Sample records for fluid flow profile

  1. Apparatus and method for aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Williamson, John W. (Inventor); al-Darwish, Mohamad M. (Inventor); Cashen, Grant E. (Inventor)

    1993-01-01

    An apparatus for the levitation of a liquid drop by a fluid flow comprising a profile generator, a fluid flow supply means operatively connected to the profile generator. The profile generator includes an elongate cylindrical shell in which is contained a profiling means for configuring the velocity profile of the fluid flow exiting the profile generator.

  2. Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles

    NASA Astrophysics Data System (ADS)

    Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.

    2010-07-01

    Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.

  3. Unsteady magnetohydrodynamics micropolar fluid in boundary layer flow past a sphere influenced by magnetic fluid

    NASA Astrophysics Data System (ADS)

    Pratomo, Rizky Verdyanto; Widodo, Basuki; Adzkiya, Dieky

    2017-12-01

    Research about fluid flow was very interesting because have a lot of advantages and it can be applied in many aspects of life. The study on fluid flow which is now widely studied is on magnetohydrodynamic (MHD). Magnetohydrodynamic is a conductive and electrical in a magnetic field. This paper considers the effect of unsteady magnetic fields on the flow of magneto-hydrodynamic fluid on the boundary layer that flows past a sphere in micropolar fluid influenced by magnetic field. Our approach is as follows. First, we construct a mathematical model and then the system of equations obtained will be solved numerically using the Keller-Box scheme. Then the system is simulated to assess its effect on the fluid flow velocity profile and the profile of microrotation particles. The result of this research indicates, that when the magnetic parameters increase, then velocity profile increases. If material parameters increase, then velocity profile decreases and magnetic parameters increase for n = 0. For n = 0.5, if magnetic parameters increase, then microrotation profile decreases.

  4. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  5. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    NASA Astrophysics Data System (ADS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-08-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling.

  6. Investigation on Convergence – Divergence Nozzle Shape for Microscale Channel in Harvesting Kinetic Energy

    NASA Astrophysics Data System (ADS)

    Zakaria, M. S.; Zairi, S.; Misbah, M. N.; Saifizi, M.; Rakawi, Izzudin

    2018-03-01

    This paper presents performance evaluation of nozzle shapes on microscale channel by employing different types of NACA airfoils profile and conventional profile. The deploying nozzle used are NACA 0012, NACA 0021 and NACA 0024 airfoils while for conventional convergence-divergence nozzle diameter ratio (d2 / d1) in the range from 1/4 to 3/4 are applied. These nozzles are assembled on rectangular cross sectional microscale channel which has designated constant fluid flow velocity at the channel inlet. This study revealed reduction on diameter ratio increased dramatically fluid velocity but further reduction on diameter ratio exposed fluid flow to fluctuate which slightly slowing down the fluid velocity. Nevertheless, curved NACA profiles are favourable for convergence – divergence nozzle in microscale channel as it significantly improved flow characteristics by enhancing fluid velocity and resultant kinetic energy as compared to conventional profile.

  7. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  8. Thermally developed peristaltic propulsion of magnetic solid particles in biorheological fluids

    NASA Astrophysics Data System (ADS)

    Bhatti, M. M.; Zeeshan, A.; Tripathi, D.; Ellahi, R.

    2018-04-01

    In this article, effects of heat and mass transfer on MHD peristaltic motion of solid particles in a dusty fluid are investigated. The effects of nonlinear thermal radiation and Hall current are also taken into account. The relevant flow analysis is modelled for fluid phase and dust phase in wave frame by means of Casson fluid model. Computation of solutions is presented for velocity profile, temperature profile and concentration profile. The effects of all the physical parameters such as particle volume fraction, Hartmann number, Hall Effect, Prandtl number, Eckert number, Schmidt number and Soret number are discussed mathematically and graphically. It is noted that the influence of magnetic field and particle volume fraction opposes the flow. Also, the impact of particle volume fraction is quite opposite on temperature and concentration profile. This model is applicable in smart drug delivery systems and bacteria movement in urine flow through the ureter.

  9. The effect of magnetohydrodynamic nano fluid flow through porous cylinder

    NASA Astrophysics Data System (ADS)

    Widodo, Basuki; Arif, Didik Khusnul; Aryany, Deviana; Asiyah, Nur; Widjajati, Farida Agustini; Kamiran

    2017-08-01

    This paper concerns about the analysis of the effect of magnetohydrodynamic nano fluid flow through horizontal porous cylinder on steady and incompressible condition. Fluid flow is assumed opposite gravity and induced by magnet field. Porous cylinder is assumed had the same depth of porous and was not absorptive. The First thing to do in this research is to build the model of fluid flow to obtain dimentional governing equations. The dimentional governing equations are consist of continuity equation, momentum equation, and energy equation. Furthermore, the dimensional governing equations are converted to non-dimensional governing equation by using non-dimensional parameters and variables. Then, the non-dimensional governing equations are transformed into similarity equations using stream function and solved using Keller-Box method. The result of numerical solution further is obtained by taking variation of magnetic parameter, Prandtl number, porosity parameter, and volume fraction. The numerical results show that velocity profiles increase and temperature profiles decrease when both of the magnetic and the porosity parameter increase. However, the velocity profiles decrease and the temperature profiles increase when both of the magnetic and the porosity parameter increase.

  10. Numerical Studies into Flow Profiles in Confined Lubricant

    NASA Astrophysics Data System (ADS)

    di Mare, Luca; Ponjavic, Aleks; Wong, Janet

    2013-03-01

    This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.

  11. Fluid flow in a porous medium with transverse permeability discontinuity

    NASA Astrophysics Data System (ADS)

    Pavlovskaya, Galina E.; Meersmann, Thomas; Jin, Chunyu; Rigby, Sean P.

    2018-04-01

    Magnetic resonance imaging (MRI) velocimetry methods are used to study fully developed axially symmetric fluid flow in a model porous medium of cylindrical symmetry with a transverse permeability discontinuity. Spatial mapping of fluid flow results in radial velocity profiles. High spatial resolution of these profiles allows estimating the slip in velocities at the boundary with a permeability discontinuity zone in a sample. The profiles are compared to theoretical velocity fields for a fully developed axially symmetric flow in a cylinder derived from the Beavers-Joseph [G. S. Beavers and D. D. Joseph, J. Fluid Mech. 30, 197 (1967), 10.1017/S0022112067001375] and Brinkman [H. C. Brinkman, Appl. Sci. Res. A 1, 27 (1947), 10.1007/BF02120313] models. Velocity fields are also computed using pore-scale lattice Boltzmann modeling (LBM) where the assumption about the boundary could be omitted. Both approaches give good agreement between theory and experiment, though LBM velocity fields follow the experiment more closely. This work shows great promise for MRI velocimetry methods in addressing the boundary behavior of fluids in opaque heterogeneous porous media.

  12. Reduced viscosity interpreted for fluid/gas mixtures

    NASA Technical Reports Server (NTRS)

    Lewis, D. H.

    1981-01-01

    Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.

  13. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOEpatents

    Shekarriz, Alireza; Sheen, David M.

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  14. Laser induced fluorescence measurements of ion velocity and temperature of drift turbulence driven sheared plasma flow in a linear helicon plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.

    2012-08-15

    Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasmamore » fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.« less

  15. Introducing Non-Newtonian Fluid Mechanics Computations with Mathematica in the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Binous, Housam

    2007-01-01

    We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…

  16. Numerical modeling of continuous flow microwave heating: a critical comparison of COMSOL and ANSYS.

    PubMed

    Salvi, D; Boldor, Dorin; Ortego, J; Aita, G M; Sabliov, C M

    2010-01-01

    Numerical models were developed to simulate temperature profiles in Newtonian fluids during continuous flow microwave heating by one way coupling electromagnetism, fluid flow, and heat transport in ANSYS 8.0 and COMSOL Multiphysics v3.4. Comparison of the results from the COMSOL model with the results from a pre-developed and validated ANSYS model ensured accuracy of the COMSOL model. Prediction of power Loss by both models was in close agreement (5-13% variation) and the predicted temperature profiles were similar. COMSOL provided a flexible model setup whereas ANSYS required coupling incompatible elements to transfer load between electromagnetic, fluid flow, and heat transport modules. Overall, both software packages provided the ability to solve multiphysics phenomena accurately.

  17. Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .

  18. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  19. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  20. Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry

    NASA Astrophysics Data System (ADS)

    Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.

    2017-11-01

    A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isa, Sharena Mohamad; Ali, Anati

    In this paper, the hydromagnetic flow of dusty fluid over a vertical stretching sheet with thermal radiation is investigated. The governing partial differential equations are reduced to nonlinear ordinary differential equations using similarity transformation. These nonlinear ordinary differential equations are solved numerically using Runge-Kutta Fehlberg fourth-fifth order method (RKF45 Method). The behavior of velocity and temperature profiles of hydromagnetic fluid flow of dusty fluid is analyzed and discussed for different parameters of interest such as unsteady parameter, fluid-particle interaction parameter, the magnetic parameter, radiation parameter and Prandtl number on the flow.

  2. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  3. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity and temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooja,, E-mail: pupooja16@gmail.com; Ahluwalia, P. K., E-mail: pk-ahluwalia7@yahoo.com; Pathania, Y.

    2015-05-15

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0.more » To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.« less

  4. Molecular dynamic simulation of Ar-Kr mixture across a rough walled nanochannel: Velocity & temperature profiles

    NASA Astrophysics Data System (ADS)

    Pooja, Pathania, Y.; Ahluwalia, P. K.

    2015-05-01

    This paper presents the results from a molecular dynamics simulation of mixture of argon and krypton in the Poiseuille flow across a rough walled nanochannel. The roughness effect on liquid nanoflows has recently drawn attention The computational software used for carrying out the molecular dynamics simulations is LAMMPS. The fluid flow takes place between two parallel plates and is bounded by horizontal rough walls in one direction and periodic boundary conditions are imposed in the other two directions. Each fluid atom interacts with other fluid atoms and wall atoms through Leenard-Jones (LJ) potential with a cut off distance of 5.0. To derive the flow a constant force is applied whose value is varied from 0.1 to 0.3 and velocity profiles and temperature profiles are noted for these values of forces. The velocity profile and temperature profiles are also looked at different channel widths of nanochannel and at different densities of mixture. The velocity profile and temperature profile of rough walled nanochannel are compared with that of smooth walled nanochannel and it is concluded that mean velocity increases with increase in channel width, force applied and decrease in density also with introduction of roughness in the walls of nanochannel mean velocity again increases and results also agree with the analytical solution of a Poiseuille flow.

  5. The fluid dynamics of the chocolate fountain

    NASA Astrophysics Data System (ADS)

    Townsend, Adam K.; Wilson, Helen J.

    2016-01-01

    We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.

  6. Destabilization of confined granular packings due to fluid flow

    NASA Astrophysics Data System (ADS)

    Monloubou, Martin; Sandnes, Bjørnar

    2016-04-01

    Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.

  7. Effects of Pump Pulsation on Hydrodynamic Properties and Dissolution Profiles in Flow-Through Dissolution Systems (USP 4).

    PubMed

    Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro

    2016-06-01

    To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.

  8. Combined free and forced convection heat transfer in magneto fluid mechanic pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, R.A.; Lo, Y.T.

    1977-01-01

    A study is made of fully developed, laminar, free-and-forced convection heat transfer in an electrically conducting fluid flowing in an electrically insulated, horizontal, circular pipe in a vertical transverse magnetic field. The normalized magnetofluidmechanic and energy equations are reduced to three coupled partial differential equations by the introduction of a stream function of the secondary flow. A perturbation solution is generated in inverse powers of the Lykoudis number, Ly = M/sup 2//..sqrt..Gr, which yields the influence of the magnetic field on the stream function of the secondary flow, axial velocity profiles, temperature profiles, and Nusselt number. 6 figures, 1 table.

  9. Optical Feedback Interferometry for Velocity Measurement of Parallel Liquid-Liquid Flows in a Microchannel

    PubMed Central

    Ramírez-Miquet, Evelio E.; Perchoux, Julien; Loubière, Karine; Tronche, Clément; Prat, Laurent; Sotolongo-Costa, Oscar

    2016-01-01

    Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel). PMID:27527178

  10. Confinement effects on liquid oxygen flows in carbon nanotubes: A MD simulation study

    NASA Astrophysics Data System (ADS)

    Suga, Kazuhiko; Moritani, Rintaro; Mori, Yuki; Kaneda, Masayuki

    2017-11-01

    Molecular dynamics simulations are performed to investigate the liquid flow mechanism of diatomic molecules in armchair carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n,n) (n=6-20) CNTs at a temperature of 133[K] and a bulk density of 1680[kg /m3] for the liquid state. The velocity profiles and slip lengths are discussed considering the radial distributions of the fluid density by the finite difference-based velocity fitting method. It is shown that as the diameter of the CNT increases, the slip length and the flow rate enhancement generally become smaller while irregular tendencies (discontinuity points) are observed in the distribution profiles. Between the (7,7) and (8,8) CNTs, a steep drop can be seen in the profiles. Between the (9,9) and (11,11) CNTs, and between the (12,12) and (14,14) CNTs transitional profiles are observed. It is confirmed that those phenomena are caused by an instability of the fluid molecule cluster due to the discontinuous confinement of the CNTs. Professor.

  11. Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo-Christov Heat Diffusion Theory

    NASA Astrophysics Data System (ADS)

    Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.

    2017-07-01

    Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.

  12. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    NASA Astrophysics Data System (ADS)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  13. Multi-component fluid flow through porous media by interacting lattice gas computer simulation

    NASA Astrophysics Data System (ADS)

    Cueva-Parra, Luis Alberto

    In this work we study structural and transport properties such as power-law behavior of trajectory of each constituent and their center of mass, density profile, mass flux, permeability, velocity profile, phase separation, segregation, and mixing of miscible and immiscible multicomponent fluid flow through rigid and non-consolidated porous media. The considered parameters are the mass ratio of the components, temperature, external pressure, and porosity. Due to its solid theoretical foundation and computational simplicity, the selected approaches are the Interacting Lattice Gas with Monte Carlo Method (Metropolis Algorithm) and direct sampling, combined with particular collision rules. The percolation mechanism is used for modeling initial random porous media. The introduced collision rules allow to model non-consolidated porous media, because part of the kinetic energy of the fluid particles is transfered to barrier particles, which are the components of the porous medium. Having gained kinetic energy, the barrier particles can move. A number of interesting results are observed. Some findings include, (i) phase separation in immiscible fluid flow through a medium with no barrier particles (porosity p P = 1). (ii) For the flow of miscible fluids through rigid porous medium with porosity close to percolation threshold (p C), the flux density (measure of permeability) shows a power law increase ∝ (pC - p) mu with mu = 2.0, and the density profile is found to decay with height ∝ exp(-mA/Bh), consistent with the barometric height law. (iii) Sedimentation and driving of barrier particles in fluid flow through non-consolidated porous medium. This study involves developing computer simulation models with efficient serial and parallel codes, extensive data analysis via graphical utilities, and computer visualization techniques.

  14. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2018-01-01

    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface, which in turn, may trigger slip events reported from many subduction zones.

  15. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  16. Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi

    2007-11-01

    Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.

  17. Influence of thermal and velocity slip on the peristaltic flow of Cu-water nanofluid with magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher

    2016-03-01

    The peristaltic flow of an incompressible viscous fluid containing copper nanoparticles in an asymmetric channel is discussed with thermal and velocity slip effects. The copper nanoparticles for the peristaltic flow water as base fluid is not explored so far. The equations for the purposed fluid model are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been calculated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The influence of various flow parameters on the flow and heat transfer characteristics is obtained.

  18. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer

    USGS Publications Warehouse

    Paillet, F.L.; Williams, J.H.; Oki, D.S.; Knutson, K.D.

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  19. Comparison of formation and fluid-column logs in a heterogeneous basalt aquifer.

    PubMed

    Paillet, F L; Williams, J H; Oki, D S; Knutson, K D

    2002-01-01

    Deep observation boreholes in the vicinity of active production wells in Honolulu, Hawaii, exhibit the anomalous condition that fluid-column electrical conductivity logs and apparent profiles of pore-water electrical conductivity derived from induction conductivity logs are nearly identical if a formation factor of 12.5 is assumed. This condition is documented in three boreholes where fluid-column logs clearly indicate the presence of strong borehole flow induced by withdrawal from partially penetrating water-supply wells. This result appears to contradict the basic principles of conductivity-log interpretation. Flow conditions in one of these boreholes was investigated in detail by obtaining flow profiles under two water production conditions using the electromagnetic flowmeter. The flow-log interpretation demonstrates that the fluid-column log resembles the induction log because the amount of inflow to the borehole increases systematically upward through the transition zone between deeper salt water and shallower fresh water. This condition allows the properties of the fluid column to approximate the properties of water entering the borehole as soon as the upflow stream encounters that producing zone. Because this condition occurs in all three boreholes investigated, the similarity of induction and fluid-column logs is probably not a coincidence, and may relate to aquifer response under the influence of pumping from production wells.

  20. Non-homogeneous flow profiles in sheared bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  1. Fluid permeability measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  2. Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2016-10-01

    Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.

  3. Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel

    We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.

