rigidity of [Formula: see text] of the cell membrane, the following results were obtained. (i) The RBC shape at equilibrium was biconcave discoid for [Formula: see text] and cupped otherwise; (ii) the experimentally measured fluid shear stress at the transition between tumbling and tank-treading motions under shear flow was reproduced for [Formula: see text]; (iii) the elongation deformation of the RBC during tank-treading motion from the simulation was consistent with that from in vitro experiments, irrespective of the [Formula: see text] value. Based on our RBC modeling, the three phenomena (i), (ii), and (iii) were mechanically consistent for [Formula: see text]. The condition [Formula: see text] precludes a biconcave discoid shape at equilibrium (i); however, it gives appropriate fluid shear stress at the motion transition under shear flow (ii), suggesting that a combined effect of [Formula: see text] and the natural state with respect to out-of-plane bending deformation is necessary for understanding details of the RBC mechanics at equilibrium. Our numerical results demonstrate that moderate nonuniformity in a membrane's natural state with respect to in-plane shear deformation plays a key role in RBC mechanics.

  17. Modeling the Impact of Deformation on Unstable Miscible Displacements in Porous Media

    NASA Astrophysics Data System (ADS)

    Santillán, D.; Cueto-Felgueroso, L.

    2014-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The simultaneous flow of two or more fluids with different densities or viscosities through deformable media is ubiquitous in environmental, industrial, and biological processes, including the removal of non-aqueous phase liquids from underground water bodies, the geological storage of CO2, and current challenges in energy technologies, such as enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. Using numerical simulation, we study the interplay between viscous-driven flow instabilities (viscous fingering) and rock mechanics, and elucidate the structure of the displacement patterns as a function of viscosity contrast, injection rate and rock mechanical properties. Finally, we discuss the role of medium deformation on transport and mixing processes in porous media.

  18. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.

    PubMed

    Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg

    2016-12-01

    Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.

  19. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  20. Impact of synovial fluid flow on temperature regulation in knee cartilage.

    PubMed

    Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P

    2015-01-21

    Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965-1967 Matsushiro Earthquake Swarm in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.; Yamamoto, K.

    2009-05-15

    In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been drivenmore » by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.« less

  2. Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey.

    PubMed

    Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A

    2017-08-01

    A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.

  3. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due to H2O loss into the healed cracks. First observations of deformed samples show abundant deformation lamellae. With higher deformation the lamellae form conjugated zones of high dislocation density and undulatory extinction. Micro cracks are frequently connected to fluid inclusions. Recrystallized grains are rare in deformed samples because of the low strain acquired. In semi-brittle experiments at lower temperature and faster strain rates considerable recrystallization features are visible and clearly connected to initial brittle deformation features. We conclude that fluid inclusion rupture and fast crack healing at high temperatures are necessary for the redistribution of H2O and a prerequisite of ductile deformation. References: Griggs, D.T. & Balcic, J.D. 1965: Quartz: anomalous weakness of synthetic crystals. Science 147, 293-295. FitzGerald, J.D., Boland, J.N., McLaren, A.C., Ord, A., Hobbs, B.E. 1991: Microstructures in water-weakened single crystals of quartz. Journal of Geophysical Research Vol. 96 No. B2, 2139-2155 Kronenberg, A.K. & Tullis, J. 1984: Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research Vol.89, No. B6, 4281-4297. Kronenberg, A.K., Kirby, S.H., Aines, R.D., Rossman G.R. 1986: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implication for hydrolytic weakening. Journal of Geophysical Research Vol.91, NO. B12, 12,723-12,744. Paterson, M.S.1989: The interaction of water with quartz and the influence in dislocation flow - an overview. In: S. Karato and M. Toriumi (Editors), Rheology of Solids and of the Earth. Oxford University Press, London, pp. 107-142.

  4. Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

    DTIC Science & Technology

    2006-09-01

    tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of

  5. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  6. Strength and deformability of light-toned layered deposits observed by MER Opportunity: Eagle to Erebus craters, Mars

    NASA Astrophysics Data System (ADS)

    Okubo, Chris H.

    2007-10-01

    Quantifying host rock deformation is vital to understanding the geologic evolution and productivity of subsurface fluid reservoirs. In support of on-going characterization of fracture controlled fluid flow through the light-toned layered deposits on Mars, key parameters of strength and deformability are derived from Microscopic Imager and Rock Abrasion Tool data collected by the Mars Exploration Rover Opportunity in Meridiani Planum. Analysis of 21 targets of light-toned layered deposits yields a median apparent porosity of 0.25. Additional physical parameters for each target are derived from these porosity measurements. The median value of unconfined compressive strength is 11.23 MPa, Young's modulus is 1.86 GPa, and the brittle-ductile transition pressure is 8.77 MPa.

  7. Porosity modification during and following deposition of deep-water sediments

    NASA Astrophysics Data System (ADS)

    Butler, R. W.; McCaffrey, W. D.; Haughton, P.; del Pino Sanchez, A.; Barker, S.; Hailwood, E.; Hakes, B.

    2005-12-01

    Deposition and early burial of sediments, especially sandy turbidites, are commonly accompanied by the reorganization of porosity structure through the localized expulsion of interstitial fluid. Fluid escape structures are preserved as thin sheets and pipes. Coeval sediment remobilization may be represented by shear structures, commonly taken to indicate down-slope creep and slumping. The history of shearing vs dewatering may be established from cross-cutting structures preserved in outcrop and/or core. Although these relationships are known for gravity-driven soft-sediment deformation on submarine slopes, they can also develop during deposition itself due to shear from the over-riding flow. Such deformation features, including pseudo s-c fabrics and distributed shear, together may previously have been misinterpreted as indicators of palaeoslope (slumps) or even of tectonic deformation. Progressive aggradation of sandy turbidites can show complex banded facies within which soft-sediment deformation is tiered. Syn-deposition micro-growth strata testify to ongoing seabed deformation occurring beneath active flows, while the bedforms themselves provide direct measurements of the magnitude of shear stresses imparted into the seabed and estimates of the shear strength of this substrate. Such banded facies may be interpreted in terms of cyclic partitioning of shear stress into the flow and the substrate. The modified porosity structures and related heterogeneities in permeability of such materials may persist during deeper burial, influencing the rheology of the sediment. These bed-scale processes are reflected in the quality and flow rates of hydrocarbon reservoirs. The reorganization of sand-body architecture through remobilization, by traction and/or down-slope failure, also has a strong impact on the permeability on the multi-bed scale (10s-100s m). Examples will be presented from hydrocarbon reservoirs in the subsurface and from outcrops of Tertiary turbidites in the Alpine-Apennine orogenic system.

  8. Analytical Solutions to Coupled HM Problems to Highlight the Nonlocal Nature of Aquifer Storage

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesús

    2017-11-01

    Specific storage reflects the volumetric deformation capacity of permeable media. Classical groundwater hydrology equates elastic storage to medium compressibility (plus fluid compressibility times porosity). However, it is unclear if storage behavior can be represented by a single parameter. Hydraulic gradients act as body forces that push the medium in the direction of flow causing it to deform instantaneously everywhere, i.e., even in regions where pressure would not have changed according to conventional fluid flow. Therefore, actual deformation depends not only on the mechanical properties of the medium but also on aquifer geometry and on surrounding strata, which act like constraints to displacements. Here we discuss the question and highlight the nonlocal nature of storage (i.e., the volume of water released at a point depends on the poroelastic response over the whole aquifer). Proper evaluation of transient pressure and water release from storage requires acknowledging the hydromechanical coupling, which generally involves the use of numerical methods. We propose analytical solutions to the HM problem of fluid injection (extraction) into finite aquifers with one-dimensional or cylindrical geometries. We find that pressure response is much faster (virtually instantaneous) and larger than expected from traditional purely hydraulic solutions when aquifer deformation is restrained, whereas the pressure response is reversed (i.e., pressure drop in response to injection) when the permeable medium is free to deform. These findings suggest that accounting for hydromechanical coupling may be required when hydraulic testing is performed in low permeability media, which is becoming increasingly demanded for energy-related applications.

  9. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    USGS Publications Warehouse

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  10. A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application

    NASA Astrophysics Data System (ADS)

    Zhu, Luoding

    2017-11-01

    Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.

  11. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations. In this work we present several example applications of such models.

  12. Analytical volcano deformation source models

    USGS Publications Warehouse

    Lisowski, Michael; Dzurisin, Daniel

    2007-01-01

    Primary volcanic landforms are created by the ascent and eruption of magma. The ascending magma displaces and interacts with surrounding rock and fluids as it creates new pathways, flows through cracks or conduits, vesiculates, and accumulates in underground reservoirs. The formation of new pathways and pressure changes within existing conduits and reservoirs stress and deform the surrounding rock. Eruption products load the crust. The pattern and rate of surface deformation around volcanoes reflect the tectonic and volcanic processes transmitted to the surface through the mechanical properties of the crust.

  13. Multi-scale simulations of droplets in generic time-dependent flows

    NASA Astrophysics Data System (ADS)

    Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico

    2017-11-01

    We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.

  14. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  15. Coupled Modeling of Flow, Transport, and Deformation during Hydrodynamically Unstable Displacement in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Jha, B.; Juanes, R.

    2015-12-01

    Coupled processes of flow, transport, and deformation are important during production of hydrocarbons from oil and gas reservoirs. Effective design and implementation of enhanced recovery techniques such as miscible gas flooding and hydraulic fracturing requires modeling and simulation of these coupled proceses in geologic porous media. We develop a computational framework to model the coupled processes of flow, transport, and deformation in heterogeneous fractured rock. We show that the hydrocarbon recovery efficiency during unstable displacement of a more viscous oil with a less viscous fluid in a fractured medium depends on the mechanical state of the medium, which evolves due to permeability alteration within and around fractures. We show that fully accounting for the coupling between the physical processes results in estimates of the recovery efficiency in agreement with observations in field and lab experiments.

  16. Prediction of mass transfer coefficients in non-Newtonian fermentation media using first-principles methods.

    PubMed

    Radl, Stefan; Khinast, Johannes G

    2007-08-01

    Bubble flows in non-Newtonian fluids were analyzed using first-principles methods with the aim to compute and predict mass transfer coefficients in such fermentation media. The method we used is a Direct Numerical Simulation (DNS) of the reactive multiphase flow with deformable boundaries and interfaces. With this method, we are able for the first time to calculate mass transfer coefficients in non-Newtonian liquids of different rheologies without any experimental data. In the current article, shear-thinning fluids are considered. However, the results provide the basis for further investigations, such as the study of viscoelastic fluids. (c) 2007 Wiley Periodicals, Inc.

  17. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  18. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  19. Thermocapillary-Induced Phase Separation with Coalescence

    NASA Technical Reports Server (NTRS)

    Davis, Robert H.

    2003-01-01

    Research has been undertaken on interactions of two or more deformable drops (or bubbles) in a viscous fluid and subject to a temperature, gravitational, or flow field. An asymptotic theory for nearly spherical drops shows that small deformations reduce the coalescence and phase separation rates. Boundary-integral simulations for large deformations show that bubbles experience alignment and enhanced coalescence, whereas more viscous drops may break as a result of hydrodynamic interactions. Experiments for buoyancy motion confirm these observations. Simulations of the sedimentation of many drops show clustering phenomena due to deformations, which lead to enhanced phase separation rates, and simulations of sheared emulsions show that deformations cause a reduction in the effective viscosity.

  20. Effect of bending on the dynamics and wrinkle formation for a capsule in shear flow

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Dupont, Claire; Barthes-Biesel, Dominique; Vidrascu, Marina; Le Tallec, Patrick

    2014-11-01

    When microcapsules are subjected to an external flow, the droplets enclosed within a thin hyperelastic wall undergo large deformations, which often lead to buckling of the thin capsule wall. The objective is to study numerically an initially spherical capsule in shear flow and analyze the influence of the membrane bending rigidity on the capsule dynamics and wrinkle formation. The 3D fluid-structure interactions are modeled coupling a boundary integral method to solve for the internal and external Stokes flows with a thin shell finite element method to solve for the wall deformation. Hyperelastic constitutive laws are implemented to model the deformation of the capsule mid-surface and the generalized Hooke's law for the bending effects. We show that the capsule global motion and deformation are mainly governed by in-plane membrane tensions and are marginally influenced by the bending stiffness Ks. The bending stiffness, however, plays a role locally in regions of compressive tensions. The wrinkle wavelength depends on Ks following a power law, which provides an experimental technique to determine the value of Ks through inverse analysis.

  1. Nonlinear deformation and localized failure of bacterial streamers in creeping flows

    PubMed Central

    Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke

    2016-01-01

    We investigate the failure of bacterial floc mediated streamers in a microfluidic device in a creeping flow regime using both experimental observations and analytical modeling. The quantification of streamer deformation and failure behavior is possible due to the use of 200 nm fluorescent polystyrene beads which firmly embed in the extracellular polymeric substance (EPS) and act as tracers. The streamers, which form soon after the commencement of flow begin to deviate from an apparently quiescent fully formed state in spite of steady background flow and limited mass accretion indicating significant mechanical nonlinearity. This nonlinear behavior shows distinct phases of deformation with mutually different characteristic times and comes to an end with a distinct localized failure of the streamer far from the walls. We investigate this deformation and failure behavior for two separate bacterial strains and develop a simplified but nonlinear analytical model describing the experimentally observed instability phenomena assuming a necking route to instability. Our model leads to a power law relation between the critical strain at failure and the fluid velocity scale exhibiting excellent qualitative and quantitative agreeing with the experimental rupture behavior. PMID:27558511

  2. Influence of interfacial slip on the suspension rheology of a dilute emulsion of surfactant-laden deformable drops in linear flows

    NASA Astrophysics Data System (ADS)

    Das, Sayan; Bhattacharjee, Anirban; Chakraborty, Suman

    2018-03-01

    The present study deals with the effect of interfacial slip on the deformation and emulsion rheology of a dilute suspension of droplets in a linear flow. The droplets are laden with surfactants that are bulk-insoluble and get transported only along the interface. An asymptotic approach is adopted for the present analysis in order to tackle the nonlinearity present due to deformation of droplets. The analysis is carried out for two different limiting scenarios, namely, surface diffusion-dominated-surfactant transport and surface convection-dominated surfactant transport. For either of the limiting cases, we look into the droplet dynamics for two commonly encountered bulk flows—uniaxial extensional and simple shear flow. Under the assumption of negligible fluid inertia in either phase, it is shown that slip at the droplet interface significantly affects the surfactant-induced Marangoni stress and hence droplet deformation and emulsion rheology. The presence of interfacial slip not only brings about a decrease in the droplet deformation but also reduces the effective viscosity of the emulsion. The fall in both droplet deformation and effective viscosity is found to be more severe for the limiting case of surface convection-dominated surfactant transport. For the case of an imposed simple shear flow, the normal stress differences generated due to droplet deformation are affected as well due to the presence of interfacial slip.

  3. Experimental and numerical studies of a microfluidic device with compliant chambers for flow stabilization

    NASA Astrophysics Data System (ADS)

    Iyer, V.; Raj, A.; Annabattula, R. K.; Sen, A. K.

    2015-07-01

    This paper reports experimental and numerical studies of a passive microfluidic device that stabilizes a pulsating incoming flow and delivers a steady flow at the outlet. The device employs a series of chambers along the flow direction with a thin polymeric membrane (of thickness 75-250 µm) serving as the compliant boundary. The deformation of the membrane allows accumulation of fluid during an overflow and discharge of fluid during an underflow for flow stabilization. Coupled fluid-structure simulations are performed using Mooney-Rivlin formulations to account for a thin hyperelastic membrane material undergoing large deformations to accurately predict the device performance. The device was fabricated with PDMS as the substrate material and thin PDMS membrane as the compliant boundary. The performance of the device is defined in terms of a parameter called ‘Attenuation Factor (AF)’. The effect of various design parameters including membrane thickness, elastic modulus, chamber size and number of chambers in series as well as operating conditions including the outlet pressure, mean input flow rate, fluctuation amplitude and frequency on the device performance were studied using experiments and simulations. The simulation results successfully confront the experimental data (within 10%) which validates the numerical simulations. The device was used at the exit of a PZT actuated valveless micropump to take pulsating flow at the upstream and deliver steady flow downstream. The amplitude of the pulsating flow delivered by the micropump was significantly reduced (AF = 0.05 for a device with three 4 mm chambers) but at the expense of a reduction in the pressure capability (<20%). The proposed device could potentially be used for reducing flow pulsations in practical microfluidic circuits.

  4. Intrinsic particle-induced lateral transport in microchannels

    PubMed Central

    Amini, Hamed; Sollier, Elodie; Weaver, Westbrook M.; Di Carlo, Dino

    2012-01-01

    In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer. PMID:22761309

  5. Time-frequency analyses of fluid-solid interaction under sinusoidal translational shear deformation of the viscoelastic rat cerebrum

    NASA Astrophysics Data System (ADS)

    Leahy, Lauren N.; Haslach, Henry W.

    2018-02-01

    During normal extracellular fluid (ECF) flow in the brain glymphatic system or during pathological flow induced by trauma resulting from impacts and blast waves, ECF-solid matter interactions result from sinusoidal shear waves in the brain and cranial arterial tissue, both heterogeneous biological tissues with high fluid content. The flow in the glymphatic system is known to be forced by pulsations of the cranial arteries at about 1 Hz. The experimental shear stress response to sinusoidal translational shear deformation at 1 Hz and 25% strain amplitude and either 0% or 33% compression is compared for rat cerebrum and bovine aortic tissue. Time-frequency analyses aim to correlate the shear stress signal frequency components over time with the behavior of brain tissue constituents to identify the physical source of the shear nonlinear viscoelastic response. Discrete fast Fourier transformation analysis and the novel application to the shear stress signal of harmonic wavelet decomposition both show significant 1 Hz and 3 Hz components. The 3 Hz component in brain tissue, whose magnitude is much larger than in aortic tissue, may result from interstitial fluid induced drag forces. The harmonic wavelet decomposition locates 3 Hz harmonics whose magnitudes decrease on subsequent cycles perhaps because of bond breaking that results in easier fluid movement. Both tissues exhibit transient shear stress softening similar to the Mullins effect in rubber. The form of a new mathematical model for the drag force produced by ECF-solid matter interactions captures the third harmonic seen experimentally.

  6. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  7. Deformations of a pre-stretched elastic membrane driven by non-uniform electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Bercovici, Moran; Boyko, Evgeniy; Gat, Amir

    2016-11-01

    We study viscous-elastic dynamics of fluid confined between a rigid plate and a pre-stretched elastic membrane subjected to non-uniform electroosmotic flow, and focus on the case of a finite-size membrane clamped at its boundaries. Considering small deformations of a strongly pre-stretched membrane, and applying the lubrication approximation for the flow, we derive a linearized leading-order non-homogenous 4th order diffusion equation governing the deformation and pressure fields. We derive a time-dependent Green's function for a rectangular domain, and use it to obtain several basic solutions for the cases of constant and time varying electric fields. In addition, defining an asymptotic expansion where the small parameter is the ratio of the induced to prescribed tension, we obtain a set of four one-way coupled equations providing a first order correction for the deformation field. Funded by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme, Grant agreement No. 678734 (MetamorphChip).

  8. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  9. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, Brian; Jackson, R. Brian

    2017-03-08

    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services.more » The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.« less

  10. In vitro flow assessment: from PC-MRI to computational fluid dynamics including fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Kratzke, Jonas; Rengier, Fabian; Weis, Christian; Beller, Carsten J.; Heuveline, Vincent

    2016-04-01

    Initiation and development of cardiovascular diseases can be highly correlated to specific biomechanical parameters. To examine and assess biomechanical parameters, numerical simulation of cardiovascular dynamics has the potential to complement and enhance medical measurement and imaging techniques. As such, computational fluid dynamics (CFD) have shown to be suitable to evaluate blood velocity and pressure in scenarios, where vessel wall deformation plays a minor role. However, there is a need for further validation studies and the inclusion of vessel wall elasticity for morphologies being subject to large displacement. In this work, we consider a fluid-structure interaction (FSI) model including the full elasticity equation to take the deformability of aortic wall soft tissue into account. We present a numerical framework, in which either a CFD study can be performed for less deformable aortic segments or an FSI simulation for regions of large displacement such as the aortic root and arch. Both of the methods are validated by means of an aortic phantom experiment. The computational results are in good agreement with 2D phase-contrast magnetic resonance imaging (PC-MRI) velocity measurements as well as catheter-based pressure measurements. The FSI simulation shows a characteristic vessel compliance effect on the flow field induced by the elasticity of the vessel wall, which the CFD model is not capable of. The in vitro validated FSI simulation framework can enable the computation of complementary biomechanical parameters such as the stress distribution within the vessel wall.

  11. Temperature rise and flow of Zr-based bulk metallic glasses under high shearing stress

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Ma, Mingzhen; Song, Aijun; Liang, Shunxing; Hao, Qiuhong; Tan, Chunlin; Jing, Qin; Liu, Riping

    2011-11-01

    Deformation of the bulk metallic glasses (BMGs) and the creation and propagation of the shear bands are closely interconnected. Shearing force was loaded on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5(Vit.1) BMGs by cutting during the turning of the BMG rod. The temperature rise of alloy on the shear bands was calculated and the result showed that it could reach the temperature of the super-cooled liquid zone or exceed the melting point. The temperature rise caused viscous fluid flow and brought about the deformation of BMGs. This suggested that the deformation of BMGs was derived, at least to some extent, from the adiabatic shear temperature rise.

  12. On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudip; Kahrilas, Peter

    2005-11-01

    A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.

  13. Self-sustained peristaltic waves: Explicit asymptotic solutions

    NASA Astrophysics Data System (ADS)

    Dudchenko, O. A.; Guria, G. Th.

    2012-02-01

    A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.

  14. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)

  15. Well-posedness of the free boundary problem in compressible elastodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2018-02-01

    We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.

  16. A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility

    PubMed Central

    Jafari Bidhendi, Amirhossein; Korhonen, Rami K.

    2012-01-01

    Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells. PMID:22400045

  17. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  18. Cellular fluid mechanics.

    PubMed

    Kamm, Roger D

    2002-01-01

    The coupling of fluid dynamics and biology at the level of the cell is an intensive area of investigation because of its critical role in normal physiology and disease. Microcirculatory flow has been a focus for years, owing to the complexity of cell-cell or cell-glycocalyx interactions. Noncirculating cells, particularly those that comprise the walls of the circulatory system, experience and respond biologically to fluid dynamic stresses. In this article, we review the more recent studies of circulating cells, with an emphasis on the role of the glycocalyx on red-cell motion in small capillaries and on the deformation of leukocytes passing through the microcirculation. We also discuss flows in the vicinity of noncirculating cells, the influence of fluid dynamic shear stress on cell biology, and diffusion in the lipid bi-layer, all in the context of the important fluid-dynamic phenomena.

  19. Microhydrodynamics of deformable particles: surprising responses of drops and vesicles to uniform electric field or shear flow

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia

    2015-11-01

    Particle motion in a viscous fluid is a classic problem that continues to surprise researchers. In this talk, I will discuss some intriguing, experimentally-observed behaviors of droplets and giant vesicles (cell-size lipid membrane sacs) in electric or flow fields. In a uniform electric field, a droplet deforms into an ellipsoid that can either be steadily tilted relative to the applied field direction or undergo unsteady motions (periodic shape oscillations or irregular flipping); a spherical vesicle can adopt a transient square shape or reversibly porate. In a steady shear flow, a vesicle can tank-tread, tumble or swing. Theoretical models show that the nonlinear drop dynamics originates from the interplay of Quincke rotation and interface deformation, while the vesicle dynamics stems from the membrane inextensibility. The practical motivation for this research lies in an improved understanding of technologies that rely on the manipulation of drops and cells by flow or electric fields.

  20. Deformation of leaky-dielectric fluid globules under strong electric fields: Boundary layers and jets at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud

    2013-11-01

    In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.

  1. Carbonate cements indicate channeled fluid flow along a zone of vertical faults at the deformation front of the Cascadia accretionary wedge (northwest U.S. coast)

    NASA Astrophysics Data System (ADS)

    Sample, James C.; Reid, Mary R.; Tols, Harold J.; Moore, J. Casey

    1993-06-01

    To understand the relation between fluid seeps and structures, sedimentary rocks were collected with the DSRV Alvin from a vertical fault zone that transects the deformation front of the Cascadia accretionary wedge. The rocks contained diagenetic carbonate cement that was precipitated from fluids expelled during accretion. Carbon, oxygen, and strontium isotope data are consistent with a fluid source at >2 km depth. Most carbon isotopes range from -1‰ to -25‰ (PDB [Peedee belemnitel] standard) consistent with a thermogenic methane source. Oxygen isotopes show extreme 18O depletions (-4‰ to -13‰ PDB) that are consistent with precipitation from fluids with temperatures as high as 100 °C. 87Sr/86Sr values of 0.70975 to 0.71279 may be due to strontium in fluids derived from clay-rich parts of the stratigraphic section. The ubiquity of carbonate precipitates and the isotope data indicate that the vertical fault zone is an efficient conduit for fluid dewatering from deep levels of the accretionary wedge.

  2. A microfabricated bio-sensor for erythrocytes deformability and volume distributions analysis

    NASA Astrophysics Data System (ADS)

    Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri

    2007-12-01

    The deformability of erythrocytes is of great importance for oxygen delivery in the microcirculation. Reduced RBC deformability is associated with several types of hemolytic anaemias, malaria, sepsis and diabetes. Aging of erythrocytes is also associated with loss of deformability as well as reduction in cell volume. An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. The system produces valuable data such as velocity profiles of RBCs, spatial distribution within the microchannel, cell volume and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured for the first time. Such DI curves were obtained for normal and Thalassemia RBCs and their diagnostic potential was demonstrated. The spatial distribution and velocity of RBCs and rigid microspheres were measured. Both RBC and rigid spheres showed enhanced inward lateral migration, however the RBCs form a depletion region at the center of flow. The volume and surface area of the flowing cells have been estimated based on a fluid mechanics model and experimental results and fell within the normal range. Hence, the system developed, provides means for examining the behavior of individual RBCs in microchannels, and may serve as a microfabricated diagnostic device for deformability and volume measurements.

  3. Efficient simulation of press hardening process through integrated structural and CFD analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less

  4. Topographic-driven instabilities in terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  5. Linking the optically monitored channel evolution with tremor like seismic activity during aero-fracturing in a very fine granular medium

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume

    2014-05-01

    The characterization and comprehension of rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control,volcanic eruptions), or in the industry, as CO2 sequestration. Even though the fluids and rocks are relatively easier to understand individually, the coupled behaviour of porous media with a dynamic fluid flow makes the system difficult to comprehend. The dynamic interaction between flow and the porous media, rapid changes in the local porosity due to the compaction and migration of the porous material, fracturing due to the momentum exchange in fast flow, make understanding of such a complex system a challenge. In this study, analogue models are developed to predict and control the mechanical stability of rock and soil formations during the injection or extraction of fluids. The models are constructed and calibrated based on the experimental data acquired. This experimental data obtained from solid-fluid interaction are monitored using a combination of techniques, both from geophysics and from experimental fluid mechanics. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. Non expanding polystyrene beads around 80μm size are used as solid particles and air is used as the intruding fluid. During the experiments, the fluid is injected steadily (or injected and suddenly stopped to see the pushback in a setup with four impermeable boundaries) into the system from the point opposite to the semi-permeable boundary so that the fluid penetrates into the solid and makes a way via creating channels, fractures or directly using the pore network to the semi-permeable boundary. The acoustic signals emitted during the mentioned solid-fluid interactions are recorded by various sensors - i.e. Piezoelectric Shock Accelerometer (Freq. range: 1Hz - 26kHz) and Piezoelectrical Sensors (Freq. range: 100kHz - 1MHz) with a sampling rate of 1MHz - on the Hele-Shaw cell. After the experiment, those signals are compared and investigated further in both time and frequency domains. Moreover, by using different techniques localization of the acoustic emissions are done and compared. Furthermore, during the experiments pictures of the Hele-Shaw cell are taken using a high speed camera. Thus, it is possible to visualize the solid-fluid interaction and to process images to gather information about the mechanical properties of the solid partition. The link between the visual and the mechanical wave signals is investigated. The spectrum of the signal is observed to be strongly affected by the size and shape of deforming channels created during the process. The power of the recorded signal is related to the integrated deformation rate in the process. Fast avalanches and rearrangements of grains at small scales are related to high frequency (above 10 kHz) acoustic emissions.

  6. Cytoplasmic Flow Enhances Organelle Dispersion in Eukaryotic Cells

    NASA Astrophysics Data System (ADS)

    Koslover, Elena; Mogre, Saurabh; Chan, Caleb; Theriot, Julie

    The cytoplasm of a living cell is an active environment through which intracellular components move and mix. We explore, using theoretical modeling coupled with microrheological measurements, the efficiency of particle dispersion via different modes of transport within this active environment. In particular, we focus on the role of cytoplasmic flow over different scales in contributing to organelle transport within two different cell types. In motile neutrophil cells, we show that bulk fluid flow associated with rapid cell deformation enhances particle transport to and from the cell periphery. In narrow fungal hyphae, localized flows due to hydrodynamic entrainment are shown to contribute to optimally efficient organelle dispersion. Our results highlight the importance of non-traditional modes of transport associated with flow of the cytoplasmic fluid in the distribution of organelles throughout eukaryotic cells.

  7. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow

    NASA Astrophysics Data System (ADS)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-10-01

    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  8. Permeability evolution during non-linear viscous creep of porous calcite rocks

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Evans, B.; Bernabe, Y.

    2005-12-01

    Below the brittle-ductile transition, permeability might be exceedingly small, due to compaction facilitated by intracrystalline plasticity or viscous creep. The ductile lower crust may consist of depth intervals or isolated domains of relatively high permeability, where the fluid pressures are at or near lithostatic values. Fluid escape from metamorphic rocks likely involves episodic hydrofracturing or porosity-wave propagation driven by the difference between the gradients of fluid and rock pressure. Although it is generally agreed that fluid flow in ductile porous rocks is critically dependent on the interplay between the fluid properties and the rheology of the rock matrix, more experimental work is needed to elucidate the ways that permeability and porosity change during deformation at elevated temperature and pressures. Triaxial tests of synthetic calcite marbles containing 10, 20, or 30 wt% quartz and up to 9% residual porosity done at temperature up to 873K, reported earlier (Xiao and Evans, 2003), indicate that shear-enhanced compaction occurs under triaxial conditions, roughly consistent with a model of void collapse by viscous creep (Budiansky et al., 1982). In this study, we report the effect of viscous creep on the permeability of those porous rocks during both isostatic and conventional triaxial loading. The tests were performed at confining pressure of 300 MPa, pore pressures between 50 to 290 MPa, temperatures from 673 to 873K and strain rates of 3.0× 10-5 s-1. Argon gas was used as the pore fluid. Under isostatic loading conditions, permeability, k, is nonlinearly related to porosity, Φ. Over small changes in porosity, the two parameters are approximately related as k~Φn. The exponent n progressively increases as the porosity decreases to a finite value, suggesting a percolation porosity. When subjected to triaxial deformation, the calcite-quartz aggregates exhibit a shear-enhanced compaction, but permeability does not decrease as rapidly as it does during isostatic conditions; the exponent n varies between 2 and 3. Non-isostatic deformation seems to reduce the percolation threshold, and, in fact, enhances the permeability relative to that at the same porosity during isostatic compaction. Our data provide constraints on the governing parameters of the compaction theory, and may have far-reaching implications for melt extraction from partially molten rocks, for the expulsion of sedimentary fluids, and for fluid flow during deformation and metamorphism.

  9. Dynamics of a class of vortex rings. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.

    1989-01-01

    The contour dynamics method is extended to vortex rings with vorticity varying linearly from the symmetry axis. An elliptic core model is also developed to explain some of the basic physics. Passage and collisions of two identical rings are studied focusing on core deformation, sound generation and stirring of fluid elements. With respect to core deformation, not only the strain rate but how rapidly it varies is important and accounts for greater susceptibility to vortex tearing than in two dimensions. For slow strain, as a passage interaction is completed and the strain relaxes, the cores return to their original shape while permanent deformations remain for rapidly varying strain. For collisions, if the strain changes slowly the core shapes migrate through a known family of two-dimensional steady vortex pairs up to the limiting member of the family. Thereafter energy conservation does not allow the cores to maintain a constant shape. For rapidly varying strain, core deformation is severe and a head-tail structure in good agreement with experiments is formed. With respect to sound generation, good agreement with the measured acoustic signal for colliding rings is obtained and a feature previously thought to be due to viscous effects is shown to be an effect of inviscid core deformation alone. For passage interactions, a component of high frequency is present. Evidence for the importance of this noise source in jet noise spectra is provided. Finally, processes of fluid engulfment and rejection for an unsteady vortex ring are studied using the stable and unstable manifolds. The unstable manifold shows excellent agreement with flow visualization experiments for leapfrogging rings suggesting that it may be a good tool for numerical flow visualization in other time periodic flows.

  10. TRUST84. Sat-Unsat Flow in Deformable Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narasimhan, T.N.

    1984-11-01

    TRUST84 solves for transient and steady-state flow in variably saturated deformable media in one, two, or three dimensions. It can handle porous media, fractured media, or fractured-porous media. Boundary conditions may be an arbitrary function of time. Sources or sinks may be a function of time or of potential. The theoretical model considers a general three-dimensional field of flow in conjunction with a one-dimensional vertical deformation field. The governing equation expresses the conservation of fluid mass in an elemental volume that has a constant volume of solids. Deformation of the porous medium may be nonelastic. Permeability and the compressibility coefficientsmore » may be nonlinearly related to effective stress. Relationships between permeability and saturation with pore water pressure in the unsaturated zone may be characterized by hysteresis. The relation between pore pressure change and effective stress change may be a function of saturation. The basic calculational model of the conductive heat transfer code TRUMP is applied in TRUST84 to the flow of fluids in porous media. The model combines an integrated finite difference algorithm for numerically solving the governing equation with a mixed explicit-implicit iterative scheme in which the explicit changes in potential are first computed for all elements in the system, after which implicit corrections are made only for those elements for which the stable time-step is less than the time-step being used. Time-step sizes are automatically controlled to optimize the number of iterations, to control maximum change to potential during a time-step, and to obtain desired output information. Time derivatives, estimated on the basis of system behavior during the two previous time-steps, are used to start the iteration process and to evaluate nonlinear coefficients. Both heterogeneity and anisotropy can be handled.« less

  11. Fully Coupled Nonlinear Fluid Flow and Poroelasticity in Arbitrarily Fractured Porous Media: A Hybrid-Dimensional Computational Model

    NASA Astrophysics Data System (ADS)

    Jin, L.; Zoback, M. D.

    2017-10-01

    We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.

  12. Finite Element Modeling of Non-linear Coupled Interacting Fault System

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Zhang, J.; Wyborn, D.

    2009-04-01

    PANDAS - Parallel Adaptive static/dynamic Nonlinear Deformation Analysis System - a novel supercomputer simulation tool is developed for simulating the highly non-linear coupled geomechanical-fluid flow-thermal systems involving heterogeneously fractured geomaterials. PANDAS includes the following key components: Pandas/Pre, ESyS_Crustal, Pandas/Thermo, Pandas/Fluid and Pandas/Post as detailed in the following: • Pandas/Pre is developed to visualise the microseismicity events recorded during the hydraulic stimulation process to further evaluate the fracture location and evolution and geological setting of a certain reservoir, and then generate the mesh by it and/or other commercial graphics software (such as Patran) for the further finite element analysis of various cases; The Delaunay algorithm is applied as a suitable method for mesh generation using such a point set; • ESyS_Crustal is a finite element code developed for the interacting fault system simulation, which employs the adaptive static/dynamic algorithm to simulate the dynamics and evolution of interacting fault systems and processes that are relevant on short to mediate time scales in which several dynamic phenomena related with stick-slip instability along the faults need to be taken into account, i.e. (a). slow quasi-static stress accumulation, (b) rapid dynamic rupture, (c) wave propagation and (d) corresponding stress redistribution due to the energy release along the multiple fault boundaries; those are needed to better describe ruputure/microseimicity/earthquake related phenomena with applications in earthquake forecasting, hazard quantification, exploration, and environmental problems. It has been verified with various available experimental results[1-3]; • Pandas/Thermo is a finite element method based module for the thermal analysis of the fractured porous media; the temperature distribution is calculated from the heat transfer induced by the thermal boundary conditions without/with the coupled fluid effects and the geomechanical energy conversion for the pure/coupled thermal analysis. • Pandas/Fluid is a finite element method based module for simulating the fluid flow in the fractured porous media; the fluid flow velocity and pressure are calculated from energy equilibrium equations without/together with the coupling effects of the thermal and solid rock deformation for an independent/coupled fluid flow analysis; • Pandas/Post is to visualise the simulation results through the integration of VTK and/or Patran. All the above modules can be used independently/together to simulate individual/coupled phenomena (such as interacting fault system dynamics, heat flow and fluid flow) without/with coupling effects. PANDAS has been applied to the following issues: • visualisation of the microseismic events to monitor and determine where/how the underground rupture proceeds during a hydraulic stimulation, to generate the mesh using the recorded data for determining the domain of the ruptured zone and to evaluate the material parameters (i.e. the permeability) for the further numerical analysis; • interacting fault system simulation to determine the relevant complicated dynamic rupture process. • geomechanical-fluid flow coupling analysis to investigate the interactions between fluid flow and deformation in the fractured porous media under different loading conditions. • thermo-fluid flow coupling analysis of a fractured geothermal reservoir system. PANDAS will be further developed for a multiscale simulation of multiphase dynamic behaviour for a certain fractured geothermal reservoir. More details and additional application examples will be given during the presentation. References [1] Xing, H. L., Makinouchi, A. and Mora, P. (2007). Finite element modeling of interacting fault system, Physics of the Earth and Planetary Interiors, 163, 106-121.doi:10.1016/j.pepi.2007.05.006 [2] Xing, H. L., Mora, P., Makinouchi, A. (2006). An unified friction description and its application to simulation of frictional instability using finite element method. Philosophy Magazine, 86, 3453-3475 [3] Xing, H. L., Mora, P.(2006). Construction of an intraplate fault system model of South Australia, and simulation tool for the iSERVO institute seed project.. Pure and Applied Geophysics. 163, 2297-2316. DOI 10.1007/s00024-006-0127-x

  13. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  14. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  15. Numerical simulation of evolutionary erodible bedforms using the particle finite element method

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Becker, Pablo; Ortiz, Pablo

    2017-07-01

    This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.

  16. Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Hasenclever, J.

    2017-12-01

    Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.

  17. Diffuse-interface approach to rotating Hele-Shaw flows.

    PubMed

    Chen, Ching-Yao; Huang, Yu-Sheng; Miranda, José A

    2011-10-01

    When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities and topological changes such as droplet pinch-off and self-intersection. We present numerical simulations based on a diffuse-interface model for this particular two-phase displacement that capture a variety of pattern-forming behaviors. This is implemented by employing a Boussinesq Hele-Shaw-Cahn-Hilliard approach, considering the whole range of possible values for the viscosity contrast, and by including inertial effects due to the Coriolis force. The role played by these two physical contributions on the development of interface singularities is illustrated and discussed.

  18. Fluid Mechanics of Blood Clot Formation.

    PubMed

    Fogelson, Aaron L; Neeves, Keith B

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  19. Fluid Mechanics of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Fogelson, Aaron L.; Neeves, Keith B.

    2015-01-01

    Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.

  20. Numerical simulations of elastic capsules with nucleus in shear flow

    NASA Astrophysics Data System (ADS)

    Alizad Banaei, Arash; Loiseau, Jean-Christophe; Lashgari, Iman; Brandt, Luca

    2017-03-01

    The shear-induced deformation of a capsule with a stiff nucleus, a model of eukaryotic cells, is studied numerically. The membrane of the cell and of its nucleus are modelled as a thin elastic material obeying a Neo-Hookean constitutive law. The fluid-structure coupling is obtained using an immersed boundary method. The variations induced by the presence of the nucleus on the cell deformation are investigated when varying the viscosity ratio between the inner and outer fluids, the membrane elasticity and its bending stiffness. The deformation of the eukaryotic cell is smaller than that of the prokaryotic one. The reduction in deformation increases for larger values of the capillary number. The eukaryotic cell remains thicker in its middle part compared to the prokaryotic one, thus making it less flexible to pass through narrow capillaries. For a viscosity ratio of 5, the deformation of the cell is smaller than in the case of uniform viscosity. In addition, for non-zero bending stiffness of the membrane, the deformation decreases and the shape is closer to an ellipsoid. Finally, we compare the results obtained modelling the nucleus as an inner stiffer membrane with those obtained using a rigid particle.

  1. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan

    2017-12-01

    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  2. The Effects of Core-Mantle Interactions on Earth Rotation, Surface Deformation, and Gravity Changes

    NASA Astrophysics Data System (ADS)

    Watkins, A.; Gross, R. S.; Fu, Y.

    2017-12-01

    The length-of-day (LOD) contains a 6-year signal, the cause of which is currently unknown. The signal remains after removing tidal and surface fluid effects, thus the cause is generally believed to be angular momentum exchange between the mantle and core. Previous work has established a theoretical relationship between pressure variations at the core-mantle boundary (CMB) and resulting deformation of the overlying mantle and crust. This study examines globally distributed GPS deformation data in search of this effect, and inverts the discovered global inter-annual component for the CMB pressure variations. The geostrophic assumption is then used to obtain fluid flow solutions at the edge of the core from the CMB pressure variations. Taylor's constraint is applied to obtain the flow deeper within the core, and the equivalent angular momentum and LOD changes are computed and compared to the known 6-year LOD signal. The amplitude of the modeled and measured LOD changes agree, but the degree of period and phase agreement is dependent upon the method of isolating the desired component in the GPS position data. Implications are discussed, and predictions are calculated for surface gravity field changes that would arise from the CMB pressure variations.

  3. Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Sugiyama, Kazuyasu; , Satoshi, II; Takeuchi, Shintaro; Takagi, Shu; Matsumoto, Yoichiro

    2010-03-01

    For a given initial configuration of a multi-component geometry represented by voxel-based data on a fixed Cartesian mesh, a full Eulerian finite difference method facilitates solution of dynamic interaction problems between Newtonian fluid and hyperelastic material. The solid volume fraction, and the left Cauchy-Green deformation tensor are temporally updated on the Eulerian frame, respectively, to distinguish the fluid and solid phases, and to describe the solid deformation. The simulation method is applied to two- and three-dimensional motions of two biconcave neo-Hookean particles in a Poiseuille flow. Similar to the numerical study on the red blood cell motion in a circular pipe (Gong et al. in J Biomech Eng 131:074504, 2009), in which Skalak’s constitutive laws of the membrane are considered, the deformation, the relative position and orientation of a pair of particles are strongly dependent upon the initial configuration. The increase in the apparent viscosity is dependent upon the developed arrangement of the particles. The present Eulerian approach is demonstrated that it has the potential to be easily extended to larger system problems involving a large number of particles of complicated geometries.

  4. Deformation Bands in an Exhumed Oil Reservoir, Corona del Mar, California, USA

    NASA Astrophysics Data System (ADS)

    Sample, J.; Woods, S.; Bender, E.; Loveall, M.

    2002-12-01

    Deformation bands in coarse-grained sandstones are commonly narrow zones of reduced porosity that restrict migration of fluids. Deformation bands are known from core observations and outcrop studies, but we present for the first time results from an exhumed oil reservoir. The deformation bands occur in a poorly consolidated, oil-bearing sandstone of the Miocene Monterey Formation, within the active, right-slip Newport-Inglewood fault zone (NIFZ). The deformation bands crop out as resistant ribs and fins in a very coarse-grained sandstone comprising mainly quartz and feldspar detritus. Deformation bands strike 323°, similar to the NIFZ, and dip variably (N = 113). There are three clusters of dips within the main set: 88NE, 60NE, and 47SW. A fourth cluster has an orientation of 353 °, 70W. Although the kinematic history is complex, steep bands generally are youngest. Deformation bands exhibit both normal and right-slip separations, but net slip was rarely possible to determine. The deformation bands are closely spaced. They formed by porosity reduction and locally cataclasis. Most deformation bands are oil-free, indicating formation before oil migration, and that they were barriers to flow. There are at least two modes of oil-bearing bands: 1) bands with oil in pore spaces; and 2) bands containing oil in small open pockets, especially lining the edges of bands. Case 1 suggests that porosity reduction did not completely preclude oil penetration or that at least some band formation occurred after oil migration. Case 2 is consistent with reactivation of bands as tensional features, perhaps late in the evolution of the reservoir. Other evidence for late-stage tensional deformation during oil migration includes the presence of young sandstone dikes and bitumen veins up to 7 cm in width lined with euhedral quartz. The relationships observed at Corona del Mar are generally consistent with deformation bands acting as barriers to flow, but clearly deformation bands can be reactivated as fluid conduits. This is probably due to differences in mechanical strength between bands and the surrounding sandstone matrix, focusing tensional failure at deformation band boundaries.

  5. Induced groundwater flux by increases in the aquifer's total stress.

    PubMed

    Chang, Ching-Min; Yeh, Hund-Der

    2015-01-01

    Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values. © 2014, National Ground Water Association.

  6. Analyzing Axial Stress and Deformation of Tubular for Steam Injection Process in Deviated Wells Based on the Varied (T, P) Fields

    PubMed Central

    Liu, Yunqiang; Xu, Jiuping; Wang, Shize; Qi, Bin

    2013-01-01

    The axial stress and deformation of high temperature high pressure deviated gas wells are studied. A new model is multiple nonlinear equation systems by comprehensive consideration of axial load of tubular string, internal and external fluid pressure, normal pressure between the tubular and well wall, and friction and viscous friction of fluid flowing. The varied temperature and pressure fields were researched by the coupled differential equations concerning mass, momentum, and energy equations instead of traditional methods. The axial load, the normal pressure, the friction, and four deformation lengths of tubular string are got ten by means of the dimensionless iterative interpolation algorithm. The basic data of the X Well, 1300 meters deep, are used for case history calculations. The results and some useful conclusions can provide technical reliability in the process of designing well testing in oil or gas wells. PMID:24163623

  7. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    PubMed Central

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  8. A unified approach to fluid-flow, geomechanical, and seismic modelling

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya; Minakov, Alexander

    2016-04-01

    The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by e.g. fault generation or strain localization. This approach gives unified framework to characterize microseismicity of both class-I (pressure induced) and class-II (stress triggered) type of events. We consider two modelling setups. In the first setup the event is located within the reservoir and associated with pressure/stress drop due to fracture initiation. In the second setup we assume that seismic wave from a distant source hits a reservoir. The unified formulation of poro-elastoplastic deformation allows us to link the macroscopic stresses to local seismic instability.

  9. Illite authigenesis during faulting and fluid flow - a microstructural study of fault rocks

    NASA Astrophysics Data System (ADS)

    Scheiber, Thomas; Viola, Giulio; van der Lelij, Roelant; Margreth, Annina

    2017-04-01

    Authigenic illite can form synkinematically during slip events along brittle faults. In addition it can also crystallize as a result of fluid flow and associated mineral alteration processes in hydrothermal environments. K-Ar dating of illite-bearing fault rocks has recently become a common tool to constrain the timing of fault activity. However, to fully interpret the derived age spectra in terms of deformation ages, a careful investigation of the fault deformation history and architecture at the outcrop-scale, ideally followed by a detailed mineralogical analysis of the illite-forming processes at the micro-scale, are indispensable. Here we integrate this methodological approach by presenting microstructural observations from the host rock immediately adjacent to dated fault gouges from two sites located in the Rolvsnes granodiorite (Bømlo, western Norway). This granodiorite experienced multiple episodes of brittle faulting and fluid-induced alteration, starting in the Mid Ordovician (Scheiber et al., 2016). Fault gouges are predominantly associated with normal faults accommodating mainly E-W extension. K-Ar dating of illites separated from representative fault gouges constrains deformation and alteration due to fluid ingress from the Permian to the Cretaceous, with a cluster of ages for the finest (<0.1 µm) fraction in the early to middle Jurassic. At site one, high-resolution thin section structural mapping reveals a complex deformation history characterized by several coexisting types of calcite veins and seven different generations of cataclasite, two of which contain a significant amount of authigenic and undoubtedly deformation-related illite. At site two, fluid ingress along and adjoining the fault core induced pervasive alteration of the host granodiorite. Quartz is crosscut by calcite veinlets whereas plagioclase, K-feldspar and biotite are almost completely replaced by the main alteration products kaolin, quartz and illite. Illite-bearing micro-domains were physically separated by means of microsawing and drilling devices. K-Ar and XRD data from these separates are compared with bulk K-Ar and XRD data from the adjacent fault gouges, which may help to further unravel complex histories archived in multiply activated brittle fault zones. Scheiber, T., Viola, G., Wilkinson, C.M., Ganerød, M., Skår, Ø., and D. Gasser (2016): Direct 40Ar/39Ar dating of Late-Ordovician and Silurian brittle faulting in the southwestern Norwegian Caledonides. Terra Nova 28, 374-382.

  10. Travelling waves above the canopy of aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Lyubimov, D.; Lyubimova, T.; Baidina, D.

    2012-04-01

    When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave number of most dangerous perturbations increases monotonically with d. The effect of the deformability of porous medium on linear stability conditions is also investigated. Non-linear flow regimes are studied numerically by finite difference method. The calculations are performed for the rectangular domains whose length is taken to be equal to the wavelength of most dangerous perturbations according to linear stability theory. The calculations show that for low values of Reynolds number the stationary uni-directional flow is realized. Starting from a certain Reynolds number, the stationary oscillations are established with amplitude and frequency depending on the parameters. Analysis of the velocity fields corresponding to different phases of the oscillation period, shows that the observed waves travel in the direction of the basic flow. The work was made under financial support of Russian Foundation for Basic Research. 1. Ghisalberti, M., Nepf, H.M., 2002, Mixing layers and coherent structures in vegetated aquatic flows, J. of Geophysical Research. 107, C2.

  11. Deformation of a soft helical filament in an axial flow at low Reynolds number.

    PubMed

    Jawed, Mohammad K; Reis, Pedro M

    2016-02-14

    We perform a numerical investigation of the deformation of a rotating helical filament subjected to an axial flow, under low Reynolds number conditions, motivated by the propulsion of bacteria using helical flagella. Given its slenderness, the helical rod is intrinsically soft and deforms due to the interplay between elastic forces and hydrodynamic loading. We make use of a previously developed and experimentally validated computational tool framework that models the elasticity of the filament using the discrete elastic rod method and the fluid forces are treated using Lighthill's slender body theory. Under axial flow, and in the absence of rotation, the initially helical rod is extended. Above a critical flow speed its configuration comprises a straight portion connected to a localized helix near the free end. When the rod is also rotated about its helical axis, propulsion is only possible in a finite range of angular velocity, with an upper bound that is limited by buckling of the soft helix arising due to viscous stresses. A systematic exploration of the parameter space allows us to quantify regimes for successful propulsion for a number of specific bacteria.

  12. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE PAGES

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  13. A noninvasive method for measuring the velocity of diffuse hydrothermal flow by tracking moving refractive index anomalies

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier

    2010-10-01

    Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.

  14. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations.

    PubMed

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε(c) at which the star undergoes the coil-to-stretch transition is independent of f for f = 2,5,10, and 20.

  15. Emplacement of the Rocche Rosse rhyolite lava flow (Lipari, Aeolian Islands)

    NASA Astrophysics Data System (ADS)

    Bullock, Liam A.; Gertisser, Ralf; O'Driscoll, Brian

    2018-05-01

    The Rocche Rosse lava flow marks the most recent rhyolitic extrusion on Lipari island (Italy), and preserves evidence for a multi-stage emplacement history. Due to the viscous nature of the advancing lava (108 to 1010 Pa s), indicators of complex emplacement processes are preserved in the final flow. This study focuses on structural mapping of the flow to highlight the interplay of cooling, crust formation and underlying slope in the development of rhyolitic lavas. The flow is made up of two prominent lobes, small (< 0.2 m) to large (> 0.2 m) scale folding and a channelled geometry. Foliations dip at 2-4° over the flatter topography close to the vent, and up to 30-50° over steeper mid-flow topography. Brittle faults, tension gashes and conjugate fractures are also evident across flow. Heterogeneous deformation is evident through increasing fold asymmetry from the vent due to downflow cooling and stagnation. A steeper underlying topography mid-flow led to development of a channelled morphology, and compression at topographic breaks resulted in fold superimposition in the channel. We propose an emplacement history that involved the evolution through five stages, each associated with the following flow regimes: (1) initial extrusion, crustal development and small scale folding; (2) extensional strain, stretching lineations and channel development over steeper topography; (3) compression at topographic break, autobrecciation, lobe development and medium scale folding; (4) progressive deformation with stagnation, large-scale folding and re-folding; and (5) brittle deformation following flow termination. The complex array of structural elements observed within the Rocche Rosse lava flow facilitates comparisons to be made with actively deforming rhyolitic lava flows at the Chilean volcanoes of Chaitén and Cordón Caulle, offering a fluid dynamic and structural framework within which to evaluate our data.

  16. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain

    NASA Technical Reports Server (NTRS)

    Owan, I.; Burr, D. B.; Turner, C. H.; Qiu, J.; Tu, Y.; Onyia, J. E.; Duncan, R. L.

    1997-01-01

    Mechanical force applied to bone produces two localized mechanical signals on the cell: deformation of the extracellular matrix (substrate strain) and extracellular fluid flow. To study the effects of these stimuli on osteoblasts, MC3T3-E1 cells were grown on type I collagen-coated plastic plates and subjected to four-point bending. This technique produces uniform levels of physiological strain and fluid forces on the cells. Each of these parameters can be varied independently. Osteopontin (OPN) mRNA expression was used to assess the anabolic response of MC3T3-E1 cells. When fluid forces were low, neither strain magnitude nor strain rate was correlated with OPN expression. However, higher-magnitude fluid forces significantly increased OPN message levels independently of the strain magnitude or rate. These data indicate that fluid forces, and not mechanical stretch, influence OPN expression in osteoblasts and suggest that fluid forces induced by extracellular fluid flow within the bone matrix may play an important role in bone formation in response to mechanical loading.

  17. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong

    2013-02-01

    A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.

  18. Cold seeps associated with a submarine debris avalanche deposit at Kick'em Jenny volcano, Grenada (Lesser Antilles)

    NASA Astrophysics Data System (ADS)

    Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara

    2014-11-01

    Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.

  19. Entropic multirelaxation-time lattice Boltzmann method for moving and deforming geometries in three dimensions

    NASA Astrophysics Data System (ADS)

    Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.

    2017-06-01

    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015), 10.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B . Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016), 10.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re =40 000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.

  20. Cyclical shear fracture and viscous flow during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, California

    NASA Astrophysics Data System (ADS)

    Compton, Katharine E.; Kirkpatrick, James D.; Holk, Gregory J.

    2017-06-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures, such as veins and pseudotachylytes, which record broadly contemporaneous brittle and ductile deformation. Here, we investigate veins within the Saddlebag Lake Shear Zone, central Sierra Nevada, California, to constrain the conditions and processes that caused fractures to form during ductile deformation. The shear zone mylonites contain compositional banding at centimeter- to meter- scales, and a ubiquitous, grain-scale, continuous- to spaced-foliation defined by aligned muscovite and chlorite grains. Veins of multiple compositions formed in two predominant sets: sub-parallel to the foliation and at high angle to the foliation. Some foliation sub-parallel veins show apparent shear offset consistent with the overall kinematics of the shear zone. These veins are folded with the foliation and are commonly boudinaged, showing they were rigid inclusions after formation. Quartz microstructures and fluid inclusion thermobarometry measurements indicate the veins formed by fracture at temperatures between 400-600 °C. Quartz, feldspar and tourmaline δ18O values (+ 2.5 to + 16.5) suggest extended fluid-rock interaction that involved magmatic, metamorphic, and meteoric-hydrothermal fluids. The orientation and spatial distribution of the veins shows that shear fractures formed along mechanically weak foliation planes. We infer fracture was promoted by perturbations to the strain rate and/or pore pressure during frictional-viscous deformation in a low effective stress environment. Evidence for repeated fracture and subsequent flow suggest both the stress and pore pressure varied, and that the tendency to fracture was controlled by the rates of pore pressure recovery, facilitated by fracture cementation. The tectonic setting and inferred phenomenological behavior were similar to intra-continental transform faults that host triggered tectonic tremor, suggesting the mechanisms that caused brittle fracture during viscous deformation may be important for comparable active systems.

  1. Oreshoot zoning in the Carlin-type Betze orebody, Goldstrike Mine, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.; Ferdock, Gregory C.; Woitsekhowskaya, Maria B.; Leonardson, Robert; Rahn, Jerry

    1998-01-01

    Field and laboratory investigations of the giant Betze gold orebody, the largest Carlin-type deposit known, in the north-central Carlin trend, Nevada document that the orebody is composed of individual high-grade oreshoots that contain different geologic, mineralogic, and textural characteristics. The orebody is typical of many structurally controlled Carlin-type deposits, and is hosted in thin-bedded, impure carbonate or limy siltstone, breccia bodies, and intrusive or calc-silicate rock. Most ores in the Betze orebody are highly sheared or brecciated and show evidence of syndeformational hydrothermal deposition. The interplay between rock types and pre- and syn-structural events accounts for most of the distribution and zoning of the oreshoots. Hydrothermal alteration is scale dependent, either in broad, pervasive alteration patterns, or in areas related to various oreshoots. Alteration includes decarbonatization (~decalcification) of carbonate units, argillization (illite-clay), and silicification. Patterns of alteration zoning in and surrounding the Betze orebody define a large porous, dilated volume of rock where high fluid flow predominated. Local restriction of alteration to narrow illite- and clay-rich selvages around unaltered marble or calc-silicate rock phacoids implies that fluid flow favored permeable structures and deformed zones. Gold mainly is present as disseminated sub-micron-sized particles, commonly associated with Asñrich pyrite, although one type of oreshoot contains micron-size free gold. Oreshoots form a three-dimensional zoning pattern in the orebody within a WNW-striking structural zone of shearing and shear folding, termed the Dillon deformation zone (DDZ). Main types of oreshoots are: (1) rutile-bearing siliceous oreshoots; (2) illite-clay-pyrite oreshoots; (3) realgar- and orpiment-bearing oreshoots; (4) stibnite-bearing siliceous oreshoots; and (5) polymetallic oreshoots. Zoning patterns result from paragenetically early development of illite-clay-pyrite oreshoots during movement along the DDZ, and subsequent silicification and brecciation, associated with formation of the realgar- and orpiment-bearing, and stibnite-bearing oreshoots. Additional shear movement along the DDZ followed. Polymetallic oreshoots, which contain minerals rich in Hg, Cu, Zn, Ag, and native Au, were the last ores to form and overprint most earlier oreshoots. Ore textures, gouge, phyllonitic rock, alteration style, and previously documented isotopic and fluid-inclusion data, all indicate a weakly to moderately saline fluid that ascended and cooled during structural displacements. Changing conditions, due to water-wall rock reactions and P-T changes during deformation, are probably responsible for fluid variation that resulted in zoning of the different oreshoots during dynamic interaction of the Au-bearing fluid with the wall rock. This investigation indicates that isolated As-, Sb-, and Hg-rich ores are separate parts of a larger single gold system. This large gold system was contemporaneous with post-Jurassic brittle-ductile deformation, on the basis of deformed mineralized pods of the Jurassic Goldstrike pluton, and large-scale hydrothermal flow, and together they appear to be an integral part of the formation of some Carlin-type gold deposits in north-central Nevada.

  2. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhou; Xu, Junbo; He, Xianfeng

    2018-07-01

    The behaviour of a single droplet in shear flow is a fundamental problem in immiscible liquid-liquid multiphase fluid systems. In this article, the deformation and inclination angle of single droplet covered with surfactants in shear flow at moderate Reynolds number, when both the inertial effects and interfacial tension are the key governing factors, were simulated by dissipative particle dynamics (DPD). Weber number We was adopted to indicate the force state of the droplet and a linear relationship between the deformation parameter D and We was found when Reynolds number Re is about 1-10, which is similar to the relation of D and Capillary number Ca when Re ≪ 1. When the surfactant concentration is lower than the critical micelle concentration (CMC), the distribution of surfactants, the droplet inclination angle θ and the droplet deformation parameter D were investigated at different surfactant density at interface ds and shear rate ?. When the droplet size is close to the characteristic size of surfactant molecules, phase interfaces of water in oil (W/O) and oil in water (O/W) systems have different microstructures, which result in differences in the surfactant distribution, the droplet inclination angle and deformation of the two systems.