  4. Velocity profiles and plug zones in a free surface viscoplastic flow : experimental study and comparison to shallow flow models

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2016-04-01

    Rheological studies concerning natural muddy debris flows have shown that these materials can be modelled as non-Newtonian viscoplastic fluids. These complex flows are generally represented using models based on a depth-integrated approach (Shallow Water) that take into account closure terms depending on the shape of the velocity profile. But to date, there is poor knowledge about the shape of velocity profiles and the position of the interface between sheared and unsheared regions (plug) in these flows, especially in the vicinity of the front. In this research, the internal dynamics of a free-surface viscoplastic flow down an inclined channel is investigated and compared to the predictions of a Shallow Water model based on the lubrication approximation. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity, which allows generating and observing gravity-driven stationary surges in the laboratory frame. Carbopol microgel has been used as a homogeneous and transparent viscoplastic fluid. High-resolution measurements of velocity field is performed through optical velocimetry techniques both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Specific analyses have been developed to determine the position of the plug within the surge. Flow height is accessible through image processing and ultrasonic sensors. Sufficiently far from the front, experimental results are shown to be in good agreement with theoretical predictions regarding the velocity profiles and the flow height evolution. In the vicinity of the front, however, analysis of measured velocity profiles shows an evolution of the plug different from that predicted by lubrication approximation. Accordingly, the free surface shape also deviates from the predictions of the classical Shallow Water model. These results highlight the necessity to take into account higher-order corrective terms in Shallow Water models in order to better account for the internal dynamics of the fluid layer.

  5. Re-suspension Process In Turbulent Particle-fluid Mixture Boundary Layers

    NASA Astrophysics Data System (ADS)

    Zwinger, T.; Kluwick, A.

    Many theoretical applications of geophysical flows, such as sediment transport (e.g. Jenkins &Hanes, 1998) and aeolian transport of particles (e.g. Hopwood et al., 1995) utilize concepts for describing the near wall velocity profiles of particle suspensions originally arising from classical single phase theories. This approach is supported by experiments indicating the existence of a logarithmic fluid velocity profile similar to single phase flows also in case of high Reynolds number wall bounded particle sus- pension flows with low particle volume fractions (Nishimura &Hunt, 2000). Since the concept of a logarithmic near wall profile follows from classic asymptotic the- ory of high Reynolds number wall bounded flows the question arises to what extent this theory can be modified to account for particles being suspended in the ambient fluid. To this end, the asymptotic theory developed by Mellor (1972) is applied to the Favré-averaged equations for the carrier fluid as well as the dispersed phase derived on the basis of a volume averaged dispersed two-phase theory (Gray &Lee, 1977). Numerical solutions for profiles of main stream velocities and particle volume frac- tion in the fully turbulent region of the boundary layer for different turbulent Schmidt numbers are computed applying a Finite Difference box scheme. In particular, atten- tion is focused on the turbulent re-suspension process of particles from dense granular flow adjacent to the bounding surface into the suspension. From these results boundary conditions in form of wall functions for velocities as well as the volume fraction of the particles can be derived and the validity of analogy laws between turbulent mass and momentum transfer at the bounding surface can be proved from an asymptotic point of view. The application of these concepts in the field of snow avalanche simulation (Zwinger, 2000) is discussed.

  6. The fluid-dynamics of bubble-bearing magmas

    NASA Astrophysics Data System (ADS)

    colucci, simone; papale, paolo; montagna, chiara

    2014-05-01

    The rheological properties of a fluid establish how the shear stress, τ, is related to the shear strain-rate, γ . The simplest constitutive equation is represented by the linear relationship τ = μγ, where the viscosity parameter, μ, is independent of strain-rate and the velocity profile is parabolic. Fluids with such a flow curve are called Newtonian. Many fluids, though, exhibit non-Newtonian rheology, typically arising in magmas from the presence of a dispersed phase of either crystals or bubbles. In this case it is not possible to define a strain-rate-independent viscosity and the velocity profile is complex. In this work we extend the 1D, steady, isothermal, multiphase non-homogeneous magma ascent model of Papale (2001) to 1.5D including the Non-Newtonian rheology of the bubble-bearing magma. We describe such rheology in terms of an apparent viscosity, η, which is the ratio of stress to strain-rate (η = τ/γ) and varies with strain-rate across the conduit radius. In this way we calculate a depth-dependent Non-newtonian velocity profile across the radius along with shear strain-rate and viscosity distributions. The evolution of the velocity profile can now be studied in order to investigate processes which occur close to the conduit wall, such as fragmentation. Moreover, the model can quantify the effects of the Non-Newtonian rheology on conduit flow dynamics, in terms of flow variables (e.g. velocity, pressure).

  7. Industrial application of ultrasound based in-line rheometry: From stationary to pulsating pipe flow of chocolate suspension in precrystallization process

    NASA Astrophysics Data System (ADS)

    Ouriev, Boris; Windhab, Erich; Braun, Peter; Birkhofer, Beat

    2004-10-01

    In-line visualization and on-line characterization of nontransparent fluids becomes an important subject for process development in food and nonfood industries. In our work, a noninvasive Doppler ultrasound-based technique is introduced. Such a technique is applied for investigation of nonstationary flow in the chocolate precrystallization process. Unstable flow conditions were induced by abrupt flow interruption and were followed up by strong flow pulsations in the piping system. While relying on available process information, such as absolute pressures and temperatures, no analyses of flow conditions or characterization of suspension properties could possibly be done. It is obvious that chocolate flow properties are sensitive to flow boundary conditions. Therefore, it becomes essential to perform reliable structure state monitoring and particularly in application to nonstationary flow processes. Such flow instabilities in chocolate processing can often lead to failed product quality with interruption of the mainstream production. As will be discussed, a combination of flow velocity profiles, on-line fit into flow profiles, and pressure difference measurement are sufficient for reliable analyses of fluid properties and flow boundary conditions as well as monitoring of the flow state. Analyses of the flow state and flow properties of chocolate suspension are based on on-line measurement of one-dimensional velocity profiles across the flow channel and their on-line characterization with the power-law model. Conclusions about flow boundary conditions were drawn from a calculated velocity standard mean deviation, the parameters of power-law fit into velocity profiles, and volumetric flow rate information.

  8. On stability and turbulence of fluid flows

    NASA Technical Reports Server (NTRS)

    Heisenberg, Werner

    1951-01-01

    This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.

  9. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  10. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John [Oak Ridge, TN

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  11. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  12. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  13. Flow through triple helical microchannel

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Pravat; Ghatak, Animangsu

    2018-02-01

    Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.

  14. On the connection between Maximum Drag Reduction and Newtonian fluid flow

    NASA Astrophysics Data System (ADS)

    Whalley, Richard; Park, Jae-Sung; Kushwaha, Anubhav; Dennis, David; Graham, Michael; Poole, Robert

    2014-11-01

    To date, the most successful turbulence control technique is the dissolution of certain rheology-modifying additives in liquid flows, which results in a universal maximum drag reduction (MDR) asymptote. The MDR asymptote is a well-known phenomenon in the turbulent flow of complex fluids; yet recent direct numerical simulations of Newtonian fluid flow have identified time intervals showing key features of MDR. These intervals have been termed ``hibernating turbulence'' and are a weak turbulence state which is characterised by low wall-shear stress and weak vortical flow structures. Here, in this experimental investigation, we monitor the instantaneous wall-shear stress in a fully-developed turbulent channel flow of a Newtonian fluid with a hot-film probe whilst simultaneously measuring the streamwise velocity at various distances above the wall with laser Doppler velocimetry. We show, by conditionally sampling the streamwise velocity during low wall-shear stress events, that the MDR velocity profile is approached in an additive-free, Newtonian fluid flow. This result corroborates recent numerical investigations, which suggest that the MDR asymptote in polymer solutions is closely connected to weak, transient Newtonian flow structures.

  15. An experimental validation of the influence of flow profiles and stratified two-phase flow to Lorentz force velocimetry for weakly conducting fluids

    NASA Astrophysics Data System (ADS)

    Wiederhold, Andreas; Ebert, Reschad; Resagk, Christian; Research Training Group: "Lorentz Force Velocimetry; Lorentz Force Eddy Current Testing" Team

    2016-11-01

    We report about the feasibility of Lorentz force velocimetry (LFV) for various flow profiles. LFV is a contactless non-invasive technique to measure flow velocity and has been developed in the last years in our institute. This method is advantageous if the fluid is hot, aggressive or opaque like glass melts or liquid metal flows. The conducted experiments shall prove an increased versatility for industrial applications of this method. For the force measurement we use an electromagnetic force compensation balance. As electrolyte salty water is used with an electrical conductivity in the range of 0.035 which corresponds to tap water up to 20 Sm-1. Because the conductivity is six orders less than that of liquid metals, here the challenging bottleneck is the resolution of the measurement system. The results show only a slight influence in the force signal at symmetric and strongly asymmetric flow profiles. Furthermore we report about the application of LFV to stratified two-phase flows. We show that it is possible to detect interface instabilities, which is important for the dimensioning of liquid metal batteries. Deutsche Forschungsgemeinschaft DFG.

  16. Investigation of the Profile Control Mechanisms of Dispersed Particle Gel

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei

    2014-01-01

    Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174

  17. Fluid flow through the larynx channel

    NASA Astrophysics Data System (ADS)

    Miller, J. A.; Pereira, J. C.; Thomas, D. W.

    1988-03-01

    The classic two-mass model of the larynx channel is extended by including the false vocal folds and the laryngeal ventricle. Several glottis profiles are postulated to exist which are the result of the forces applied to the mucus membrane due to intraglottal pressure variation. These profiles constrain the air flow which allows the formation of one or two "venae contractae". The location of these influences the pressure in the glottis and layrngeal ventricle and also gives rise to additional viscous losses as well as losses due to flow enlargement. Sampled waveforms are calculated from the model for volume velocity, glottal area, Reynolds number and fluid forces over the vocal folds for various profiles. Results show that the computed waveforms agree with physiological data [1,2] and that it is not necessary to use any empirical constants to match the simulation results. Also, the onset of phonation is shown to be possible either with abduction or adduction of the vocal folds.

  18. On chemical reaction and porous medium effect in the MHD flow due to a rotating disk with variable thickness

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nazar, Hira; Imtiaz, Maria; Alsaedi, Ahmed

    2017-06-01

    The present analysis describes the magnetohydrodynamic (MHD) axisymmetric flow of a viscous fluid due to a rotating disk with variable thickness. An electrically conducting fluid fills the porous space. The first-order chemical reaction is considered. The equations of the present problem representing the flow of a fluid are reduced into nonlinear ordinary differential equations. Convergent series solutions are obtained. The impacts of the various involved dimensionless parameters on fluid flow, temperature, concentration, skin frction coefficient and Nusselt number are examined. The radial, tangential and axial components of velocity are affected in a similar manner on changing the thickness coefficient of the disk. Similar effects of the disk thickness coefficient are observed for both the temperature and concentration profile.

  19. Diffusive mixing through velocity profile variation in microchannels

    NASA Astrophysics Data System (ADS)

    Yakhshi-Tafti, Ehsan; Cho, Hyoung J.; Kumar, Ranganathan

    2011-03-01

    Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.

  20. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  1. Thermal diffusion effect on MHD mixed convective flow along a vertically inclined plate: A casson fluid flow

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.

  2. Fast fluid-flow events within a subduction-related vein system in oceanic eclogite: implications for pore fluid pressure at the plate interface

    NASA Astrophysics Data System (ADS)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas

    2017-04-01

    A better understanding of the subduction zone fluid cycle and its mechanical feedback requires in-depth knowledge of how fluids flow within and out of the descending slabs. In order to develop reliable quantitative models of fluid flow, the general relationship between dehydration reactions, fluid pathway formation, and the dimensions and timescales of distinct fluid flow events have to be explored. The high-pressure/low-temperature metamorphic rocks of the Pouébo Eclogite Mélange in New Caledonia provide an excellent opportunity to study the fluid flux in a subduction zone setting. Fluid dynamics are recorded by high-pressure veins that cross-cut eclogite facies mélange blocks from this occurrence. Two types of garnet-quartz-phengite veins can be distinguished. These veins record both synmetamorphic internal fluid release by mineral breakdown reactions (type I veins) as well as infiltration of an external fluid (type II veins) and the associated formation of a reaction halo. The overall dehydration, fluid accumulation and fluid migration documented by the type I veins occurred on a timescale of 10^5-106 years that is mainly given by the geometry and convergence rate of the subduction system. In order to quantify the timeframe of fluid-rock interaction between the external fluid and the wall-rock, we have applied Li-isotope chronology. A continuous profile was sampled perpendicular to a type II vein including material from the vein, the reaction selvage and the immediate host rock. Additional drill cores were taken from parts of the outcrop that most likely remained completely unaffected by fluid infiltration-induced alteration. Different Li concentrations in the internal and external fluid reservoirs produced a distinct diffusion profile of decreasing Li concentration and increasing δ7Li as the reaction front propagated into the host-rock. Li-chronometric constraints indicate that fluid-rock interaction related to the formation of the type II veins and had been completed within ca. 3 years. The short-lived, pulse-like character of this process is in accordance with the notion that fluid flow related to oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the plate interface which may trigger slip events reported from many subduction zones.

  3. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less

  4. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    NASA Astrophysics Data System (ADS)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  5. GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube

    NASA Astrophysics Data System (ADS)

    Jin, K.; Vanka, S. P.; Agarwal, R. K.; Thomas, B. G.

    2017-01-01

    Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.

  6. On the stability analysis of sharply stratified shear flows

    NASA Astrophysics Data System (ADS)

    Churilov, Semyon

    2018-05-01

    When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209-227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25-55, 2005; ibid, 617, 301-326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.

  7. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2018-02-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  8. The influence of the stagnation zone on the fluid dynamics at the nozzle exit of a confined and submerged impinging jet

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Stafford, Jason; Conway, Ciaran; Punch, Jeff; Walsh, Edmond

    2016-02-01

    Low profile impinging jets provide a means to achieve high heat transfer coefficients while occupying a small quantity of space. Consequently, they are found in many engineering applications such as electronics cooling, annealing of metals, food processing, and others. This paper investigates the influence of the stagnation zone fluid dynamics on the nozzle exit flow condition of a low profile, submerged, and confined impinging water jet. The jet was geometrically constrained to a round, 16-mm diameter, square-edged nozzle at a jet exit to target surface spacing ( H/ D) that varied between 0.25 < {{ H}{/}{ D}} < 8.75. The influence of turbulent flow regimes is the main focus of this paper; however, laminar flow data are also presented between 1350 < Re < 17{,}300. A custom measurement facility was designed and commissioned to utilise particle image velocimetry in order to quantitatively measure the fluid dynamics both before and after the jet exits its nozzle. The velocity profiles are normalised with the mean velocity across the nozzle exit, and turbulence statistics are also presented. The primary objective of this paper is to present accurate flow profiles across the nozzle exit of an impinging jet confined to a low H/ D, with a view to guide the boundary conditions chosen for numerical simulations confined to similar constraints. The results revealed in this paper suggest that the fluid dynamics in the stagnation zone strongly influences the nozzle exit velocity profile at confinement heights between 0 < {{ H}{/}{ D}} < 1. This is of particular relevance with regard to the choice of inlet boundary conditions in numerical models, and it was found that it is necessary to model a jet tube length {{ L}{/}{ D}} > 0.5—where D is the inner diameter of the jet—in order to minimise modelling uncertainty.

  9. Some flow phenomena in a constant area duct with a Borda type inlet including the critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1978-01-01

    Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet were assessed over large ranges of temperature and pressure, using fluid nitrogen. Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables estimations of flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.

  10. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

    NASA Astrophysics Data System (ADS)

    Talib, Amira Husni; Abdullah, Ilyani

    2017-11-01

    A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

  11. Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith

    NASA Astrophysics Data System (ADS)

    Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.

    2012-09-01

    The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.

  12. Flow Visualization of Liquid Hydrogen Line Chilldown Tests

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Hartwig, Jason W.; McQuillen John B.

    2014-01-01

    We present experimental measurements of wall and fluid temperature during chill-down tests of a warm cryogenic line with liquid hydrogen. Synchronized video and fluid temperature measurements are used to interpret stream temperature profiles versus time. When cold liquid hydrogen starts to flow into the warm line, a sequence of flow regimes, spanning from all-vapor at the outset to bubbly with continuum liquid at the end can be observed at a location far downstream of the cold inlet. In this paper we propose interpretations to the observed flow regimes and fluid temperature histories for two chilldown methods, viz. trickle (i.e. continuous) flow and pulse flow. Calculations of heat flux from the wall to the fluid versus wall temperature indicate the presence of the transition/nucleate boiling regimes only. The present tests, run at typical Reynolds numbers of approx O(10 (exp 5)), are in sharp contrast to similar tests conducted at lower Reynolds numbers where a well-defined film boiling region is observed.

  13. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging.

    PubMed

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong

    2016-06-21

    X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.

  14. A design methodology of magentorheological fluid damper using Herschel-Bulkley model

    NASA Astrophysics Data System (ADS)

    Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.

    2003-09-01

    Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.

  15. Computer aided design of extrusion forming tools for complex geometry profiles

    NASA Astrophysics Data System (ADS)

    Goncalves, Nelson Daniel Ferreira

    In the profile extrusion, the experience of the die designer is crucial for obtaining good results. In industry, it is quite usual the need of several experimental trials for a specific extrusion die before a balanced flow distribution is obtained. This experimental based trial-and-error procedure is time and money consuming, but, it works, and most of the profile extrusion companies rely on such method. However, the competition is forcing the industry to look for more effective procedures and the design of profile extrusion dies is not an exception. For this purpose, computer aided design seems to be a good route. Nowadays, the available computational rheology numerical codes allow the simulation of complex fluid flows. This permits the die designer to evaluate and to optimize the flow channel, without the need to have a physical die and to perform real extrusion trials. In this work, a finite volume based numerical code was developed, for the simulation of non-Newtonian (inelastic) fluid and non-isothermal flows using unstructured meshes. The developed code is able to model the forming and cooling stages of profile extrusion, and can be used to aid the design of forming tools used in the production of complex profiles. For the code verification three benchmark problems were tested: flow between parallel plates, flow around a cylinder, and the lid driven cavity flow. The code was employed to design two extrusion dies to produce complex cross section profiles: a medical catheter die and a wood plastic composite profile for decking applications. The last was experimentally validated. Simple extrusion dies used to produced L and T shaped profiles were studied in detail, allowing a better understanding of the effect of the main geometry parameters on the flow distribution. To model the cooling stage a new implicit formulation was devised, which allowed the achievement of better convergence rates and thus the reduction of the computation times. Having in mind the solution of large dimension problems, the code was parallelized using graphics processing units (GPUs). Speedups of ten times could be obtained, drastically decreasing the time required to obtain results.