  3. Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones.

    PubMed

    Fusseis, F; Regenauer-Lieb, K; Liu, J; Hough, R M; De Carlo, F

    2009-06-18

    The feedback between fluid migration and rock deformation in mid-crustal shear zones is acknowledged as being critical for earthquake nucleation, the initiation of subduction zones and the formation of mineral deposits. The importance of this poorly understood feedback is further highlighted by evidence for shear-zone-controlled advective flow of fluids in the ductile lower crust and the recognition that deformation-induced grain-scale porosity is a key to large-scale geodynamics. Fluid migration in the middle crust cannot be explained in terms of classical concepts. The environment is considered too hot for a dynamic fracture-sustained permeability as in the upper crust, and fluid pathways are generally too deformed to be controlled by equilibrium wetting angles that apply to hotter, deeper environments. Here we present evidence that mechanical and chemical potentials control a syndeformational porosity generation in mid-crustal shear zones. High-resolution synchrotron X-ray tomography and scanning electron microscopy observations allow us to formulate a model for fluid migration in shear zones where a permeable porosity is dynamically created by viscous grain-boundary sliding, creep cavitation, dissolution and precipitation. We propose that syndeformational fluid migration in our 'granular fluid pump' model is a self-sustained process controlled by the explicit role of the rate of entropy production of the underlying irreversible mechanical and chemical microprocesses. The model explains fluid transfer through the middle crust, where strain localization in the creep regime is required for plate tectonics, the formation of giant ore deposits, mantle degassing and earthquake nucleation. Our findings provide a key component for the understanding of creep instabilities in the middle crust.

  4. PUMP FOR GASEOUS WORKING FLUIDS

    DOEpatents

    Lipscomb, R.

    1948-12-14

    A gas pump having a substantially constant rate of flow and a relatively efficient punnping action is described. A number of flexible plates disposed longitudinally in and in contact with a duct are caused to oscillate transversly so as to produce wave-llke deformations of the plates. These deformations are mechanically produced by pushrods and an eccentric gearing arrangement, and are so synchronized that the waves travel from the inlet to the outlet of the duct, and, in so doing, move the gas by positive displacement.

  5. Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.

    2000-01-18

    We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line inmore » three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.« less

  6. Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    Unger, Ralf; Haupt, Matthias C.; Horst, Peter; Radespiel, Rolf

    2012-01-01

    In this paper, a coupling simulation methodology is applied to investigate the fluid flow around a light and flexible airfoil based on a handfoil of a seagull. A finite element model of the flexible airfoil is fully coupled to the flow solver by using a load and displacement transfer as well as a fluid grid deformation algorithm. The flow field is characterized by a laminar-turbulent transition at a Reynolds number of Re=100 000, which takes place along a laminar separation bubble. An unsteady Reynolds-averaged Navier-Stokes flow solver is used to take this transition process into account by comparison of a critical N-factor with the N-factor computed by the eN-method. Results of computations have shown that the flexibility of the airfoil has a major influence on the thrust efficiency, the mean drag and lift, and the location of laminar-turbulent transition. The thrust efficiency can be considerably improved by increasing the plunging amplitude and by using a time dependent airfoil stiffness, inspired by the muscle contraction of birds.

  7. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  8. Fluid-solid coupled simulation of the ignition transient of solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Liu, Peijin; He, Guoqiang

    2015-05-01

    The first period of the solid rocket motor operation is the ignition transient, which involves complex processes and, according to chronological sequence, can be divided into several stages, namely, igniter jet injection, propellant heating and ignition, flame spreading, chamber pressurization and solid propellant deformation. The ignition transient should be comprehensively analyzed because it significantly influences the overall performance of the solid rocket motor. A numerical approach is presented in this paper for simulating the fluid-solid interaction problems in the ignition transient of the solid rocket motor. In the proposed procedure, the time-dependent numerical solutions of the governing equations of internal compressible fluid flow are loosely coupled with those of the geometrical nonlinearity problems to determine the propellant mechanical response and deformation. The well-known Zeldovich-Novozhilov model was employed to model propellant ignition and combustion. The fluid-solid coupling interface data interpolation scheme and coupling instance for different computational agents were also reported. Finally, numerical validation was performed, and the proposed approach was applied to the ignition transient of one laboratory-scale solid rocket motor. For the application, the internal ballistics were obtained from the ground hot firing test, and comparisons were made. Results show that the integrated framework allows us to perform coupled simulations of the propellant ignition, strong unsteady internal fluid flow, and propellant mechanical response in SRMs with satisfactory stability and efficiency and presents a reliable and accurate solution to complex multi-physics problems.

  9. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    PubMed

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  11. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  12. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

    NASA Astrophysics Data System (ADS)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano

    2018-05-01

    In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

  13. The effects of non-Newtonian viscosity on the deformation of red blood cells in a shear flow

    NASA Astrophysics Data System (ADS)

    Sesay, Juldeh

    2005-11-01

    The analyses of the effects of non-Newtonian viscosity on the membrane of red blood cells (RBCs) suspended in a shear flow are presented. The specific objective is to investigate the mechanical deformation on the surfaces of an ellipsoidal particle model. The hydrodynamic stresses and other forces on the surface of the particle are used to determine the cell deformation. We extended previous works, which were based on the Newtonian fluid models, to the non-Newtonian case, and focus on imposed shear rate values between 1 and 100 per second. Two viscosity models are investigated, which respectively correspond to a normal person and a patient with cerebrovascular accident (CVA). The results are compared with those obtained assuming a Newtonian model. We observed that the orientation of the cell influences the deformation and the imposed shear rate drives the local shear rate distribution along the particle surface. The integral particle deformation for the non-Newtonian models in the given shear rate regime is higher than that for the Newtonian reference model. Finally, the deformation of the cell surface decreases as the dissipation ratio increases.

  14. Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows

    NASA Astrophysics Data System (ADS)

    Crowell, Andrew Rippetoe

    This dissertation describes model reduction techniques for the computation of aerodynamic heat flux and pressure loads for multi-disciplinary analysis of hypersonic vehicles. NASA and the Department of Defense have expressed renewed interest in the development of responsive, reusable hypersonic cruise vehicles capable of sustained high-speed flight and access to space. However, an extensive set of technical challenges have obstructed the development of such vehicles. These technical challenges are partially due to both the inability to accurately test scaled vehicles in wind tunnels and to the time intensive nature of high-fidelity computational modeling, particularly for the fluid using Computational Fluid Dynamics (CFD). The aim of this dissertation is to develop efficient and accurate models for the aerodynamic heat flux and pressure loads to replace the need for computationally expensive, high-fidelity CFD during coupled analysis. Furthermore, aerodynamic heating and pressure loads are systematically evaluated for a number of different operating conditions, including: simple two-dimensional flow over flat surfaces up to three-dimensional flows over deformed surfaces with shock-shock interaction and shock-boundary layer interaction. An additional focus of this dissertation is on the implementation and computation of results using the developed aerodynamic heating and pressure models in complex fluid-thermal-structural simulations. Model reduction is achieved using a two-pronged approach. One prong focuses on developing analytical corrections to isothermal, steady-state CFD flow solutions in order to capture flow effects associated with transient spatially-varying surface temperatures and surface pressures (e.g., surface deformation, surface vibration, shock impingements, etc.). The second prong is focused on minimizing the computational expense of computing the steady-state CFD solutions by developing an efficient surrogate CFD model. The developed two-pronged approach is found to exhibit balanced performance in terms of accuracy and computational expense, relative to several existing approaches. This approach enables CFD-based loads to be implemented into long duration fluid-thermal-structural simulations.

  15. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard

    2014-02-01

    Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.

  16. Transitional Flow in an Arteriovenous Fistula: Effect of Wall Distensibility

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2012-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with end-stage renal disease. Transitional flow and the subsequent pressure and shear stress fluctuations are thought to be causative in the fistula failure. Since 50% of fistulae require surgical intervention before year one, understanding the altered hemodynamic stresses is an important step toward improving clinical outcomes. We perform numerical simulations of a patient-specific model of a functioning fistula reconstructed from 3D ultrasound scans. Rigid wall simulations and fluid-structure interaction simulations using an in-house finite element solver for the wall deformations were performed and compared. In both the rigid and distensible wall cases, transitional flow is computed in fistula as evidenced by aperiodic high frequency velocity and pressure fluctuations. The spectrum of the fluctuations is much more narrow-banded in the distensible case, however, suggesting a partial stabilizing effect by the vessel elasticity. As a result, the distensible wall simulations predict shear stresses that are systematically 10-30% lower than the rigid cases. We propose a possible mechanism for stabilization involving the phase lag in the fluid work needed to deform the vessel wall. Support from an NIDDK R21 - DK08-1823.

  17. Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.

    PubMed

    Ye, Ting; Li, Hua; Lam, K Y

    2015-02-01

    In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Combining High Resolution InSAR and infrared photogrammetry for studying dome degassing and densification mechanisms at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-04-01

    Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.

  19. Witness of fluid-flow organization during high-pressure antigorite dehydration

    NASA Astrophysics Data System (ADS)

    López Sánchez-Vizcaíno, Vicente; Padrón-Navarta, José Alberto; Garrido, Carlos J.; Gómez-Pugnaire, María. Teresa

    2010-05-01

    The link between devolatilization reactions and fluid flow is crucial to unravel important geodynamic processes in subduction zones as deformation and element transfer is extremely controlled by the presence of water. At high confining pressure, significant fluid pressure gradients are expected in a reacting rock being dehydrated, because of its rather limited permeability [1]. Compactation-driven fluid flow seems to be an intrinsic mechanism occurring at devolatilization of viscolastic rocks. Nevertheless, and despite the important implications of this coupled deformation/fluid-migration mechanism for fluid transport, a conclusive confirmation of these processes by petrological and textural evidences in metamorphic terrains has been hampered by the scarcity of devolatilization fronts in the geological record. Evidences of high-pressure antigorite dehydration found at Cerro del Almirez (Betic Cordillera, Spain) [2] represent a noteworthy exception. Here, the transition between the hydrous protolith (antigorite serpentinite) and the prograde product assemblage (olivine + orthopyroxene + chlorite, chlorite harzburgite) is extremely well preserved and can be surveyed in detail. The maximum stability of the antigorite has been experimentally determined at ~680°C at 1.6-1.9 GPa [3]. Antigorite dehydration is accompanied by release of high amounts of high-pressure water-rich fluids (~ 9 wt.% fluid). Distinctive layers (up to 1 m thick) of transitional lithologies occur in between atg-serpentinite and chl-harburgite all along the devolatilization front, consisting of (1) chlorite-antigorite olivine-serpentinite, which gradually changes to (2) chlorite-antigorite-olivine-orthopyroxene serpentinite. These transitional lithologies are more massive and darker in color than atg-serpentinite and largely consist of coarse sized grains of antigorite and chlorite (250-500 μm). Antigorite in these assemblages is characterized by microstructural disorder features, which are lacking in antigorite far from the devolatilization front [4]. The sharp appearance of chlorite (Chl-in), crosscutting the serpentinite foliation, and coarsening of olivine define the upper limit of the transitional lithologies, whereas the lower limit (Atg-out) is gradational to chl-harzburgite. The modal increase of orthopyroxene is concomitant with the gradual disappearance of antigorite. The gradual disappearance of antigorite over short distances leads to the final prograde assemblage in the Chl-harzburgite with two contrasting textures: (1) coarse granular texture and (2) an intriguing spinifex-like texture (arborescent growth of centimeter-sized olivine and orthopyroxene). Both textures alternate at the meter to tens of meters scale over the entire massif. We interpret these textures as the result of contrasting pore fluid overpressure, reaction rates and fluid-flow organization shortly after the antigorite breakdown. These observations will be discussed on the frame of the reaction kinetic and the propagation of deformation associated to fluid pressure gradients. [1] Connolly, Journal of Geophysical Research 112 (B8), 18 (1997). [2] Trommsdorff, López Sánchez-Vizcaíno, Gómez-Pugnaire et al., Contrib Mineral Petr 132 (2), 139 (1998). [3] Padrón-Navarta, Hermann, Garrido et al., Contrib Mineral Petr 159 (1), 25 (2010). [4] Padrón-Navarta, López Sánchez-Vizcaíno, Garrido et al., Contrib Mineral Petr 156 (5), 679 (2008).

  20. Expansion of a compressible gas bubble in Stokes flow

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2001-09-01

    The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which stationary shapes can be found.

  1. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  2. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  3. Elastic two-sphere swimmer in Stokes flow

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Khot, Aditi; Elfring, Gwynn J.

    2017-04-01

    Swimming at low Reynolds number in Newtonian fluids is only possible through nonreciprocal body deformations due to the kinematic reversibility of the Stokes equations. We consider here a model swimmer consisting of two linked spheres, wherein one sphere is rigid and the other an incompressible neo-Hookean solid. The two spheres are connected by a rod that changes its length periodically. We show that the deformations of the body are nonreciprocal despite the reversible actuation and hence the elastic two-sphere swimmer propels forward. Our results indicate that even weak elastic deformations of a body can affect locomotion and may be exploited in designing artificial microswimmers.

  4. Architected squirt-flow materials for energy dissipation

    NASA Astrophysics Data System (ADS)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  5. Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography.

    PubMed

    Kareh, K M; Lee, P D; Atwood, R C; Connolley, T; Gourlay, C M

    2014-07-18

    The behaviour of granular solid-liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress-strain response at 64-93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils.

  6. Revealing the micromechanisms behind semi-solid metal deformation with time-resolved X-ray tomography

    PubMed Central

    Kareh, K. M.; Lee, P. D.; Atwood, R. C.; Connolley, T.; Gourlay, C. M.

    2014-01-01

    The behaviour of granular solid–liquid mixtures is key when deforming a wide range of materials from cornstarch slurries to soils, rock and magma flows. Here we demonstrate that treating semi-solid alloys as a granular fluid is critical to understanding flow behaviour and defect formation during casting. Using synchrotron X-ray tomography, we directly measure the discrete grain response during uniaxial compression. We show that the stress–strain response at 64–93% solid is due to the shear-induced dilation of discrete rearranging grains. This leads to the counter-intuitive result that, in unfed samples, compression can open internal pores and draw the free surface into the liquid, resulting in cracking. A soil mechanics approach shows that, irrespective of initial solid fraction, the solid packing density moves towards a constant value during deformation, consistent with the existence of a critical state in mushy alloys analogous to soils. PMID:25034408

  7. PAGOSA physics manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weseloh, Wayne N.; Clancy, Sean P.; Painter, James W.

    2010-08-01

    PAGOSA is a computational fluid dynamics computer program developed at Los Alamos National Laboratory (LANL) for the study of high-speed compressible flow and high-rate material deformation. PAGOSA is a three-dimensional Eulerian finite difference code, solving problems with a wide variety of equations of state (EOSs), material strength, and explosive modeling options.

  8. Geomechanical Modeling of Deformation Banding in the Navajo Sandstone, San Rafael Monocline, Utah

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.; Sundal, A.; Petrie, E. S.

    2017-12-01

    Deformation bands are ubiquitous geological features in many types of rocks. Depending on their micro-structure, they can act either as conduits or barriers to fluid flow. Given the significant roles deformation bands play in fluid flow and chemical transport in rocks, it is important to develop fundamental understanding of their origin, and their characteristics as they relate with the host rock properties and their depositional and structural-geological history. We present a forward-modeling technique based on the geomechanical Bifurcation Theory (BT) to predict the formation of deformation bands in sandstone. According to BT, the formation of deformation bands is a result of strain location, which in turn stems from instability in the stress-strain response of materials during loading. Due to bifurcation, a material which undergoes homogeneous deformation can reach a point at which the material experiences instability and deformation starts to become non-homogenous. We implemented BT in the commercially-available geomechanical code FLAC (Fast Langragian Analysis of Continua) and applied it in the field-scale modeling of deformation banding in the Navajo Sandstone in the San Rafael Monocline in Utah induced by fault propagation folding. The results show that geomechanical modeling using BT has a powerful potential to simulate the physical processes in the formation of deformation banding in rocks. Predicted deformation bands, specifically the pervasive bedding-parallel bands in the Navajo sandstone formation, normal faulting in the upper limb and reverse faulting in the lower limb, are generally in agreement with field observations. Predictions indicate that the pervasive bedding-parallel bands in the Navajo Sandstone are transitional compaction-shear bands with alternating zones of volumetric compaction and dilation. These predictions are consistent with petrographic analysis of thin sections of rock samples from the Navajo Sandstone. The most important parameter in the geomechanical modeling is the dilation angle in relation to the friction angle of the host rock. These parameters, as well the elastic properties, should evolve during the geologic history of a site, thus, the main challenge in the modeling is how to calibrate these parameters to yield consistent results.

  9. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  10. Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis

    NASA Astrophysics Data System (ADS)

    Thorpe, S. D.; Tiampo, K. F.

    2016-12-01

    In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.

  11. Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust

    NASA Astrophysics Data System (ADS)

    Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.

    2006-12-01

    One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.

  12. Modes of Fluid Expulsion and its Significance for Forearc Dewatering at Costa Rica Convergent Margin

    NASA Astrophysics Data System (ADS)

    Hensen, C.; Wallmann, K.; Ranero, C.; Rehder, G.; Brueckmann, W.; Grevemeyer, I.; Reston, T.

    2005-12-01

    The expulsion of chloride-depleted fluids is characteristic for vent sites at Costa Rica continental margin. Oxygen and hydrogen isotope ratios, thermogenic methane as well as elevated heat flow demonstrate that the fluid flow is initiated by mineral dehydration in subducting sediments at about 10-12 km depth. Conspicuous differences in the geochemical composition allow a subdivision of a southern and a northern type of fluids, which may reflect differences in the input or a general south to north decrease in flow rates. Fluids of the southern type are enriched in boron and typically rise at high rates. In contrast, the northern type of fluids is strongly enriched in calcium and barium, which points to significant alteration along the flow path. Fluid venting seems to be an important dewatering process as it occurs at a huge number of mound-like structures, which are carbonate-capped in many places and comprise of mixed types of mud extrusion features, along major slope failures caused by subducting seamounts and at fault-controlled slides. Convergence related seamount subduction and subduction-erosion are the primary reasons for slope instability, resulting in large-scale deformation structures. Fluid expulsion related to seamount subduction is largely unconstrained at present. Whereas seeps are rare at the top of the uplifted sediment bulge, massive discharge of methane-rich fluids is documented by lush tubeworm communities and significant methane plumes at the scarp planes. Recent estimates reveal that up to 65 Mg of methane per year may be released at a single structure, which may prove them as important as the mound structures in terms of fluid recycling. In order to improve our current understanding of fluid recycling, to constrain long-term estimates of fluid flow, to systematize the variability of fluid geochemistry, and to fully understand the role of seamounts in the forearc it is proposed to drill several key sites of the most prominent dewatering structures within IODP (proposal 633 full).

  13. Dynamic model of intrusion of magma and/or magmatic fluids in the large-scale deformation source of the Campi Flegrei caldera (Italy).

    NASA Astrophysics Data System (ADS)

    Crescentini, Luca; Amoruso, Antonella; Luongo, Annamaria

    2015-04-01

    The Campi Flegrei (CF) caldera is located in a densely populated area close to Naples (Southern Italy). It is renowned as a site of continual slow vertical movements. After the last eruption in 1538, the caldera generally subsided until 1969 when minor uplift occurred. In the early 1970s this uplift became significant (~1.5 m max). A further large uplift episode occurred from 1982 to 1984 (~1.8 m max), and subsequently smaller uplift episodes have occurred since then. Amoruso et al. (2014a,b) have recently shown that the CF surface deformation field from 1980 to 2013 can be decomposed into two stationary parts. Large-scale deformation can be explained by a quasi-horizontal source, oriented NW to SE and mathematically represented by a pressurized finite triaxial ellipsoid (PTE) ~4 km deep, possibly related to the injection of magma and/or magmatic fluids from a deeper magma chamber into a sill, or pressurization of interconnected (micro)cavities. Residual deformation not accounted for by PTE is confined to the Solfatara fumarolic area and can be mathematically explained by a small (point) pressurized oblate spheroid (PS) ~2 km below the Solfatara fumarolic field, that has been equated with a poroelastic response of the substratum to pore pressure increases near the injection point of hot magmatic fluids into the hydrothermal system. A satisfying feature of this double source model is that the geometric source parameters of each are constant over the period 1980-2013 with the exception of volume changes (potencies). Several papers have ascribed CF deformation to the injection of magmatic fluids at the base of the hydrothermal system. All models predict complex spatial and temporal evolution of the deformation pattern and consequently contrast with the observed deformation pattern stationarity. Also recently proposed dynamic models of sill intrusion in a shallow volcanic environment do not satisfy the observed CF deformation pattern stationarity. We have developed an analytical dynamic model of intrusion of magma or injection of supercritical fluids in the PTE. Propagation is governed by a Navier-Stokes equation for magma intrusion and modelled as creeping flow in porous media (Darcy's law) for supercritical fluids injection. In both cases the ground deformation pattern is constant over time. Using Finite Element Modeling, we also show that the presence of a viscoelastic shell surrounding the PTE amplifies ground deformation, with no appreciable effect on the ground deformation pattern. Thus, our model satisfies the observed CF deformation pattern stationarity both using a purely elastic medium or allowing for stress relaxation close to the PTE, caused by the rock temperature. Amoruso et al. (2014a), J. Geophys. Res., 119 (2), 858-879 Amoruso et al. (2014b), Geophys. Res. Lett., 41 (9), 3081-3088

  14. Discontinuous Galerkin method for coupled problems of compressible flow and elastic structures

    NASA Astrophysics Data System (ADS)

    Kosík, A.; Feistauer, M.; Hadrava, M.; Horáček, J.

    2013-10-01

    This paper is concerned with the numerical simulation of the interaction of 2D compressible viscous flow and an elastic structure. We consider the model of dynamical linear elasticity. Each individual problem is discretized in space by the discontinuous Galerkin method (DGM). For the time discretization we can use either the BDF (backward difference formula) method or also the DGM. The time dependence of the domain occupied by the fluid is given by the deformation of the elastic structure adjacent to the flow domain. It is treated with the aid of the Arbitrary Lagrangian-Eulerian (ALE) method. The fluid-structure interaction, given by transient conditions, is realized by an iterative process. The developed method is applied to the simulation of the biomechanical problem containing the onset of the voice production.

  15. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  16. Aeroelastic Analysis Of Joined Wing Of High Altitude Long Endurance (HALE) Aircraft Based On The Sensor-Craft Configuration

    NASA Astrophysics Data System (ADS)

    Marisarla, Soujanya; Ghia, Urmila; "Karman" Ghia, Kirti

    2002-11-01

    Towards a comprehensive aeroelastic analysis of a joined wing, fluid dynamics and structural analyses are initially performed separately. Steady flow calculations are currently performed using 3-D compressible Navier-Stokes equations. Flow analysis of M6-Onera wing served to validate the software for the fluid dynamics analysis. The complex flow field of the joined wing is analyzed and the prevailing fluid dynamic forces are computed using COBALT software. Currently, these forces are being transferred as fluid loads on the structure. For the structural analysis, several test cases were run considering the wing as a cantilever beam; these served as validation cases. A nonlinear structural analysis of the wing is being performed using ANSYS software to predict the deflections and stresses on the joined wing. Issues related to modeling, and selecting appropriate mesh for the structure were addressed by first performing a linear analysis. The frequencies and mode shapes of the deformed wing are obtained from modal analysis. Both static and dynamic analyses are carried out, and the results obtained are carefully analyzed. Loose coupling between the fluid and structural analyses is currently being examined.

  17. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  18. Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism

    NASA Astrophysics Data System (ADS)

    Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.

    2018-04-01

    Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is the onset of eruption, when fluid flow is projected outwards and focused towards the erupting fissure as the dyke closes. A simultaneous and abrupt decrease in sub-surface strain occurs as the fluid pressure is released. Our results provide a comprehensive physical framework upon which to interpret evidence of dyke ascent in nature, and suggest dyke ascent models need to be re-evaluated to account for coupled intrusive and extrusive processes and improve the recognition of monitoring signals that lead to volcanic eruptions in nature.

  19. Macroscopic modelling of semisolid deformation for considering segregation bands induced by shear deformation

    NASA Astrophysics Data System (ADS)

    Morita, S.; Yasuda, H.; Nagira, T.; Gourlay, C. M.; Yoshiya, M.; Sugiyama, A.

    2012-07-01

    In-situ observation was carried out to observe deformation of semi-solid Fe-2mass%C steel with 65% solid and globular morphology by X-ray radiography. Deformation was predominantly controlled by the rearrangement of globules. The solid particles were pushed into each other and rearrangement caused lower solid fraction regions to form. On the basis of the observation, a macroscopic model that introduces a normal stress acting on the solid due to collisions and rearrangement is proposed. The solid particles are treated as a non-Newtonian fluid. The stiffness parameters, which characterize the flow of the solid, are introduced. Stability of semisolid to fluctuations in solid fraction during simple shear was analysed. Shear deformation can be stably localized in the semisolid with a certain solid fraction range. The model essentially reproduces band segregation formation.

  20. Simple microfluidic stagnation point flow geometries

    PubMed Central

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-01-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types. PMID:27462382

  1. Fracturing And Liquid CONvection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-02-29

    FALCON has been developed to enable simulation of the tightly coupled fluid-rock behavior in hydrothermal and engineered geothermal system (EGS) reservoirs, targeting the dynamics of fracture stimulation, fluid flow, rock deformation, and heat transport in a single integrated code, with the ultimate goal of providing a tool that can be used to test the viability of EGS in the United States and worldwide. Reliable reservoir performance predictions of EGS systems require accurate and robust modeling for the coupled thermal­hydrological­mechanical processes.

  2. Evidence of sealing and brine distribution at grain boundaries in natural fine-grained Halite (Qum Kuh salt fountain, Central Iran): implications for rheology of salt extrusions

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Urai, Janos L.; de Bresser, J. H. P.

    2010-05-01

    When grain boundary movement is stopped, surface energy related forces reassert themselves driving the system to its equilibrium conditions ([2], [6], [7], [8]). This could result in growth of islands and shrinking of channels and hence in healing the boundary by internal redistribution of fluid and solid in the contact region. Such islands are proposed to grow preferentially close to the contact rim and promote the healing of the grain-grain contact, which in turn prevents transport in or out the boundary region and thus traps the fluids in isolated inclusions. This contribution is focused on observation of grain boundary microstructures in natural mylonitic rocksalt collected from the distal part of Kum-Quh salt fountain (central Iran) in order to give unprecedented insight of grain boundary microstructures using argon-beam cross-sectioning to prepare high quality polished surfaces suitable for high-resolution SEM imaging. The possibility to use our SEM under cryogenic conditions allows also imaging the in-situ distribution of fluids. Results show that brine at grain boundaries occurs as thick layers (> µm in scale) corresponding to cross-sectioned wetted triple junction tubes, as filling at triple junction and as array of isolated fluids inclusions at grain-grain contacts. Close observations at islands contacts suggest the presence of a very thin fluid film (<100 nm). The most remarkable is evidence for sealing of pore space appearing as subhedral crystals filling the void space and decoupled from surrounding crystals by a thin brine layer. In parallel to this microstructural study, we deformed the same samples in order to simulate the simple shear flow at very low mean stress as in the salt fountain. First results suggest a complicated rheology. Samples loaded at σ < 0.7 MPa show no measurable deformation in a month, indicating strain rates less than 10-12 s-1 though, in fully activated pressure-solution (PS) creep, strain rates of several orders of magnitude are expected for similar grain size ([5]). Other samples, which were loaded to 1 MPa before reducing the stress to 0.5 MPa deformed at much higher but variable rates, up to 10-8 s-1, in good agreement with activated PS creep. If, at first look, our pilot deformation experiments seem to reflect a kind of "yield stress" for activation PS creep ([7]); the experimental stress does not reach the theoritical condition to enable activation of PS. Thus, we interpret that the apparent "yielding stress" may not reflect strictu senso the "yielding stress" as described in [7] but rather to a "yielding stress" corresponding to the elastic reassessment of the grain system before the initiation of PS at privileged seal-brine-grain contacts. In salt fountain conditions, mylonitic samples are expected to be in the healing domain, but "jumps" in active stress required to activate PS creep is hardly probable. Thus, we suggest that rainwater influx plays a fundamental role in activation of PS. Rainwater should enable the marginal dissolution of healed contacts and then decreases in the area fraction of grain boundary occupied by solid island contact causing an increase in island stress. Therefore, this points to cyclic deformation of salt fountain: (1) during rainy periods the fountain will deformed at relative high strain rate by dominant PS; while (2) during dry seasons, it will not significantly flow because the grain boundary healing will prevent PS and lead to dominant dislocation creep. This interpretation is in good agreement with recent structural studies ([1], [4]), which gives evidence for both dynamic dislocation and pressure-solution creeps, and measurement of rapid flow after rainy periods with flow rates compatible with fully activated PS ([3]). [1] Desbois G., Zavada P., Schleder Z. and Urai J.L. (In review). Deformation and recrystallization mechanisms in naturally deformed salt fountain: microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran). Submitted to Journal of Structural Geology. [2] Ghoussoub J., and Leroy Y.M. (2001), Solid-fluid phase transformation within grain boundaries during compaction by pressure solution, J. Mech. Phys. Solids, 49, 737 2385-2430. 738 [3] Jackson, M.P.A., (1985). Natural strain in diapiric and glacial rock salt, with emphasis on Oakwood dome, East Texas, Bureau of Economic Geology, The University of Texas at Austin, Texas. [4] Schléder Z. and Urai J.L. (2007). Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rock salt from Eyvanekey plateau and Garmsar hills (central Iran). Journal of structural geology, 29, 241-255. [5] Spiers C.J. and Carter N.L. (1988). Microphysics of rock salt flow in nature. In: M. Aubertin and H.R. Hardy, Editors, The Mechanical Behaviour of Salt: Proceedings of the Fourth Conference Series on Rock and Soil Mechanics, TTP Trans Tech Publications, Clausthal-Zellerfeld, 22: 115-128. [6] Urai J. L. (1983). Water assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics 96 (1-2): 125-157. [7] Van Noort R., Visser H.J.M., Spiers C.J. (2008) Influence of grain boundary structure on dissolution controlled pressure solution and retarding effects of grain boundary healing. Journal of Geophysical Research, 113, B03201. [8] Visser, H. J. M. (1999). Mass transfer processes in crystalline aggregates containing a fluid phase, Ph. D. thesis, Utrecht University, Utrecht.

  3. A hydroelastic model of hydrocephalus

    NASA Astrophysics Data System (ADS)

    Smillie, Alan; Sobey, Ian; Molnar, Zoltan

    2005-09-01

    We combine elements of poroelasticity and of fluid mechanics to construct a mathematical model of the human brain and ventricular system. The model is used to study hydrocephalus, a pathological condition in which the normal flow of the cerebrospinal fluid is disturbed, causing the brain to become deformed. Our model extends recent work in this area by including flow through the aqueduct, by incorporating boundary conditions that we believe accurately represent the anatomy of the brain and by including time dependence. This enables us to construct a quantitative model of the onset, development and treatment of this condition. We formulate and solve the governing equations and boundary conditions for this model and give results that are relevant to clinical observations.

  4. Modeling the Sedimentation of Red Blood Cells in Flow under Strong External Magnetic Body Force using a Lattice Boltzmann Fictitious Domain Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xing; Lin, Guang

    To model the sedimentation of the red blood cell (RBC) in a square duct and a circular pipe, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method (LBM-DLM/FD) is extended to employ the mesoscopic network model for simulations of the sedimentation of the RBC in flow. The flow is simulated by the lattice Boltzmann method with a strong magnetic body force, while the network model is used for modeling RBC deformation. The fluid-RBC interactions are enforced by the Lagrange multiplier. The sedimentation of the RBC in a square duct and a circularmore » pipe is simulated, revealing the capacity of the current method for modeling the sedimentation of RBC in various flows. Numerical results illustrate that that the terminal setting velocity increases with the increment of the exerted body force. The deformation of the RBC has significant effect on the terminal setting velocity due to the change of the frontal area. The larger the exerted force is, the smaller the frontal area and the larger deformation of the RBC are.« less

  5. Zircon growth in shear zones

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana

    2013-04-01

    The possibility of direct dating of the deformation process is critical for understanding of orogenic belts evolution. Establishing the age of deformation by isotopic methods is indispensable in the case of uneven deformation overlapping, when later deformation inherits the structural plan of the early strains, and to distinguish them on the basis of the structural data only is impossible. A good example of zircon from the shear zones is zircon formed under the eclogite facies conditions. On the one hand, the composition of zircon speaks about its formation simultaneously to eclogitic paragenesis (Rubatto, Herman, 1999; Rubatto et al., 2003). On the other hand, geological studies show that mineral reactions of eclogitization are often held only in areas of shear deformations, which provides access of fluid to the rocks (Austrheim, 1987; Jamtveit et al., 2000; Bingen et al., 2004). Zircons from mafic and ultramafic rocks of the Tanaelv and Kolvitsa belts (Kola Peninsula, the Baltic Shield) have showed that the metamorphic zircon growth is probably controlled by the metamorphic fluid regime, as evidenced by an increase of zircon quantity with the degree of shearing. The internal structure of zircon crystals can provide an evidence of zircon growth synchronous with shearing. The studied crystals have a sector zoning and often specific "patchy" zoning (Fig. 1), which speaks about rapid change of growth conditions. Such internal structure can be compared with the "snowball" garnet structure reflecting the rotation of crystals during their growth under a shift. Rapidly changing crystallization conditions can also be associated with a small amount of fluid, where supersaturation is changing even at a constant temperature. Thus, the growth of metamorphic zircon in shear zones is more likely to occur in the fluid flow synchronous with deformation. A distinctive feature of zircons in these conditions is isometric shape and sector "patchy" zoning. The work was supported by Russian Foundation of Basic Research (project: 13-05-00035.) and the DES-6 program.

  6. Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Thaokar, Rochish M.

    2018-04-01

    The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.

  7. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Rucci, A.; Ferretti, A.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model,more » the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.« less

  8. An adaptive front tracking technique for three-dimensional transient flows

    NASA Astrophysics Data System (ADS)

    Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.

    2000-01-01

    An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright

  9. Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, F.; Rutqvist, J.

    2010-06-01

    The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriatelymore » represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.« less

  10. Mechanical properties of simulated Mars materials: gypsum-rich sandstones and lapilli tuff

    USGS Publications Warehouse

    Morrow, Carolyn; Lockner, David; Okubo, Chris

    2013-01-01

    Observations by the Mars Exploration Rover (MER) Opportunity, and other recent studies on diagenesis in the extensive equatorial layered deposits on Mars, suggest that the likely lithologies of these deposits are gypsum-rich sandstones and tuffaceous sediments (for example, Murchie and others, 2009; Squyres and others, 2012; Zimbelman and Scheidt, 2012). Of particular interest is how the diagenesis history of these sediments (degree of cementation and composition) influences the strength and brittle behavior of the material. For instance, fractures are more common in lower porosity materials under strain, whereas deformation bands, characterized by distributed strain throughout a broader discontinuity in a material, are common in higher porosity sedimentary materials. Such discontinuities can either enhance or restrict fluid flow; hence, failure mode plays an important role in determining the mechanics of fluid migration through sediments (Antonellini and Aydin, 1994; 1995; Taylor and Pollard, 2000; Ogilvie and Glover, 2001). As part of a larger study to characterize processes of fault-controlled fluid flow in volcaniclastic and gypsum-rich sediments on Mars, we have completed a series of laboratory experiments to focus on how gypsum clast content and degree of authigenic cementation affects the strength behavior of simulated Mars rocks. Both axial deformation and hydrostatic pressure tests were done at room temperature under dry conditions.

  11. A numerical method for osmotic water flow and solute diffusion with deformable membrane boundaries in two spatial dimension

    NASA Astrophysics Data System (ADS)

    Yao, Lingxing; Mori, Yoichiro

    2017-12-01

    Osmotic forces and solute diffusion are increasingly seen as playing a fundamental role in cell movement. Here, we present a numerical method that allows for studying the interplay between diffusive, osmotic and mechanical effects. An osmotically active solute obeys a advection-diffusion equation in a region demarcated by a deformable membrane. The interfacial membrane allows transmembrane water flow which is determined by osmotic and mechanical pressure differences across the membrane. The numerical method is based on an immersed boundary method for fluid-structure interaction and a Cartesian grid embedded boundary method for the solute. We demonstrate our numerical algorithm with the test case of an osmotic engine, a recently proposed mechanism for cell propulsion.

  12. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.

    PubMed

    Yang, Jubiao; Yu, Feimi; Krane, Michael; Zhang, Lucy T

    2018-01-01

    In this work, a non-reflective boundary condition, the Perfectly Matched Layer (PML) technique, is adapted and implemented in a fluid-structure interaction numerical framework to demonstrate that proper boundary conditions are not only necessary to capture correct wave propagations in a flow field, but also its interacted solid behavior and responses. While most research on the topics of the non-reflective boundary conditions are focused on fluids, little effort has been done in a fluid-structure interaction setting. In this study, the effectiveness of the PML is closely examined in both pure fluid and fluid-structure interaction settings upon incorporating the PML algorithm in a fully-coupled fluid-structure interaction framework, the Immersed Finite Element Method. The performance of the PML boundary condition is evaluated and compared to reference solutions with a variety of benchmark test cases including known and expected solutions of aeroacoustic wave propagation as well as vortex shedding and advection. The application of the PML in numerical simulations of fluid-structure interaction is then investigated to demonstrate the efficacy and necessity of such boundary treatment in order to capture the correct solid deformation and flow field without the requirement of a significantly large computational domain.

  13. Droplet breakup dynamics of weakly viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Marshall, Kristin; Walker, Travis

    2016-11-01

    The addition of macromolecules to solvent, even in dilute quantities, can alter a fluid's response in an extensional flow. For low-viscosity fluids, the presence of elasticity may not be apparent when measured using a standard rotational rheometer, yet it may still alter the response of a fluid when undergoing an extensional deformation, especially at small length scales where elastic effects are enhanced. Applications such as microfluidics necessitate investigating the dynamics of fluids with elastic properties that are not pronounced at large length scales. In the present work, a microfluidic cross-slot configuration is used to study the effects of elasticity on droplet breakup. Droplet breakup and the subsequent iterated-stretching - where beads form along a filament connecting two primary droplets - were observed for a variety of material and flow conditions. We present a relationship on the modes of bead formation and how and when these modes will form based on key parameters such as the properties of the outer continuous-phase fluid. The results are vital not only for simulating the droplet breakup of weakly viscoelastic fluids but also for understanding how the droplet breakup event can be used for characterizing the extensional properties of weakly-viscoelastic fluids.

  14. On the rising motion of a drop in stratified fluids

    NASA Astrophysics Data System (ADS)

    Bayareh, M.; Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M.

    2013-10-01

    The rising dynamics of a deformable drop in a linearly stratified fluid is numerically obtained using a finite-volume/front-tracking method. Our results show that the drag coefficient of a spherical drop in a stratified fluid enhances as C_{d,s}/C_{d,h}-1˜ Fr_d^{-2.86} for drop Froude numbers in the range of 4 < Frd < 16. The role of the deformability of the drop on the temporal evolution of the motion is investigated along with stratification and inertial effects. We also present the important role of stratification on the transient rising motion of the drop. It is shown that a drop can levitate in the presence of a vertical density gradient. The drop undergoes a fading oscillatory motion around its neutrally buoyant position except for high viscosity ratio drops where the oscillation occurs around a density level lighter than the neutral buoyancy level. In addition, a detailed characterization of the flow signature of a rising drop in a linearly stratified fluid including the buoyancy induced vortices and the resultant buoyant jet is presented.

  15. Computational Analysis of Human Blood Flow

    NASA Astrophysics Data System (ADS)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  16. 3D finite element simulation of TIG weld pool

    NASA Astrophysics Data System (ADS)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  17. Pattern palette for complex fluid flows

    NASA Astrophysics Data System (ADS)

    Sandnes, B.

    2012-04-01

    From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.

  18. Spontaneous electric current flow during deformation of non-piezoelectric marble samples: an indicator of stress state?

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, A. L.; Sammonds, P. R.; Vallianatos, F.

    2016-12-01

    We recorded spontaneous electric current flow in non-piezoelectric Carrara marble samples during triaxial deformation. Mechanical data, ultrasonic velocities and acoustic emissions were acquired simultaneously with electric current to constrain the relationship between electric current flow, differential stress and damage. Under strain-controlled loading, spontaneous electric current signals (nA) were generated and sustained under all conditions tested. In dry samples, a detectable electric current arises only during dilatancy and is correlated with the damage induced by microcracking. Signal variations with confining pressure correspond to microcrack suppression, while variations with strain rate are associated with time-dependent differences in deformation mechanism across the brittle to semi-brittle transition. In the brittle regime, the signal exhibits a precursory change as damage localises and the stress drop accelerates towards failure. This change is particularly distinct at dynamic strain rates. Similar changes are seen in the semi-brittle regime although the signal is more oscillatory in nature. Current flow in dry samples is proportional to stress within 90% of peak stress. In fluid-saturated samples proportionality holds from 40% peak stress, with a significant increase in the rate of current production from 90% peak stress associated with fluid flow during dilatancy. This direct relationship demonstrates that electric current could be used as a proxy for stress, indicating when the rock is reaching the limit of its strength. The experimental power law relationship between electric current and strain rate, which mirrors the power-law creep equation, supports this observation. High-frequency fluctuations of electric current are not normally distributed - they exhibit `heavy-tails'. We model these distributions with q-Gaussian statistics and evolution of the q-parameter during deformation reveals a two-stage precursory anomaly prior to sample failure, consistent with the acoustic emissions b-value and stress intensity evolution as modelled from fracture mechanics. Our findings support the idea that electric currents in the crust can be generated purely from solid state fracture processes and that these currents may reflect the stress state within the damaged rock.

  19. A model for complex flows of soft glassy materials with application to flows through fixed fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu

    2015-11-15

    The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less

  20. Universal Viscous-Brittle Transition in Magmatic Liquids

    NASA Astrophysics Data System (ADS)

    Witcher, T.; Wadsworth, F. B.; Hess, K. U.; Vossen, C.; Unwin, H.; Dingwell, D. B.

    2017-12-01

    Physical processes occurring in a volcanic conduit are thought to dictate the eruptivebehavior of volcanoes. One of these processes is the rheological response of the liquidmagma to the enormous stresses applied to it during ascent. In this study we investigatedthe behavior of both synthetic and natural silicate glass at high temperature. We chosetemperatures at which the glass viscosity was high in the range of 109 - 1012 Pa s. Afterthermal equilibration, we deformed the samples by uniaxial compression. We measured theforce and displacement applied to 20 x 40 mm glass cylinders at controlled strain rates. Toparameterize the deformation behavior we defined a dimensionless quantity, the Deborahnumber (De), which is a ratio between viscoelastic relaxation time of the liquid (λr) and thedeformation time (λ) both in units of seconds. Each deformed sample had a De assignedto it and was plotted on a 'Deformation Map.' After performing over 60 experiments,three deformational regimes were defined: viscous, transitional, and brittle. We found thatall samples with De < 0.01 behaved purely viscously with no stress drops. Between De =0.01 and De = 0.04 the behavior was unrelaxed, in which small stress drops were observedbetween otherwise viscous flow, indicating the onset of elastic behavior. Furthermore,samples with De > 0.04 were categorized as brittle and behaved purely elastically withlittle to no fracturing before one large stress drop. The implications of this study showthat when a silicate melt is not given enough time to dissipate the stress applied to itthrough viscous flow, it will behave like an elastic solid and support fracture propagation.It is through this capability of brittle failure that magma can rapidly ascend through theshallow crust-the fractures would provide pathways for fluid along the conduit margin.These fluids would lubricate the magma body as it ascends.

  1. Combined structural analysis and dating of authigenic/synkinematic illite: A step towards unravelling brittle faulting processes in time and space

    NASA Astrophysics Data System (ADS)

    Viola, Giulio

    2017-04-01

    Faulting accommodates momentous deformation and its style reflects the complex interplay of often transient processes such as friction, fluid flow and rheological changes within generally dilatant systems. Brittle faults are thus unique archives of the stress state and the physical and chemical conditions at the time of both initial strain localization and subsequent slip(s) during structural reactivation. Opening those archives, however, may be challenging due to the commonly convoluted (if not even chaotic) nature of brittle fault architectures and fault rocks. This is because, once formed, faults are extremely sensitive to variations in stress field and environmental conditions and are prone to readily slip in a variety of conditions, also in regions affected by only weak, far-field stresses. The detailed, multi-scalar structural analysis of faults and of fault rocks has to be the starting point for any study aiming at reconstructing the complex framework of brittle deformation. However, considering that present-day exposures of faults only represent the end result of the faults' often protracted and heterogeneous histories, the obtained structural and mechanical results have to be integrated over the life span of the studied fault system. Dating of synkinematic illite/muscovite to constrain the time-integrated evolution of faults is therefore the natural addition to detailed structural studies. By means of selected examples it will be demonstrated how careful structural analysis integrated with illite characterization and K-Ar dating allows the high-resolution reconstruction of brittle deformation histories and, in turn, multiple constraints to be placed on strain localization, deformation mechanisms, fluid flow, mineral alteration and authigenesis within actively deforming brittle fault rocks. Complex and long brittle histories can thus be reconstructed and untangled in any tectonic setting.

  2. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis.

    PubMed

    Bertram, C D; Heil, M

    2017-01-01

    An existing axisymmetric fluid/structure-interaction (FSI) model of the spinal cord, pia mater, subarachnoid space, and dura mater in the presence of syringomyelia and subarachnoid-space stenosis was modified to include porous solids. This allowed investigation of a hypothesis for syrinx fluid ingress from cerebrospinal fluid (CSF). Gross model deformation was unchanged by the addition of porosity, but pressure oscillated more in the syrinx and the subarachnoid space below the stenosis. The poroelastic model still exhibited elevated mean pressure in the subarachnoid space below the stenosis and in the syrinx. With realistic cord permeability, there was slight oscillatory shunt flow bypassing the stenosis via the porous tissue over the syrinx. Weak steady streaming flow occurred in a circuit involving craniocaudal flow through the stenosis and back via the syrinx. Mean syrinx volume was scarcely altered when the adjacent stenosis bisected the syrinx, but increased slightly when the syrinx was predominantly located caudal to the stenosis. The fluid content of the tissues over the syrinx oscillated, absorbing most of the radial flow seeping from the subarachnoid space so that it did not reach the syrinx. To a lesser extent, this cyclic swelling in a boundary layer of cord tissue just below the pia occurred all along the cord, representing a mechanism for exchange of interstitial fluid (ISF) and cerebrospinal fluid which could explain recent tracer findings without invoking perivascular conduits. The model demonstrates that syrinx volume increase is possible when there is subarachnoid-space stenosis and the cord and pia are permeable.

  3. The importance of flow history in mixed shear and extensional flows

    NASA Astrophysics Data System (ADS)

    Wagner, Caroline; McKinley, Gareth

    2015-11-01

    Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.

  4. A Demonstration Apparatus for Poroelastic Mechanics

    ERIC Educational Resources Information Center

    Quin, Thomas M.

    2013-01-01

    Fluency with poroelastic theory is prerequisite to advanced study of material and mass transport properties in a wide range of contexts. Often the greatest challenge in introducing students to the subject is to help them visualize the fluid flows and deformations that accompany phenomena such as creep and stress relaxation. We have developed a…

  5. Behaviour of two typical stents towards a new stent evolution.

    PubMed

    Simão, M; Ferreira, J M; Mora-Rodriguez, J; Fragata, J; Ramos, H M

    2017-06-01

    This study explores the analysis of a new stent geometry from two typical stents used to treat the coronary artery disease. Two different finite element methods are applied with different boundary conditions to investigate the stenosis region. Computational fluid dynamics (CFD) models including fluid-structure interaction are used to assess the haemodynamic impact of two types of coronary stents implantation: (1) type 1-based on a strut-link stent geometry and (2) type 2-a continuous helical stent. Using data from a recent clinical stenosis, flow disturbances and consequent shear stress alterations introduced by the stent treatment are investigated. A relationship between stenosis and the induced flow fields for the two types of stent designs is analysed as well as the correlation between haemodynamics and vessel wall biomechanical factors during the initiation and development of stenosis formation in the coronary artery. Both stents exhibit a good performance in reducing the obstruction artery. However, stent type 1 presents higher radial deformation than the type 2. This deformation can be seen as a limitation with a long-term clinical impact.

  6. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  7. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  8. Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Bense, Victor; Turner, Jenni

    2011-11-01

    Deformation mechanisms and resultant fault architecture are primary controls on the permeability of faults in poorly lithified sediments. We characterise fault architecture using outcrop studies, hand samples, thin sections and grain-size data from a minor (1-10 m displacement) normal-fault array exposed within Gulf of Corinth rift sediments, Central Greece. These faults are dominated by mixed zones with poorly developed fault cores and damage zones. In poorly lithified sediment deformation is distributed across the mixed zone as beds are entrained and smeared. We find particulate flow aided by limited distributed cataclasis to be the primary deformation mechanism. Deformation may be localised in more competent sediments. Stratigraphic variations in sediment competency, and the subsequent alternating distributed and localised strain causes complexities within the mixed zone such as undeformed blocks or lenses of cohesive sediment, or asperities at the mixed zone/protolith boundary. Fault tip bifurcation and asperity removal are important processes in the evolution of these fault zones. Our results indicate that fault zone architecture and thus permeability is controlled by a range of factors including lithology, stratigraphy, cementation history and fault evolution, and that minor faults in poorly lithified sediment may significantly impact subsurface fluid flow.

  9. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  10. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344).

    PubMed

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  11. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    PubMed Central

    Kurz, Walter; Rogowitz, Anna

    2017-01-01

    Abstract In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e‐twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal‐plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low‐angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high‐temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity. PMID:29081570

  12. FTIR measurements of OH in deformed quartz and feldspars of the South Tibetan Detachment, Greater Himalaya

    NASA Astrophysics Data System (ADS)

    Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.

    2017-12-01

    OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.

  13. Effects of membrane deformability and bond formation/dissociation rates on adhesion dynamics of a spherical capsule in shear flow.

    PubMed

    Zhang, Ziying; Du, Jun; Wei, Zhengying; Wang, Zhen; Li, Minghui

    2018-02-01

    Cellular adhesion plays a critical role in biological systems and biomedical applications. Cell deformation and biophysical properties of adhesion molecules are of significance for the adhesion behavior. In the present work, dynamic adhesion of a deformable capsule to a planar substrate, in a linear shear flow, is numerically simulated to investigate the combined influence of membrane deformability (quantified by the capillary number) and bond formation/dissociation rates on the adhesion behavior. The computational model is based on the immersed boundary-lattice Boltzmann method for the capsule-fluid interaction and a probabilistic adhesion model for the capsule-substrate interaction. Three distinct adhesion states, detachment, rolling adhesion and firm adhesion, are identified and presented in a state diagram as a function of capillary number and bond dissociation rate. The impact of bond formation rate on the state diagram is further investigated. Results show that the critical bond dissociation rate for the transition of rolling or firm adhesion to detachment is strongly related to the capsule deformability. At the rolling-adhesion state, smaller off rates are needed for larger capillary number to increase the rolling velocity and detach the capsule. In contrast, the critical off rate for firm-to-detach transition slightly increases with the capillary number. With smaller on rate, the effect of capsule deformability on the critical off rates is more pronounced and capsules with moderate deformability are prone to detach by the shear flow. Further increasing of on rate leads to large expansion of both rolling-adhesion and firm-adhesion regions. Even capsules with relatively large deformability can maintain stable rolling adhesion at certain off rate.

  14. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  15. Creeping gaseous flows through elastic tube and annulus micro-configurations

    NASA Astrophysics Data System (ADS)

    Elbaz, Shai; Jacob, Hila; Gat, Amir

    2016-11-01

    Gaseous flows in elastic micro-configurations is relevant to biological systems (e.g. alveolar ducts in the lungs) as well as to applications such as gas actuated soft micro-robots. We here examine the effect of low-Mach-number compressibility on creeping gaseous axial flows through linearly elastic tube and annulus micro-configurations. For steady flows, the leading-order effects of elasticity on the pressure distribution and mass-flux are obtained. For transient flow in a tube with small deformations, elastic effects are shown to be negligible in leading order due to compressibility. We then examine transient flows in annular configurations where the deformation is significant compared with the gap between the inner and outer cylinders defining the annulus. Both compressibility and elasticity are obtained as dominant terms interacting with viscosity. For a sudden flux impulse, the governing non-linear leading order diffusion equation is initially approximated by a porous-medium-equation of order 2.5 for the pressure square. However, as the fluid expand and the pressure decreases, the governing equation degenerates to a porous-medium-equation of order 2 for the pressure.

  16. Carbon Mobility at Subduction Interfaces via Deformation-Enhanced Fluid Infiltration: Evidence from the Swiss/Italian Alps

    NASA Astrophysics Data System (ADS)

    Jaeckel, K. P.; Bebout, G. E.; Angiboust, S.

    2016-12-01

    The interplay between fluid flow and deformation along subduction interfaces, and the extent to which deformation-enhanced fluid infiltration can drive decarbonation and carbonate dissolution, remain poorly understood. Recent work on HP/UHP decarbonation in W. Alps suites has indicated that, in intact volumes of metasediment, metabasalt, and ophicarbonate away from major shear zones and with few veins, carbonate is largely retained to 80-90 km depths (Cook-Kollars et al., 2014; Collins et al., 2015; Chem. Geol.). Yet uncertain is whether forearc fluid infiltration focused in intensely sheared and fractured zones could result in greater mobilization of C from subducting sections, in quantities sufficient to impact subduction zone C cycling. Lower-plate rocks at Arosa and Dent Blanche interface exposures (Bachmann et al., 2009, JGR; Angiboust et al., 2015, G3) are primarily calc-schist intercalated with meta-ultramafic and metamafic schist and contain carbonate-bearing veins of varying abundance and texture. At some localities, these sections contain blocks of carbonate, metabasalt, and upper-plate gneiss. Strongly deformed veins concordant with the foliation parallel to the thrust interface commonly contain carbonate and quartz. In highly sheared regions in the Arosa Zone, δ18O(VSMOW) values of some host-rocks and veins are shifted from +20 ± 2‰, values observed regionally for the Schistes Lustres, to values of +11 to +13‰. These shifts can be explained by interaction with externally-derived H2O-rich fluids with δ18O of +9 to +11‰. Smaller datasets for Dent Blanche localities hint at similar δ18O shifts. Most of these rocks contain little evidence of C release by decarbonation reactions. Evidence exists for local-scale dissolution of carbonate, during pressure solution, and carbonate-bearing veins reflect C mobility in fluids. Ongoing work assesses whether volumes of carbonate removed in some regions balance with those precipitated nearby in veins and pressure shadows.

  17. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2016-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  18. On the Representation of Aquifer Compressibility in General Subsurface Flow Codes: How an Alternate Definition of Aquifer Compressibility Matches Results from the Groundwater Flow Equation

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Karra, S.; Rajaram, H.

    2017-12-01

    The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.

  19. Design, construction, and testing of the direct absorption receiver panel research experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, J.M.; Rush, E.E.; Matthews, C.W.

    1990-01-01

    A panel research experiment (PRE) was designed, built, and tested as a scaled-down model of a direct absorption receiver (DAR). The PRE is a 3-MW{sub t}DAR experiment that will allow flow testing with molten nitrate salt and provide a test bed for DAR testing with actual solar heating. In a solar central receiver system DAR, the heat absorbing fluid (a blackened molten nitrate salt) flows in a thin film down a vertical panel (rather than through tubes as in conventional receiver designs) and absorbs the concentrated solar flux directly. The ability of the flowing salt film to absorb flux directly.more » The ability of the flowing salt film to absorb the incident solar flux depends on the panel design, hydraulic and thermal fluid flow characteristics, and fluid blackener properties. Testing of the PRE is being conducted to demonstrate the engineering feasibility of the DAR concept. The DAR concept is being investigated because it offers numerous potential performance and economic advantages for production of electricity when compared to other solar receiver designs. The PRE utilized a 1-m wide by 6-m long absorber panel. The salt flow tests are being used to investigate component performance, panel deformations, and fluid stability. Salt flow testing has demonstrated that all the DAR components work as designed and that there are fluid stability issues that need to be addressed. Future solar testing will include steady-state and transient experiments, thermal loss measurements, responses to severe flux and temperature gradients and determination of peak flux capability, and optimized operation. In this paper, we describe the design, construction, and some preliminary flow test results of the Panel Research Experiment. 11 refs., 8 figs., 2 tabs.« less

  20. Adaptive compliant structures for flow regulation

    PubMed Central

    Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto

    2017-01-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567

  1. Adaptive compliant structures for flow regulation.

    PubMed

    Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto

    2017-08-01

    This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.

  2. Bacterial floc mediated rapid streamer formation in creeping flows

    NASA Astrophysics Data System (ADS)

    Hassanpourfard, Mahtab; Nikakhtari, Zahra; Ghosh, Ranajay; Das, Siddhartha; Thundat, Thomas; Kumar, Aloke

    2015-11-01

    One of the contentious problems regarding the interaction of low Reynolds number (Re << 1) fluid flow with bacterial biomass is the formation of filamentous structures called streamers. Recently, we discovered that streamers can be formed from flow-induced deformation of the pre-formed bacterial flocs over extremely small timescales (less than a second). However, these streamers are different than the ones that mediated by biofilms. To optically probe the inception process of these streamers formation, bacterial flocs were embedded with 200 nm red fluorescent polystyrene beads that served as tracers. We also showed that at their inception the deformation of the flocs is dominated by large recoverable strains indicating significant elasticity. These strains subsequently increase tremendously to produce filamentous streamers. At time scales larger than streamers formation time scale, viscous response was observed from streamers. Finally, rapid clogging of microfluidic devices occurred after these streamers formed.

  3. A Computational Model of Coupled Multiphase Flow and Geomechanics to Study Fault Slip and Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Jha, B.

    2014-12-01

    The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around subsurface technologies that tap into water and energy resources. Here we present a new computational approach to model coupled multiphase flow and geomechanics of faulted reservoirs. We represent faults as surfaces embedded in a three-dimensional medium by using zero-thickness interface elements to accurately model fault slip under dynamically evolving fluid pressure and fault strength. We incorporate the effect of fluid pressures from multiphase flow in the mechanical stability of faults and employ a rigorous formulation of nonlinear multiphase geomechanics that is capable of handling strong capillary effects. We develop a numerical simulation tool by coupling a multiphase flow simulator with a mechanics simulator, using the unconditionally stable fixed-stress scheme for the sequential solution of two-way coupling between flow and geomechanics. We validate our modeling approach using several synthetic, but realistic, test cases that illustrate the onset and evolution of earthquakes from fluid injection and withdrawal. We also present the application of the coupled flow-geomechanics simulation technology to the post mortem analysis of the Mw=5.1, May 2011 Lorca earthquake in south-east Spain, and assess the potential that the earthquake was induced by groundwater extraction.

  4. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  5. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  6. The influence of normal fault geometry on porous sandstone deformation: Insights from mechanical models into conditions leading to Coulomb failure and shear-enhanced compaction

    NASA Astrophysics Data System (ADS)

    Allison, K.; Reinen, L. A.

    2011-12-01

    Slip on non-planar faults produces stress perturbations in the surrounding host rock that can yield secondary faults at a scale too small to be resolved on seismic surveys. Porosity changes during failure may affect the ability of the rock to transmit fluids through dilatant cracking or, in porous rocks, shear-enhanced compaction (i.e., cataclastic flow). Modeling the mechanical behavior of the host rock in response to slip on non-planar faults can yield insights into the role of fault geometry on regions of enhanced or inhibited fluid flow. To evaluate the effect of normal fault geometry on deformation in porous sandstones, we model the system as a linear elastic, homogeneous, whole or half space using the boundary-element modeling program Poly3D. We consider conditions leading to secondary deformation using the maximum Coulomb shear stress (MCSS) as an index of brittle deformation and proximity to an elliptical yield envelope (Y), determined experimentally for porous sandstone (Baud et al., JGR, 2006), for cataclastic flow. We model rectangular faults consisting of two segments: an upper leg with a constant dip of 60° and a lower leg with dips ranging 15-85°. We explore far-field stress models of constant and gradient uniaxial strain. We investigate the potential damage in the host rock in two ways: [1] the size of the damage zone, and [2] regions of enhanced deformation indicated by elevated MCSS or Y. Preliminary results indicate that, along a vertical transect passing through the fault kink, [1] the size of the damage zone increases in the footwall with increasing lower leg dip and remains constant in the hanging wall. [2] In the footwall, the amount of deformation does not change as a function of lower leg dip in constant stress models; in gradient stress models, both MCSS and Y increase with dip. In the hanging wall, Y decreases with increasing lower leg dip for both constant and gradient stress models. In contrast, MCSS increases: as lower leg dip increases for constant stress models, and as the difference between lower leg dip and 60° increases for gradient stress models. These preliminary results indicate that the dip of the lower fault segment significantly affects the amount and style of deformation in the host rock.