  16. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    NASA Astrophysics Data System (ADS)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  17. Direction dependence of displacement time for two-fluid electroosmotic flow.

    PubMed

    Lim, Chun Yee; Lam, Yee Cheong

    2012-03-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.

  18. Direction dependence of displacement time for two-fluid electroosmotic flow

    PubMed Central

    Lim, Chun Yee; Lam, Yee Cheong

    2012-01-01

    Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083

  19. Two-fluid equilibrium transition during multi-pulsing CHI in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2015-11-01

    Two-fluid dynamo current drive has been studied to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The density gradient, poloidal flow shear, and radial electric shear enhanced by applying the second CHI pulse is observed around the separatrix in the high field side to cause not only the ExB drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The two-fluid equilibrium transition during the M-CHI in the ST is investigated by modelling the M-CHI in the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region due to the increase of the poloidal electron flow velocity in the central open flux column (OFC) region, while the diamagnetic profile is kept in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region due to the increase in the drift velocity and the Hall effect. As the ion diamagnetic drift velocity is changed in the same direction as the ExB drift velocity around the separatrix in the high field side through the negative ion pressure gradient there, the poloidal ion flow velocity is increased in the OFC region, enhancing the flow shear. The radial electric field shear around the separatrix is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The density is decreased in the closed flux region according to the generalized Bernoulli law and its negative gradient around the separatrix steepens.

  20. Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

    NASA Astrophysics Data System (ADS)

    Yadav, Pramod Kumar

    2018-01-01

    The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy's law. In this work, we discussed the effect of various fluid parameters like permeability parameter k0, discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

  1. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  2. Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluids

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Sharma, Vivek

    Liquid transfer and drop formation processes underlying jetting, spraying, coating, and printing - inkjet, screen, roller-coating, gravure, nanoimprint hot embossing, 3D - often involve formation of unstable columnar necks. Capillary-driven thinning of such necks and their pinchoff dynamics are determined by a complex interplay of inertial, viscous and capillary stresses for simple, Newtonian fluids. Micro-structural changes in response to extensional flow field that arises within the thinning neck give rise to additional viscoelastic stresses in complex, non- Newtonian fluids. Using FLOW-3D, we simulate flows realized in prototypical geometries (dripping and liquid bridge stretched between two parallel plates) used for studying pinch-off dynamics and influence of microstructure and viscoelasticity. In contrast with often-used 1D or 2D models, FLOW-3D allows a robust evaluation of the magnitude of the underlying stresses and extensional flow field (both uniformity and magnitude). We find that the simulated radius evolution profiles match the pinch-off dynamics that are experimentally-observed and theoretically-predicted for model Newtonian fluids and complex fluids.

  3. Study of velocity and temperature distributions in boundary layer flow of fourth grade fluid over an exponential stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Najeeb Alam; Saeed, Umair Bin; Sultan, Faqiha; Ullah, Saif; Rehman, Abdul

    2018-02-01

    This study deals with the investigation of boundary layer flow of a fourth grade fluid and heat transfer over an exponential stretching sheet. For analyzing two heating processes, namely, (i) prescribed surface temperature (PST), and (ii) prescribed heat flux (PHF), the temperature distribution in a fluid has been considered. The suitable transformations associated with the velocity components and temperature, have been employed for reducing the nonlinear model equation to a system of ordinary differential equations. The flow and temperature fields are revealed by solving these reduced nonlinear equations through an effective analytical method. The important findings in this analysis are to observe the effects of viscoelastic, cross-viscous, third grade fluid, and fourth grade fluid parameters on the constructed analytical expression for velocity profile. Likewise, the heat transfer properties are studied for Prandtl and Eckert numbers.

  4. Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes

    NASA Astrophysics Data System (ADS)

    Lyall, M. Eric

    Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.

  5. A Comparative Study for Flow of Viscoelastic Fluids with Cattaneo-Christov Heat Flux.

    PubMed

    Hayat, Tasawar; Muhammad, Taseer; Alsaedi, Ahmed; Mustafa, Meraj

    2016-01-01

    This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic fluids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in the considered heat flux is seen. Mathematical formulation is presented for the boundary layer approach. Suitable transformations lead to a nonlinear differential system. Convergent series solutions of velocity and temperature are achieved. Impacts of various influential parameters on the velocity and temperature are sketched and discussed. Numerical computations are also performed for the skin friction coefficient and heat transfer rate. Our findings reveal that the temperature profile has an inverse relationship with the thermal relaxation parameter and the Prandtl number. Further the temperature profile and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to the classical Fourier's law of heat conduction.

  6. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  7. Optimal contant time injection policy for enhanced oil recovery and characterization of optimal viscous profiles

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2011-11-01

    We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.

  8. Bed Erosion Process in Geophysical Viscoplastic Fluid

    NASA Astrophysics Data System (ADS)

    Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.

    2017-12-01

    The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.

  9. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  10. Vertical mass transfer in open channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.

    1968-01-01

    The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.

  11. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. Journal of Fluid Mechanics, 767:394–429, 003 2015. [70] O...DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited See report Wave packet, compressible boundary layer, subsonic flow ...Base flow generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 Boundary layer profiles

  12. Numerical study of a thermally stratified flow of a tangent hyperbolic fluid induced by a stretching cylindrical surface

    NASA Astrophysics Data System (ADS)

    Ur Rehman, Khali; Ali Khan, Abid; Malik, M. Y.; Hussain, Arif

    2017-09-01

    The effects of temperature stratification on a tangent hyperbolic fluid flow over a stretching cylindrical surface are studied. The fluid flow is achieved by taking the no-slip condition into account. The mathematical modelling of the physical problem yields a nonlinear set of partial differential equations. These obtained partial differential equations are converted in terms of ordinary differential equations. Numerical investigation is done to identify the effects of the involved physical parameters on the dimensionless velocity and temperature profiles. In the presence of temperature stratification it is noticed that the curvature parameter makes both the fluid velocity and fluid temperature increase. In addition, positive variations in the thermal stratification parameter produce retardation with respect to the fluid flow, as a result the fluid temperature drops. The skin friction coefficient shows a decreasing nature for increasing value of both power law index and Weissenberg number, whereas the local Nusselt number is an increasing function of the Prandtl number, but opposite trends are found with respect to the thermal stratification parameter. The obtained results are validated by making a comparison with the existing literature which brings support to the presently developed model.

  13. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  14. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  15. Effect of Cup Length on Film Profiles in Gas-Centered Swirl-Coaxial Injectors

    DTIC Science & Technology

    2009-12-01

    as the working fluid , film lengths and were determined in six unique injector geometries and over a number of flow conditions. Each injector...with water and nitrogen as the working fluid , film lengths and were determined in six unique injector geometries and over a number of flow...vary the cup length across the face of the injector to act as acoustic dampers . For these reasons and because of the need for simple design criteria

  16. Diffusion of chemically reactive species in MHD oscillatory flow with thermal radiation in the presence of constant suction and injection

    NASA Astrophysics Data System (ADS)

    Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.

    2018-04-01

    In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.

  17. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  18. Elliptical instability in stably stratified fluid interiors

    NASA Astrophysics Data System (ADS)

    Vidal, J.; Hollerbach, R.; Schaeffer, N.; Cebron, D.

    2016-12-01

    Self-sustained magnetic fields in celestial bodies (planets, moons, stars) are due to flows in internal electrically conducting fluids. These fluid motions are often attributed to convection, as it is the case for the Earth's liquid core and the Sun. However some past or present liquid cores may be stably stratified. Alternative mechanisms may thus be needed to understand the dynamo process in these celestial objects. Turbulent flows driven by mechanical forcings, such as tides or precession, seem very promising since they are dynamo capable. However the effect of density stratification is not clear, because it can stabilize or destabilize mechanically-driven flows.To mimic an elliptical distortion due to tidal forcing in spherical geometry (full sphere and shell), we consider a theoretical base flow with elliptical streamlines and an associated density profile. It allows to keep the numerical efficiency of spectral methods in this geometry. The flow satisfies the stress-free boundary condition. We perform the stability analysis of the base state using three-dimensional simulations to study both the linear and nonlinear regimes. Stable and unstable density profiles are considered. A complementary local stability analysis (WKB) is also performed. We show that elliptical instability can still grow upon a stable stratification. We also study the mixing of the stratification by the elliptical instability. Finally we look at the dynamo capability of these flows.

  19. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    NASA Astrophysics Data System (ADS)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  20. Microfluidic-SANS: insitu molecular insight into complex fluid processing and high throughput characterisation

    NASA Astrophysics Data System (ADS)

    Lopez, Carlos; Watanabe, Takaichi; Cabral, Joao; Graham, Peter; Porcar, Lionel; Martel, Anne

    2014-03-01

    The coupling of microfluidics and small angle neutron scattering (SANS) is successfully demonstrated for the first time. We have developed novel microdevices with suitably low SANS background and high pressure compatibility for the investigation of flow-induced phenomena and high throughput phase mapping of complex fluids. We successfully obtained scattering profiles from 50 micron channels, in 10s - 100s second acquisition times. The microfluidic geometry enables the variation of both flow type and magnitude, beyond traditional rheo-SANS setups, and is exceptionally well-suited for complex fluids due to the commensurability of relevant time and lengthscales. We demonstrate our approach by studying model flow responsive systems, including surfactant/co-surfactant/water mixtures, with well-known equilibrium phase behaviour,: sodium dodecyl sulfate (SDS)/octanol/brine, cetyltrimethyl ammonium chloride (C16TAC)/pentanol/water and a model microemulsion system (C10E4 /decane/ D20), as well as polyelectrolyte solutions. Finally, using an online micromixer we are able to implement a high throughput approach, scanning in excess of 10 scattering profiles/min for a continuous aqueous surfactant dilution over two decades in concentration.

  1. Unsteady Sisko magneto-nanofluid flow with heat absorption and temperature dependent thermal conductivity: A 3D numerical study

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Ahmad, Latif; Gulzar, M. Mudassar

    2018-03-01

    The impact of temperature dependent thermal conductivity and convective surface conditions on unsteady 3D Sisko nanofluid flow over a stretching surface is studied in the presence of heat generation/absorption and magnetic field. The numerical solution of nonlinear coupled equations has been carried out to explore the properties of different physical profiles of the fluid flow with varying of parameters. Specifically, the application of generalized Biot numbers and heat generation/absorption parameter in the sketching of temperature and concentration profiles are explored. The effect of all three parameters is noticed in the increasing order for shear thinning (0 < n < 1) and for shear thickening (n > 1) fluids. Moreover, the influence of Biot number γ1 on heat and mass transfer rates, are found in the enhancement and diminishing conducts respectively, in both cases of shear thinning as well as shear thickening fluids and a reverse trend is observed with the variation of Biot number γ2 . Additionally, the present results are validated through skin friction, heat and mass transfer rate values with the comparable values in the existing previous values.

  2. A mass-balance code for the quantitative interpretation of fluid column profiles in ground-water studies

    NASA Astrophysics Data System (ADS)

    Paillet, Frederick

    2012-08-01

    A simple mass-balance code allows effective modeling of conventional fluid column resistivity logs in dilution tests involving column replacement with either distilled water or dilute brine. Modeling a series of column profiles where the inflowing formation water introduces water quality interfaces propagating along the borehole gives effective estimates of the rate of borehole flow. Application of the dilution model yields estimates of borehole flow rates that agree with measurements made with the heat-pulse flowmeter under ambient and pumping conditions. Model dilution experiments are used to demonstrate how dilution logging can extend the range of borehole flow measurement at least an order of magnitude beyond that achieved with flowmeters. However, dilution logging has the same dynamic range limitation encountered with flowmeters because it is difficult to detect and characterize flow zones that contribute a small fraction of total flow when that contribution is superimposed on a larger flow. When the smaller contribution is located below the primary zone, ambient downflow may disguise the zone if pumping is not strong enough to reverse the outflow. This situation can be addressed by increased pumping. But this is likely to make the moveout of water quality interfaces too fast to measure in the upper part of the borehole, so that a combination of flowmeter and dilution method may be more appropriate. Numerical experiments show that the expected weak horizontal flow across the borehole at conductive zones would be almost impossible to recognize if any ambient vertical flow is present. In situations where natural water quality differences occur such as flowing boreholes or injection experiments, the simple mass-balance code can be used to quantitatively model the evolution of fluid column logs. Otherwise, dilution experiments can be combined with high-resolution flowmeter profiles to obtain results not attainable using either method alone.

  3. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  4. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  5. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  6. Effects of density gradient caused by multi-pulsing CHI on two-fluid flowing equilibria of spherical torus plasmas

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2014-10-01

    Two-fluid dynamo relaxation is examined to understand sustainment mechanism of spherical torus (ST) plasmas by multi-pulsing CHI (M-CHI) in the HIST device. The steeper density gradient between the central open flux column (OFC) and closed flux regions by applying the second CHI pulse is observed to cause not only the E × B drift but also the ion diamagnetic drift, leading the two-fluid dynamo. The purpose of this study is to investigate the effects of the steep change in the density gradient on the ST equilibria by using the two-fluid equilibrium calculations. The toroidal magnetic field becomes from a diamagnetic to a paramagnetic profile in the closed flux region while it remains a diamagnetic profile in the OFC region. The toroidal ion flow velocity is increased from negative to positive values in the closed flux region. Here, the negative ion flow velocity is the opposite direction to the toroidal current. The poloidal ion flow velocity between the OFC and closed flux regions is increased, because the ion diamagnetic drift velocity is changed in the same direction as the E × B drift velocity through the steeper ion pressure gradient. As a result, the strong shear flow and the paramagnetic toroidal field are generated in the closed flux region. Here, the ion flow velocity is the same direction as the poloidal current. The radial electric field shear between the OFC and closed flux regions is enhanced due to the strong dependence on the magnetic force through the interaction of toroidal ion flow velocity and axial magnetic field. The two-fluid effect is significant there due to the ion diamagnetic effect.

  7. Entrainment at a sediment concentration interface in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  8. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions

    PubMed Central

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174

  9. Combined effects on MHD flow of Newtonian fluid past infinite vertical porous plate

    NASA Astrophysics Data System (ADS)

    Subbanna, K.; Mohiddin, S. Gouse; Vijaya, R. Bhuvana

    2018-05-01

    In this paper, we discussed free convective flow of a viscous fluid past an infinite vertical porous plate under the influence of uniform transverse magnetic field. Time dependent permeability and oscillatory suction is considered. The equations of the flow field are solved by a routine perturbation method for small amplitude of the permeability. The solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with the help of profiles. The shear stress, the Nusselt number and Sherwood number are also obtained and their behavior discussed computationally

  10. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered,more » focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.« less

  11. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  12. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  13. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    PubMed

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional.

  14. Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step

    NASA Astrophysics Data System (ADS)

    Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon

    2014-11-01

    We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.

  15. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, A.E.; Elders, W.A.

    1981-01-01

    Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.

  16. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  17. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  18. Fluid signatures of rotational discontinuities at Earth's magnetopause

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.

    1983-01-01

    Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.

  19. Using Temperature as a Tracer to Study Fluid Flow Patterns On and Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, W. C.

    2017-12-01

    Fluid flows are a dynamic system in the crust that affect crustal deformation and formation of natural resources. It is difficult to study fluid flow velocity instrumentally, but temperature data offers a quantitative tool that can be used as a tracer to study crustal hydrogeology. Here we present numerical techniques we have applied to study the fluid migration velocity along conduits including faults in on and offshore settings. Offshore SW Taiwan, we use a bottom-simulating reflector (BSR) from seismic profiles to study the temperature field at several hundred meters subbottom depth. The BSR is interpreted as the base of a gas hydrate stability zone under the seabed. Gas hydrates are solid-state water with gas molecules enclosed, which can be found where the temperature, pressure, and salinity conditions allow hydrates to be stable. Using phase diagrams and hydro pressure information we can derive the temperature at the BSR. BSRs are widespread in the study area, providing very dense temperature field information which shows upward bending of the BSR near faults. We have quantitatively estimated the 1D and 2D fluid flow patterns required to fit the BSR-based temperature field. This shows that fault zones can act as conduits with high permeability parallel to the fault planes. On the other hand, fault zones can also act as barriers to fluid flow, as demonstrated in our onland temperature data. We have collected temperature profiles at several bore holes onland that are very close together. The preliminary results show that the fault zones separate the ground water systems, causing very different geothermal gradients. Our results show that the physical properties of fault zones can be anisotropic, as demonstrated in previous work. Future work includes estimating the regional water expulsion budget offshore SW Taiwan, in particular for several gas hydrate sites.

  20. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J

    1958-01-01

    The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.

  1. Unsteady mixed convection flow of Casson fluid past an inclined stretching sheet in the presence of nanoparticles

    NASA Astrophysics Data System (ADS)

    Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.

    2017-09-01

    The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.