  7. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.

  8. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  9. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly consolidated sediments at the deformation front are interpreted to facilitate megathrust rupture to the trench (Hupers et al., 2017). A uniformly strong plate interface at Cascadia may inhibit microseismicity while building stress that is released in great earthquakes.

  10. A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid.

    PubMed

    Dimitriou, Christopher J; McKinley, Gareth H

    2014-09-21

    Guided by a series of discriminating rheometric tests, we develop a new constitutive model that can quantitatively predict the key rheological features of waxy crude oils. We first develop a series of model crude oils, which are characterized by a complex thixotropic and yielding behavior that strongly depends on the shear history of the sample. We then outline the development of an appropriate preparation protocol for carrying out rheological measurements, to ensure consistent and reproducible initial conditions. We use RheoPIV measurements of the local kinematics within the fluid under imposed deformations in order to validate the selection of a particular protocol. Velocimetric measurements are also used to document the presence of material instabilities within the model crude oil under conditions of imposed steady shearing. These instabilities are a result of the underlying non-monotonic steady flow curve of the material. Three distinct deformation histories are then used to probe the material's constitutive response. These deformations are steady shear, transient response to startup of steady shear with different aging times, and large amplitude oscillatory shear (LAOS). The material response to these three different flows is used to motivate the development of an appropriate constitutive model. This model (termed the IKH model) is based on a framework adopted from plasticity theory and implements an additive strain decomposition into characteristic reversible (elastic) and irreversible (plastic) contributions, coupled with the physical processes of isotropic and kinematic hardening. Comparisons of experimental to simulated response for all three flows show good quantitative agreement, validating the chosen approach for developing constitutive models for this class of materials.

  11. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  12. Deformations of a pre-stretched and lubricated finite elastic membrane driven by non-uniform external forcing

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Gat, Amir; Bercovici, Moran

    2017-11-01

    We study viscous-elastic dynamics of a fluid confined between a rigid plate and a finite pre-stretched circular elastic membrane, pinned at its boundaries. The membrane is subjected to forces acting either directly on the membrane or through a pressure distribution in the fluid. Under the assumptions of strong pre-stretching and small deformations of the elastic sheet, and by applying the lubrication approximation for the flow, we derive the Green's function for the resulting linearized 4th order diffusion equation governing the deformation field in cylindrical coordinates. In addition, defining an asymptotic expansion with the ratio of the induced to prescribed tension serving as the small parameter, we reduce the coupled Reynolds and non-linear von-Karman equations to a set of three one-way coupled linear equations. The solutions to these equations provide insight onto the effects of induced tension, and enable simplified prediction of the correction for the deformation field. Funded by the European Research Council (ERC) under the European Union'sHorizon 2020 Research and Innovation Programme, Grant Agreement No. 678734 (MetamorphChip). E.B. is supported by the Adams Fellowship Program.

  13. The 3D fault and vein architecture of strike-slip releasing- and restraining bends: Evidence from volcanic-centre-relatedmineral deposits

    USGS Publications Warehouse

    Berger, B.R.; ,

    2007-01-01

    High-temperature, volcanic-centre-related hydrothermal systems involve large fluid-flow volumes and are observed to have high discharge rates in the order of 100-400 kg/s. The flows and discharge occur predominantly on networks of critically stressed fractures. The coupling of hydrothermal fluid flow with deformation produces the volumes of veins found in epithermal mineral deposits. Owing to this coupling, veins provide information on the fault-fracture architecture in existence at the time of mineralization. They therefore provide information on the nature of deformation within fault zones, and the relations between different fault sets. The Virginia City and Goldfield mining districts, Nevada, were localized in zones of strike-slip transtension in an Early to Mid-Miocene volcanic belt along the western margin of North America. The Camp Douglas mining area occurs within the same belt, but is localized in a zone of strike-slip transpression. The vein systems in these districts record the spatial evolution of strike-slip extensional and contractional stepovers, as well as geometry of faulting in and adjacent to points along strike-slip faults where displacement has been interrupted and transferred into releasing and restraining stepovers. ?? The Geological Society of London 2007.

  14. A mechanism for tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1986-01-01

    In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.

  15. Thermocapillary flow with evaporation and condensation at low gravity. Part 2: Deformable surface

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Chung, T. J.; Nadarajah, A.

    1995-01-01

    The free surface behavior of a volatile wetting liquid at low gravity is studied using scaling and numerical techniques. An open cavity model, which was applied in part 1 to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate the influence of convection on surface morphology with length scales and subcooling/superheating limits of 1 less than or equal to D less than or equal to 10(exp 2) microns and approximately 1 K, respectively. Results show that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow and to a lesser extent the recoil force associated with evaporation and condensation. With subcooling, thermocapillarity produces a suction about the pore centerline that promotes loss of mechanical equilibrium, while condensation exerts an opposing force that under some conditions offsets this destabilizing influence. With superheating, thermocapillarity and evaporation act in the same direction and mutually foster surface stability. All of these trends are magnified by high capillary and Biot numbers, and the stronger circulation intensities associated with small contact angles. These phenomena strongly depend on the thermal and interfacial equilibrium between the liquid and vapor, and have important ramifications for systems designed to maintain a pressure differential across a porous surface.

  16. Two-Phase Flow and Compaction Within and Outside a Sphere under Pure Shear

    NASA Astrophysics Data System (ADS)

    Hier-Majumder, S.

    2017-12-01

    This work presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consist of an interconnected load bearing matrix phase and an inviscid interstitial fluid phase. This work outlines techniques for building analytical solutions for velocity, pressure, and compaction within each domain, subject to boundary conditions of continuity of matrix velocity and normal traction at the interface between the two domains. The solutions indicate that the flow is strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of 40, after which, the velocity within the sphere becomes relatively insensitive to the increase in the viscosity contrast.

  17. Surface wave energy absorption by a partially submerged bio-inspired canopy.

    PubMed

    Nové-Josserand, C; Castro Hebrero, F; Petit, L-M; Megill, W M; Godoy-Diana, R; Thiria, B

    2018-03-27

    Aquatic plants are known to protect coastlines and riverbeds from erosion by damping waves and fluid flow. These flexible structures absorb the fluid-borne energy of an incoming fluid by deforming mechanically. In this paper we focus on the mechanisms involved in these fluid-elasticity interactions, as an efficient energy harvesting system, using an experimental canopy model in a wave tank. We study an array of partially-submerged flexible structures that are subjected to the action of a surface wave field, investigating in particular the role of spacing between the elements of the array on the ability of our system to absorb energy from the flow. The energy absorption potential of the canopy model is examined using global wave height measurements for the wave field and local measurements of the elastic energy based on the kinematics of each element of the canopy. We study different canopy arrays and show in particular that flexibility improves wave damping by around 40%, for which half is potentially harvestable.

  18. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  19. Insights into Volcanic Tremor: A Linear Stability Analysis of Waves Propagating Along Fluid-Filled Cracks

    NASA Astrophysics Data System (ADS)

    Lipovsky, B.; Dunham, E. M.

    2012-12-01

    Crack waves are guided waves along fluid-filled cracks that propagate with phase velocity less than the sound wave speed. Chouet (JGR, 1986) and Ferrazzini and Aki (JGR, 1977) have shown that such waves could explain volcanic tremor in terms of the resonant modes of a finite length magma-filled crack. Based on an idealized lumped-parameter model, Julian (JGR, 1994) further proposed that the steady flow of a viscous magma in a volcanic conduit is unstable to perturbations, leading to self-excited oscillations of the conduit walls and radiation of seismic waves. Our objective is to evaluate the possibility of self-excited oscillations within a rigorous, continuum framework. Our specific focus has been on basaltic fissure eruptions. In a typical basaltic fissure system, the magnitudes of the wave restoring forces, fluid compressibility and wall elasticity, are highly depth dependent. Because of the elevated fluid compressibility from gas exsolution at shallow depths, fluid pressure perturbations in this regime propagate as acoustic waves with effectively rigid conduit walls. Below the exsolution depth, the conduit walls are more compliant relative to the magma compressibility and perturbations propagate as dispersive crack waves. Viscous magma flow through such a fissure will evolve to a fully developed state characterized by a parabolic velocity profile in several to tens of seconds. This time scale is greater than harmonic tremor periods, typically 0.1 to 1 second. A rigorous treatment of the wave response to pressure perturbations therefore requires a general analysis of conduit flow that is not in a fully developed state. We present a linearized analysis of the coupled fluid and elastic response to general flow perturbations. We assume that deformation of the wall is linear elastic. As our focus is on wavelengths greatly exceeding the crack width, fluid flow is described by a quasi-one dimensional, or width-averaged, model. We account for conservation of magma mass and momentum including compressibility and viscous drag. Our analysis further assumes small perturbations about a steady background flow, a linearized isothermal equation of state, and a nominally constant width channel. We confirm Julian's results that sufficiently rapid flow through a deformable-walled conduit is unstable to perturbations in the form of crack waves. Instability occurs when drag reduction from opening the conduit exceeds the increase in drag from increased fluid velocity. Crack waves are most unstable at long wavelengths, where the conduit becomes more compliant. In the long wavelength limit, we find a simple expression for the critical flow speed beyond which crack waves are unstable: u = c / 2, where c is the crack wave phase velocity. The instability condition is remarkably independent of viscosity. This result more rigorously confirms the conclusion of Dunham and Ogden (2012, J. App. Mech.), who found the same instability criterion under the limiting assumption of fully developed flow. In a typical basaltic system the occurrence of this instability requires flow speeds exceeding ~50 m/s at depths where magma is primarily liquid melt with little exsolved gas. At these depths, flow speeds of this order are unlikely to occur. We conclude that harmonic tremor due to self-excited oscillations is unlikely to occur in nature.

  20. Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, J. V.; Srikanth, D.; Das, Samir K.

    2017-08-01

    A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.

  1. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  2. The role of fluid pressure on frictional behavior at the base of the seismogenic zone

    USGS Publications Warehouse

    Hirth, Greg; Beeler, Nicholas M.

    2015-01-01

    To characterize stress and deformation style at the base of the seismogenic zone, we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective stress law for sliding friction should not work as efficiently near the brittle-ductile transition as it does at shallow conditions

  3. What Do Observations of Postseismic Deformation Tell us About the Rheology of the Lithoshpere?

    NASA Astrophysics Data System (ADS)

    Fialko, Y.

    2006-12-01

    Geodetic observations in epicentral areas of large shallow earthquakes reveal transient displacements that typically have the same sense as the coseismic ones, but are about an order of magnitude smaller. A number of different mechanisms has been proposed to explain the observed time-dependent deformation, including afterslip on a deep extension of the seismic rupture, viscous-like response of a substrate below the brittle-ductile transition (e.g., the lower crust or upper mantle), and re-distribution of pore fluids in the upper crust. Distinguishing the relative contributions of these relaxation mechanisms is important before one can make robust inferences about the effective rheology of the upper part of the continental lithosphere. Either the bulk visco-elastic relaxation or afterslip is required to explain large horizontal displacements observed in the aftermath of large strike-slip earthquakes. Both temporal and spatial signatures of postseismic deformation were used to demonstrate that simple linear Maxwell rheologies are not adequate. For non-linear (e.g., powerlaw) rheologies, the surface deformation field may be indistinguishable from that due to afterslip at the early stages of relaxation, when the deformation is localized in high stress areas on the downdip continuation of the earthquake fault. However, at later stages of relaxation visco-elastic models predict appreciable changes in the displacement pattern. In particular, vertical velocities may change sign after viscous flow in the ductile substrate becomes more diffuse. Thus afterslip and non-linear visco-elastic models can be in principle distinguished given a sufficiently long observation period. Fluid flow and poro-elastic effects are incapable of explaining the observed horizontal deformation, but may substantially contribute to vertical postseismic motions, further complicating a discrimination between afterslip and visco-elastic relaxation. I will present space geodetic measurements of postseismic deformation due to several large earthquakes in California and Asia, and discuss implications from these measurements for the crust and upper mantle rheology. The main conclusion is that the deformation patterns are not consistent between different events, suggesting either various contributions from different relaxation mechanisms, or significant variations in crustal rheologies.

  4. The effect of fault-bend folding on seismic velocity in the marginal ridge of accretionary prisms

    USGS Publications Warehouse

    Cai, Y.; Wang, Chun-Yong; Hwang, W.-t.; Cochrane, G.R.

    1995-01-01

    Fluid venting in accretionary prisms, which feeds chemosynthetic biological communities, occurs mostly on the marginal thrust ridge. New seismic data for the marginal ridge of the Cascadia prism show significantly lower velocity than that in the adjacent oceanic basin and place important constraints on the interpretations of why fluid venting occurs mostly on the marginal ridge. We employed a finite-element method to analyze a typical fault-bend folding model to explain the phenomenon. The fault in the model is simulated by contact elements. The elements are characterized not only by finite sliding along a slide line, but also by elastoplastic deformation. We present the results of a stress analysis which show that the marginal ridge is under subhorizontal extension and the frontal thrust is under compression. This state of stress favors the growth of tensile cracks in the marginal ridge, facilitates fluid flow and reduces seismic velocities therein; on the other hand, it may close fluid pathways along the frontal thrust and divert fluid flow to the marginal ridge. ?? 1995 Birkha??user Verlag.

  5. Viscous streaming for locomotion and transport

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Parthasarathy, Tejaswin

    2017-11-01

    Rectified and oscillatory flows associated with vibrating boundaries have been employed in a variety of tasks, especially in microfluidics. The associated fluid mechanics is well known in the case of simple geometries, cylinders in particular, yet little is known in the case of active, complex systems. Motivated by potential applications in swimming mini-bots, we established an accurate and robust computational framework to investigate the flow behavior associated with oscillations of multiple and deforming shapes with an emphasis on streaming assisted locomotion and transport systems.

  6. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  7. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.

  8. Arbitrary Shape Deformation in CFD Design

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2014-01-01

    Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.

  9. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  10. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations indicate that nearly 71% of the incoming water in the sediments leaves the accretionary wedge via diffuse flow out the seafloor, 0-5% escapes by focused flow along the de??collement, and roughly 1% is subducted. Copyright 1998 by the American Geophysical Union.

  11. Pinched-flow hydrodynamic stretching of single-cells.

    PubMed

    Dudani, Jaideep S; Gossett, Daniel R; Tse, Henry T K; Di Carlo, Dino

    2013-09-21

    Reorganization of cytoskeletal networks, condensation and decondensation of chromatin, and other whole cell structural changes often accompany changes in cell state and can reflect underlying disease processes. As such, the observable mechanical properties, or mechanophenotype, which is closely linked to intracellular architecture, can be a useful label-free biomarker of disease. In order to make use of this biomarker, a tool to measure cell mechanical properties should accurately characterize clinical specimens that consist of heterogeneous cell populations or contain small diseased subpopulations. Because of the heterogeneity and potential for rare populations in clinical samples, single-cell, high-throughput assays are ideally suited. Hydrodynamic stretching has recently emerged as a powerful method for carrying out mechanical phenotyping. Importantly, this method operates independently of molecular probes, reducing cost and sample preparation time, and yields information-rich signatures of cell populations through significant image analysis automation, promoting more widespread adoption. In this work, we present an alternative mode of hydrodynamic stretching where inertially-focused cells are squeezed in flow by perpendicular high-speed pinch flows that are extracted from the single inputted cell suspension. The pinched-flow stretching method reveals expected differences in cell deformability in two model systems. Furthermore, hydraulic circuit design is used to tune stretching forces and carry out multiple stretching modes (pinched-flow and extensional) in the same microfluidic channel with a single fluid input. The ability to create a self-sheathing flow from a single input solution should have general utility for other cytometry systems and the pinched-flow design enables an order of magnitude higher throughput (65,000 cells s(-1)) compared to our previously reported deformability cytometry method, which will be especially useful for identification of rare cell populations in clinical body fluids in the future.

  12. An experimental study of the effects of adsorbing and non-adsorbing gases on friction and permeability evolution in clay-rich fault gouge

    NASA Astrophysics Data System (ADS)

    Lisabeth, H. P.; Zoback, M. D.

    2017-12-01

    Understanding the flow of fluids through fractures in clay-rich rocks is fundamental to a number of geoengineering enterprises, including development of unconventional hydrocarbon resources, nuclear waste storage and geological carbon sequestration. High clay content tends to make rocks plastic, low-porosity and anisotropic. In addition, some gasses adsorb to clay mineral surfaces, resulting in swelling and concomitant changes in physical properties. These complexities can lead to coupled behaviors that render prediction of fluid behavior in the subsurface difficult. We present the results of a suite of triaxial experiments on binary mixtures of quartz and illite grains to separate and quantify the effects of hydrostatic pressure, differential stress, clay content and gas chemistry on the evolution of mechanical and hydraulic characteristics of the gouge material during deformation. Tests are run on saw-cut samples prepared with gouge at 20 MPa confining pressure, 10 MPa pore pressure and at room temperature. Argon or carbon dioxide is used as pore fluid. Sample permeability, stress and strain are monitored continuously during hydrostatic and axial deformation. We find that pressure and shearing both lead to reductions in permeability. Adsorbing gas leads to swelling and promotes permeability reduction, but appears to have no effect on frictional properties. These results indicate that the seal integrity of clay-rich caprocks may not be compromised by shear deformation, and that depletion and shear deformation of unconventional reservoirs is expected to result in production declines.

  13. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  14. Hydrodynamics of interaction of particles (including cells) with surfaces

    NASA Astrophysics Data System (ADS)

    Duszyk, Marek; Doroszewski, Jan

    The study of the phenomena related to the motion of particles flowing in the proximity of the wall is pursued for purely cognitive reason as well as for some important practical purposes in various fields of technology, biology and medicine. When small spherical rigid particles move in the direction parallel to the surface their velocity is smaller than that of the fluid and depends on the ratio of the distance from the wall to the particle radius. The velocity of a particle falling down in a vertical cylinder is maximal in an eccentric position. A sphere in contact with the wall remains stationary. Translational velocity of spherical rigid particles the dimension of which are comparable to that of the tube is only slightly dependent of their lateral position. The differences in the flow parameters of deformable particles in comparison with rigid ones depend on the particle and fluid viscosity coefficient. When the particles move perpendicularly toward the wall, their velocity decreases as the particle approaches the surface. The change of particle velocity is inversely proportional to the gap. There are several theories explaining the influence of the channel diameter on the suspension viscosity (sigma phenomenon); a modern approach is based on the analysis of rheological properties of suspensions. The explanations of the Fahraeus effect (i.e. the fact that the concentration of particles flowing in a tube linking two containers are smaller than that in the containers) are based on non-uniform particle distribution in a transverse cross section and on the differences of velocities of particles and medium. The deviation of the velocity profile of a suspension of rigid particles flowing through a tube from the parabolic shape (blunting) does not depend on the flow velocity; as concerns deformable particles, however, this effect is the smaller the greater is the flow velocity. When the Reynolds number for particles is greater than 10 -3, there appears a component of particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.

  15. Analysis of Small Deformation of Helical Flagellum of Swimming Vibrio alginolyticus

    NASA Astrophysics Data System (ADS)

    Takano, Yasunari; Yoshida, Kazuki; Kudo, Seishi; Nishitoba, Megumi; Magariyama, Yukio

    The deformation of a flagellum of Vibrio alginolyticus, single-flagellate bacteria, is analyzed theoretically assuming the shape of the flagellum to be a circular helix. The viscous force exerted on the flagellum in aqueous fluid is estimated applying the resistive-force theory based on the Stokes flow. The moment of force in the flagellum are described in analytical expressions and also the curvature and the torsion of the deformed flagellum are expressed analytically according to the Kirchhoff rod model. The deformation of the flagellum is obtained numerically solving evolution equations which determine a space curve from the curvature and the torsion. Comparing variations of the pitch of helical flagella between the numerical solutions and the results of measurement, the flexural rigidity or the elastic bending coefficient for the flagellum of Vibrio alginolyticus is estimated.

  16. The Influence of Grain Boundary Fluids on the Recrystallization Behavior in Calcite: A Comparison of "dry" and "wet" Marble Mylonites

    NASA Astrophysics Data System (ADS)

    Schenk, O.; Urai, J.; Evans, B.

    2003-12-01

    Carbonate rocks are able to accumulate large amounts of strain and deform crystal-plastically even at low p-T conditions and thus, marble sequences are often the site of strain localization in the upper crust during late-stage deformation in mountain building processes. In this study we sought to identify the effect of fluids on grain boundary morphology and recrystallization processes in marble mylonites during shear zone evolution, as fluids play a major role in the flow behavior of many rock materials during deformation (e.g. quartz, olivine, halite, feldspar). We compared calcite marble mylonites from two geological settings: (a) Schneeberg Complex, Southern Tyrole, Italy and (b) Naxos Metamorphic Core Complex, Greece. The shear zones of the selected areas are suitable for comparison, because they consist of similar lithology and the marble mylonites resemble each other in chemical composition. In addition, calcite-dolomite solvus geothermometry and TEM observations indicate similar p-T conditions for the shear zones formation. However, the two settings are different in the availability of fluids during the shear zone evolution: In the Schneeberg mylonites, both the alteration of minerals during retrograde metamorphism of neighboring micaschists and the existence of veins suggest that fluids were present during mylonitization. The absence of these features in the Naxos samples indicates that fluids were not present during deformation of these mylonites. This difference is also supported by the signature of stable isotopes. Microstructural investigations using optical and scanning electron microscopes on broken and planar surfaces did not indicate major differences between wet and dry mylonites: Grain boundaries of both types of samples display pores with shapes controlled by crystallography, and pore morphologies that are similar to observations from crack and grain-boundary healing experiments. Grain size reduction was predominantly the result of subgrain rotation recrystallization. However, the coarse grains inside the wet protomylonites (Schneeberg) are characterized by intracrystalline shear zones. With the exception of the intracrystalline shear zones, there were no obvious microstructural signatures that were obvious indicators of the presence of fluids, at least for these two field examples.

  17. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and rock plays a significant role in fracture propagation velocity. Fluid viscosity effects are similar to the loading rate effects, because in both cases the rapid buildup of the pressure in the wellbore in absence of the inflow of the fluid into initiated fracture causes induction of multiple simultaneous fracture branches at the wellbore wall.

  18. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  19. A matrix-form GSM-CFD solver for incompressible fluids and its application to hemodynamics

    NASA Astrophysics Data System (ADS)

    Yao, Jianyao; Liu, G. R.

    2014-10-01

    A GSM-CFD solver for incompressible flows is developed based on the gradient smoothing method (GSM). A matrix-form algorithm and corresponding data structure for GSM are devised to efficiently approximate the spatial gradients of field variables using the gradient smoothing operation. The calculated gradient values on various test fields show that the proposed GSM is capable of exactly reproducing linear field and of second order accuracy on all kinds of meshes. It is found that the GSM is much more robust to mesh deformation and therefore more suitable for problems with complicated geometries. Integrated with the artificial compressibility approach, the GSM is extended to solve the incompressible flows. As an example, the flow simulation of carotid bifurcation is carried out to show the effectiveness of the proposed GSM-CFD solver. The blood is modeled as incompressible Newtonian fluid and the vessel is treated as rigid wall in this paper.

  20. A 2D nonlinear multiring model for blood flow in large elastic arteries

    NASA Astrophysics Data System (ADS)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  1. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2012-07-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  2. An Immersed Boundary-Lattice Boltzmann Method for Simulating Particulate Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Baili; Cheng, Ming; Lou, Jing

    2013-11-01

    A two-dimensional momentum exchange-based immersed boundary-lattice Boltzmann method developed by X.D. Niu et al. (2006) has been extended in three-dimensions for solving fluid-particles interaction problems. This method combines the most desirable features of the lattice Boltzmann method and the immersed boundary method by using a regular Eulerian mesh for the flow domain and a Lagrangian mesh for the moving particles in the flow field. The non-slip boundary conditions for the fluid and the particles are enforced by adding a force density term into the lattice Boltzmann equation, and the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. This method preserves the advantages of lattice Boltzmann method in tracking a group of particles and, at the same time, provides an alternative approach to treat solid-fluid boundary conditions. Numerical validations show that the present method is very accurate and efficient. The present method will be further developed to simulate more complex problems with particle deformation, particle-bubble and particle-droplet interactions.

  3. Use of Buckling Instabilities in Micro Pumps, Valves, and Mixers

    NASA Astrophysics Data System (ADS)

    Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas

    2014-03-01

    We use the buckling of thin, flexible plates for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A dielectric elastomeric film with a confined geometry buckles out of the plane when exposed to an electric field. Solid or grease electrodes have traditionally been used as conductive materials to aid in voltage application to both sides of the film. In this work, we use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. We show that this mechanism can be implemented as a microvalve that controls flow rate, or as a micropump that operates over a range of frequencies. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. These low-cost micropumps, microvalves, and micromixers rely on the reversible buckling of thin plates, are easily embeddable in a microfluidic chip, and can potentially be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.

  4. Control volume analyses of glottal flow using a fully-coupled numerical fluid-structure interaction model

    NASA Astrophysics Data System (ADS)

    Yang, Jubiao; Krane, Michael; Zhang, Lucy

    2013-11-01

    Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.

  5. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation.

    PubMed

    Martin, David M; Murphy, Eoin A; Boyle, Fergal J

    2014-08-01

    In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Strain-based diffusion solver for realistic representation of diffusion front in physical reactions

    PubMed Central

    2017-01-01

    When simulating fluids, such as water or fire, interacting with solids, it is a challenging problem to represent details of diffusion front in physical reaction. Previous approaches commonly use isotropic or anisotropic diffusion to model the transport of a quantity through a medium or long interface. We have identified unrealistic monotonous patterns with previous approaches and therefore, propose to extend these approaches by integrating the deformation of the material with the diffusion process. Specifically, stretching deformation represented by strain is incorporated in a divergence-constrained diffusion model. A novel diffusion model is introduced to increase the global rate at which the solid acquires relevant quantities, such as heat or saturation. This ensures that the equations describing fluid flow are linked to the change of solid geometry, and also satisfy the divergence-free condition. Experiments show that our method produces convincing results. PMID:28448591

  7. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  8. Extensional Rheology Experiment Developed to Investigate the Rheology of Dilute Polymer Solutions in Microgravity

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.

    2001-01-01

    A fundamental characteristic of fluid is viscosity; that is, the fluid resists forces that cause it to flow. This characteristic, or parameter, is used by manufacturers and end-users to describe the physical properties of a specific material so that they know what to expect when a material, such as a polymer, is processed through an extruder, a film blower, or a fiber-spinning apparatus. Normally, researchers will report a shear viscosity that depends on the rate of an imposed shearing flow. Although this type of characterization is sufficient for some processes, simple shearing experiments do not provide a complete picture of what a processor may expect for all materials. Extensional stretching flows are common in many polymer-processing operations such as extrusion, blow molding, and fiber spinning. Therefore, knowledge of the complete rheological (ability to flow and be deformed) properties of the polymeric fluid being processed is required to accurately predict and account for the flow behavior. In addition, if numerical simulations are ever able to serve as a priori design tools for optimizing polymer processing operations such as those described above, an accurate knowledge of the extensional viscosity of a polymer system and its variation with temperature, concentration, molecular weight, and strain rate is critical.

  9. Three-Dimensional Modeling of Fluid and Heat Transport in an Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Paula, C. A.; Ge, S.; Screaton, E. J.

    2001-12-01

    As sediments are scraped off of the subducting oceanic crust and accreted to the overriding plate, the rapid loading causes pore pressures in the underthrust sediments to increase. The change in pore pressure drives fluid flow and heat transport within the accretionary complex. Fluid is channeled along higher permeability faults and fractures and expelled at the seafloor. In this investigation, we examined the effects of sediment loading on fluid flow and thermal transport in the decollement at the Barbados Ridge subduction zone. Both the width and thickness of the Barbados Ridge accretionary complex increase from north to south. The presence of mud diapers south of the Tiburon Rise and an observed southward decrease in heat flow measurements indicate that the increased thickness of the southern Barbados accretionary prism affects the transport of chemicals and heat by fluids. The three-dimensional geometry and physical properties of the accretionary complex were utilized to construct a three-dimensional fluid flow/heat transport model. We calculated the pore pressure change due to a period of sediment loading and added this to steady-state pressure conditions to generate initial conditions for transient simulations. We then examined the diffusion of pore pressure and possible perturbation of the thermal regime over time due to loading of the underthrust sediments. The model results show that the sediment-loading event was sufficient to create small temperature fluctuations in the decollement zone. The magnitude of temperature fluctuation in the decollement was greatest at the deformation front but did not vary significantly from north to south of the Tiburon Rise.

  10. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporatedmore » into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.« less

  11. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  12. A three-dimensional numerical simulation of cell behavior in a flow chamber based on fluid-solid interaction.

    PubMed

    Bai, Long; Cui, Yuhong; Zhang, Yixia; Zhao, Na

    2014-01-01

    The mechanical behavior of blood cells in the vessels has a close relationship with the physical characteristics of the blood and the cells. In this paper, a numerical simulation method was proposed to understand a single-blood cell's behavior in the vessels based on fluid-solid interaction method, which was conducted under adaptive time step and fixed time step, respectively. The main programme was C++ codes, which called FLUENT and ANSYS software, and UDF and APDL acted as a messenger to connect FLUENT and ANSYS for exchanging data. The computing results show: (1) the blood cell moved towards the bottom of the flow chamber in the beginning due to the influence of gravity, then it began to jump up when reached a certain height rather than touching the bottom. It could move downwards again after jump up, the blood cell could keep this way of moving like dancing continuously in the vessels; (2) the blood cell was rolling and deforming all the time; the rotation had oscillatory changes and the deformation became conspicuously when the blood cell was dancing. This new simulation method and results can be widely used in the researches of cytology, blood, cells, etc.

  13. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NASA Astrophysics Data System (ADS)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  14. Microstructures and Crystallographic Misorientation in Experimentally Deformed Natural Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger

    2010-05-01

    Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation lamellae with a high optical relief appear in the usual sub-basal orientation; often they are associated with 'fluid inclusions trails', cracks or en echelon arrays. In ⊥{m} orientation, conjugate misorientation bands sub-parallel to the prism planes can be observed. The barreled shape of the samples can be explained by prism glide. Unfortunately, since prism glide does not affect the c-axis orientation it cannot be recognized on a c-axis orientation image. Nevertheless, changes in the c-axis orientation are observed locally, indicating either the activity of an additional slip system or a different deformation process (not specified yet). In O+ orientation, we observe the formation of internally kinked shear bands. They are up to 100 μm wide and oriented at α 90° w/r to the host c-axis, slightly oblique to the sense of shear. The width of the kinked domains is 20-40 μm and the average misorientation (β) is 5° . The dispersion of c-axis orientation with synthetic rotation of the c-axis is evidence of basal glide. References: Kronenberg, A.K. & Tullis, J. (1984): Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. JGR Vol. 89, 4281-4281.

  15. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation

    NASA Astrophysics Data System (ADS)

    Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed

    2017-07-01

    We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were then entrained by the flow and partially blocked pore-throat connections within the proppant pack. Deformation of proppant packs resulted in significant changes in waterflood residual oil saturation. In-situ contact angles measured using micro-CT images showed that proppant grains had experienced a drastic alteration of wettability (from strong water-wet to weakly oil-wet) after the medium had been subjected to flow of oil and brine for multiple weeks. Nanometer resolution SEM images captured nano-fractures induced in the shale surfaces during the experiments with mono-layer proppant packing. These fractures improved the effective permeability of the medium and shale/fracture interactions.

  16. A new model of reaction-driven cracking: fluid volume consumption and tensile failure during serpentinization

    NASA Astrophysics Data System (ADS)

    Eichenbaum-Pikser, J. M.; Spiegelman, M. W.; Kelemen, P. B.; Wilson, C. R.

    2013-12-01

    Reactive fluid flow plays an important role in a wide range of geodynamic processes, such as melt migration, formation of hydrous minerals on fault surfaces, and chemical weathering. These processes are governed by the complex coupling between fluid transport, reaction, and solid deformation. Reaction-driven cracking is a potentially critical feedback mechanism, by which volume change associated with chemical reaction drives fracture in the surrounding rock. It has been proposed to play a role in both serpentinization and carbonation of peridotite, motivating consideration of its application to mineral carbon sequestration. Previous studies of reactive cracking have focused on the increase in solid volume, and as such, have considered failure in compression. However, if the consumption of fluid is considered in the overall volume budget, the reaction can be net volume reducing, potentially leading to failure in tension. To explore these problems, we have formulated and solved a 2-D model of coupled porous flow, reaction kinetics, and elastic deformation using the finite element model assembler TerraFERMA (Wilson et al, G3 2013 submitted). The model is applied to the serpentinization of peridotite, which can be reasonably approximated as the transfer of a single reactive component (H2O) between fluid and solid phases, making it a simple test case to explore the process. The behavior of the system is controlled by the competition between the rate of volume consumption by the reaction, and the rate of volume replacement by fluid transport, as characterized by a nondimensional parameter χ, which depends on permeability, reaction rate, and the bulk modulus of the solid. Large values of χ correspond to fast fluid transport relative to reaction rate, resulting in a low stress, volume replacing regime. At smaller values of χ, fluid transport cannot keep up with the reaction, resulting in pore fluid under-pressure and tensile solid stresses. For the range of χ relevant to the serpentinization of peridotite, these stresses can reach hundreds of MPa, exceeding the tensile strength of peridotite.

  17. Shock-driven fluid-structure interaction for civil design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Stephen L; Deiterding, Ralf

    The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less

  18. A fluid-structure interaction model of soft robotics using an active strain approach

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Lin, Zhaowu; Gao, Tong

    2017-11-01

    Soft robotic swimmers exhibit rich dynamics that stem from the non-linear interplay of the fluid and immersed soft elastic body. Due to the difficulty of handling the nonlinear two-way coupling of hydrodynamic flow and deforming elastic body, studies of flexible swimmers often employ either one-way coupling strategies with imposed motions of the solid body or some simplified elasticity models. To explore the nonlinear dynamics of soft robots powered by smart soft materials, we develop a computational model to deal with the two-way fluid/elastic structure interactions using the fictitious domain method. To mimic the dynamic response of the functional soft material under external actuations, we assume the solid phase to be neo-Hookean, and employ an active strain approach to incorporate actuation, which is based on the multiplicative decomposition of the deformation gradient tensor. We demonstrate the capability of our algorithm by performing a series of numerical explorations that manipulate an elastic structure with finite thickness, starting from simple rectangular or circular plates to soft robot prototypes such as stingrays and jellyfish.

  19. Role of passive deformation on propulsion through a lumped torsional flexibility model

    NASA Astrophysics Data System (ADS)

    Arora, Nipun; Gupta, Amit

    2016-11-01

    Scientists and biologists have been affianced in a deeper examination of insect flight to develop an improved understanding of the role of flexibility on aerodynamic performance. Here, we mimic a flapping wing through a fluid-structure interaction framework based upon a lumped torsional flexibility model. The developed fluid and structural solvers together determine the aerodynamic forces and wing deformation, respectively. An analytical solution to the simplified single-spring structural dynamics equation is established to substantiate simulations. It is revealed that the dynamics of structural deformation is governed by the balance between inertia, stiffness and aerodynamics, where the former two oscillate at the plunging frequency and the latter oscillates at twice the plunging frequency. We demonstrate that an induced phase difference between plunging and passive pitching is responsible for a higher thrust coefficient. This phase difference is also shown to be dependent on aerodynamics to inertia and natural to plunging frequency ratios. For inertia dominated flows, pitching and plunging always remain in phase. As the aerodynamics dominates, a large phase difference is induced which is accountable for a large passive deformation and higher thrust. Authors acknowledge the financial support received from the Aeronautics Research and Development Board (ARDB) under SIGMA Project No. 1705 and thank the IIT Delhi HPC facility for computational resources.

  20. Fluid and mass transfer at subduction interfaces-The field metamorphic record

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.; Penniston-Dorland, Sarah C.

    2016-01-01

    The interface between subducting oceanic slabs and the hanging wall is a structurally and lithologically complex region. Chemically disparate lithologies (sedimentary, mafic and ultramafic rocks) and mechanical mixtures thereof show heterogeneous deformation. These lithologies are tectonically juxtaposed at mm to km scales, particularly in more intensely sheared regions (mélange zones, which act as fluid channelways). This juxtaposition, commonly in the presence of a mobile fluid phase, offers up huge potential for mass transfer and related metasomatic alteration. Fluids in this setting appear capable of transporting mass over scales of kms, along flow paths with widely varying geometries and P-T trajectories. Current models of arc magmatism require km-scale migration of fluids from the interface into mantle wedge magma source regions and implicit in these models is the transport of any fluids generated in the subducting slab along and ultimately through the subduction interface. Field and geochemical studies of high- and ultrahigh-pressure metamorphic rocks elucidate the sources and compositions of fluids in subduction interfaces and the interplay between deformation and fluid and mass transfer in this region. Recent geophysical studies of the subduction interface - its thickness, mineralogy, density, and H2O content - indicate that its rheology greatly influences the ways in which the subducting plate is coupled with the hanging wall. Field investigation of the magnitude and styles of fluid-rock interaction in metamorphic rocks representing "seismogenic zone" depths (and greater) yields insight regarding the roles of fluids and elevated fluid pore pressure in the weakening of plate interface rocks and the deformation leading to seismic events. From a geochemical perspective, the plate interface contributes to shaping the "slab signature" observed in studies of the composition of arc volcanic rocks. Understanding the production of fluids with hybridized chemical/isotopic compositions could improve models aimed at identifying the relative contributions of end-member rock reservoirs through analyses of arc volcanic rocks. Production of rocks rich in hydrous minerals, along the subduction interface, could stabilize H2O to great depths in subduction zones and influence deep-Earth H2O cycling. Enhancement of decarbonation reactions and dissolution by fluid infiltration facilitated by deformation at the interface could influence the C flux from subducting slabs entering the sub-arc mantle wedge and various forearc reservoirs. In this paper, we consider records of fluid and mass transfer at localities representing various depths and structural expressions of evolving paleo-interfaces, ranging widely in structural character, the rock types involved (ultramafic, mafic, sedimentary), and the rheology of these rocks. We stress commonalities in styles of fluid and mass transfer as related to deformation style and the associated geometries of fluid mobility at subduction interfaces. Variations in thermal structure among individual margins will lead to significant differences in not only the rheology of subducting rocks, and thus seismicity, but also the profiles of devolatilization and melting, through the forearc and subarc, and the element/mineral solubilities in any aqueous fluids or silicate melts that are produced. One key factor in considering fluid and mass transfer in the subduction interface, influencing C cycling and other chemical additions to arcs, is the uncertain degree to which sub-crustal ultramafic rocks in downgoing slabs are hydrated and release H2O-rich fluids.

  1. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system. The lengthscale of the migration and the nature of invading fluids during these connections is different in every studied example, and can be related to the tectonic nature of the fold, along with the burial depth at the time of deformation. Thus, to decipher fluid-fracture relationships provides insights to better reconstruct the mechanisms of deformation at reservoir-scale.

  2. Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.

    PubMed

    Guyot, Yann; Smeets, Bart; Odenthal, Tim; Subramani, Ramesh; Luyten, Frank P; Ramon, Herman; Papantoniou, Ioannis; Geris, Liesbet

    2016-09-01

    Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/μm, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.

  3. Deformation in the Basin & Range Province and Rio Grande Rift using InSAR Time Series

    NASA Astrophysics Data System (ADS)

    Taylor, H.; Pisaniello, M.; Pritchard, M. E.

    2012-12-01

    High heat flow in the Basin and Range Province and Rio Grande Rift has been attributed to partial melting in the crust and upper mantle as a result of ongoing extension (e.g. Lachenbruch 1978). We would then expect to observe surface deformation in areas with actively moving magmatic fluids. The distribution of these magmatic fluids has implications for the rheology of the crust and upper mantle. For this study, we use InSAR to locate deformation due to magmatic sources as well as localized hydrologic deformation. While our focus is magmatic deformation, hydrologic signals are important for correcting geodetic data used to monitor tectonic activity. InSAR is a suitable technique for a large study in the Basin and Range and Rio Grande Rift since SAR acquisitions are both numerous and temporally extensive in these regions. We use ERS-1, ERS-2, and ENVISAT SAR images from 1992-2010 to create time series' with interferograms up to 1800km long from both ascending and descending satellite tracks. Each time series has an average of 100 interferograms reducing the atmospheric noise that masks small deformation signals in single interferograms. The time series' results are validated using overlapping tracks and are further compared to signals identified in previous geophysical studies (e.g. Reilinger and Brown 1980, Massonnet et al 1997, Finnegan and Pritchard 2009). We present results for several areas of deformation in the Basin & Range Province and Rio Grande Rift. An agricultural area near Roswell, NM exhibits seasonal uplift and subsidence of ±3.5cm/yr between 1992 and 1999. Results indicate subsidence on the order of 1cm/yr and uplift of 2cm/yr at the Raft River power plant, ID that is likely related to the start of geothermal fluid production and injection. Just north of the Raft River plant, we detect what appears to be rapid agricultural subsidence in an area extending for 50km. We discuss subsidence of ~2cm/yr in Escalante Valley, UT that is comparable to deformation observed in an earlier InSAR study on subsidence caused by ground-water withdrawal (Forster, 2006).

  4. Entrainment of bed sediment by debris flows: results from large-scale experiments

    USGS Publications Warehouse

    Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.

    2011-01-01

    When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.

  5. An investigation of deformation and fluid flow at subduction zones using newly developed instrumentation and finite element modeling

    NASA Astrophysics Data System (ADS)

    Labonte, Alison Louise

    Detecting seafloor deformation events in the offshore convergent margin environment is of particular importance considering the significant seismic hazard at subduction zones. Efforts to gain insight into the earthquake cycle have been made at the Cascadia and Costa Rica subduction margins through recent expansions of onshore GPS and seismic networks. While these studies have given scientists the ability to quantify and locate slip events in the seismogenic zone, there is little technology available for adequately measuring offshore aseismic slip. This dissertation introduces an improved flow meter for detecting seismic and aseismic deformation in submarine environments. The value of such hydrologic measurements for quantifying the geodetics at offshore margins is verified through a finite element modeling (FEM) study in which the character of deformation in the shallow subduction zone is determined from previously recorded hydrologic events at the Costa Rica Pacific margin. Accurately sensing aseismic events is one key to determining the stress state in subduction zones as these slow-slip events act to load or unload the seismogenic zone during the interseismic period. One method for detecting seismic and aseismic strain events is to monitor the hydrogeologic response to strain events using fluid flow meters. Previous instrumentation, the Chemical Aqueous Transport (CAT) meter which measures flow rates through the sediment-water interface, can detect transient events at very low flowrates, down to 0.0001 m/yr. The CAT meter performs well in low flow rate environments and can capture gradual changes in flow rate, as might be expected during ultra slow slip events. However, it cannot accurately quantify high flow rates through fractures and conduits, nor does it have the temporal resolution and accuracy required for detecting transient flow events associated with rapid deformation. The Optical Tracer Injection System (OTIS) developed for this purpose is an electronic flow meter that can measure flow rates of 0.1 to >500 m/yr at a temporal resolution of 30 minutes to 0.5 minutes, respectively. Test deployments of the OTIS at cold seeps in the transpressional Monterey Bay demonstrated the OTIS functionality over this range of flow environments. Although no deformation events were detected during these test deployments, the OTIS's temporally accurate measurements at the vigorously flowing Monterey Bay cold seep rendered valuable insight into the plumbing of the seep system. In addition to the capability to detect transient flow events, a primary functional requirement of the OTIS was the ability to communicate and transfer data for long-term real-time monitoring deployments. Real-time data transfer from the OTIS to the desktop was successful during a test deployment of the Nootka Observatory, an acoustically-linked moored-buoy system. A small array of CAT meters was also deployed at the Nootka transform-Cascadia subduction zone triple junction. Four anomalous flow rate events were observed across all four meters during the yearlong deployment. Although the records have low temporal accuracy, a preliminary explanation for the regional changes in flow rate is made through comparison between flow rate records and seismic records. The flow events are thought to be a result of a tectonic deformation event, possibly with an aseismic component. Further constraints are not feasible given the unknown structure of faulting near the triple junction. In a final proof of concept study, I find that use these hydrologic instruments, which capture unique aseismic flow rate patterns, is a valuable method for extracting information about deformation events on the decollement in the offshore subduction zone margin. Transient flow events observed in the frontal prism during a 1999--2000 deployment of CAT meters on the Costa Rica Pacific margin suggest episodic slow-slip deformation events may be occurring in the shallow subduction zone. The FEM study to infer the character of the hypothetical deformation event driving flow transients verify that indeed, a shallow slow-slip event can reproduce the unique flow rate patterns observed. Along (trench) strike variability in the rupture initiation location, and bidirectional propagation, is one way to explain the opposite sign of flow rate transients observed at different along-strike distances. The larger question stimulated by this dissertation project, is: What are the controls on fault mechanics in offshore subduction zone environments? It appears the shallow subduction zone plate interface doesn't behave solely in response to frictional properties of the sediment lining the decollement. Shallow episodic slip at the Costa Rica Pacific margin and further north off Nicaragua, where a slow earthquake broke through the shallow 'stable-sliding' zone and resulted in a tsunami, are potentially conceived through the normally faulted incoming basement topography. Scientists should seek to map out the controls of faulting mechanics, whatever they may be, at all temporal and spatial scales in order to understand these dynamic subduction zone systems. The quest to understanding these controls, in part, requires the characterization of aseismic and seismic strain occurring over time and space. The techniques presented in this dissertation advance scientists' capability for quantifying such strains. With the new instrumentation presented here, long-term real-time observatory networks on the seafloor, and modeling for characterization of deformation events, the pieces of the subduction zone earthquake cycle puzzle may start to come together.

  6. Hydromechanical Modeling of Fluid Flow in the Lower Crust

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2011-12-01

    The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it determines the compaction time and length scales and, thereby, the response of the system to perturbations. Unfortunately, because metamorphic devolatilization is the most probable source of lower crustal fluids, the assumption of an initial steady state leaves much to be desired. In truth, in the modeling of lower crustal fluid flow, less is known about the initial state than is known about possible perturbations to it, e.g., metamorphic fluid production. Compaction is a bad and good news story. The bad news is that local flow patterns may be influenced by unknowable details; the good news is that compaction-driven fluid flow has a tendency to self-organize. Self-organization eliminates the dependence on details that are present on spatial or temporal scales that are smaller than the compaction length and time scales. Porosity waves are the mechanism for this self-organization, through which dilational deformation is localized in time and space to create pathways for fluid expulsion. The resulting flow patterns are sensitive to material properties and initial state, thus, inversion of natural flow patterns offers the greatest hope for constraining the compaction scales. Knowledge of these scales is also important because they limit the influence of external forcings on flow patterns, e.g., a shear zone may induce lateral or downward fluid flow, but only on the compaction time and length scales.

  7. Spatial distribution of damage around faults in the Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah: A mechanical analog for faulting in pyroclastic deposits on Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2012-01-01

    Volcanic ash is thought to comprise a large fraction of the Martian equatorial layered deposits and much new insight into the process of faulting and related fluid flow in these deposits can be gained through the study of analogous terrestrial tuffs. This study identifies a set of fault-related processes that are pertinent to understanding the evolution of fault systems in fine-grained, poorly indurated volcanic ash by investigating exposures of faults in the Miocene-aged Joe Lott Tuff Member of the Mount Belknap Volcanics, Utah. The porosity and granularity of the host rock are found to control the style of localized strain that occurs prior to and contemporaneous with faulting. Deformation bands occur in tuff that was porous and granular at the time of deformation, while fractures formed where the tuff lost its porous and granular nature due to silicic alteration. Non-localized deformation of the host rock is also prominent and occurs through compaction of void space, including crushing of pumice clasts. Significant off-fault damage of the host rock, resembling fault pulverization, is recognized adjacent to one analog fault and may reflect the strain rate dependence of the resulting fault zone architecture. These findings provide important new guidelines for future structural analyses and numerical modeling of faulting and subsurface fluid flow through volcanic ash deposits on Mars.

  8. The temporal evolution of a subducting plate in the lower mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Grujic, D.; Braun, J.; Fullsack, P.; Thieulot, C.; Yamato, P.

    2009-04-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle) by means of both analogue and numerical modelling. The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a "jellyfish" form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.

  9. The Temporal Evolution Of A Subducting Plate In The Lower Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Grujic, D.; Fullsack, P.; Thieulot, C.; Yamato, P.; Braun, J.

    2008-12-01

    It is now widely accepted that some subducting slabs may cross the lower/upper mantle boundary to ground below the 660 km discontinuity. Indeed, geophysical data underline long and narrow traces of fast materials, associated with subducting slabs, from the upper mantle transition zone to mid-mantle depths that are visible beneath North and South America and southern Asia (Li et al, 2008). Furthermore, seismic tomography data (Van der Hilst et al., 1997; Karason and van der Hilst, 2000, 2001)) show a large variety of slab geometries and of mantle flow patterns around subducting plate boundaries (e.g. the slab geometry in the lower mantle in the Tonga subduction zone). However, seismic tomography does not elucidate the temporal evolution of the slab behaviour and geometry during its descent through the upper and lower mantle. In this work, we therefore propose to study the deformation of a thin plate (slab) falling in a viscous fluid (mantle). The combination of both analogue and numerical experiments provides important insights into the shape and attitude evolution of subducting slabs. Models bring information into the controls exerted by the rheology of the slab and the mantle and other physical parameters such as the density contrast between the slab and the surrounding mantle, on the rate at which this deformation takes place. We show that in function of a viscosity ratios between the plate and the surrounding fluid, the plate will acquire a characteristic shape. For the isoviscous case, the plate shape tends toward a bubble with long tails: a jellyfish form. The time necessary for the plate to acquire this shape is a function of the viscosity and density contrast between the slab and the mantle. To complete our approach, we have developed a semi-analytical model based on the solution of the Hadamar-Rybinski equations for the problem of a dense, yet isoviscous and thus deforming sphere. This model helps to better describe flow processes around the downgoing plate and, simultaneously, to characterize its deformation. In this way, we were able to calculate the velocities in the mantle, the forces exerted by the fluid on the plate, and the dissipated energy in the surrounding fluid. Experimental results will be correlated with geophysical data.

  10. Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel

    DOE PAGES

    Gai, Ya; Min Leong, Chia; Cai, Wei; ...

    2016-10-10

    When a many-body system is driven away from equilibrium, order can spontaneously emerge in places where disorder might be expected. Here we report an unexpected order in the flow of a concentrated emulsion in a tapered microfluidic channel. The velocity profiles of individual drops in the emulsion show periodic patterns in both space and time. Such periodic patterns appear surprising from both a fluid and a solid mechanics point of view. In particular, when the emulsion is considered as a soft crystal under extrusion, a disordered scenario might be expected based on the stochastic nature of dislocation dynamics in microscopicmore » crystals. However, an orchestrated sequence of dislocation nucleation and migration is observed to give rise to a highly ordered deformation mode. This discovery suggests that nanocrystals can be made to deform more controllably than previously thought. It can also lead to novel flow control and mixing strategies in droplet microfluidics.« less

  11. A fictitious domain method for fluid/solid coupling applied to the lithosphere/asthenosphere interaction.

    NASA Astrophysics Data System (ADS)

    Cerpa, Nestor; Hassani, Riad; Gerbault, Muriel

    2014-05-01

    A large variety of geodynamical problems can be viewed as a solid/fluid interaction problem coupling two bodies with different physics. In particular the lithosphere/asthenosphere mechanical interaction in subduction zones belongs to this kind of problem, where the solid lithosphere is embedded in the asthenospheric viscous fluid. In many fields (Industry, Civil Engineering,etc.), in which deformations of solid and fluid are "small", numerical modelers consider the exact discretization of both domains and fit as well as possible the shape of the interface between the two domains, solving the discretized physic problems by the Finite Element Method (FEM). Although, in a context of subduction, the lithosphere is submitted to large deformation, and can evolve into a complex geometry, thus leading to important deformation of the surrounding asthenosphere. To alleviate the precise meshing of complex geometries, numerical modelers have developed non-matching interface methods called Fictitious Domain Methods (FDM). The main idea of these methods is to extend the initial problem to a bigger (and simpler) domain. In our version of FDM, we determine the forces at the immersed solid boundary required to minimize (at the least square sense) the difference between fluid and solid velocities at this interface. This method is first-order accurate and the stability depends on the ratio between the fluid background mesh size and the interface discretization. We present the formulation and provide benchmarks and examples showing the potential of the method : 1) A comparison with an analytical solution of a viscous flow around a rigid body. 2) An experiment of a rigid sphere sinking in a viscous fluid (in two and three dimensional cases). 3) A comparison with an analog subduction experiment. Another presentation aims at describing the geodynamical application of this method to Andean subduction dynamics, studying cyclic slab folding on the 660 km discontinuity, and its relationship with flat subduction.

  12. Simulation Of The Synovial Fluid In A Deformable Cavity

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Nancy; Ibarra-Bracamontes, Laura A.

    2016-11-01

    The main components of a synovial joint are a cartilage and a biofluid known as the synovial fluid. The results were obtained using the FLUENT software to simulate the behavior of the synovial fluid within a deformable cavity with a simple geometry. The cartilage is represented as a porous region. By reducing the available region for the fluid, a fluid displacement into the cartilage is induced. The total pressure reached in the interface of the deformable cavity and the porous region is presented. The geometry and properties of the system are scaled to values found in a knee joint. The effect of deformation rate, fluid viscosity and properties of the porous medium on the total pressure reached are analyzed. The higher pressures are reached either for high deformation rate or when the fluid viscosity increases. This study was supported by the Mexican Council of Science and Technology (CONACyT) and by the Scientific Research Coordination of the University of Michoacan in Mexico.

  13. Hydrodynamics of a flexible plate between pitching rigid plates

    NASA Astrophysics Data System (ADS)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  14. An incompressible fluid flow model with mutual information for MR image registration

    NASA Astrophysics Data System (ADS)

    Tsai, Leo; Chang, Herng-Hua

    2013-03-01

    Image registration is one of the fundamental and essential tasks within image processing. It is a process of determining the correspondence between structures in two images, which are called the template image and the reference image, respectively. The challenge of registration is to find an optimal geometric transformation between corresponding image data. This paper develops a new MR image registration algorithm that uses a closed incompressible viscous fluid model associated with mutual information. In our approach, we treat the image pixels as the fluid elements of a viscous fluid flow governed by the nonlinear Navier-Stokes partial differential equation (PDE). We replace the pressure term with the body force mainly used to guide the transformation with a weighting coefficient, which is expressed by the mutual information between the template and reference images. To solve this modified Navier-Stokes PDE, we adopted the fast numerical techniques proposed by Seibold1. The registration process of updating the body force, the velocity and deformation fields is repeated until the mutual information weight reaches a prescribed threshold. We applied our approach to the BrainWeb and real MR images. As consistent with the theory of the proposed fluid model, we found that our method accurately transformed the template images into the reference images based on the intensity flow. Experimental results indicate that our method is of potential in a wide variety of medical image registration applications.

  15. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transportmore » calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.« less

  16. Pockmarks, fluid flow, and sediments outboard of the deformation front at the Cascadia Subduction Zone from analysis of multi-channel seismic and multi-beam sonar data

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Carbotte, S. M.; Han, S.; Carton, H. D.; Canales, P.; Nedimovic, M. R.

    2013-12-01

    Evidence of active fluid flow and the nature of the sediment section near the Cascadia deformation front are explored using multi-channel (MCS) seismic and multi-beam sonar data collected in summer 2012 using the R/V Marcus G. Langseth during the Juan de Fuca Ridge to Trench Survey. The MCS data were collected along two full plate transects (the 'Oregon' and 'Washington' transects) and one trench parallel line using a 6600 cubic inch source, and an 8 km streamer with 636 channels (12.5 m spacing). The MCS data pre-stack processing sequence includes geometry definition, trace editing, F-K filter, and deconvolution. Velocity analysis is performed via semblance and constant velocity stacks in order to create a velocity model of the sediments and upper oceanic crust. The traces are then stacked, and post-stack time migrated. The sonar data were collected using the R/V Langseth's Kongsberg EM122 1°x1° multi-beam sonar with 288 beams and 432 total soundings across track. Using MB-system the sonar data are cleaned, and the bathymetry data are then gridded at 35 m, while the backscatter data are gridded at 15 m. From the high-resolution mapping data 48 pockmarks varying in diameter from 50 m - 1 km are identified within 60 km outboard of the deformation front. The surface expression of these large features in an area of heavy sedimentation is likely indicative of active fluid flow. In order to gain sub-seafloor perspective on these features the MCS data are draped below the bathymetry/backscatter grids using QPS Fledermaus. From this perspective, specific locations for detailed velocity and attribute analysis of the sediment section are chosen. Sediment velocity and attribute analysis also provide insight into apparent differences in the sediment section and décollement formation along the Oregon and Washington plate transects. While both lines intersect areas of dense pockmark concentration, the area around the Oregon transect has been shown to contain a continuous positive polarity sedimentary layer that is capping fluid expulsion above a reverse polarity protodécollement (e.g. Cochrane et al., 1994, JGR, 99, pp. 7033-7043). A décollement within the sediment section is not present along the Washington line (e.g. Gutscher et al., 2001, Geology, 29, pp. 379-382). However, this line does intersect the 'Bare' outcrops to the west, which have been shown to provide fluid recharge and discharge pathways for convective cooling of the crust (e.g. Fisher et al., 2003, Nature, 421, pp. 618-621). Detailed velocity models constructed from the MCS data will be used to investigate these regional differences. The location of the pockmarks and corresponding sediment properties will also be explored relative to regional variations in the structure of the deformation front and location of intraplate and interplate faulting.

  17. Inertial microfluidic physics.

    PubMed

    Amini, Hamed; Lee, Wonhee; Di Carlo, Dino

    2014-08-07

    Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials synthesis, and chemical process control.

  18. Fracture-induced flow and liquid metal transport during core formation

    NASA Astrophysics Data System (ADS)

    Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.

    2008-12-01

    The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation

  19. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    NASA Astrophysics Data System (ADS)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed LBM model provides a flexible numerical platform consisting of various modules which could be used separately or in combination for the study of a variety of colloids and biological suspensions flow deformation problems.

  20. Dynamic Deformation and Collapse of Granular Columns

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius and height of the deposit, i.e., the fraction of granular mass mobilized by the flow, and the final shape of the deposit.

  1. Vortex-Induced Vibrations of a Riser with Design Variations

    DTIC Science & Technology

    2016-06-19

    explain the similarities and differences in VIV responses for the two different orientations of the same structure in the same fluid flow field . Figure...length, bending and torsional deformation can be ignored. In comparison to the potential energy in axial strain, bending energy drops off rapidly...with slenderness (diameter/length higher than ~50). Similarly, torsional energy is near zero in bluff, symmetrical and slender structures [Zueck

  2. Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Perry L., E-mail: pjohns86@jhu.edu; Meneveau, Charles

    2015-08-15

    One of the hallmarks of turbulent flows is the chaotic behavior of fluid particle paths with exponentially growing separation among them while their distance does not exceed the viscous range. The maximal (positive) Lyapunov exponent represents the average strength of the exponential growth rate, while fluctuations in the rate of growth are characterized by the finite-time Lyapunov exponents (FTLEs). In the last decade or so, the notion of Lagrangian coherent structures (which are often computed using FTLEs) has gained attention as a tool for visualizing coherent trajectory patterns in a flow and distinguishing regions of the flow with different mixingmore » properties. A quantitative statistical characterization of FTLEs can be accomplished using the statistical theory of large deviations, based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms and introduce a finite-size correction to the histogram-based method. We generalize the existing univariate formalism to the joint distributions of the two FTLEs needed to fully specify the Lyapunov spectrum in 3D flows. The joint Cramér function of turbulence is measured from two direct numerical simulation datasets of isotropic turbulence. Results are compared with joint statistics of FTLEs computed using only the symmetric part of the velocity gradient tensor, as well as with joint statistics of instantaneous strain-rate eigenvalues. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. The most likely ratio of the FTLEs λ{sub 1} : λ{sub 2} : λ{sub 3} is shown to be about 4:1:−5, compared to about 8:3:−11 when using only the strain-rate tensor for calculating fluid volume deformations. The results serve to characterize the fundamental statistical and geometric structure of turbulence at small scales including cumulative, time integrated effects. These are important for deformable particles such as droplets and polymers advected by turbulence.« less

  3. A poroplastic model of structural reorganisation in porous media of biomechanical interest

    NASA Astrophysics Data System (ADS)

    Grillo, Alfio; Prohl, Raphael; Wittum, Gabriel

    2016-03-01

    We present a poroplastic model of structural reorganisation in a binary mixture comprising a solid and a fluid phase. The solid phase is the macroscopic representation of a deformable porous medium, which exemplifies the matrix of a biological system (consisting e.g. of cells, extracellular matrix, collagen fibres). The fluid occupies the interstices of the porous medium and is allowed to move throughout it. The system reorganises its internal structure in response to mechanical stimuli. Such structural reorganisation, referred to as remodelling, is described in terms of "plastic" distortions, whose evolution is assumed to obey a phenomenological flow rule driven by stress. We study the influence of remodelling on the mechanical and hydraulic behaviour of the system, showing how the plastic distortions modulate the flow pattern of the fluid, and the distributions of pressure and stress inside it. To accomplish this task, we solve a highly nonlinear set of model equations by elaborating a previously developed numerical procedure, which is implemented in a non-commercial finite element solver.