  2. The influence of Dean Number on heat transfer to Newtonian fluid through spiral coils with constant wall temperature in laminar flow

    NASA Astrophysics Data System (ADS)

    Patil, Rahul Harishchandra; Nadar, Mariappan Dharmaraj; Ali, Rashed

    2017-05-01

    The influence of Dean Number on the heat transfer to petroleum base oils (SN70, SN150 and SN300, flowing through four spiral coils, maintained at constant wall temperature and having average curvature ratio of 0.01568, 0.019, 0.02466 and 0.03011 are investigated in the present study. The fluid, with fully developed velocity profile and underdeveloped temperature profile (the Graetz problem), flows inside the tube at the entrance. Four correlations are developed which are valid for a range of Dean Number from 2 to 1043, Prandtl Number from 76 to 298, and Reynold's Number from 12 to 6013. These correlations are not available in literature and are developed for the first time for the given conditions. The correlations are compared with the correlations developed by earlier investigators and it is found that they are in good agreement. The developed correlations are corrected to account for the variable property relations for the viscous fluids used in the experiment. The average deviations in the developed correlations and the readings obtained by experiment are found to be <± 3%. The comparison of the developed correlations with the correlations of other investigators on helical coils showed an increase in heat transfer in spiral coils than the helical coils. The reason for this is that the magnitude of the secondary flow varied continuously with an increase in the mixing of the fluid particles occurring throughout the length of the spiral coil.

  3. Low-drag events in transitional wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Park, Jae Sung; Kushwaha, Anubhav; Dennis, David J. C.; Graham, Michael D.; Poole, Robert J.

    2017-03-01

    Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 - 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.

  4. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  5. Monitoring artificially stimulated fluid movement in the Cretaceous Dakota aquifer, western Kansas

    USGS Publications Warehouse

    Macfarlane, P.A.; Forster, A.; Merriam, D.F.; Schrotter, J.; Healey, J.M.

    2002-01-01

    Aquifer properties can be evaluated by monitoring artificially stimulated fluid movements between wells, if the fluid is heated. Changes in the temperature profile recorded in observation wells indicate the flow path of the heated fluid, which in effect acts as a tracer. A fluid-flow experiment in the Cretaceous Dakota Formation at the Hodgeman County site, west-central Kansas, demonstrated the advantage of using the distributed optical-fiber temperature sensing method for monitoring transient temperature conditions in his hydrological application. The fluid flow in the aquifer was increased by producing water from a pumping well and injecting heated water in an injection well 13 m (43 ft) distant from the pumping well. The time-temperature series data obtained and compared with results from previous pumping tests point to interwell heterogeneity of the aquifer and to a zone in the sandstone aquifer of high hydraulic conductivity. However, the experiment would have allowed further clarification of aquifer heterogeneity and thermal properties if at least one observation well had been present between the injection and production wells.

  6. Further experiments for mean velocity profile of pipe flow at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Furuichi, N.; Terao, Y.; Wada, Y.; Tsuji, Y.

    2018-05-01

    This paper reports further experimental results obtained in high Reynolds number actual flow facility in Japan. The experiments were performed in a pipe flow with water, and the friction Reynolds number was varied up to Reτ = 5.3 × 104. This high Reynolds number was achieved by using water as the working fluid and adopting a large-diameter pipe (387 mm) while controlling the flow rate and temperature with high accuracy and precision. The streamwise velocity was measured by laser Doppler velocimetry close to the wall, and the mean velocity profile, called log-law profile U+ = (1/κ) ln(y+) + B, is especially focused. After careful verification of the mean velocity profiles in terms of the flow rate accuracy and an evaluation of the consistency of the present results with those from previously measurements in a smaller pipe (100 mm), it was found that the value of κ asymptotically approaches a constant value of κ = 0.384.

  7. Simulation of forced convection in non-Newtonian fluid through sandstones

    NASA Astrophysics Data System (ADS)

    Gokhale, M. Y.; Fernandes, Ignatius

    2017-11-01

    Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.

  8. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    NASA Astrophysics Data System (ADS)

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  9. Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.

  10. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions

    PubMed Central

    Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883

  11. Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions.

    PubMed

    Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M

    2016-01-01

    This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.

  12. Conference on Complex Turbulent Flows: Comparison of Computation and Experiment, Stanford University, Stanford, CA, September 14-18, 1981, Proceedings. Volume 2 - Taxonomies, reporters' summaries, evaluation, and conclusions

    NASA Technical Reports Server (NTRS)

    Kline, S. J. (Editor); Cantwell, B. J. (Editor); Lilley, G. M.

    1982-01-01

    Computational techniques for simulating turbulent flows were explored, together with the results of experimental investigations. Particular attention was devoted to the possibility of defining a universal closure model, applicable for all turbulence situations; however, conclusions were drawn that zonal models, describing localized structures, were the most promising techniques to date. The taxonomy of turbulent flows was summarized, as were algebraic, differential, integral, and partial differential methods for numerical depiction of turbulent flows. Numerous comparisons of theoretically predicted and experimentally obtained data for wall pressure distributions, velocity profiles, turbulent kinetic energy profiles, Reynolds shear stress profiles, and flows around transonic airfoils were presented. Simplifying techniques for reducing the necessary computational time for modeling complex flowfields were surveyed, together with the industrial requirements and applications of computational fluid dynamics techniques.

  13. The impact of viscosity on the combined heat, mass and momentum transfer in laminar liquid falling films

    NASA Astrophysics Data System (ADS)

    Mittermaier, M.; Ziegler, F.

    2018-04-01

    In this article we present a model describing a laminar film flow over a vertical isothermal plate whilst heat and mass transfer is occurring. We focus on a formulation where most common assumptions, such as constant property data and constant film thickness, have been cancelled. The hydrodynamic model results in longitudinal and transversal velocity components and their evolution in the entrance region. Heat and mass transfer occurs simultaneously and is modelled with respect to release of differential heat of solution as well as heat flow due to interdiffusion. The numerical solution is obtained by utilising a Newton-Raphson method to solve the finite difference formulation of the governing equations. Mass transfer across the film affects the development of both longitudinal and transversal velocity components. The hydrodynamics are modelled using a boundary layer approximation of the Navier-Stokes equations. The significance of simplifications on the hydrodynamic model are illustrated and discussed using a fully developed velocity profile (Nusselt flow) and a plug flow at the inlet for comparison. Even if a Nusselt profile is assumed, it develops further since mass is absorbed or desorbed. It is found that the onset of absorption occurs at shorter flow length when applying a plug flow at the inlet. If the film is initially in equilibrium, this results in a 9.3% increase in absorbed mass over a length of 0.03 m as compared with the Nusselt flow. A fluid with a viscosity five times the one of lithium bromide solution but sharing comparable properties apart from that, leads to lower overall heat and mass transfer rates. If the respective fluids are saturated at the inlet, the accumulated mass flux absorbed by lithium bromide solution is 2.2 times higher than the one absorbed by a high viscous fluid. However, when a plug flow is applied and the fluid is sub-cooled, ab initio the absorbed mass flux is slightly higher for a high viscous fluid. Assuming a sub-cooling of 3 K at the inlet, lithium bromide solution now only performs around 11% better as compared with a high viscous fluid over the considered length of 0.03 m. The code may be downloaded from: https://github.com/mittermaier/hmt.

  14. Interaction of aluminum oxide nanoparticles with flow of polyvinyl alcohol solutions base nanofluids over a wedge

    NASA Astrophysics Data System (ADS)

    Hassan, Mohsan; Faisal, Abrar; Bhatti, Muhammad Mubashir

    2018-02-01

    Polyvinyl alcohol (PVA) is an important industrial chemical, which is used in numerous chemical engineering applications. It is important to study and predict the flow behavior of PVA solutions and the role of nanoparticles in heat transfer applications to be used in chemical processes on industrial scale. Therefore, the present study deals with the PVA solution-based non-Newtonian Al2O3-nanofluid flow along with heat transfer over wedge. The power-law model is used for this non-Newtonian nanofluid which exhibited shear-thinning behavior. The influences of PVA and nanoparticles concentrations on the characteristics of velocity and temperature profiles are examined graphically. The impacts of these parameters on wall shear stress and convective heat transfer coefficient are also studied through tabular form. During the numerical computations, the impacts of these parameters on flow index and consistency index along with other physical properties of nanofluid are also considered. In this study, we found an improvement in heat transfer and temperature profile of fluid by distribution of Al2O3 nanoparticles. It is also noticed that resistance between adjacent layers of moving fluid is enhanced due to these nanoparticles which leads to decline in velocity profile and increases in shear stress at wall.

  15. Two-phase choked flow of cryogenic fluids in converging-diverging nozzles

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.; Hendricks, R. C.

    1979-01-01

    Data are presented for the two phase choked flow of three cryogenic fluids - nitrogen, methane, and hydrogen - in four converging-diverging nozzles. The data cover a range of inlet stagnation conditions, all single phase, from well below to well above the thermodynamic critical conditions. In almost all cases the nozzle throat conditions were two phase. The results indicate that the choked flow rates were not very sensitive to nozzle geometry. However, the axial pressure profiles, especially the throat pressure and the point of vaporization, were very sensitive to both nozzle geometry and operating conditions. A modified Henry-Fauske model correlated all the choked flow rate data to within + or - 10 percent. Neither the equilibrium model nor the Henry-Fauske model predicted throat pressures well over the whole range of data. Above the thermodynamic critical temperature the homogeneous equilibrium model was preferred for both flow rate and pressure ratio. The data of the three fluids could be normalized by the principle of corresponding states.

  16. Transport of self-propelling bacteria in micro-channel flow.

    PubMed

    Costanzo, A; Di Leonardo, R; Ruocco, G; Angelani, L

    2012-02-15

    Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.

  17. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids

    NASA Astrophysics Data System (ADS)

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-01

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  18. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.

    PubMed

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-16

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  19. Fluid-structure interaction analysis on the effect of vessel wall hypertrophy and stiffness on the blood flow in carotid artery bifurcation

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Choi, Hyoung Gwon; Yoo, Jung Yul

    2012-11-01

    The effect of artery wall hypertrophy and stiffness on the flow field is investigated using three-dimensional finite element method for simulating the blood flow. To avoid the complexity due to the necessity of additional mechanical constraints, we use the combined formulation which includes both the fluid and structural equations of motion into single coupled variational equation. A P2P1 Galerkin finite element method is used to solve the Navier-Stokes equations for fluid flow and arbitrary Lagrangian-Eulerian formulation is used to achieve mesh movement. The Newmark method is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics. The pulsatile, incompressible flows of Newtonian fluids constrained in the flexible wall are analyzed with Womersley velocity profile at the inlet and constant pressure at the outlet. The study shows that the stiffness of carotid artery wall affects significantly the flow phenomena during the pulse cycle. Similarly, it is found that the flow field is also strongly influenced by wall hypertrophy. This work was supported by Mid-career Researcher Program and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0079936 & 2011-0029613).

  20. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions

    PubMed Central

    Imtiaz, Maria; Hayat, Tasawar; Alsaedi, Ahmed

    2016-01-01

    This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number. PMID:27583457

  1. Vibroconvective mixing applied to vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Zawilski, Kevin T.; Claudia, M.; Custodio, C.; DeMattei, Robert C.; Feigelson, Robert S.

    2003-10-01

    A promising method for stirring melts during vertical Bridgman growth is the coupled vibrational stirring (CVS) method. It involves the application of low frequency vibrations to the outside of the growth ampoule and produces strong flows emanating from the fluid surface. Although the technique was pioneered a number of years ago, previous studies have not provided sufficient information to explain how to control CVS generated flows in a particular system. This paper examines both the fluid flow produced by CVS and the effect of these flows on a model oxide growth system. CVS generated flows were studied using tracer particles in a water/glycerin system. The particle velocities were measured as a function of distance from the fluid surface. A large velocity gradient, decreasing from the surface, was found to be present. The velocity profile produced was dependent on the vibrational amplitude and frequency, the crucible diameter, and the fluid viscosity. The effects of CVS flows on the crystal growth interface were studied using NaNO 3 as a model oxide. Under non-growth conditions (i.e. no furnace or crucible translation), the solid-liquid interface position was found to be a strong function of vibrational frequency once CVS generated flows approached the interface. During crystal growth, undesirable growth rate fluctuations were found as the growth interface moved into regions of increasing fluid flow. This data suggests that a control system in which CVS flows are continuously decreased during growth to maintain a constant flow rate in the vicinity of the growth interface is necessary in order to prevent or reduce growth rate fluctuations.

  2. Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models

    USGS Publications Warehouse

    Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.

    2001-01-01

    Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.

  3. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.

    PubMed

    Bunton, Patrick H; Tullier, Michael P; Meiburg, Eckart; Pojman, John A

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  4. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.

    2017-10-01

    Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.

  5. Phase behavior of a simple dipolar fluid under shear flow in an electric field.

    PubMed

    McWhirter, J Liam

    2008-01-21

    Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.

  6. Computational manipulation of a radiative MHD flow with Hall current and chemical reaction in the presence of rotating fluid

    NASA Astrophysics Data System (ADS)

    Alias Suba, Subbu; Muthucumaraswamy, R.

    2018-04-01

    A numerical analysis of transient radiative MHD(MagnetoHydroDynamic) natural convective flow of a viscous, incompressible, electrically conducting and rotating fluid along a semi-infinite isothermal vertical plate is carried out taking into consideration Hall current, rotation and first order chemical reaction.The coupled non-linear partial differential equations are expressed in difference form using implicit finite difference scheme. The difference equations are then reduced to a system of linear algebraic equations with a tri-diagonal structure which is solved by Thomas Algorithm. The primary and secondary velocity profiles, temperature profile, concentration profile, skin friction, Nusselt number and Sherwood Number are depicted graphically for a range of values of rotation parameter, Hall parameter,magnetic parameter, chemical reaction parameter, radiation parameter, Prandtl number and Schmidt number.It is recognized that rate of heat transfer and rate of mass transfer decrease with increase in time but they increase with increasing values of radiation parameter and Schmidt number respectively.

  7. Flow Induced by Ex-Vivo Nasal Cilia: Developing an Index of Dyskinesis

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Bottier, Mathieu; Pena-Fernandez, Marta; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, Andre; Escudier, Estelle; Papon, Jean-Francois; Filoche, Marcel; Louis, Bruno

    2017-11-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivomeasurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the steady velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. This compares well to a 2D mathematical model for ciliary fluid propulsion using an envelope model. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress is proposed as a new index for characterizing the efficiency of ciliary beating and diagnosing dyskinesis.

  8. Heat Transfer Analysis for Stationary Boundary Layer Slip Flow of a Power-Law Fluid in a Darcy Porous Medium with Plate Suction/Injection

    PubMed Central

    Aziz, Asim; Ali, Yasir; Aziz, Taha; Siddique, J. I.

    2015-01-01

    In this paper, we investigate the slip effects on the boundary layer flow and heat transfer characteristics of a power-law fluid past a porous flat plate embedded in the Darcy type porous medium. The nonlinear coupled system of partial differential equations governing the flow and heat transfer of a power-law fluid is transformed into a system of nonlinear coupled ordinary differential equations by applying a suitable similarity transformation. The resulting system of ordinary differential equations is solved numerically using Matlab bvp4c solver. Numerical results are presented in the form of graphs and the effects of the power-law index, velocity and thermal slip parameters, permeability parameter, suction/injection parameter on the velocity and temperature profiles are examined. PMID:26407162

  9. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  10. Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves

    PubMed Central

    Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.

    2012-01-01

    Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311

  11. Exact Solutions for Stationary and Unsteady Layered Convection of a Viscous Incompressible Fluid with the Specified Velocities at the Bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu; Spevak, L. F.

    2017-06-01

    The layered convective flow of a viscous incompressible fluid is considered with the specified velocities at the bottom of an infinite layer. A new exact stationary and nonstationary solution of the Oberbeck-Boussinesq system is presented. The account of fluid velocity at the bottom is characterized by the presence of two stagnant points, this being indicative of the nonmonotonic kinetic energy profile with two local extrema.

  12. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.

    PubMed

    Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N

    2016-07-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.

  13. Thin liquid film in polymer tubing : dynamics and dewetting in partial wetting condition

    NASA Astrophysics Data System (ADS)

    Hayoun, Pascaline; Letailleur, Alban; Teisseire, Jérémie; Verneuil, Emilie; Lequeux, François; Barthel, Etienne

    2015-11-01

    Polymers such as PVC and Silicone are low cost materials widely used in industry to produce tubing for fluid transport. Most of these applications involve repeated, intermittent flow of liquids which can lead to unwanted contamination. This study aims at better understanding contamination mechanisms during intermittent flow in polymer tubing, and at elucidating the relation between flow, wetting and contamination. We experimentally and theoretically investigate, flow regimes as well as dewetting process at the triple line induced by gravity flow of a vertical liquid slug in a cylindrical geometry. Our results for Newtonian fluids evidence a succession of thick film formation, hydraulic jump creation in the thickness profile, oscillatory regime and destabilization leading to substrate contamination. In order to understand theoretically the flow, one crucial quantity to assess is the film thickness in the inside of the tube. Based on an absorption measurement method, we provide explanations for behaviors and flow regimes observed experimentally.

  14. Microfluidic converging/diverging channels optimised for homogeneous extensional deformation

    PubMed Central

    Zografos, K.; Oliveira, M. S. N.

    2016-01-01

    In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523

  15. Flow studies in canine artery bifurcations using a numerical simulation method.

    PubMed

    Xu, X Y; Collins, M W; Jones, C J

    1992-11-01

    Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent three-dimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.

  16. Axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects

    NASA Astrophysics Data System (ADS)

    Nasir, Nor Ain Azeany Mohd; Ishak, Anuar; Pop, Ioan

    2018-04-01

    In this paper, the heat and mass transfer of an axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects are investigated. An appropriate similarity transformation is used to reduce the highly non-linear partial differential equation into second and third order non-linear ordinary differential equations. Numerical solutions of the reduced governing equations are computed numerically by utilizing the MATLAB's built-in boundary value problem solver, bvp4c. The physical significance of various parameters such as Biot number, fluid parameters and Prandtl number on the velocity and temperature evolution profiles are illustrated graphically. The effects of these governing parameters on the skin friction coefficient and the local Nusselt number are also displayed graphically. It is noticed that the Powell-Eyring fluid parameter gives significant influence on the rates of heat and mass transfer of the fluid.

  17. Rational design of capillary-driven flows for paper-based microfluidics.

    PubMed

    Elizalde, Emanuel; Urteaga, Raúl; Berli, Claudio L A

    2015-05-21

    The design of paper-based assays that integrate passive pumping requires a precise programming of the fluid transport, which has to be encoded in the geometrical shape of the substrate. This requirement becomes critical in multiple-step processes, where fluid handling must be accurate and reproducible for each operation. The present work theoretically investigates the capillary imbibition in paper-like substrates to better understand fluid transport in terms of the macroscopic geometry of the flow domain. A fluid dynamic model was derived for homogeneous porous substrates with arbitrary cross-sectional shapes, which allows one to determine the cross-sectional profile required for a prescribed fluid velocity or mass transport rate. An extension of the model to slit microchannels is also demonstrated. Calculations were validated by experiments with prototypes fabricated in our lab. The proposed method constitutes a valuable tool for the rational design of paper-based assays.

  18. Thermal environment of the Southern Washington region of the Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Salmi, Marie S.; Johnson, H. Paul; Harris, Robert N.

    2017-08-01

    Eleven recently collected multichannel seismic (MCS) profiles from the Cascadia Open-Access Seismic Transects experiment offshore Washington State are used to characterize the distribution of bottom-simulating reflectors (BSRs) from seaward of the deformation front onto the continental shelf of the Cascadia Subduction Zone. The 11 MCS lines consisted of nine lines perpendicular and two lines parallel to the Cascadia margin covering a 100 km along-strike region of the accretionary wedge. From these MCS profiles we generated a 3-D view of the Cascadia margin thermal structure by interpreting 40,232 individual BSR picks in terms of temperature and heat flow. Overall BSR-derived heat flow values decrease from approximately 95 mW m-2 10 km east of the deformation front to approximately 60 mW m-2 located 60 km landward of the deformation front. Anomalously low heat flow values near 25 mW m-2 on a prominent midmargin terrace indicate recent sediment failure within the accretionary prism. Localized differences between BSR heat flow and numerical models reflect an estimated regional mean vertical fluid flow of +0.53 cm yr-1 for the survey area, with localized fluid flow approaching a maximum of +3.8 cm yr-1. Distinct finite element models for the nine MCS profiles perpendicular to the deformation front reproduce BSR heat flow values, producing an overall root-mean-square misfit of 10.2 mW m-2. At the deformation front, the incoming oceanic sediment/crust interface temperatures vary from 164°C to 179°C, indicating the updip limit of the Cascadia seismogenic zone.

  19. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branson, Eric D.; Singh, Seema; Houston, Jack E.

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow inmore » a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). Some coating processes were conducted in the cleanroom facility located at the University of New Mexico's Center for High Technology Materials (CHTM). SEM images were performed at UNM's Center for Micro-Engineering on equipment funded by a NSF New Mexico EPSCoR grant. 4« less

  20. Magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere

    NASA Astrophysics Data System (ADS)

    Nursalim, Rahmat; Widodo, Basuki; Imron, Chairul

    2017-10-01

    Magnetohydrodynamics (MHD) is important study in engineering and industrial fields. By study on MHD, we can reach the fluid flow characteristics that can be used to minimize its negative effect to an object. In decades, MHD has been widely studied in various geometry forms and fluid types. The sliced sphere is a geometry form that has not been investigated. In this paper we study magnetohydrodynamics of unsteady viscous fluid on boundary layer past a sliced sphere. Assumed that the fluid is incompressible, there is no magnetic field, there is no electrical voltage, the sliced sphere is fix and there is no barrier around the object. In this paper we focus on velocity profile at stagnation point (x = 0°). Mathematical model is governed by continuity and momentum equation. It is converted to non-dimensional, stream function, and similarity equation. Solution of the mathematical model is obtained by using Keller-Box numerical method. By giving various of slicing angle and various of magnetic parameter we get the simulation results. The simulation results show that increasing the slicing angle causes the velocity profile be steeper. Also, increasing the value of magnetic parameter causes the velocity profile be steeper. On the large slicing angle there is no significant effect of magnetic parameter to velocity profile, and on the high the value of magnetic parameter there is no significant effect of slicing angle to velocity profile.

  1. Heat Flow Budget of the Gulf of California Rift: Preliminary Results of a High Resolution Survey Across the Wagner Basin

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, R.; Neumann, F.; Harris, R. N.; Contreras, J.; Gonzalez-Fernandez, A.; Sclater, J. G.

    2016-12-01

    The thermal regime exerts a primary control on rift dynamics and mode of extension for continental lithosphere. We present three heat-flow profiles across the southern terminus of the Cerro Prieto fault, in the northern Gulf of California. The longest profile is 42 km and has a measurement spacing of 1 km that spans the hanging-wall block (Wagner basin) and the footwall block of that fault. Measurements were taken with a 6.5 m long Fielax, violin-bow probe. Most measurements are of good quality, i.e., the probe fully penetrated sediments and measurements were stable enough to perform reliable inversion for heat flow and thermal properties. However, it was necessary to perform numerous corrections due to environmental phenomena related the copious sedimentation in the area, and seasonal changes in water temperature. Our measurements indicate the total throughput across the central rift and its east shoulder is 15 KW/m per meter of rift length. More important, heat flow values cluster in three distinct spatial groups: (i) heat flow in the well sedimented depocenter of the Wagner basin is approximately 200 mW/m2; (ii) the footwall block heat-flow is approximately 400 mW/m2; and (iii) heat flow across the fault zone is very high, up to 5,000 mW/m2. Our interpretation is that the former value represents the background conductive heat flow in the rift whereas heat flow across the fault represents advective heat transport by hydrothermal fluids. The high heat flow in the footwall block of the Cerro Prieto fault might be result of both conductive and advective heat transfer by fluid seepage from the basin. These data provide evidence that fluids from deep magma bodies transported along faults assist rifting in the northern Gulf of California. We are exploring how fluids may play a role in weakening the lithosphere and help localizing/delocalizing strain along major transforms and numerous normal faults observed in the area.

  2. Dynamics and stability of a 2D ideal vortex under external strain

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  3. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  4. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  5. Studies of fluid flow indicators, Pacific margin of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E.; McAdoo, B.; Langseth, M.

    Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mudmore » diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m{sup 2}) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m{sup 2} throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.« less

  6. Studies of fluid flow indicators, Pacific margin of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E.; McAdoo, B.; Langseth, M.

    Seismic reflection profiles off Costa Rica image a decrease in thickness of the underthrust sedimentary section from the Middle America Trench, implying a significant reduction of porosity in the outer 3-5 km from the trench and a source of vent water through the wedge. We encountered no evidence of discrete fluid venting over the outer 3-5 km of this margin from dives using the ALVIN submersible or from heat flow measurements (based on absence of chemosynthetic vent communities and heat flow anomalies in this zone). Vent communities occur farther upslope, associated with a series of out-of-sequence thrusts, with two mudmore » diapirs, and a mid-slope canyon. We infer that fracture permeability dominates in the out-of-sequence thrusts, upflow of fluid-rich muds in the diapir, and focusing of fluid flow in the canyon. Over 100 heat flow observations on the wedge and incoming COCOS plate showed a broad area of anomalously low heat flow (13 mW/m[sup 2]) seaward of the frontal thrust, whereas the expected heat flow for ocean crust of early Miocene age is seven times greater. The very low regional heat flow may reflect refrigeration by vigorous sea water flow through the upper crust pillow basalts. Heat flow increases to about 30 mW/m[sup 2] throughout the lower slope to mid-slope, implying a combination of widespread fluid venting, reheating of the cooled crust and frictional heating at the base of the wedge. The lack of discrete vents over the outer 3-5 km of the margin indicates diffuse flow and likely temporal episodicity, as this region has been aseismic since 1950.« less

  7. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    PubMed

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  9. Centrifugal pump’s impeller optimization using methods of calculation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Grigoriev, S.; Mayorov, S.; Polyakov, R.

    2017-08-01

    The paper features the results of the fluid flow calculation in the channels of varying geometry of the centrifugal pump for the service water in the methanol production chain. Modeling of the flow in ANSYS CFX allowed developing recommendations on adjusting the impeller’s profile, significantly decrease the cavitation wear and increase the lifetime by several times.

  10. The Removal of Human Breast Cancer Cells from Hematopoietic CD34+ Stem Cells by Dielectrophoretic Field-Flow-Fractionation

    PubMed Central

    HUANG, YING; YANG, JUN; WANG, XIAO-BO; BECKER, FREDERICK F.; GASCOYNE, PETER R.C.

    2009-01-01

    Dielectrophoretic field-flow-fractionation (DEP-FFF) was used to purge human breast cancer MDA-435 cells from hematopoietic CD34+ stem cells. An array of interdigitated microelectrodes lining the bottom surface of a thin chamber was used to generate dielectrophoretic forces that levitated the cell mixture in a fluid flow profile. CD34+ stem cells were levitated higher, were carried faster by the fluid flow, and exited the separation chamber earlier than the cancer cells. Using on-line flow cytometry, efficient separation of the cell mixture was observed in less than 12 min, and CD34+ stem cell fractions with a purity >99.2% were obtained. The method of DEP-FFF is potentially applicable to many biomedical cell separation problems, including microfluidic-scale diagnosis and preparative-scale purification of cell subpopulations. PMID:10791899

  11. Internal dynamics of a free-surface viscoplastic flow down an inclined plane: experimental results through PIV measurements

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2015-04-01

    Debris flows constitute one of the most important natural hazards throughout the mountainous regions of the world, causing significant damages and economic losses. These mass are composed of particles of all sizes from clay to boulders suspended in a viscous fluid. An important goal resides in developing models that are able to accurately predict the hydraulic properties of debris flows. First, these flows are generally represented using models based on a momentum integral approach that consists in assuming a shallow flow and in depth averaging the local conservation equations. These models take into account closure terms depending on the shape of the velocity profile inside the flow. Second, the specific migration mechanisms of the suspended particles, which have a strong influence on the propagation of the surges, also depend on the internal dynamics within the flow. However, to date, few studies concerning the internal dynamics in particular in the vicinity of the front, of such flows have been carried out. The aim of this study is to document the internal dynamics in free-surface viscoplastic flows down an inclined channel. The rheological studies concerning natural muddy debris flows, rich in fine particles, have shown that these materials can be modeled, at least as a first approximation as non-Newtonian viscoplastic fluids. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity. Carbopol microgel has been used as a homogeneous transparent viscoplastic fluid. This experimental setup allows generating and monitoring stationary gravity-driven surges in the laboratory frame. We use PIV technique (Particle Image Velocimetry) to obtain velocity fields both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Experimental velocity profiles and determination of plug position will be presented and compared to theoretical predictions based on lubrication approximation.

  12. New Marine Heat Flow measurements at the Costa Rica Rift, Panama Basin

    NASA Astrophysics Data System (ADS)

    Harris, R. N.; Kolandaivelu, K. P.; Gregory, E. P. M.; Alshafai, R.; Lowell, R. P.; Hobbs, R. W.

    2016-12-01

    We report new heat flow measurements collected along the southern flank of the Costa Rica ridge. This ridge flank has been the site of numerous seismic, heat flow, and ocean drilling experiments and has become an important type location for investigations of off-axis hydrothermal processes. These data were collected as part of an interdisciplinary NERC and NSF-funded collaboration entitled: Oceanographic and Seismic Characterization of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR), to better understand links between crustal evolution, hydrothermal heat loss and the impact of this heat loss and fluid mass discharge on deep ocean circulation. The heat flow measurements are collocated with a newly acquired high-resolution seismic profile collected using a GI-gun source to image the sedimentary and upper crustal section. The profile is tied to ODP Hole 504B and provides robust estimates of the sediment thickness as well as its internal structure. In total five heat flow stations consisting of 67 new heat flow measurements were made, spanning crustal ages between 1.3 and 5.4 Myr. The full spreading rate of 66 mm/yr gives rise to abyssal hill basement relief between 500 and 250 m. Sediment cover is relatively incomplete in this region and varies between 0 and 290 m. The majority of heat flow values fall below half-space cooling models indicating that significant amounts of heat are removed by hydrothermal circulation. Low heat flow values are observed in sediment ponds between abyssal hill relief and high values are generally associated with ridge-ward dipping faults bounding abyssal hills. These faults are likely high permeability pathways where heated fluids are discharging, providing an example where large-scale faulting and block rotation plays a major role in ventilated ridge flank fluid circulation. The heat flow fraction (qobs/qpred) varies between varies between 0.01 and 4.1 and has a mean of 0.3 indicating that on average 70% of the expected heat is advected. The mass flux associated with this heat advection is 5 x 10-6 kg/m2-s assuming temperature discharge on the ridge flank is 10° C above ambient.

  13. Biomimetic model systems of rigid hair beds: Part I - Theory

    NASA Astrophysics Data System (ADS)

    Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.

  14. Transient Simulation of Accumulating Particle Deposition in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Hewett, James; Sellier, Mathieu

    2015-11-01

    Colloidal particles that deposit in pipe systems can lead to fouling which is an expensive problem in both the geothermal and oil & gas industries. We investigate the gradual accumulation of deposited colloids in pipe flow using numerical simulations. An Euler-Lagrangian approach is employed for modelling the fluid and particle phases. Particle transport to the pipe wall is modelled with Brownian motion and turbulent diffusion. A two-way coupling exists between the fouled material and the pipe flow; the local mass flux of depositing particles is affected by the surrounding fluid in the near-wall region. This coupling is modelled by changing the cells from fluid to solid as the deposited particles exceed each local cell volume. A similar method has been used to model fouling in engine exhaust systems (Paz et al., Heat Transfer Eng., 34(8-9):674-682, 2013). We compare our deposition velocities and deposition profiles with an experiment on silica scaling in turbulent pipe flow (Kokhanenko et al., 19th AFMC, 2014).

  15. Analytical and Experimental Study of Flow Through an Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects.

  16. Analytical and experimental study of flow through an axial turbine stage with a nonuniform inlet radial temperature profile

    NASA Technical Reports Server (NTRS)

    Schwab, J. R.; Stabe, R. G.; Whitney, W. J.

    1983-01-01

    Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects. Previously announced in STAR as N83-27958

  17. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in suchmore » scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.« less

  18. Convection Heat and Mass Transfer in a Power Law Fluid with Non Constant Relaxation Time Past a Vertical Porous Plate in the Presence of Thermo and Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Olajuwon, B. I.; Oyelakin, I. S.

    2012-12-01

    The paper investigates convection heat and mass transfer in power law fluid flow with non relaxation time past a vertical porous plate in presence of a chemical reaction, heat generation, thermo diffu- sion and thermal diffusion. The non - linear partial differential equations governing the flow are transformed into ordinary differential equations using the usual similarity method. The resulting similarity equations are solved numerically using Runge-Kutta shooting method. The results are presented as velocity, temperature and concentration profiles for pseudo plastic fluids and for different values of parameters governing the prob- lem. The skin friction, heat transfer and mass transfer rates are presented numerically in tabular form. The results show that these parameters have significant effects on the flow, heat transfer and mass transfer.

  19. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  20. Viscoplastic sculpting in stable triple layer heavy oil transport flow

    NASA Astrophysics Data System (ADS)

    Sarmadi, Parisa; Hormozi, Sarah; A. Frigaard, Ian

    2017-11-01

    In we introduced a novel methodology for efficient transport of heavy oil via a triple layer core-annular flow. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from Visco-Plastic Lubrication are used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a viscoplastic fluid between the transported oil and the lubricating fluid layer to balance the density difference between the fluids. Here we address the sculpting of the shaped skin within a concentric inflow manifold. We use the quasi-steady model to provide inputs to an axisymmetric triple layer computation, showing the development of the streamwise skin profile and establishment of the flow. For this, we use a finite element discretization with the augmented-Lagrangian method to represent the yield surface behaviour accurately and a PLIC method to track the interface motion.

  1. Combined effects of molecular geometry and nanoconfinement on liquid flows through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Suga, Kazuhiko; Mori, Yuki; Moritani, Rintaro; Kaneda, Masayuki

    2018-05-01

    Molecular dynamics simulations are carried out to investigate the geometry effects of diatomic molecules on liquid flows in carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n ,n ) (n =6 -20 ) CNTs. The simulated fluid temperature and bulk pressure for the liquid state are T =133 K and ρb=1346 kg/m 3 , respectively. In the agglomerated molecular cluster, nanoconfinement-induced structural changes are observed. As the CNT diameter decreases, it is confirmed that the flow rate significantly increases with irregular trends (discontinuity points in the profiles). From the discussion of the structure of the agglomerated fluid molecules, it is found that those trends are not simply caused by the structural changes. The main factor to induce the irregularity is confirmed to be the interlayer molecular movement affected by the combination of the molecular geometry and the arrangement of the multilayered structure.

  2. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  3. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas

    2015-05-15

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less

  4. Three-step cylindrical seal for high-performance turbomachines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    1987-01-01

    A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.