  4. Direct numerical simulation of droplet-laden isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Dodd, Michael S.

    Interaction of liquid droplets with turbulence is important in numerous applications ranging from rain formation to oil spills to spray combustion. The physical mechanisms of droplet-turbulence interaction are largely unknown, especially when compared to that of solid particles. Compared to solid particles, droplets can deform, break up, coalesce and have internal fluid circulation. The main goal of this work is to investigate using direct numerical simulation (DNS) the physical mechanisms of droplet-turbulence interaction, both for non-evaporating and evaporating droplets. To achieve this objective, we develop and couple a new pressure-correction method with the volume-of-fluid (VoF) method for simulating incompressible two-fluid flows. The method's main advantage is that the variable coefficient Poisson equation that arises in solving the incompressible Navier-Stokes equations for two-fluid flows is reduced to a constant coefficient equation. This equation can then be solved directly using, e.g., the FFT-based parallel Poisson solver. For a 10243 mesh, our new pressure-correction method using a fast Poisson solver is ten to forty times faster than the standard pressure-correction method using multigrid. Using the coupled pressure-correction and VoF method, we perform direct numerical simulations (DNS) of 3130 finite-size, non-evaporating droplets of diameter approximately equal to the Taylor lengthscale and with 5% droplet volume fraction in decaying isotropic turbulence at initial Taylor-scale Reynolds number Relambda = 83. In the droplet-laden cases, we vary one of the following three parameters: the droplet Weber number based on the r.m.s. velocity of turbulence (0.1 ≤ Werms ≤ 5), the droplet- to carrier-fluid density ratio (1 ≤ rhod/rho c ≤ 100) or the droplet- to carrier-fluid viscosity ratio (1 ≤ mud/muc ≤ 100). We derive the turbulence kinetic energy (TKE) equations for the two-fluid, carrier-fluid and droplet-fluid flow. These equations allow us to explain the pathways for TKE exchange between the carrier turbulent flow and the flow inside the droplet. We also explain the role of the interfacial surface energy in the two-fluid TKE equation through work performed by surface tension. Furthermore, we derive the relationship between the power of surface tension and the rate of change of total droplet surface area. This link allows us to explain how droplet deformation, breakup and coalescence play roles in the temporal evolution of TKE. We then extend the code for non-evaporating droplets and develop a combined VoF method and low-Mach-number approach to simulate evaporating and condensing droplets. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. Finally, we perform DNS of an evaporating liquid droplet in forced isotropic turbulence. We show that the method accurately captures the temperature and vapor fields in the turbulent regime, and that the local evaporation rate can vary along the droplet surface depending on the structure of the surrounding vapor cloud. We also report the time evolution of the mean Sherwood number, which indicates that turbulence enhances the vaporization rate of liquid droplets.

  5. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and fluid-rock interactions including organic matter present in the whole-rock during ore precipitation. These features show the positive feedback between localization of ductile-brittle deformation-recrystallization, fluid circulation and ore deposition. Accordingly, during orogenic gravitational collapse, the activation of mylonitic-cataclastic low-angle detachments, controlled at first order by temperature, are, at second order, influenced by lithologic heterogeneities that are determinant at localizing fluid circulation, allowing thus a multi-localization of the DBT and ore deposition.

  6. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  7. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  8. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading.

    PubMed

    Garcia, A M; Frank, E H; Grimshaw, P E; Grodzinsky, A J

    1996-09-15

    We have studied the contributions of diffusion, fluid flow and electrical migration to molecular transport through adult articular cartilage explants using neutral and charged solutes that were either radiolabeled (3H2O, [35S]sulfate, [3H]thymidine, [3H]raffinose, and a synthetic matrix metalloproteinase inhibitor) or fluorescently tagged (NSPA and Lissamine-dextran). In order to induce fluid flow within the cartilage matrix without mechanical deformation, electric current densities were applied across cartilage disks. These currents produced electroosmotic fluid velocities of 1-2 microns/s, magnitudes that have been reported to exist during joint loading in vivo. This fluid convection enhanced neutral solute flux relative to passive diffusion alone by a factor that increased with the size of the solute. While the enhancement factor for 3H2O was 2.3-fold, that for [3H]raffinose (594 Da) and similar sized neutral solutes was 10-fold, suggesting that the effect of fluid flow is important even for small solutes. The largest enhancement (25-fold) was seen for the neutral 10-kDa Lissamine-dextran, confirming that fluid convection is most important for large solutes. We also studied the electrophoretic contribution to solute flux, which is relevant to the presence of intratissue streaming potentials induced during loading in vivo. Using the negatively charged [35S]sulfate ion with a range of current densities, as much as a 10-fold enhancement in flux was observed. Values for the intrinsic transport properties of the solutes (e.g., diffusivity, electrical mobility, hydrodynamic hindrance factor) can be obtained from the data.

  9. CFD simulation of a screw compressor including leakage flows and rotor heating

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed

    2015-08-01

    Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.

  10. A cut-cell finite volume – finite element coupling approach for fluid–structure interaction in compressible flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasquariello, Vito, E-mail: vito.pasquariello@tum.de; Hammerl, Georg; Örley, Felix

    2016-02-15

    We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. Wemore » validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.« less

  11. Effect of wing flexibility in dragonfly hovering flight

    NASA Astrophysics Data System (ADS)

    Naidu, Vishal; Young, John; Lai, Joseph

    2011-11-01

    Dragonflies have two pairs of tandem wings, which can be operated independently. Most studies on tandem wings are based on rigid wings, which is in strong contradiction to the natural, flexible dragonfly wings. The effect of wing flexibility in tandem wings is little known. We carry out a comparative, computational study between rigid and flexible, dragonfly shaped wings for hovering flight. In rigid wings during downstroke, a leading edge vortex (LEV) is formed on the upper surface, which forms a low pressure zone. This conical LEV joins the tip vortex and shortly after the mid downstroke when the wing starts to rotate, these vortices are gradually shed resulting in a drop in lift. The vortex system creates a net downwards momentum in the form of a jet. The flexible wings while in motion deform due to aerodynamic and inertial forces. Since there is a strong interaction between wing deformation and air flow around the deformed wings, flexible wing simulations are carried out using a two way fluid structure interaction. The effect of wing flexibility on the flow structure and the subsequent effect on the aerodynamic forces will be studied and presented.

  12. Numerical simulation and experimental study of heat-fluid-solid coupling of double flapper-nozzle servo valve

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zhou, Songlin; Lu, Xianghui; Gao, Dianrong

    2015-09-01

    The double flapper-nozzle servo valve is widely used to launch and guide the equipment. Due to the large instantaneous flow rate of servo valve working under specific operating conditions, the temperature of servo valve would reach 120°C and the valve core and valve sleeve deform in a short amount of time. So the control precision of servo valve significantly decreases and the clamping stagnation phenomenon of valve core appears. In order to solve the problem of degraded control accuracy and clamping stagnation of servo valve under large temperature difference circumstance, the numerical simulation of heat-fluid-solid coupling by using finite element method is done. The simulation result shows that zero position leakage of servo valve is basically impacted by oil temperature and change of fit clearance. The clamping stagnation is caused by warpage-deformation and fit clearance reduction of the valve core and valve sleeve. The distribution rules of the temperature and thermal-deformation of shell, valve core and valve sleeve and the pressure, velocity and temperature field of flow channel are also analyzed. Zero position leakage and electromagnet's current when valve core moves in full-stroke are tested using Electro-hydraulic Servo-valve Characteristic Test-bed of an aerospace sciences and technology corporation. The experimental results show that the change law of experimental current at different oil temperatures is roughly identical to simulation current. The current curve of the electromagnet is smooth when oil temperature is below 80°C, but the amplitude of current significantly increases and the hairy appears when oil temperature is above 80°C. The current becomes smooth again after the warped valve core and valve sleeve are reground. It indicates that clamping stagnation is caused by warpage-deformation and fit clearance reduction of valve core and valve sleeve. This paper simulates and tests the heat-fluid-solid coupling of double flapper-nozzle servo valve, and the obtained results provide the reference value for the design of double flapper-nozzle force feedback servo valve.

  13. Numerical simulation of bubble deformation in magnetic fluids by finite volume method

    NASA Astrophysics Data System (ADS)

    Yamasaki, Haruhiko; Yamaguchi, Hiroshi

    2017-06-01

    Bubble deformation in magnetic fluids under magnetic field is investigated numerically by an interface capturing method. The numerical method consists of a coupled level-set and VOF (Volume of Fluid) method, combined with conservation CIP (Constrained Interpolation Profile) method with the self-correcting procedure. In the present study considering actual physical properties of magnetic fluid, bubble deformation under given uniform magnetic field is analyzed for internal magnetic field passing through a magnetic gaseous and liquid phase interface. The numerical results explain the mechanism of bubble deformation under presence of given magnetic field.

  14. Effects of insulin on physical factors: atherosclerosis in diabetes mellitus.

    PubMed

    McMillan, D E

    1985-12-01

    Newton's laws of motion play a major role in blood flow. Inertia and conservation of momentum cause flow to separate at branches and curves in large blood vessels. Areas of separated flow in the arterial system are sites of atherogenesis. The place at which the separation ends, called the stagnation point, is the focus for plaque development. Pulsation of the arterial circulation causes the stagnation point to move downstream with each systole and upstream with each diastole. This movement generates forward and backward shearing force in the stagnation region as the separated flow migrates back and forth. Angular momentum, introduced into flowing blood with each heart beat and further enhanced by the asymmetry of origin of vessels branching from the aorta, generates a sidewise force component that is preserved during migration of the stagnation point. The sidewise force, added to the forward and backward shear stresses, creates an area of multidirectional shear stress under the migrating stagnation point that increases the permeability of the local endothelium. Blood is a complex fluid; it can generate greater shear stresses near the stagnation point than the simple fluids normally studied by fluid mechanicists. Blood is capable of retaining shear stress for short periods after it ceases to flow and extra work is required to establish its flow. In diabetes, reduced erythrocyte deformability further burdens flow onset. We are not yet able to establish whether the increase is only a few percent, or whether the burden is larger. Whatever its magnitude, diabetic modifications of the flow properties of blood, directly affect the size, location, and rate of development of atherosclerotic plaques.

  15. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  16. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  17. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  18. Couple stress fluid flow in a rotating channel with peristalsis

    NASA Astrophysics Data System (ADS)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  19. Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development

    USGS Publications Warehouse

    Greene, H.D.; Maher, N.M.; Paull, C.K.

    2002-01-01

    Combined EM-300 multibeam bathymetric data and satellite photography reveal the physiography of the continental margin between 35°50′ and 37°03′N and from the shoreline west of 122°40′ and 122°37′W, which includes Monterey Bay, in a previously unprecedented detail. Patterns in these images clearly reveal the processes that are actively influencing the current geomorphology of the Monterey Bay region, including the Monterey Bay National Marine Sanctuary (MBNMS). Our data indicates that seafloor physiography within the MBNMS results from plate margin tectonic deformation, including uplift and erosion along structural lineaments, and from fluid flow. Mass wasting is the dominant process active within the Ascension–Monterey and Sur–Partington submarine canyon systems and along the lower slopes. Meanders, slump dams, and constricted channels within the submarine canyons, especially within Monterey Canyon, slow and interrupt down-canyon sediment transport. We have identified for the first time thin sediment flows, rotational slumps, rills, depressions that may be associated with pipes, and other fluid-induced features we call ‘scallops’ off the Ascension slope, and suggest that fluid flow has sculptured the seafloor morphologies here. These unusual seafloor morphologies are similar to morphologies found in terrestrial areas modified by ground-water flow.

  20. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jonesmore » potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.« less

  1. A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Yin, Guangzhi; Xu, Jiang; Li, Wenpu; Song, Zhenlong; Jiang, Changbao

    2016-12-01

    Fluid-solid coupling investigations of the geological storage of CO2, efficient unconventional oil and natural gas exploitations are mostly conducted under conventional triaxial stress conditions ( σ 2 = σ 3), ignoring the effects of σ 2 on the geomechanical properties and permeability of rocks (shale, coal and sandstone). A novel multi-functional true triaxial geophysical (TTG) apparatus was designed, fabricated, calibrated and tested to simulate true triaxial stress ( σ 1 > σ 2 > σ 3) conditions and to reveal geomechanical properties and permeability evolutions of rocks. The apparatus was developed with the capacity to carry out geomechanical and fluid flow experiments at high three-dimensional loading forces and injection pressures under true triaxial stress conditions. The control and measurement of the fluid flow with effective sealing of rock specimen corners were achieved using a specially designed internally sealed fluid flow system. To validate that the apparatus works properly and to recognize the effects of each principal stress on rock deformation and permeability, stress-strain and permeability experiments and a hydraulic fracturing simulation experiment on shale specimens were conducted under true triaxial stress conditions using the TTG apparatus. Results show that the apparatus has advantages in recognizing the effects of σ 2 on the geomechanical properties and permeability of rocks. Results also demonstrate the effectiveness and reliability of the novel TTG apparatus. The apparatus provides a new method of studying the geomechanical properties and permeability evolutions of rocks under true triaxial stress conditions, promoting further investigations of the geological storage of CO2, efficient unconventional oil and gas exploitations.

  2. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  3. Instability of fluid flow over saturated porous medium

    NASA Astrophysics Data System (ADS)

    Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry

    2013-04-01

    We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold growth. The numerical calculations were also conducted for nonlinear regimes of the flow applying the finite-element method. Flow characteristics are determined at supercritical values of parameters. The work was made under the financial support of Russian Foundation for Basic Research (Grant 12-01-00795). 1. Ochoa-Tapia J. A. and Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. Int. J. Heat Mass Transfer. 1995. N 38. P. 2635-2646. 2. Ochoa-Tapia J. A. and Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment. Int. J. Heat Mass Transfer. 1995. N 38. P. 2647-2655.

  4. Deformation of an elastic capsule in a uniform electric field

    NASA Astrophysics Data System (ADS)

    Karyappa, Rahul B.; Deshmukh, Shivraj. D.; Thaokar, Rochish. M.

    2014-12-01

    The deformation of a thin elastic capsule subjected to a uniform electric field is investigated in the Stokes flow regime. The electrohydrodynamic flow is analyzed using a perfect conductor and a perfect dielectric model for the capsule and the fluid phase, respectively. A theoretical analysis is carried out using an asymptotic expansion in the electric capillary number (Ca) (a ratio of the electric stress to the elastic tension) in the small deformation limit using the finite deformation Hooke's law. The analysis is used to determine the elasticity of polysiloxane capsules suspended in oil, the deformation of which is obtained using videography. The boundary element method is implemented to seek numerical solutions to the hydrodynamic, elastic, and electrostatics equations. The finite deformation Hooke's law, the Mooney-Rivlin, and Skalak's model for elasticity are employed. The effect of electric capillary number, unstressed geometry, and the type of membrane material on the deformation of a capsule is presented in the high Ca number limit using numerical simulation. Capsules synthesized with higher monomer concentration displayed electric stress induced wrinkling process at high electric field strengths. Burst of a capsule is characterized by poration of the polymer membrane, which could be symmetric or asymmetric at the two poles, depending upon the value of the capillary number. The results should be useful in understanding the response of elastic capsules such as red blood cells and polymerized membranes, to an electric field, in applications such as electrodeformation and electroporation. It also provides a theoretical framework for a possible way of determining the elastic parameters of a capsule.

  5. Simulation of bio-locomotion by a momentum redistribution technique for self-propulsion

    NASA Astrophysics Data System (ADS)

    Curet, Oscar; Shirgaonkar, Anup; Patankar, Neelesh; Maciver, Malcolm

    2007-11-01

    We have developed a general purpose computational approach for self-propulsion based on a momentum redistribution concept. In this poster, our primary goal is to show that the technique can simulate swimming of various organisms without using reduced order models for fluid dynamics. The approach fully resolves the motion of the organism and the surrounding fluid. Thus, it is an effective tool to obtain forces, flow fields, as well as the swimming velocity when the deformation kinematics of the organism are available from observational data. We will present images of computational flow fields for several examples including the aquatic locomotion of sperm, jellyfish, eel, and blackghost knifefish. These examples span a range of body configurations, swimming gaits, and Reynolds numbers in their natural environments. Peculiarities of various modes of swimming will be highlighted.

  6. A deformable surface model for real-time water drop animation.

    PubMed

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  7. Predicting the onset of high-frequency self-excited oscillations in a channel with an elastic wall

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Whittaker, Robert

    2016-11-01

    Flow-induced oscillations of fluid-conveying elastic-walled channels arise in many industrial and biological systems including the oscillation of the vocal cords during phonation. We derive a system of equations that describes the wall displacement in response to the steady and oscillatory components of the fluid pressure derived by Whittaker et al. (2010). We show that the steady pressure component results in a base state deformation assumed to be small in magnitude relative to the length of the channel. The oscillation frequency of the elastic wall is determined by an eigenvalue problem paramterised by the shape of the base state deformation, the strength of axial tension relative to azimuthal bending, F , and the size of non-linear stretching effects from the wall's initial deformation, K . We determine the slow growth or decay of the normal modes in each by considering the energy budget of the system. The amplitude of the oscillations grow or decay exponentially with a growth rate Λ, which may be expressed in terms of a critical Reynolds number Rec . We use numerical simulations to identify three distinct regions in parameter regimes space and determine the stability of oscillations in each.

  8. Fluid-assisted melting in a collisional orogen

    NASA Astrophysics Data System (ADS)

    Berger, A.; Burri, T.; Engi, M.; Roselle, G. T.

    2003-04-01

    The Southern Steep Belt (SSB) of the Central Alps is the location of backthrusting during syn- to post-collisional deformation. From its metamorphic evolution and lithological contents the SSB has been interpreted as a tectonic accretion channel (TAC [1]). The central part of the SSB is additionally characterized by anatexites, leucogranitic aplites and pegmatites. Dehydration melting of muscovite is rare but did occurr locally. Moreover, no evidence of dehydration melting of biotite has been formed in that products of incongruent melting reactions (garnet, opx or cordierite) are missing. The melts are mainly produced by the infiltration of an external aqueous fluid. The fluids must have originated from the breakdown of hydrous minerals at temperatures below the water saturated solidus of the quartz-feldspar-system, such that the liberated fluids could not been trapped in the melt. Using the thermal modeling program MELONPIT [2] and assuming that solid fragments ascended in combination with tectonic accreated radioactive material, a complex thermal evolution inside the TAC has been derived. During subduction of the downgoing plate, isotherms were locally inverted, then subsequently relaxed, when subduction slowed down. At the collisional stage a small region develope, where the isotherms were still bent, and where temperatures increased during decompression. Assuming that dehydration reactions were followed by upward flow of fluids released from this region fluid present partial melting was triggered. The flow direction of the fluid was controlled by the pressure gradient and the steeply oriented foliations in the SSB. According to the model, the area of upward flowing fluids should be limited to the SSB. This is consistent with the observed regional distribution of leucosomes derived from in-situ melts. [1] Engi et al. (2001) Geology 29: 1143-1146 [2] Roselle et al. (2002) Am. J. Sci. 302: 381-409

  9. Localized Versus Distributed Deformation as a Control on the Evolution of Permeability in Anhydrite Rocks

    NASA Astrophysics Data System (ADS)

    Collettini, C.; de Paola, N.; Faulkner, D.

    2007-12-01

    We have taken an experimental approach to understand and quantify the deformation processes and fluid flow within anhydrite-bearing fault damage zones during the seismic cycle. Triaxial loading tests have been performed on borehole samples of anhydrites at room temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The tests were conducted on samples with different grain sizes (10 microns to 1 mm) that were cored in different directions relative to the macroscopic foliation. Static permeability measurements have been carried out to determine the permeability anisotropy and sensitivity of the permeability on the effective pressure (Pc - Pf). Our results show that the brittle-ductile transition occurs for effective pressures (Pe) between 20 to 40 MPa and is almost independent of fabric orientation and grain size. Brittle failure is localized along discrete fractures and is always associated with a sudden stress drop. Conversely, ductile failure occurs by distributed deformation along cataclastic bands. In this case no stress drop is observed. Static permeability measurements show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests, the evolution of the permeability is controlled by the failure mode: permeability begins to increase significantly at 40% and 80% of the max load for samples displaying brittle and ductile behaviour, respectively. The permeability values, immediately prior to failure, are about three orders of magnitude higher than the initial values. Multiple cycling tests, within the ductile field, show that permeability starts increasing at only 40% and 30% of the max load during the second and third loading cycle, respectively. Our results show that the history of deformation and the mode of deformation can control the evolution of the permeability, and that they are more significant than other factors such as fabric and grain size. In natural environments, fluid pressure fluctuations, such as might be experienced during the seismic cycle, can promote a switch from localized (brittle behaviour) to more distributed (ductile behaviour) deformation, leading to complex permeability patterns.

  10. Three-Dimensional Smoothed Particle Hydrodynamics Modeling of Preferential Flow Dynamics at Fracture Intersections on a High-Performance Computing Platform

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Bresinsky, L. T.

    2017-12-01

    The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow behavior.

  11. Numerical tool development of fluid-structure interactions for investigation of obstructive sleep apnea

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; White, Susan; Huang, Shao-Ching; Mallya, Sanjay; Eldredge, Jeff

    2016-11-01

    Obstructive sleep apnea (OSA) is a medical condition characterized by repetitive partial or complete occlusion of the airway during sleep. The soft tissues in the upper airway of OSA patients are prone to collapse under the low pressure loads incurred during breathing. The ultimate goal of this research is the development of a versatile numerical tool for simulation of air-tissue interactions in the patient specific upper airway geometry. This tool is expected to capture several phenomena, including flow-induced vibration (snoring) and large deformations during airway collapse of the complex airway geometry in respiratory flow conditions. Here, we present our ongoing progress toward this goal. To avoid mesh regeneration, for flow model, a sharp-interface embedded boundary method is used on Cartesian grids for resolving the fluid-structure interface, while for the structural model, a cut-cell finite element method is used. Also, to properly resolve large displacements, non-linear elasticity model is used. The fluid and structure solvers are connected with the strongly coupled iterative algorithm. The parallel computation is achieved with the numerical library PETSc. Some two- and three- dimensional preliminary results are shown to demonstrate the ability of this tool.

  12. A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.

    PubMed

    Stops, A J F; Heraty, K B; Browne, M; O'Brien, F J; McHugh, P E

    2010-03-03

    Mesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor. CG scaffold deformation was simulated using micro-computed tomography (CT) and an in-house finite element solver (FEEBE/linear). Similarly, the internal fluid velocities were simulated using the afore-mentioned microCT dataset with a computational fluid dynamics solver (ANSYS/CFX). From the ensuing cell-level mechanics, albeit octahedral shear strain or fluid velocity, the proliferation and differentiation of the representative cells were predicted from deterministic functions. Cell proliferation patterns concurred with previous experiments. MSC differentiation was dependent on the level of CG scaffold strain and the inlet fluid velocity. Furthermore, MSC differentiation patterns indicated that specific combinations of scaffold strains and inlet fluid flows cause phenotype assemblies dominated by single cell types. Further to typical laboratory procedures, this predictive methodology demonstrated loading-specific differentiation lineages and proliferation patterns. It is hoped these results will enhance in-vitro tissue engineering procedures by providing a platform from which the scaffold loading applications can be tailored to suit the desired tissue. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.

    PubMed

    Nowakowski, A F; Ballil, A; Nicolleau, F C G A

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.

  14. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to granular flow. These results provide a new perspective to connect the transport laws for soil creep, landslides/debris flows and river transport. Although our experiments are highly idealized, evidence from other studies suggest that our observations may be directly relevant to natural systems. Finally we show that our findings are robust for mixed grain sizes.

  15. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot device.

    PubMed

    Haward, S J; Jaishankar, A; Oliveira, M S N; Alves, M A; McKinley, G H

    2013-07-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers.

  16. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot devicea

    PubMed Central

    Haward, S. J.; Jaishankar, A.; Oliveira, M. S. N.; Alves, M. A.; McKinley, G. H.

    2013-01-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers. PMID:24738010

  17. The effects of a CO2-bearing fluid on the rheology of quartz-bearing rocks in subduction zones

    NASA Astrophysics Data System (ADS)

    Ashley, K. T.; Behr, W. M.

    2017-12-01

    The weakening effect of water on quartz rheology has been a well-recognized phenomenon for several decades. In many tectonic environments, however, the fluid phase is not pure H2O, but commonly includes other species such as CO2, dissolved silicates, and/or salts. CO2 is especially prevalent in subduction zone fluids due to subduction of carbonates and/or graphitic sediments. Some deformation experiments as well as natural observations suggest that CO2 can affect rheology and development of anisotropy in quartz-rich rocks, but the precise effects of CO2 are poorly understood. Here we take a petrologic approach to assess the role of a mixed H2O-CO2 fluid phase for deforming quartzite in the viscous regime. For quartz dislocation creep, CO2 in the fluid acts as a non-wetting phase, resulting in the reduction of water fugacity. However, for most rocks, the activity-composition (a-X) relationship of a H2O-CO2 fluid phase requires very high CO2 mole fractions to have a significant effect on strain rate. For XCO2 = 0.5 at 500°C, with a differential stress of 10 MPa, the water fugacity is only reduced by 30% and resultant strain rates are slowed by less than a factor of 3 — much less than the inherent uncertainty of the flow law. In contrast, because silica does not form complexes with CO2, its solubility greatly decreases at high carbonic fractions and pressure solution is greatly slowed. For most diagenetic conditions, a 50:50 H2O-CO2 fluid phase compared to a pure-H2O fluid phase results in a strain rate that is an order of magnitude slower. Higher carbonic fractions has dramatic effects on the rate of pressure solution (decreased by >3 orders of magnitude at XCO2 = 0.8). The difference in the response of quartz deformation mechanisms to changes in the fluid composition suggests CO2-rich fluids could result in the suppression of pressure solution and the activation of dislocation creep (or brittle failure) at lower temperatures than expected for a pure H2O fluid.

  18. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  19. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    NASA Astrophysics Data System (ADS)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  20. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows

    NASA Astrophysics Data System (ADS)

    Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A. M.

    2018-03-01

    It is well known that the use of SPH models in simulating flow at high Reynolds numbers is limited because of the tensile instability inception in the fluid region characterized by high vorticity and negative pressure. In order to overcome this issue, the δ+-SPH scheme is modified by implementing a Tensile Instability Control (TIC). The latter consists of switching the momentum equation to a non-conservative formulation in the unstable flow regions. The loss of conservation properties is shown to induce small errors, provided that the particle distribution is regular. The latter condition can be ensured thanks to the implementation of a Particle Shifting Technique (PST). The novel variant of the δ+-SPH is proved to be effective in preventing the onset of tensile instability. Several challenging benchmark tests involving flows past bodies at large Reynolds numbers have been used. Within this a simulation characterized by a deforming foil that resembles a fish-like swimming body is used as a practical application of the δ+-SPH model in biological fluid mechanics.

  1. Radial accretion flows on static spherically symmetric black holes

    NASA Astrophysics Data System (ADS)

    Chaverra, Eliana; Sarbach, Olivier

    2015-08-01

    We analyze the steady radial accretion of matter into a nonrotating black hole. Neglecting the self-gravity of the accreting matter, we consider a rather general class of static, spherically symmetric and asymptotically flat background spacetimes with a regular horizon. In addition to the Schwarzschild metric, this class contains certain deformation of it, which could arise in alternative gravity theories or from solutions of the classical Einstein equations in the presence of external matter fields. Modeling the ambient matter surrounding the black hole by a relativistic perfect fluid, we reformulate the accretion problem as a dynamical system, and under rather general assumptions on the fluid equation of state, we determine the local and global qualitative behavior of its phase flow. Based on our analysis and generalizing previous work by Michel, we prove that for any given positive particle density number at infinity, there exists a unique radial, steady-state accretion flow which is regular at the horizon. We determine the physical parameters of the flow, including its accretion and compression rates, and discuss their dependency on the background metric.

  2. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated as three dimensional, with the number of computational planes in the circumferential direction being specified a priori. The reader is reminded that the deformations in the finite elements are all infinitesimally small because the rotor eccentricity itself is a virtual displacement. This explains why we have generically termed the perturbation model the 'virtually' deformable finite-element category. The primary outcome of implementing the perturbation model is the tangential and radial components, F(sub theta)(sup *) and F(sub r)(sup *) of the fluid-exerted force on the rotor surface due to the whirling motion. Repetitive execution of the perturbation model subprogram over a sufficient range of whirl frequency ratios, and subsequent interpolation of these fluid forces, using the least-square method, finally enable the user to compute the impeller rotor dynamic coefficients of the fluid/rotor interaction. These are the direct and cross-coupled stiffness, damping, and inertia effects of the fluid/rotor interaction.

  3. The thermal and mechanical deformation study of up-stream pumping mechanical seal

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.

    2015-01-01

    Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.

  4. Modelling deformation of partially melted rock using a poroviscoelastic rheology with dynamic power law viscosity

    NASA Astrophysics Data System (ADS)

    Simakin, A.; Ghassemi, A.

    2005-03-01

    A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.