  5. Idealized debris flow in flume with bed driven by a conveyor belt

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  6. Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation

    NASA Technical Reports Server (NTRS)

    Lin, John C.

    2002-01-01

    An in-depth review of boundary-layer flow-separation control by a passive method using low-profile vortex generators is presented. The generators are defined as those with a device height between 10% and 50% of the boundary layer thickness. Key results are presented for several research efforts, all of which were performed within the past decade and a half where the majority of these works emphasize experimentation with some recent efforts on numerical simulations. Topics of discussion consist of both basic fluid dynamics and applied aerodynamics research. The fluid dynamics research includes comparative studies on separation control effectiveness as well as device-induced vortex characterization and correlation. The comparative studies cover the controlling of low-speed separated flows in adverse pressure gradient and supersonic shock-induced separation. The aerodynamics research includes several applications for aircraft performance enhancement and covers a wide range of speeds. Significant performance improvements are achieved through increased lift and/or reduced drag for various airfoils-low-Reynolds number, high-lift, and transonic-as well as highly swept wings. Performance enhancements for non-airfoil applications include aircraft interior noise reduction, inlet flow distortion alleviation inside compact ducts, and a more efficient overwing fairing. The low-profile vortex generators are best for being applied to applications where flow-separation locations are relatively fixed and the generators can be placed reasonably close upstream of the separation. Using the approach of minimal near-wall proturbances through substantially reduced device height, these devices can produce streamwise vortices just strong enough to overcome the separation without unnecessarily persisting within the boundary layer once the flow-control objective is achieved. Practical advantages of low-profile vortex generators, such as their inherent simplicity and low device drag, are demonstrated to be critically important for many applications as well.

  7. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. Heat transfer in turbulent magneto-fluid-mechanic pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andelman, M.P.

    1975-12-01

    The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less

  9. Numerical Simulation of Flow Features and Energy Exchange Physics in Near-Wall Region with Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lixiang; Wang, Wenquan; Guo, Yakun

    Large eddy simulation is used to explore flow features and energy exchange physics between turbulent flow and structure vibration in the near-wall region with fluid-structure interaction (FSI). The statistical turbulence characteristics in the near-wall region of a vibrating wall, such as the skin frictional coefficient, velocity, pressure, vortices, and the coherent structures have been studied for an aerofoil blade passage of a true three-dimensional hydroturbine. The results show that (i) FSI greatly strengthens the turbulence in the inner region of y+ < 25; and (ii) the energy exchange mechanism between the flow and the vibration depends strongly on the vibration-induced vorticity in the inner region. The structural vibration provokes a frequent action between the low- and high-speed streaks to balance the energy deficit caused by the vibration. The velocity profile in the inner layer near the vibrating wall has a significant distinctness, and the viscosity effect of the fluid in the inner region decreases due to the vibration. The flow features in the inner layer are altered by a suitable wall vibration.

  10. Continuum approaches for describing solid-gas and solid-liquid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.; Harvey, J.; Levine, H.

    Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less

  11. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  12. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.

  13. Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    NASA Astrophysics Data System (ADS)

    Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.

    2013-12-01

    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.

  14. Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tanzila; Nadeem, S.

    2018-03-01

    This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.

  15. Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration

    NASA Astrophysics Data System (ADS)

    VeeraKrishna, M.; Chamkha, Ali J.

    2018-05-01

    The heat generation/absorption and thermo-diffusion on an unsteady free convective MHD flow of radiating and chemically reactive second grade fluid near an infinite vertical plate through a porous medium and taking the Hall current into account have been studied. Assume that the bounding plate has a ramped temperature with a ramped surface concentration and isothermal temperature with a ramped surface concentration. The analytical solutions for the governing equations are obtained by making use of the Laplace transforms technique. The velocity, temperature, and concentration profiles are discussed through graphs. We also found that velocity, temperature, and concentration profiles in the case of ramped temperature with ramped surface concentrations are less than those of isothermal temperature with ramped surface concentrations. Also, the expressions of the skin friction, Nusselt number, and Sherwood number are obtained and represented computationally through a tabular form.

  16. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-04-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  17. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-12-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratification may be non-negligible.

  18. Simulating rotating fluid bodies: When is vorticity generation via density-stratification important?

    NASA Astrophysics Data System (ADS)

    Evonuk, M.; Samuel, H.

    2012-02-01

    Differential rotation is one of the key components needed to maintain a magnetic dynamo, therefore it is important to understand the processes that generate differential rotation in rotating bodies. In a rotating density-stratified fluid, local vorticity generation occurs as fluid parcels move radially, expanding or contracting with respect to the background density stratification. The convergence of this vorticity forms zonal flow structures as a function of the radius and the slope of the background density profile. While this effect is thought to be of importance in bodies that are quickly rotating and highly turbulent with large density stratifications such as Jupiter, it is generally neglected in bodies such as the Earth's outer core, where the density change is small. Simulations of thermal convection in the 2D rotating equatorial plane are conducted to determine the parameter regime where local vorticity generation plays a significant role in organizing the fluid flow. Three regimes are found: a dipolar flow regime, where the flow is not organized by the rotation, a transitional flow regime, and a differential flow regime, where the flow is strongly organized into differential rotation with multiple jets. A scaling law is determined based on the convective Rossby number and the density contrast across the equatorial plane, providing a simple way to determine in which regime a given body lies. While a giant planet such as Jupiter lies firmly in the differential flow regime as expected, the Earth's outer core is also found to lie in the differential flow regime indicating that, even in the Earth's outer core, where the density contrast is small, vorticity contributions via fluid movement through the density stratificationmay be non-negligible.

  19. Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, M; Waite, William F.; Rose, K.; Lapham, L.

    2008-01-01

    Obtaining accurate, high-resolution profiles of pore fluid constituents is critical for characterizing the subsurface geochemistry of hydrate-bearing sediments. Tightly-constrained downcore profiles provide clues about fluid sources, fluid flow, and the milieu of chemical and diagenetic reactions, all of which are used to interpret where and why gas and gas hydrate occur in the natural environment. Because a profile’s quality is only as good as the samples from which the data are obtained, a great deal of effort has been exerted to develop extraction systems suited to various sedimentary regimes. Pore water from deeply buried sediment recovered by scientific drilling is typically squeezed with a hydraulic press (Manheim, 1966); whereas pore water in near-surface, less consolidated sediment is more efficiently pushed from the sediment using compressed gas (Reeburgh, 1967) or centrifugation.

  20. Method for shaping sheet thermoplastic and the like

    NASA Technical Reports Server (NTRS)

    Akilian, Mireille K. (Inventor); Schattenburg, Mark L. (Inventor)

    2011-01-01

    Processes and apparati for shaping sheet glass or thermoplastic materials use force from a layer of a flowing fluid, such as air, between the sheet and a mandrel at close to the softening temperature of the thermoplastic. The shape is preserved by cooling. The shape of the air bearing mandrel and the pressure distribution of the fluid contribute to the final shape. A process can be conducted on one or two surfaces such that the force from the air layer is on one or two surfaces of the sheet. The gap size between the sheet and mandrel determines the pressure profile in the gap, which also determines the final sheet shape. In general, smaller gaps lead to larger viscous forces. The pressure profile depends on the shape of the mandrel, the size of the fluid gap and the sheet and the fluid supply pressure.

  1. Piston flow in a two-dimensional channel

    NASA Astrophysics Data System (ADS)

    Katopodes, Fotini V.; Davis, A. M. J.; Stone, H. A.

    2000-05-01

    A solution using biorthogonal eigenfunctions is presented for viscous flow caused by a piston in a two-dimensional channel. The resulting infinite set of linear equations is solved using Spence's optimal weighting function method [IMA J. Appl. Math. 30, 107 (1983)]. The solution is compared to that with a shear-free piston surface; in the latter configuration the fluid more rapidly approaches the Poiseuille flow profile established away from the face of the piston.

  2. Joule-Thomson effect and internal convection heat transfer in turbulent He II flow

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.

    1988-01-01

    The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.

  3. Transition to turbulence in stratified shear flow: experiments in an inclined square duct

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Linden, Paul

    2013-11-01

    We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.

  4. Patterns from drying drops.

    PubMed

    Sefiane, Khellil

    2014-04-01

    The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  6. Superfluid Boundary Layer.

    PubMed

    Stagg, G W; Parker, N G; Barenghi, C F

    2017-03-31

    We model the superfluid flow of liquid helium over the rough surface of a wire (used to experimentally generate turbulence) profiled by atomic force microscopy. Numerical simulations of the Gross-Pitaevskii equation reveal that the sharpest features in the surface induce vortex nucleation both intrinsically (due to the raised local fluid velocity) and extrinsically (providing pinning sites to vortex lines aligned with the flow). Vortex interactions and reconnections contribute to form a dense turbulent layer of vortices with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk. We characterize this layer for various imposed flows. As boundary layers conventionally arise from viscous forces, this result opens up new insight into the nature of superflows.

  7. MHD Flow of Sodium Alginate-Based Casson Type Nanofluid Passing Through A Porous Medium With Newtonian Heating.

    PubMed

    Khan, Arshad; Khan, Dolat; Khan, Ilyas; Ali, Farhad; Karim, Faizan Ul; Imran, Muhammad

    2018-06-05

    Casson nanofluid, unsteady flow over an isothermal vertical plate with Newtonian heating (NH) is investigated. Sodium alginate (base fluid)is taken as counter example of Casson fluid. MHD and porosity effects are considered. Effects of thermal radiation along with heat generation are examined. Sodium alginate with Silver, Titanium oxide, Copper and Aluminum oxide are added as nano particles. Initial value problem with physical boundary condition is solved by using Laplace transform method. Exact results are obtained for temperature and velocity fields. Skin-friction and Nusselt number are calculated. The obtained results are analyzed graphically for emerging flow parameters and discussed. It is bring into being that temperature and velocity profile are decreasing with increasing nano particles volume fraction.

  8. Dual Solutions for Nonlinear Flow Using Lie Group Analysis

    PubMed Central

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996

  9. Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, J.Y.; James, D.L.; Parameswaran, S.

    1999-07-01

    Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less

  10. A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models.

    PubMed

    Beg, Md Nazmul Azim; Carvalho, Rita F; Tait, Simon; Brevis, Wernher; Rubinato, Matteo; Schellart, Alma; Leandro, Jorge

    2017-04-01

    Flows in manholes are complex and may include swirling and recirculation flow with significant turbulence and vorticity. However, how these complex 3D flow patterns could generate different energy losses and so affect flow quantity in the wider sewer network is unknown. In this work, 2D3C stereo Particle Image Velocimetry measurements are made in a surcharged scaled circular manhole. A computational fluid dynamics (CFD) model in OpenFOAM ® with four different Reynolds Averaged Navier Stokes (RANS) turbulence model is constructed using a volume of fluid model, to represent flows in this manhole. Velocity profiles and pressure distributions from the models are compared with the experimental data in view of finding the best modelling approach. It was found among four different RANS models that the re-normalization group (RNG) k-ɛ and k-ω shear stress transport (SST) gave a better approximation for velocity and pressure.

  11. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    NASA Astrophysics Data System (ADS)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  12. FDVIBSPC16: Sheath Flow SERS for Chemical Profiling in Urine

    PubMed Central

    Riordan, Colleen M.; Jacobs, Kevin T.; Negri, Pierre; Schultz, Zachary D.

    2016-01-01

    The molecular specificity and sensitivity of surface enhanced Raman scattering (SERS) makes it an attractive method for biomedical diagnostics. Here we present results demonstrating the utility and complications for SERS characterization in urine. The chemical fingerprint characteristic of Raman spectra suggests use as a label free diagnostic; however, the complex composition of biological fluids presents a tremendous challenge. In particular, the limited number of surface sites and competing absorption tend to mask the presence of analytes in solution, particularly when the solution contains multiple analytes. To address these problems and characterize biological fluids we have demonstrated a sheath-flow interface for SERS detection. This sheath-flow SERS interface uses hydrodynamic focusing to confine analyte molecules eluting out of a column onto a planar SERS substrate where the molecules are detected by their intrinsic SERS signal. In this report we compare direct detection of benzoylecgonine in urine using DSERS with chemical profiling by capillary zone electrophoresis and sheath-flow SERS detection. The SERS spectrum from the observed migration peaks can identify benzoylecgonine and other distinct spectra are also observed, suggesting improved chemical diagnostics in urine. With over 2000 reported compounds in urine, identification of each of the detected species is an enormous task. Nonetheless, these samples provide a benchmark to establish the potential clinical utility of sheath-flow SERS detection. PMID:27034996

  13. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  14. Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin; Farouk, Bakhtier

    2012-07-01

    Coupled multifield analysis of a piezoelectrically actuated valveless micropump device is carried out for liquid (water) transport applications. The valveless micropump consists of two diffuser/nozzle elements; the pump chamber, a thin structural layer (silicon), and a piezoelectric layer, PZT-5A as the actuator. We consider two-way coupling of forces between solid and liquid domains in the systems where actuator deflection causes fluid flow and vice versa. Flow contraction and expansion (through the nozzle and the diffuser respectively) generate net fluid flow. Both structural and flow field analysis of the microfluidic device are considered. The effect of the driving power (voltage) and actuation frequency on silicon-PZT-5A bi-layer membrane deflection and flow rate is investigated. For the compressible flow formulation, an isothermal equation of state for the working fluid is employed. The governing equations for the flow fields and the silicon-PZT-5A bi-layer membrane motions are solved numerically. At frequencies below 5000 Hz, the predicted flow rate increases with actuation frequency. The fluid-solid system shows a resonance at 5000 Hz due to the combined effect of mechanical and fluidic capacitances, inductances, and damping. Time-averaged flow rate starts to drop with increase of actuation frequency above (5000 Hz). The velocity profile in the pump chamber becomes relatively flat or plug-like, if the frequency of pulsations is sufficiently large (high Womersley number). The pressure, velocity, and flow rate prediction models developed in the present study can be utilized to optimize the design of MEMS based micropumps.

  15. Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids

    NASA Astrophysics Data System (ADS)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-11-01

    Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.

  16. Dissipative slip flow along heat and mass transfer over a vertically rotating cone by way of chemical reaction with Dufour and Soret effects

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Rehman, Khalil Ur; Jamil, Hamayun; Malik, M. Y.; Salahuddin, T.

    2016-12-01

    An attempt has been constructed in the communication to envision heat and mass transfer characteristics of viscous fluid over a vertically rotating cone. Thermal transport in the fluid flow is anticipated in the presence of viscous dissipation. Whereas, concentration of fluid particles is contemplated by incorporating the diffusion-thermo (Dufour) and thermo-diffusion (Soret) effects. The governing equations for concerning problem is first modelled and then nondimensionalized by implementing compatible transformations. The utilization of these transformations yields ordinary differential system which is computed analytically through homotopic procedure. Impact of velocity, temperature and concentration profiles are presented through fascinating graphics. The influence of various pertinent parameters on skin friction coefficient, Nusselt number and Sherwood number are interpreted through graphical and tabular display. After comprehensive examination of analysis, it is concluded that temperature of fluid deescalates for growing values of Soret parameter whereas it shows inciting attitude towards Dufour parameter and similar agreement is observed for the behavior of concentration profile with respect to these parameters. Furthermore, the affirmation of present work is established by developing comparison with previously published literature. An excellent agreement is found which shows the credibility and assurance of present analysis.

  17. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan

    NASA Astrophysics Data System (ADS)

    Hong, W.; Moen, N.; Haley, B. A.

    2013-12-01

    IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.

  18. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  19. Heat and Mass Transfer on MHD Free convective flow of Second grade fluid through Porous medium over an infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.

    2017-08-01

    In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.

  20. Tornado model for a magnetised plasma

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Fedun, V.; Smolyakov, A.; Horton, W.; Pokhotelov, O. A.; Verth, G.

    2018-05-01

    A new analytical model of axially-symmetric magnetic vortices with both a twisted fluid flow and a magnetic field is proposed. The exact solution for the three-dimensional structure of the fluid velocity and the magnetic field is obtained within the framework of the ideal magnetohydrodynamic equations for an incompressible fluid in a gravitational field. A quasi-stationary localised vortex arises when the radial flow that tends to concentrate vorticity in a narrow column around the axis of symmetry is balanced by the vertical vortex advection in the axial direction. The explicit expressions for the velocity and magnetic field components are obtained. The proposed analytic model may be used to parameterise the observed solar tornadoes and can provide a new indirect way for estimating magnetic twist from the observed azimuthal velocity profiles.

  1. Fluid flow in solidifying monotectic alloys

    NASA Technical Reports Server (NTRS)

    Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.

    1989-01-01

    Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.

  2. Nanoscale simple-fluid behavior under steady shear.

    PubMed

    Yong, Xin; Zhang, Lucy T

    2012-05-01

    In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.

  3. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  4. Inflectional instabilities in the wall region of bounded turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Swearingen, Jerry D.; Blackwelder, Ron F.; Spalart, Philippe R.

    1987-01-01

    The primary thrust of this research was to identify one or more mechanisms responsible for strong turbulence production events in the wall region of bounded turbulent shear flows. Based upon previous work in a transitional boundary layer, it seemed highly probable that the production events were preceded by an inflectional velocity profile which formed on the interface between the low-speed streak and the surrounding fluid. In bounded transitional flows, this unstable profile developed velocity fluctuations in the streamwise direction and in the direction perpendicular to the sheared surface. The rapid growth of these instabilities leads to a breakdown and production of turbulence. Since bounded turbulent flows have many of the same characteristics, they may also experience a similar type of breakdown and turbulence production mechanism.

  5. Acoustically and Electrokinetically Driven Transport in Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Sayar, Ersin

    Electrokinetically driven flows are widely employed as a primary method for liquid pumping in micro-electromechanical systems. Mixing of analytes and reagents is limited in microfluidic devices due to the low Reynolds number of the flows. Acoustic excitations have recently been suggested to promote mixing in the microscale flow systems. Electrokinetic flows through straight microchannels were investigated using the Poisson-Boltzmann and Nernst-Planck models. The acoustic wave/fluid flow interactions in a microchannel were investigated via the development of two and three-dimensional dynamic predictive models for flows with field couplings of the electrical, mechanical and fluid flow quantities. The effectiveness and applicability of electrokinetic augmentation in flexural plate wave micropumps for enhanced capabilities were explored. The proposed concept can be exploited to integrate micropumps into complex microfluidic chips improving the portability of micro-total-analysis systems along with the capabilities of actively controlling acoustics and electrokinetics for micro-mixer applications. Acoustically excited flows in microchannels consisting of flexural plate wave devices and thin film resonators were considered. Compressible flow fields were considered to accommodate the acoustic excitations produced by a vibrating wall. The velocity and pressure profiles for different parameters including frequency, channel height, wave amplitude and length were investigated. Coupled electrokinetics and acoustics cases were investigated while the electric field intensity of the electrokinetic body forces and actuation frequency of acoustic excitations were varied. Multifield analysis of a piezoelectrically actuated valveless micropump was also presented. The effect of voltage and frequency on membrane deflection and flow rate were investigated. Detailed fluid/solid deformation coupled simulations of piezoelectric valveless micropump have been conducted to predict the generated time averaged flow rates. Developed coupled solid and fluid mechanics models can be utilized to integrate flow-through sensors with microfluidic chips.

  6. Particle motion in unsteady two-dimensional peristaltic flow with application to the ureter

    NASA Astrophysics Data System (ADS)

    Jiménez-Lozano, Joel; Sen, Mihir; Dunn, Patrick F.

    2009-04-01

    Particle motion in an unsteady peristaltic fluid flow is analyzed. The fluid is incompressible and Newtonian in a two-dimensional planar geometry. A perturbation method based on a small ratio of wave height to wavelength is used to obtain a closed-form solution for the fluid velocity field. This analytical solution is used in conjunction with an equation of motion for a small rigid sphere in nonuniform flow taking Stokes drag, virtual mass, Faxén, Basset, and gravity forces into account. Fluid streamlines and velocity profiles are calculated. Theoretical values for pumping rates are compared with available experimental data. An application to ureteral peristaltic flow is considered since fluid flow in the ureter is sometimes accompanied by particles such as stones or bacteriuria. Particle trajectories for parameters that correspond to calcium oxalates for calculosis and Escherichia coli type for bacteria are analyzed. The findings show that retrograde or reflux motion of the particles is possible and bacterial transport can occur in the upper urinary tract when there is a partial occlusion of the wave. Dilute particle mixing is also investigated, and it is found that some of the particles participate in the formation of a recirculating bolus, and some of them are delayed in transit and eventually reach the walls. This can explain the failure of clearing residuals from the upper urinary tract calculi after successful extracorporeal shock wave lithotripsy. The results may also be relevant to the transport of other physiological fluids and industrial applications in which peristaltic pumping is used.

  7. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  8. Influence of Dissipation on Heat Transfer During Flow of a Non-Newtonian Fluid in a Porous Channel

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Yunitskii, S. A.

    2017-07-01

    A study is made of flow and heat transfer during the motion of a non-Newtonian (power-law) fluid in a plane channel filled with porous material. The Brinkman equation is used as the equation of state, and a one-temperature model, in representing the energy equation. Account us taken of dissipative heat releases. The problem is solved for temperature boundary conditions of the first kind. The authors show the influence of dissipation on the development of the temperature profile, and also on the distributions of the local Nusselt number and the mass-mean temperature along the channel.

  9. Towards establishing the rheology of a sediment bed

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-11-01

    In order to gain a better understanding of erosion, we have conducted numerical simulations of particle-resolved flows similar to the experiments of Aussillous et al. (2013), which involve laminar pressure-driven flows over erodible sediment beds. These simulations allow us to resolve velocity profiles and stresses of the fluid-particle mixtures within and above the sediment bed, which can be difficult or impossible to measure experimentally. Thus, we can begin investigating the rheology of the fluid-particle mixtures. In particular, we compare the effective viscosity as a function of volume fraction to existing models, such as those of Eilers (1943), Morris and Boulay (1999), and Boyer et al. (2011).

  10. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  11. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  12. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations indicate that nearly 71% of the incoming water in the sediments leaves the accretionary wedge via diffuse flow out the seafloor, 0-5% escapes by focused flow along the de??collement, and roughly 1% is subducted. Copyright 1998 by the American Geophysical Union.

  13. Multiscale modeling and simulation for polymer melt flows between parallel plates

    NASA Astrophysics Data System (ADS)

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).

  14. Multiscale modeling and simulation for polymer melt flows between parallel plates.

    PubMed

    Yasuda, Shugo; Yamamoto, Ryoichi

    2010-03-01

    The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).

  15. Velocity Profiles of Slow Blood Flow in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Chen, Jinyu; Huang, Zuqia; Zhuang, Fengyuan; Zhang, Hui

    1998-04-01

    A fractal model is introduced into the slow blood motion. When blood flows slowly in a narrow tube, red cell aggregation results in the formation of an approximately cylindrical core of red cells. By introducing the fractal model and using the power law relation between area fraction φ and distance from tube axis ρ, rigorous velocity profiles of the fluid in and outside the aggregated core and of the core itself are obtained analytically for different fractal dimensions. It shows a blunted velocity distribution for a relatively large fractal dimension (D ˜ 2), which can be observed in normal blood; a pathological velocity profile for moderate dimension (D = 1), which is similar to the Segre-Silberberg effect; and a parabolic profile for negligible red cell concentration (D = 0), which likes in the Poiseuille flow. The project supported by the National Basic Research Project "Nonlinear Science", National Natural Science Foundation of China and the State Education Commission through the Foundation of Doctoral Training

  16. Trash Diverter Orientation Angle Optimization at Run-Off River Type Hydro-power Plant using CFD

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kamal, Ahmad; Shuaib, Norshah Hafeez; Yusoff, Mohd. Zamri; Hasini, Hasril; Rashid, Azri Zainol; Thangaraju, Savithry K.; Hamid, Hazha

    2010-06-01

    Tenom Pangi Hydro Power Station in Tenom, Sabah is suffering from poor river quality with a lot of suspended trashes. This problem necessitates the need for a trash diverter to divert the trash away from the intake region. Previously, a trash diverter (called Trash Diverter I) was installed at the site but managed to survived for a short period of time due to an impact with huge log as a results of a heavy flood. In the current project, a second trash diverter structure is designed (called Trash Diverter II) with improved features compared to Trash Diverter I. The Computational Fluid Dynamics (CFD) analysis is done to evaluate the river flow interaction onto the trash diverter from the fluid flow point of view, Computational Fluids Dynamics is a numerical approach to solve fluid flow profile for different inlet conditions. In this work, the river geometry is modeled using commercial CFD code, FLUENT®. The computational model consists of Reynolds Averaged Navier-Stokes (RANS) equations coupled with other related models using the properties of the fluids under investigation. The model is validated with site-measurements done at Tenom Pangi Hydro Power Station. Different operating condition of river flow rate and weir opening is also considered. The optimum angle is determined in this simulation to further use the data for 3D simulation and structural analysis.

  17. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  18. Sheared bioconvection in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Croze, O. A.; Ashraf, E. E.; Bees, M. A.

    2010-12-01

    The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.

  19. RF stabilization of plasma instabilities: a note on physical mechanism

    NASA Astrophysics Data System (ADS)

    Sen, S.; Martinell, J.; Imadera, K.; Kishimoto, Y.; Vahala, G.

    2018-02-01

    In a series of recent works, we have developed models including realistic spatial profiles of both flow and radio-frequency-induced ponderomotive force. With these inclusions, the picture of stability of various plasma and fluid instabilities is expected to be changed drastically with ground-breaking consequences. The inhomogeneous parallel flow and the radio-frequency waves can actually stabilize turbulence. This is different from the prevalent notion that both parallel flow shear and radio-frequency waves are responsible for the excitation (destabilization) of plasma turbulence. This model thus aims to open-up new channels and provide a major breakthrough in our knowledge of plasma and fluid turbulence and its consequent roles in energy, space and processing technology. In this short note, we elucidate the physical mechanism behind this novel observation.

  20. Properties of two-fluid flowing equilibria observed in double-pulsing coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2013-10-01

    Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.

  1. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  2. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; hide

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  3. Hall effects on unsteady MHD oscillatory free convective flow of second grade fluid through porous medium between two vertical plates

    NASA Astrophysics Data System (ADS)

    VeeraKrishna, M.; Subba Reddy, G.; Chamkha, A. J.

    2018-02-01

    The effects of radiation and Hall current on an unsteady magnetohydrodynamic free convective flow in a vertical channel filled with a porous medium have been studied. We consider an incompressible viscous and electrically conducting incompressible viscous second grade fluid bounded by a loosely packed porous medium. The fluid is driven by an oscillating pressure gradient parallel to the channel plates, and the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination α with the normal to the boundaries in the transverse xy-plane. The temperature of one of the plates varies periodically, and the temperature difference of the plates is high enough to induce the radiative heat transfer. The effects of various parameters on the velocity profiles, the skin friction, temperature field, rate of heat transfer in terms of their amplitude, and phase angles are shown graphically.

  4. Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor.

    PubMed

    Ranganathan, Panneerselvam; Savithri, Sivaraman

    2018-06-01

    Computational Fluid Dynamics (CFD) technique is used in this work to simulate the hydrothermal liquefaction of Nannochloropsis sp. microalgae in a lab-scale continuous plug-flow reactor to understand the fluid dynamics, heat transfer, and reaction kinetics in a HTL reactor under hydrothermal condition. The temperature profile in the reactor and the yield of HTL products from the present simulation are obtained and they are validated with the experimental data available in the literature. Furthermore, the parametric study is carried out to study the effect of slurry flow rate, reactor temperature, and external heat transfer coefficient on the yield of products. Though the model predictions are satisfactory in comparison with the experimental results, it still needs to be improved for better prediction of the product yields. This improved model will be considered as a baseline for design and scale-up of large-scale HTL reactor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  6. Forum on unsteady flow - 1985; Proceedings of the Winter Annual Meeting, Miami Beach, FL, November 17-22, 1985

    NASA Astrophysics Data System (ADS)

    Rothe, P. H.

    The conference includes such topics as the reduction of fluid transient pressures by minimax optimization, modeling blockage in unsteady slurry flow in conduits, roles of vacuum breaker and air release devices in reducing waterhammer forces, and an analysis of laminar fluid transients in conduits of unconventional shape. Papers are presented on modulation systems for high speed water jets, water hammer analysis needs in nuclear power plant design, tail profile effects on unsteady large scale flow structure in the wing and plate junction, and a numerical study of pressure transients in a borehole due to pipe movement. Consideration is also given to boundary layer growth near a stagnation point, calculation of unsteady mixing in two-dimensional flows, the trailing edge of a pitching airfoil at high reduced frequencies, and a numerical study of instability-wave control through periodic wall suction/blowing.

  7. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher

    2015-03-01

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case.

  8. Unsteady Heat and Mass Transfer of Chemically Reacting Micropolar Fluid in a Porous Channel with Hall and Ion Slip Currents

    PubMed Central

    2014-01-01

    This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs. PMID:27419211

  9. Boostream: a dynamic fluid flow process to assemble nanoparticles at liquid interface

    NASA Astrophysics Data System (ADS)

    Delléa, Olivier; Lebaigue, Olivier

    2017-12-01

    CEA-LITEN develops an original process called Boostream® to manipulate, assemble and connect micro- or nanoparticles of various materials, sizes, shapes and functions to obtain monolayer colloidal crystals (MCCs). This process uses the upper surface of a liquid film flowing down a ramp to assemble particles in a manner that is close to the horizontal situation of a Langmuir-Blodgett film construction. In presence of particles at the liquid interface, the film down-flow configuration exhibits an unusual hydraulic jump which results from the fluid flow accommodation to the particle monolayer. In order to master our process, the fluid flow has been modeled and experimentally characterized by optical means, such as with the moiré technique that consists in observing the reflection of a succession of periodic black-and-red fringes on the liquid surface mirror. The fringe images are deformed when reflected by the curved liquid surface associated with the hydraulic jump, the fringe deformation being proportional to the local slope of the surface. This original experimental setup allowed us to get the surface profile in the jump region and to measure it along with the main process parameters (liquid flow rate, slope angle, temperature sensitive fluid properties such as dynamic viscosity or surface tension, particle sizes). This work presents the experimental setup and its simple model, the different experimental characterization techniques used and will focus on the way the hydraulic jump relies on the process parameters.

  10. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis.

    PubMed

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Isabey, Daniel; Coste, André; Escudier, Estelle; Grotberg, James B; Papon, Jean-François; Filoche, Marcel; Louis, Bruno

    2017-07-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating.

  11. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part I, experimental analysis

    PubMed Central

    Bottier, Mathieu; Blanchon, Sylvain; Pelle, Gabriel; Bequignon, Emilie; Coste, André; Escudier, Estelle; Grotberg, James B.; Papon, Jean-François

    2017-01-01

    Mucociliary clearance is one of the major lines of defense of the respiratory system. The mucus layer coating the pulmonary airways is moved along and out of the lung by the activity of motile cilia, thus expelling the particles trapped in it. Here we compare ex vivo measurements of a Newtonian flow induced by cilia beating (using micro-beads as tracers) and a mathematical model of this fluid flow, presented in greater detail in a second companion article. Samples of nasal epithelial cells placed in water are recorded by high-speed video-microscopy and ciliary beat pattern is inferred. Automatic tracking of micro-beads, used as markers of the flow generated by cilia motion, enables us also to assess the velocity profile as a function of the distance above the cilia. This profile is shown to be essentially parabolic. The obtained experimental data are used to feed a 2D mathematical and numerical model of the coupling between cilia, fluid, and micro-bead motion. From the model and the experimental measurements, the shear stress exerted by the cilia is deduced. Finally, this shear stress, which can easily be measured in the clinical setting, is proposed as a new index for characterizing the efficiency of ciliary beating. PMID:28708889

  12. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-01

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  13. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    NASA Astrophysics Data System (ADS)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  14. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  15. Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms.

    PubMed

    Mikhal, Julia; Geurts, Bernard J

    2013-12-01

    A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.

  16. Models for coupled fluid flow, mineral reaction, and isotopic alteration during contact metamorphism: The Notch Peak aureole, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferry, J.M.; Dipple, G.M.

    Three different models were developed to simulate the effect of contact metamorphism and fluid-rock interaction on the prograde mineralogical and O isotopic evolution of calcareous argillites from the Notch Peak aureole, Utah. All models assume local mineral-fluid equilibrium, a steady-state temperature profile corresponding to peak metamorphic values, and the thermodynamic data for minerals and fluid of Berman (1988). The preferred model, metamorphism with flow of a time-integrated fluid flux of 2 {plus minus} 0.5 {center dot} 10{sup 4} mol/cm{sup 2} in the direction of increasing temperature, successfully reproduces the principal petrologic and isotopic features of the aureole: (1) occurrence andmore » positions (in map view) of diopside-in, tremolite-out, grossular-in, wollastonite-in, and quartz-out isograds; (2) stable coexistence of tremolite + calcite + quartz + diopside over an {approx}1 km distance between the diopside-in and tremolite-out isograds; (3) variable whole-rock {sup 18}O depletions of {approx}6-9{per thousand} adjacent to the contact; and (4) a gradual and irregular increase in {delta}{sup 18}O with increasing distance from the pluton. Results demonstrate how isotopic and petrologic data for contact aureoles can be integrated to provide quantitative constraints on the magnitude and geometry of metamorphic fluid flow.« less

  17. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    PubMed

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  18. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  19. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  20. An experimental study of the fluid mechanics associated with porous walls

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Heaman, J.; Smith, A.

    1992-01-01

    The fluid mechanics associated with the blowing phenomenon from porous walls is measured and characterized. The measurements indicate that the flow exiting a porous wall exhibits a lumpy velocity profile caused by the coalescence effects of smaller jets emerging from the surface. The velocity variations are spatially stable and prevail even at low flow rates. The intensity of this pseudoturbulence is found to be directly proportional to the filter rating of the porous wall and to increase linearly with the mean velocity. Beyond a critical mean velocity, the pseudoturbulence intensity shows a leveling trend with increase in the mean velocity. This critical velocity varies inversely as the filter rating and represents the onset of fully developed jetting action in the flow field. Based on the data, a more appropriate length scale for the flow field is proposed and a correlation is developed that can be used to predict the onset of fully developed jets in the flow emerging from a porous wall.

  1. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus

    NASA Astrophysics Data System (ADS)

    Abbas, Zaheer; Hasnain, Jafar

    A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.

  2. Stability of carotid artery under steady-state and pulsatile blood flow: a fluid-structure interaction study.

    PubMed

    Saeid Khalafvand, Seyed; Han, Hai-Chao

    2015-06-01

    It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.

  3. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.

    PubMed

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-01-01

    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.

  4. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  5. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  6. Removal of unwanted fluid

    NASA Astrophysics Data System (ADS)

    Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.

    2013-01-01

    This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

  7. Heat flow, morphology, pore fluids and hydrothermal circulation in a typical Mid-Atlantic Ridge flank near Oceanographer Fracture Zone

    NASA Astrophysics Data System (ADS)

    Le Gal, V.; Lucazeau, F.; Cannat, M.; Poort, J.; Monnin, C.; Battani, A.; Fontaine, F.; Goutorbe, B.; Rolandone, F.; Poitou, C.; Blanc-Valleron, M.-M.; Piedade, A.; Hipólito, A.