  5. An efficient strongly coupled immersed boundary method for deforming bodies

    NASA Astrophysics Data System (ADS)

    Goza, Andres; Colonius, Tim

    2016-11-01

    Immersed boundary methods treat the fluid and immersed solid with separate domains. As a result, a nonlinear interface constraint must be satisfied when these methods are applied to flow-structure interaction problems. This typically results in a large nonlinear system of equations that is difficult to solve efficiently. Often, this system is solved with a block Gauss-Seidel procedure, which is easy to implement but can require many iterations to converge for small solid-to-fluid mass ratios. Alternatively, a Newton-Raphson procedure can be used to solve the nonlinear system. This typically leads to convergence in a small number of iterations for arbitrary mass ratios, but involves the use of large Jacobian matrices. We present an immersed boundary formulation that, like the Newton-Raphson approach, uses a linearization of the system to perform iterations. It therefore inherits the same favorable convergence behavior. However, we avoid large Jacobian matrices by using a block LU factorization of the linearized system. We derive our method for general deforming surfaces and perform verification on 2D test problems of flow past beams. These test problems involve large amplitude flapping and a wide range of mass ratios. This work was partially supported by the Jet Propulsion Laboratory and Air Force Office of Scientific Research.

  6. EDITORIAL: The FDR Prize The FDR Prize

    NASA Astrophysics Data System (ADS)

    Funakoshi, Mitsuaki

    2011-08-01

    From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.

  7. Hybrid lattice gas simulations of flow through porous media

    NASA Astrophysics Data System (ADS)

    Becklehimer, Jeffrey Lynn

    1997-10-01

    This study introduces a suite of models designed to investigate transport phenomena in simulated porous media such as rigid or quenched sediment and clay-like deformable environments. This is achieved by using a variety of techniques that are borrowed from the field of statistical physics. These techniques include percolation, lattice gas, and cellular automata. A percolation-based model is used to study a porous medium by using rods and chains of various shapes and sizes to model the porous media formed by sediments. This is further extended to model clay-like deformable media by interacting heavy sediment particles. An interacting lattice gas computer simulation model based on the Metropolis algorithm is used to study the transport properties of fluid particles and permeability of a porous sediment. Finally, a hybrid lattice gas model is introduced by combining the Metropolis Monte Carlo method with a direct simulation which involves the collision rules as in cellular automata. This model is then used to study shock propagation in a fluid filled porous medium. This study is then extended to study shock propagation through in a fluid filled elastic porous medium. Several interesting and new results were obtained. These results show that for rigid chain percolation the percolation threshold shows a dependence on the chain length of pc~ Lc-1/2 and the jamming coverage decreases with the chain length as Lc- 1/3. For the random SAW-like chains the percolation threshold decays with the chain length as Lc- 0.01 and the jamming coverage as Lc-1/3. The fluid flow model shows that permeability depends nonmonotonically on the concentration of the fluid. For some fluids at a fixed porosity, the permeability increases on increasing the bias until a certain value Bc above which it decreases. Also, it was found that a shock propagates in a drift-like fashion when in a rigid porous medium when the porosity is high; low porosity damps out the shock front very quickly. For a shock propagating in a clay-like porous medium an unusually super-fast power-law behavior is observed for the RMS displacements of the fluid and clay particles.

  8. STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, David; Aydin, Atilla

    2005-02-22

    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, onmore » which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.« less

  9. Modeling flow for modified concentric cylinder rheometer geometry

    NASA Astrophysics Data System (ADS)

    Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz

    2016-11-01

    Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.

  10. Using Temperature as a Tracer to Study Fluid Flow Patterns On and Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, W. C.

    2017-12-01

    Fluid flows are a dynamic system in the crust that affect crustal deformation and formation of natural resources. It is difficult to study fluid flow velocity instrumentally, but temperature data offers a quantitative tool that can be used as a tracer to study crustal hydrogeology. Here we present numerical techniques we have applied to study the fluid migration velocity along conduits including faults in on and offshore settings. Offshore SW Taiwan, we use a bottom-simulating reflector (BSR) from seismic profiles to study the temperature field at several hundred meters subbottom depth. The BSR is interpreted as the base of a gas hydrate stability zone under the seabed. Gas hydrates are solid-state water with gas molecules enclosed, which can be found where the temperature, pressure, and salinity conditions allow hydrates to be stable. Using phase diagrams and hydro pressure information we can derive the temperature at the BSR. BSRs are widespread in the study area, providing very dense temperature field information which shows upward bending of the BSR near faults. We have quantitatively estimated the 1D and 2D fluid flow patterns required to fit the BSR-based temperature field. This shows that fault zones can act as conduits with high permeability parallel to the fault planes. On the other hand, fault zones can also act as barriers to fluid flow, as demonstrated in our onland temperature data. We have collected temperature profiles at several bore holes onland that are very close together. The preliminary results show that the fault zones separate the ground water systems, causing very different geothermal gradients. Our results show that the physical properties of fault zones can be anisotropic, as demonstrated in previous work. Future work includes estimating the regional water expulsion budget offshore SW Taiwan, in particular for several gas hydrate sites.

  11. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    USGS Publications Warehouse

    Schardt, C.; Garven, G.; Kelley, K.D.; Leach, D.L.

    2008-01-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200??C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS- source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency). ?? Springer-Verlag 2008.

  12. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    NASA Astrophysics Data System (ADS)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  13. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  14. Nonlinear dynamics of shells conveying pulsatile flow with pulse-wave propagation. Theory and numerical results for a single harmonic pulsation

    NASA Astrophysics Data System (ADS)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2017-05-01

    In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation diagrams and Poincaré maps. It is shown that traveling waves of pressure and velocity cause a delay in the radial displacement of the shell at different values of the axial coordinate. The effect of different pulse wave velocities is also studied. Comparisons with the corresponding ideal case without wave propagation (i.e. with the same pulsatile velocity and pressure at any point of the shell) are here discussed. Bifurcation diagrams of Poincaré maps obtained from direct time integration have been used to study the system in the spectral neighborhood of the fundamental natural frequency. By increasing the forcing frequency, the response undergoes very complex nonlinear dynamics (chaos, amplitude modulation and period-doubling bifurcation), here deeply investigated.

  15. Non-circulatory fluid forces on porous bodies with application to panel flutter

    NASA Astrophysics Data System (ADS)

    Hajian, Rozhin; Jaworski, Justin W.

    2017-11-01

    The non-circulatory fluid forces acting on an oscillating porous panel or airfoil in uniform incompressible flow are derived from linearized potential theory. The fundamental integral equation for Holder-continuous porosity distributions is formulated and solved numerically for the special cases of non-porous and uniformly-porous panels with prescribed structural deformations. The new unsteady aerodynamic forces are then applied to aeroelastic stability predictions for porous panels or liners. Results from this analysis aim to form the basis of a complete unsteady aerodynamic theory for porous airfoils and their acoustic emissions based upon the unique attributes of natural fliers and swimmers.

  16. Direct numerical simulation of human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2016-11-01

    A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).

  17. Core segregation mechanism and compositional evolution of terretrial planets

    NASA Astrophysics Data System (ADS)

    Petford, N.; Rushmer, T.

    2009-04-01

    A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.

  18. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  19. An investigation of the fluid-structure interaction of piston/cylinder interface

    NASA Astrophysics Data System (ADS)

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  20. Passive swimming in viscous oscillatory flows

    NASA Astrophysics Data System (ADS)

    Jo, Ikhee; Huang, Yangyang; Zimmermann, Walter; Kanso, Eva

    2016-12-01

    Fluid-based locomotion at low Reynolds number is subject to the constraints of Purcell's scallop theorem: reciprocal shape kinematics identical under a time-reversal symmetry cannot cause locomotion. In particular, a single degree-of-freedom scallop undergoing opening and closing motions cannot swim. Most strategies for symmetry breaking and locomotion rely on direct control of the swimmer's shape kinematics. Less is known about indirect control via actuation of the fluid medium. To address how such indirect actuation strategies can lead to locomotion, we analyze a Λ -shaped model system analogous to Purcell's scallop but able to deform passively in oscillatory flows. Neutrally buoyant scallops undergo no net locomotion. We show that dense, elastic scallops can exhibit passive locomotion in zero-mean oscillatory flows. We examine the efficiency of swimming parallel to the background flow and analyze the stability of these motions. We observe transitions from stable to unstable swimming, including ordered transitions from fluttering to chaoticlike motions and tumbling. Our results demonstrate that flow oscillations can be used to passively actuate and control the motion of microswimmers, which may be relevant to applications such as surgical robots and cell sorting and manipulation in microfluidic devices.

  1. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.

  2. Surface Deformation Caused by Pressure Changes in the Fluid Core

    NASA Technical Reports Server (NTRS)

    Fang, Ming; Hager, Bradford H.; Herring, Thomas A.

    1995-01-01

    Pressure load Love numbers are presented for the mantle deformation induced by the variation of the pressure field at the core mantle boundary (CNB). We find that the CMB geostrophic pressure fields, derived from 'frozen-flux' core surface flow estimates at epochs 1965 and 1975, produce a relative radial velocity (RRV) field in the range of 3mm/decade with uplift near the equator and subsidence near the poles. The contribution of this mechanism to the change in the length of day (l.o.d) is small --- about 2.3 x 10(exp -2) ms/decade. The contribution to the time variation of the ellipticity coefficient is more important --- -1.3 x 10(exp -11)/yr.

  3. Hybrid atomistic simulation of fluid uptake in a deformable solid

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahyar M.; Rickman, J. M.

    2014-01-01

    Fluid imbibition via diffusion in a deformable solid results in solid stresses that may, in turn, alter subsequent fluid uptake. To examine this interplay between diffusional and elastic fields, we employed a hybrid Monte Carlo-molecular dynamics scheme to model the coupling of a fluid reservoir to a deformable solid, and then simulated the resulting fluid permeation into the solid. By monitoring the instantaneous structure factor and solid dimensions, we were able to determine the compositional strain associated with imbibition, and the diffusion coefficient in the Fickian regime was obtained from the time dependence of the fluid uptake. Finally, for large, mobile fluid atoms, a non-Fickian regime was highlighted and possible mechanisms for this behavior were identified.

  4. Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA

    NASA Astrophysics Data System (ADS)

    Davatzes, N. C.; Hickman, S. H.

    2005-12-01

    The minerals that comprise fault rock, their grain shapes, and packing geometry are important controls on fault zone properties such as permeability, frictional strength, and slip behavior. In this study we examine the role of mineralogy and deformation microstructures on fluid flow in a fault-hosted, fracture-dominated geothermal system contained in granitic rocks in the Coso Geothermal Field, CA. Initial examination of the mineralogy and microstructure of fault rock obtained from core and surface outcrops reveals three fault rock types. (1) Fault rock consisting of kaolinite and amorphous silica that contains large connected pores, dilatant brittle fractures, and dissolution textures. (2) Fault rock consisting of foliated layers of chlorite and illite-smectite separated by slip surfaces. (3) Fault rock consisting of poorly sorted angular grains, characterized by large variations in grain packing (pore size), and crack-seal textures. These different fault rocks are respectively associated with a high permeability upper boiling zone for the geothermal system, a conductively heated "caprock" at moderate to shallow depth associated with low permeability, and a deeper convectively heated region associated with enhanced permeability. Outcrop and hand-sample scale mapping, XRD analysis, and SEM secondary electron images of fault gouge and slip surfaces at different stages of development (estimated shear strain) are used to investigate the processes responsible for the development and physical properties of these distinct fault rocks. In each type of fault rock, mineral dissolution and re-precipitation in conjunction with the amount and geometry of porosity changes induced by dilation or compaction are the key controls on fault rock development. In addition, at the contacts between slip surfaces, abrasion and resulting comminution appear to influence grain size, sorting, and packing. Macroscopically, we expect the frictional strength of these characteristic fault rocks to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.

  5. Modeling Thermal Pressurization Around Shallow Dikes Using Temperature-Dependent Hydraulic Properties: Implications for Deformation Around Intrusions

    NASA Astrophysics Data System (ADS)

    Townsend, Meredith R.

    2018-01-01

    Pressurization and flow of groundwater around igneous intrusions depend in part on the hydraulic diffusivity of the host rocks and processes that enhance diffusivity, such as fracturing, or decrease diffusivity, such as mineral precipitation during chemical alteration. Characterizing and quantifying the coupled effects of alteration, pore pressurization, and deformation have significant implications for deformation around intrusions, geothermal energy, contact metamorphism, and heat transfer at mid-ocean ridges. Fractures around dikes at Ship Rock, New Mexico, indicate that pore pressures in the host rocks exceeded hydrostatic conditions by at least 15 MPa following dike emplacement. Hydraulic measurements and petrographic analysis indicate that mineral precipitation clogged the pores of the host rock, reducing porosity from 0.25 to <0.10 and reducing permeability by 5 orders of magnitude. Field data from Ship Rock are used to motivate and constrain numerical models for thermal pore fluid pressurization adjacent to a meter-scale dike, using temperature-dependent hydraulic properties in the host rock as a proxy for porosity loss by mineral precipitation during chemical alteration. Reduction in permeability by chemical alteration has a negligible effect on pressurization. However, reduction in porosity by mineral precipitation increases fluid pressure by constricting pore volume and is identified as a potentially significant source of pressure. A scaling relationship is derived to determine when porosity loss becomes important; if permeability is low enough, pressurization by porosity loss outweighs pressurization by thermal expansion of fluids.

  6. Coalescence of Drops of a Power-law Fluid

    NASA Astrophysics Data System (ADS)

    Kamat, Pritish; Thete, Sumeet; Basaran, Osman

    2014-11-01

    Drop coalescence is crucial in a host of industrial, household, and natural processes that involve dispersions. Coalescence is a rate-controlling process in breaking emulsions and strongly influences drop-size-distributions in sprays. In a continuum approach, coalescence begins by the formation of a microscopic, non-slender bridge connecting the two drops. Indefinitely large axial curvature at the neck results in local lowering of pressure that drives fluid from the bulk of the drops toward the neck, thereby causing the bridge radius r (t) and height z (t) to increase in time t. The coalescence of Newtonian drops in air has heretofore been thoroughly studied. Here, we extend these earlier studies by analyzing the coalescence of drops of power-law fluids because many fluids encountered in real applications, including cosmetic creams, shampoos, grease, and paint, exhibit power-law (deformation-rate thinning) rheology. On account of the non-slender geometry of the liquid bridge connecting the two drops (z << r) , we analyze the resulting free surface flow problem by numerical simulation. Among other results, we present and discuss the nature of flows and scaling behaviors for r and z as functions of the initial viscosity and power-law index (0 < n <= 1) .

  7. Numerical Simulation of the Self-Oscillations of the Vocal Folds and of the Resulting Acoustic Phenomena in the Vocal Tract

    NASA Astrophysics Data System (ADS)

    Švancara, P.; Horáček, J.; Švec, J. G.

    The study presents a three-dimensional (3D) finite element (FE) model of the flow-induced self-oscillation of the human vocal folds in interaction with acoustics of simplified vocal tract models. The 3D vocal tract models of the acoustic spaces shaped for simulation of phonation of Czech vowels [a:], [i:] and [u:] were created by converting the data from the magnetic resonance images (MRI). For modelling of the fluid-structure interaction, explicit coupling scheme with separated solvers for fluid and structure domain was utilized. The FE model comprises vocal folds pretension before starting phonation, large deformations of the vocal fold tissue, vocal-fold collisions, fluid-structure interaction, morphing the fluid mesh according to the vocal-fold motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation. The developed FE model enables to study the relationship between flow-induced vibrations of the vocal folds and acoustic wave propagation in the vocal tract and can also be used to simulate for example pathological changes in the vocal fold tissue and their influence on the voice production.

  8. Fluid-Driven Deformation of a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2015-01-01

    Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

  9. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  10. Numerical study of suspensions of deformable particles.

    NASA Astrophysics Data System (ADS)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  11. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  12. Self-Powered Viscosity and Pressure Sensing in Microfluidic Systems Based on the Piezoelectric Energy Harvesting of Flowing Droplets.

    PubMed

    Wang, Zhao; Tan, Lun; Pan, Xumin; Liu, Gao; He, Yahua; Jin, Wenchao; Li, Meng; Hu, Yongming; Gu, Haoshuang

    2017-08-30

    The rapid development of microscaled piezoelectric energy harvesters has provided a simple and highly efficient way for building self-powered sensor systems through harvesting the mechanical energy from the ambient environment. In this work, a self-powered microfluidic sensor that can harvest the mechanical energy of the fluid and simultaneously monitor their characteristics was fabricated by integrating the flexible piezoelectric poly(vinylidene fluoride) (PVDF) nanofibers with the well-designed microfluidic chips. Those devices could generate open-circuit high output voltage up to 1.8 V when a droplet of water is flowing past the suspended PVDF nanofibers and result in their periodical deformations. The impulsive output voltage signal allowed them to be utilized for droplets or bubbles counting in the microfluidic systems. Furthermore, the devices also exhibited self-powered sensing behavior due to the decreased voltage amplitude with increasing input pressure and liquid viscosity. The drop of output voltage could be attributed to the variation of flow condition and velocity of the droplets, leading to the reduced deformation of the piezoelectric PVDF layer and the decrease of the generated piezoelectric potential.

  13. Patient-Specific Simulations of Reactivity in Models of the Pulmonary Vasculature: A 3-D Numerical Study with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Hunter, Kendall; Zhang, Yanhang; Lanning, Craig

    2005-11-01

    Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.

  14. Flow metering valve

    DOEpatents

    Blaedel, K.L.

    1983-11-03

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  15. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.

    PubMed

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-14

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  16. FE Modelling of the Fluid-Structure-Acoustic Interaction for the Vocal Folds Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Švancara, Pavel; Horáček, J.; Hrůza, V.

    The flow induced self-oscillation of the human vocal folds in interaction with acoustic processes in the simplified vocal tract model was explored by three-dimensional (3D) finite element (FE) model. Developed FE model includes vocal folds pretension before phonation, large deformations of the vocal fold tissue, vocal folds contact, fluid-structure interaction, morphing the fluid mesh according the vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous compressible airflow described by the Navier-Stokes equations and airflow separation during the glottis closure. Iterative partitioned approach is used for modelling the fluid-structure interaction. Computed results prove that the developed model can be used for simulation of the vocal folds self-oscillation and resulting acoustic waves. The developed model enables to numerically simulate an influence of some pathological changes in the vocal fold tissue on the voice production.

  17. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  18. Flow metering valve

    DOEpatents

    Blaedel, Kenneth L.

    1985-01-01

    An apparatus for metering fluids at high pressures of about 20,000 to 60,000 psi is disclosed. The apparatus includes first and second plates which are positioned adjacent each other to form a valve chamber. The plates are made of materials which have substantially equal elastic properties. One plate has a planar surface area, and the other a recessed surface area defined by periphery and central lips. When the two plates are positioned in adjacent contacting relationship, a valve chamber is formed between the planar surface area and the recessed surface area. Fluid is introduced into the chamber and exits therefrom when a deformation occurs at positions where they no longer form a valve seat. This permits the metering of fluids at high pressures and at slow variable rates. Fluid then exits from the chamber until an applied external force becomes large enough to bring the valve seats back into contact.

  19. Quadratic curvature terms and deformed Schwarzschild-de Sitter black hole analogues in the laboratory

    NASA Astrophysics Data System (ADS)

    da Rocha, R.; Sobreiro, R. F.; Tomaz, A. A.

    2017-12-01

    Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild-de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes.

  20. Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less

  1. Phase field model of fluid-driven fracture in elastic media: Immersed-fracture formulation and validation with analytical solutions

    DOE PAGES

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    2017-04-20

    Propagation of fluid-driven fractures plays an important role in natural and engineering processes, including transport of magma in the lithosphere, geologic sequestration of carbon dioxide, and oil and gas recovery from low-permeability formations, among many others. The simulation of fracture propagation poses a computational challenge as a result of the complex physics of fracture and the need to capture disparate length scales. Phase field models represent fractures as a diffuse interface and enjoy the advantage that fracture nucleation, propagation, branching, or twisting can be simulated without ad hoc computational strategies like remeshing or local enrichment of the solution space. Heremore » we propose a new quasi-static phase field formulation for modeling fluid-driven fracturing in elastic media at small strains. The approach fully couples the fluid flow in the fracture (described via the Reynolds lubrication approximation) and the deformation of the surrounding medium. The flow is solved on a lower dimensionality mesh immersed in the elastic medium. This approach leads to accurate coupling of both physics. We assessed the performance of the model extensively by comparing results for the evolution of fracture length, aperture, and fracture fluid pressure against analytical solutions under different fracture propagation regimes. Thus, the excellent performance of the numerical model in all regimes builds confidence in the applicability of phase field approaches to simulate fluid-driven fracture.« less

  2. Creep of Bridgmanite Analog, Neighborite (NaMgF3), and Implications for Viscous Flow in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Mecklenburgh, J.; Mariani, E.; Wheeler, J.

    2016-12-01

    The rheology of the lower mantle directly influences mantle viscosity and strength and therefore affects a number of geophysical processes including mantle mixing, formation of mantle plumes and hotspots, slab subduction and stagnation, and plate motion. Experimental flow laws of lower mantle minerals, which quantify rheology of the lower mantle, are needed to help resolve discrepancies in estimates of lower mantle viscosity, better constrain geophysical models, and answer a number of outstanding questions such as, why slabs descend to different depths, and why the lower mantle is mostly isotropic despite large strains predicted by convection models. However, we lack natural lower mantle samples from which to infer deformation history. Furthermore, deformation experiments at lower mantle pressures and temperatures are challenging, and strain rates and stress cannot always be precisely controlled or measured. As a valuable alternative we have synthesized and deformed neighborite (NaMgF3), a low pressure analog of bridgmanite (MgSiO3), the most abundant mineral in the lower mantle and the Earth. Neighborite was deformed at 200 MPa confining pressure and between 500-700°C in compression using a fluid-medium deformation apparatus, and in torsion using a Patterson rig. In these experiments strain rate and stress can be accurately controlled and measured, and flow laws reliably determined. In addition we have recovered samples and examined deformation microstructures in a scanning electron microscope using electron backscatter diffraction. Preliminary mechanical results show a switch from linear-viscous deformation at lower stress (<50 MPa) to power law creep accommodated by grain boundary sliding at higher stress (>50 MPa). We also see strain weakening. Microstructures of samples deformed at a range of stress steps show grain boundary migration recrystallization (likely from lower stress) and crystallographic preferred orientation with poles to (100) planes parallel to compression (likely from higher stress). Further work is in progress to obtain microstructures that can be univocally associated with the observed mechanical behavior. We compare our results to those of other bridgmanite analogs and bridgmanite itself and extrapolate to geologic strain rates.

  3. (YIP 2011) Unsteady Output-based Adaptive Simulation of Separated and Transitional Flows

    DTIC Science & Technology

    2015-03-19

    Investigator Aerospace Eng. U. Michigan Marco Ceze Ph.D. student/postdoctoral associate Aerospace Eng. U. Michigan Steven Kast Ph.D. student Aerospace...13] S. M. Kast , M. A. Ceze, and K. J. Fidkowski. Output-adaptive solution strategies for unsteady aerodynamics on deformable domains. Seventh...International Conference on Computational Fluid Dynamics ICCFD7-3802, 2012. [14] S. M. Kast and K. J. Fidkowski. Output-based mesh adaptation for high order

  4. Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions.

    PubMed

    Spruzeniece, Liene; Piazolo, Sandra; Maynard-Casely, Helen E

    2017-01-27

    Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H 2 O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.

  5. Three-Dimensional Coupled Dynamics of The Two-Fluid Model in Superfluid 4He: Deformed Velocity Profile of Normal Fluid in Thermal Counterflow

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto; Kobayashi, Hiromichi

    2018-04-01

    The coupled dynamics of the two-fluid model of superfluid 4He is numerically studied for quantum turbulence of the thermal counterflow in a square channel. We combine the vortex filament model of the superfluid and the Navier-Stokes equations of normal fluid. Simulations of the coupled dynamics show that the velocity profile of the normal fluid is deformed significantly by superfluid turbulence as the vortices become dense. This result is consistent with recently performed visualization experiments. We introduce a dimensionless parameter that characterizes the deformation of the velocity profile.

  6. Tertiary thrust systems and fluid flow beneath the Beaufort coastal plain (1002 area), Arctic National Wildlife Refuge, Alaska, U.S.A.

    USGS Publications Warehouse

    Potter, Christopher J.; Grow, John A.; Perry, William J.; Moore, Thomas E.; O'Sullivan, Paul B.; Phillips, Jeffrey D.; Saltus, Richard W.

    2004-01-01

    In the eastern part of the 1002 area, a northward-younging pattern of thin-skinned deformation is apparent. Converging patterns of Paleocene reflectors on the north flank of the Sabbath syncline indicate that the Aichilik high and the Sabbath syncline formed as a passive-roof duplex and piggyback basin, respectively, just behind the Paleocene deformation front. During the Eocene and possibly the Oligocene, thin-skinned thrusting advanced northward over the present location of the Niguanak high. A passive-roof duplex occupied the frontal part of this system. The Kingak and Hue shales exposed above the Niguanak high were transported into their present structural position during the Eocene to Oligocene motion on the long thrust ramps above the present south flank of the Niguanak high. Broad, basement-cored subsurface domes (Niguanak high and Aurora dome) formed near the deformation front in the Oligocene, deforming the overlying thin-skinned structures and feeding a new increment of displacement into thin-skinned structures directly to the north. Deformation continued through the Miocene above a detachment in the basement. Offshore seismicity and Holocene shortening documented by previous workers may indicate that contractional deformation continues to the present day.

  7. Morphogenesis of the SW Balearic continental slope and adjacent abyssal plain, Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Accettella, Daniela; Costa, Sergio; Lastras, Galderic; Acosta, Juan; Canals, Miquel; Wardell, Nigel

    2009-06-01

    We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW-NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW-ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.

  8. Aeroelastic deformation of a perforated strip

    NASA Astrophysics Data System (ADS)

    Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.

    2018-01-01

    We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.

  9. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    NASA Astrophysics Data System (ADS)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  10. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  11. Separation of red blood cells in deep deterministic lateral displacement devices

    NASA Astrophysics Data System (ADS)

    Kabacaoglu, Gokberk; Biros, George

    2017-11-01

    Microfluidic cell separation techniques are of great interest since they help rapid medical diagnoses and tests. Deterministic lateral displacement (DLD) is one of them. A DLD device consists of arrays of pillars. Main flow and alignment of the pillars define two different directions. Size-based separation of rigid spherical particles is possible as they follow one of these directions depending on their sizes. However, the separation of non-spherical deformable particles such as red blood cells (RBCs) is more complicated than that due to their intricate dynamics. We study the separation of RBCs in DLD using an in-house integral equation solver. We systematically investigate the effects of the interior fluid viscosity and the membrane elasticity of an RBC on its behavior. These mechanical properties of a cell determine its deformability, which can be altered by several diseases. We particularly consider deep devices in which an RBC can show rich dynamics such as tank-treading and tumbling. It turns out that strong hydrodynamic lift force moves the tank-treading cells along the pillars and downward force leads the tumbling ones to move with the flow. Thereby, deformability-based separation of RBCs is possible.

  12. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    NASA Astrophysics Data System (ADS)

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  13. The Influence of Fracturing Fluids on Fracturing Processes: A Comparison Between Water, Oil and SC-CO2

    NASA Astrophysics Data System (ADS)

    Wang, Jiehao; Elsworth, Derek; Wu, Yu; Liu, Jishan; Zhu, Wancheng; Liu, Yu

    2018-01-01

    Conventional water-based fracturing treatments may not work well for many shale gas reservoirs. This is due to the fact that shale gas formations are much more sensitive to water because of the significant capillary effects and the potentially high contents of swelling clay, each of which may result in the impairment of productivity. As an alternative to water-based fluids, gaseous stimulants not only avoid this potential impairment in productivity, but also conserve water as a resource and may sequester greenhouse gases underground. However, experimental observations have shown that different fracturing fluids yield variations in the induced fracture. During the hydraulic fracturing process, fracturing fluids will penetrate into the borehole wall, and the evolution of the fracture(s) then results from the coupled phenomena of fluid flow, solid deformation and damage. To represent this, coupled models of rock damage mechanics and fluid flow for both slightly compressible fluids and CO2 are presented. We investigate the fracturing processes driven by pressurization of three kinds of fluids: water, viscous oil and supercritical CO2. Simulation results indicate that SC-CO2-based fracturing indeed has a lower breakdown pressure, as observed in experiments, and may develop fractures with greater complexity than those developed with water-based and oil-based fracturing. We explore the relation between the breakdown pressure to both the dynamic viscosity and the interfacial tension of the fracturing fluids. Modeling demonstrates an increase in the breakdown pressure with an increase both in the dynamic viscosity and in the interfacial tension, consistent with experimental observations.

  14. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  15. Coherent structure coloring: identification of coherent structures from sparse flow trajectories using graph theory

    NASA Astrophysics Data System (ADS)

    Schlueter, Kristy; Dabiri, John

    2016-11-01

    Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  16. Complex blood flow patterns in an idealized left ventricle: A numerical study

    NASA Astrophysics Data System (ADS)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  17. Tunable Microfluidic Devices for Hydrodynamic Fractionation of Cells and Beads: A Review

    PubMed Central

    Alvankarian, Jafar; Majlis, Burhanuddin Yeop

    2015-01-01

    The adjustable microfluidic devices that have been developed for hydrodynamic-based fractionation of beads and cells are important for fast performance tunability through interaction of mechanical properties of particles in fluid flow and mechanically flexible microstructures. In this review, the research works reported on fabrication and testing of the tunable elastomeric microfluidic devices for applications such as separation, filtration, isolation, and trapping of single or bulk of microbeads or cells are discussed. Such microfluidic systems for rapid performance alteration are classified in two groups of bulk deformation of microdevices using external mechanical forces, and local deformation of microstructures using flexible membrane by pneumatic pressure. The main advantage of membrane-based tunable systems has been addressed to be the high capability of integration with other microdevice components. The stretchable devices based on bulk deformation of microstructures have in common advantage of simplicity in design and fabrication process. PMID:26610519

  18. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  19. A coupled deformation-diffusion theory for fluid-saturated porous solids

    NASA Astrophysics Data System (ADS)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  20. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    PubMed Central

    Malinauskas, Karolis; Palevicius, Paulius; Ragulskis, Minvydas; Ostasevicius, Vytautas; Dauksevicius, Rolanas

    2013-01-01

    Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner′s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation. PMID:23609803

Top