    2018-01-01

    Hydrothermal circulation affects heat and mass transfers in the oceanic lithosphere, not only at the ridge axis but also on their flanks, where the magnitude of this process has been related to sediment blanket and seamounts density. This was documented in several areas of the Pacific Ocean by heat flow measurements and pore water analysis. However, as the morphology of Atlantic and Indian ridge flanks is generally rougher than in the Pacific, these regions of slow and ultra-slow accretion may be affected by hydrothermal processes of different regimes. We carried out a survey of two regions on the eastern and western flanks of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones. Two hundred and eight new heat flow measurements were obtained along six seismic profiles, on 5 to 14 Ma old seafloor. Thirty sediment cores (from which porewaters have been extracted) have been collected with a Kullenberg corer equipped with thermistors thus allowing simultaneous heat flow measurement. Most heat flow values are lower than those predicted by purely conductive cooling models, with some local variations and exceptions: heat flow values on the eastern flank of the study area are more variable than on the western flank, where they tend to increase westward as the sedimentary cover in the basins becomes thicker and more continuous. Heat flow is also higher, on average, on the northern sides of both the western and eastern field regions and includes values close to conductive predictions near the Oceanographer Fracture Zone. All the sediment porewaters have a chemical composition similar to that of bottom seawater (no anomaly linked to fluid circulation has been detected). Heat flow values and pore fluid compositions are consistent with fluid circulation in volcanic rocks below the sediment. The short distances between seamounts and short fluid pathways explain that fluids flowing in the basaltic aquifer below the sediment have remained cool and unaltered. Finally, relief at small-scale is calculated using variogram of bathymetry and compared for different regions affected by hydrothermal circulation.

  8. Numerical Simulation in Steady Flow of Newtonian and Shear Thickening Fluids in Pipes With Circular Cross-Section

    NASA Astrophysics Data System (ADS)

    Galindo-Rosales, F. J.; Rubio-Hernández, F. J.

    2008-07-01

    Process engineering deals with the processing of large quantities of materials and they must be transported from one unit operation to another within the processing environment. This is commonly made through pipelines, where occurs a dissipation of energy due essentially to frictional losses against the inside wall of the pipe and changes in the internal energy. Then it is needed an energy source to keep the fluid moving, commonly a pump. Due to differences in the internal structure, dissipations of energy must be different from Newtonian fluids to shear thickening fluids. Moreover, because of the inherent structure that is exhibited by shear thickening fluids, laminar motion of these fluids is encountered far more commonly than with Newtonian fluids. Rheological experiments confirm that suspensions of Aerosil®R816 in Polypropylene glycol (PPG) of low molecular weights (400 and 2000 g/mol) exhibit reversible shear thickening behaviour. Cross model fits properly their viscosity curve in the region of shear thickening behaviour. Thus the constitutive equations obtained experimentally have been incorporated into the momentum conservation equation in order to study the reference case of the steady laminar flow in a pipe of circular cross-section, providing us with relevant information including the fully-developed velocity profiles, the friction factor and the entrance length, depending on the rheological properties of each suspension. Our results could be applied to the optimal design and layout of flow networks, which may represent a significant fraction of the total plant cost.

  9. Magnetic field effect on Poiseuille flow and heat transfer of carbon nanotubes along a vertical channel filled with Casson fluid

    NASA Astrophysics Data System (ADS)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said

    2017-01-01

    Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.

  10. A 2D nonlinear multiring model for blood flow in large elastic arteries

    NASA Astrophysics Data System (ADS)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  11. On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.

    PubMed

    Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan

    2017-04-01

    In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. F-actin and microtubule suspensions as indeterminate fluids.

    PubMed

    Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R

    1987-03-20

    The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.

  13. Evolution of an electron plasma vortex in a strain flow

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2016-10-01

    Coherent vortex structures are ubiquitous in fluids and plasmas and are examples of self-organized structures in nonlinear dynamical systems. The fate of these structures in strain and shear flows is an important issue in many physical systems, including geophysical fluids and shear suppression of turbulence in plasmas. In two-dimensions, an inviscid, incompressible, ideal fluid can be modeled with the Euler equations, which is perhaps the simplest system that supports vortices. The Drift-Poisson equations for pure electron plasmas in a strong, uniform magnetic field are isomorphic to the Euler equations, and so electron plasmas are an excellent test bed for the study of 2D vortex dynamics. This talk will describe results from a new experiment using pure electron plasmas in a specially designed Penning-Malmberg (PM) trap to study the evolution of an initially axisymmetric 2D vortex subject to externally imposed strains. Complementary vortex-in-cell simulations are conducted to validate the 2D nature of the experimental results and to extend the parameter range of these studies. Data for vortex destruction using both instantaneously applied and time dependent strains with flat (constant vorticity) and extended radial profiles will be presented. The role of vortex self-organization will be discussed. A simple 2D model works well for flat vorticity profiles. However, extended profiles exhibit more complicated behavior, such as filamentation and stripping; and these effects and their consequences will be discussed. Work done in collaboration with N. C. Hurst, D. H. E. Dubin, and C. M. Surko.

  14. Ferromagnetic effects for nanofluid venture through composite permeable stenosed arteries with different nanosize particles

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Mustafa, M. T.

    2015-07-01

    In the present article ferromagnetic field effects for copper nanoparticles for blood flow through composite permeable stenosed arteries is discussed. The copper nanoparticles for the blood flow with water as base fluid with different nanosize particles is not explored upto yet. The equations for the Cu-water nanofluid are developed first time in literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. Effect of various flow parameters on the flow and heat transfer characteristics are utilized.

  15. Effect of Temperature and Fluid Flow on Dendrite Growth During Solidification of Al-3 Wt Pct Cu Alloy by the Two-Dimensional Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Gu, Cheng; Wei, Yanhong; Liu, Renpei; Yu, Fengyi

    2017-12-01

    A two-dimensional cellular automaton-finite volume model was developed to simulate dendrite growth of Al-3 wt pct Cu alloy during solidification to investigate the effect of temperature and fluid flow on dendrite morphology, solute concentration distribution, and dendrite growth velocity. Different calculation conditions that may influence the results of the simulation, including temperature and flow, were considered. The model was also employed to study the effect of different undercoolings, applied temperature fields, and forced flow velocities on solute segregation and dendrite growth. The initial temperature and fluid flow have a significant impact on the dendrite morphologies and solute profiles during solidification. The release of energy is operated with solidification and results in the increase of temperature. A larger undercooling leads to larger solute concentration near the solid/liquid interface and solute concentration gradient at the same time-step. Solute concentration in the solid region tends to increase with the increase of undercooling. Four vortexes appear under the condition when natural flow exists: the two on the right of the dendrite rotate clockwise, and those on the left of the dendrite rotate counterclockwise. With the increase of forced flow velocity, the rejected solute in the upstream region becomes easier to be washed away and enriched in the downstream region, resulting in acceleration of the growth of the dendrite in the upstream and inhibiting the downstream dendrite growth. The dendrite perpendicular to fluid flow shows a coarser morphology in the upstream region than that of the downstream. Almost no secondary dendrite appears during the calculation process.

  16. Impacts of variable thermal conductivity on stagnation point boundary layer flow past a Riga plate with variable thickness using generalized Fourier's law

    NASA Astrophysics Data System (ADS)

    Shah, S.; Hussain, S.; Sagheer, M.

    2018-06-01

    This article explores the problem of two-dimensional, laminar, steady and boundary layer stagnation point slip flow over a Riga plate. The incompressible upper-convected Maxwell fluid has been considered as a rheological fluid model. The heat transfer characteristics are investigated with generalized Fourier's law. The fluid thermal conductivity is assumed to be temperature dependent in this study. A system of partial differential equations governing the flow of an upper-convected Maxwell fluid, heat and mass transfer using generalized Fourier's law is developed. The main objective of the article is to inspect the impacts of pertinent physical parameters such as the stretching ratio parameter (0 ⩽ A ⩽ 0.3) , Deborah number (0 ⩽ β ⩽ 0.6) , thermal relaxation parameter (0 ⩽ γ ⩽ 0.5) , wall thickness parameter (0.1 ⩽ α ⩽ 3.5) , slip parameter (0 ⩽ R ⩽ 1.5) , thermal conductivity parameter (0.1 ⩽ δ ⩽ 1.0) and modified Hartmann number (0 ⩽ Q ⩽ 3) on the velocity and temperature profiles. Suitable local similarity transformations have been used to get a system of non-linear ODEs from the governing PDEs. The numerical solutions for the dimensionless velocity and temperature distributions have been achieved by employing an effective numerical method called the shooting method. It is seen that the velocity profile shows the reduction in the velocity for the higher values of viscoelastic parameter and the thermal relaxation parameter. In addition, to enhance the reliability at the maximum level of the obtained numerical results by shooting method, a MATLAB built-in solver bvp4c has also been utilized.

  17. Low Reynolds number kappa-epsilon and empirical transition models for oscillatory pipe flow and heat transfer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bauer, Christopher

    1993-01-01

    Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.

  18. Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2010-03-01

    The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.

  19. Flow-Field Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Lin, John C.; Allan, Brian G.

    2002-01-01

    Detailed flow-field measurements were performed downstream of a single vortex generator (VG) using an advanced Stereo Digital Particle Image Velocimetry system. Thc passive flow-control devices examined consisted of a low-profile VG with a device height, h, approximately equal to 20 percent of the boundary-layer thickness, sigma, and a conventional VG with h is approximately sigma. Flow-field data were taken at twelve cross-flow planes downstream of the VG to document and quantify the evolution of embedded streamwise vortex. The effects of device angle of attack on vortex development downstream were compared between the low-profile VG and the conventional VG. Key parameters including vorticity, circulation, trajectory, and half-life radius - describing concentration, strength, path, and size, respectively--of the device-induced streamwise vortex were extracted from the flow-field data. The magnitude of maximum vorticity increases as angle of attack increases for the low-profile VG, but the trend is reversed for the conventional VG, probably due to flow stalling around the larger device at higher angles of attack. Peak vorticity and circulation for the low-profile VG decays exponentially and inversely proportional to the distance downstream from the device. The device-height normalized vortex trajectories for the low-profile VG, especially in the lateral direction, follow the general trends of the conventional VG. The experimental database was used to validate the predictive capability of computational fluid dynamics (CFD). CFD accurately predicts the vortex circulation and path; however, improvements are needed for predicting the vorticity strength and vortex size.

  20. Singular flow dynamics in three space dimensions driven by advection

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Schamel, H.

    2002-03-01

    The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.

  1. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  2. Flow measurement around a model ship with propeller and rudder

    NASA Astrophysics Data System (ADS)

    van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.

    2006-04-01

    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.

  3. Unsteady viscous effects in the flow over an oscillating surface. [mathematical model

    NASA Technical Reports Server (NTRS)

    Lerner, J. I.

    1972-01-01

    A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.

  4. Development & experimental validation of a SINDA/FLUINT thermal/fluid/electrical model of a multi-tube AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Borkowski, C.A.; Huang, C.

    1998-01-01

    AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less

  5. The Boundary Layer Flows of a Rivlin-Ericksen Fluid

    NASA Astrophysics Data System (ADS)

    Sadeghy, K.; Khabazi, N.; Taghavi, S. M.

    The present work deals with the two-dimensional incompressible, laminar, steady-state boundary layer equations. First, we determine a family of velocity distributions outside the boundary layer such that these problems may have similarity solutions. We study the Falkner-Skan flow of a viscoelastic fluid governed by second order model, as the Reynolds number Re→ ∞. We obtain an ordinary forth order differential equation to obtain the stream function, velocity profile and the stress. The stream function is then governed by a generalized Falkner-Skan equation. In comparison with Newtonian Falkner-Skan equation that has two coefficients this new one has four coefficients that two of them represent elastic properties of the fluid. The effects of the elastic parameter on the velocity filed have been discussed. As it is shown in the figure there is a good agreement between numerical results and previous special cases confirm the validity of the presented algorithm.

  6. Ice sculpture in the Martian outflow channels

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1982-01-01

    Viking Orbiter and terrestrial satellite images are examined at similar resolution to compare features of the Martian outflow channels with features produced by the movement of ice on earth, and many resemblances are found. These include the anastomoses, sinuosities, and U-shaped cross profiles of valleys; hanging valleys; linear scour marks on valley walls; grooves and ridges on valley floors; and the streamlining of bedrock highs. Attention is given to the question whether ice could have moved in the Martian environment. It is envisaged that springs or small catastrophic outbursts discharged fluids from structural outlets or chaotic terrains. These fluids built icings that may have grown into substantial masses and eventually flowed like glaciers down preexisting valleys. An alternative is that the fluids formed rivers or floods that in turn formed ice jams and consolidated into icy masses in places where obstacles blocked their flow.

  7. Transitional Benthic Boundary Layers and their Influence on Nutrient Flux in Tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Koetje, K. M.; Foster, D. L.; Lippmann, T. C.; Kalnejais, L. H.

    2016-12-01

    Quantifying the coupled physical and geochemical processes in the fluid-sediment interface is critical to managing coastal resources. This is of particular importance during times of enhanced hydrodynamic forcing where extreme tide or wind events can have a significant impact on water quality. A combination of field and laboratory experiments were used to examine the relationship between large-scale fluid shear stresses and geochemical fluxes at the fluid-sediment interface in the Great Bay Estuary, New Hampshire. Sediment geochemical measurements paired with flow field observations along estuary-wide transects over several tidal cycles provide nutrient load estimates that can be scaled to represent the whole Bay. Three-dimensional flow field measurements collected using a maneuverable personal watercraft were used to determine the spatial and temporal variability of the shear stress throughout the Bay. High-resolution bottom boundary layer dynamics were observed using a suite of acoustic Doppler current profilers (ADCP) in order to improve the accuracy of diffusive flux estimates by directly measuring the thickness of the benthic boundary layer. Over the 2.5 m tidal range and at water depths ranging from 0.3 m to 1.5 m at mean lower low water, peak mean flows ranged from 0.2 m/s to 1 m/s at the sampling sites. The dominant contribution of hydrodynamic forcing to the Bay is due to tidal flows, which are largely unidirectional during flood tide. Sediment grain size analysis characterized the bed at sampling sites as fine-grained sandy mud (d50 = 47 μm). Sampling during typical tidal flow conditions, a smooth turbulent flow field was observed and the threshold of motion was not exceeded. Along with sediment characterization, porosity profiles and erosion chamber experiments were used to characterize nutrient release. This host of data provides shear stress estimates that can constrain nutrient loads under variable hydrodynamic conditions.

  8. Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine

    PubMed Central

    Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David

    2012-01-01

    Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970

  9. Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method

    NASA Astrophysics Data System (ADS)

    Shahid, A.; Zhou, Z.; Bhatti, M. M.; Tripathi, D.

    2018-03-01

    Nanofluid dynamics with magnetohydrodynamics has tremendously contributed in industrial applications recently since presence of nanoparticle in base fluids enhances the specific chemical and physical properties. Owing to the relevance of nanofluid dynamics, we analyze the nanofluid flow in the presence of gyrotactic microorganism and magnetohydrodynamics through a stretching/shrinking plate. The impacts of chemical reaction and thermal radiation on flow characteristics are also studied. To simplify the governing equations of microorganisms, velocity, concentration and temperature, the similarity transformations are employed. The couple governing equations are numerically solved using Successive Taylor Series Linearization Method (STSLM). The velocity profile, motile microorganism density profile, concentration profile, temperature profile as well as Nusselt number, skin friction coefficient, Sherwood number and density number of motile microorganisms are discussed using tables and graphs against all the sundry parameters. A numerical comparison is also given for Nusselt number, Sherwood number, skin friction, and density number of motile microorganisms with previously published results to validate the present model. The results show that Nusselt number, Sherwood number and density number diminish with increasing the magnetic field effects.

  10. Pore Water Chemistry as Sensitive Indicators for Fluid Flow in Brazos-Trinity Basin #4 and Ursa Basin, Northeast Gulf of Mexico (IODP Expedition 308)

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Gilhooly, W.; Takano, Y.; Flemings, P.; Behrmann, J.; John, C.

    2005-12-01

    Rapid sediment loading drives overpressure in marine sedimentary basins around the world. During IODP Expedition 308, two basins (Brazos-Trinity Basin #4 and Ursa Basin) with large different sedimentary loading of turbidite and hemipelagic sediments in the northeast Gulf of Mexico, were investigated to characterize in-situ spatial variations in temperature, pressure, and rock and fluid physical properties and chemistry. Pore water chemical compositions including alkalinity, salinity, pH, anions (Cl, SO4, PO4, H4SiO4), cations (Na, K, Ca, Mg), trace metals (Li, B, Sr, Ba, Fe, Mn), were analyzed in four drill holes at sites U1319, U1320, U1322, and U1324, in the Brazos-Trinity Basin #4 and Ursa Basin. At all sites, pore water chemistry shows great variability at shallow depths with maximam or miminum values corresponding well to seismic reflectors and lithostratigraphic units. The sulfate profile shows a dramatic decrease in SO4 content with a sulfate-methane interface (SMI) of 15 mbsf at Site 1319 and 22 mbsf at Site 1320 in the Brazos-Trinity Basin #4 Basin. In contrast, the sulfate- methane interfaces (SMI) are much deeper in Ursa Basin, i.e., 74 mbsf at Site 1322, and 94 mbsf at Site 2324. The deep SMI in Ursa Basin suggest relatively slow anaerobic degradation of organic matter considering the location of drilling site though we do not determine sulfate reducing rate with organic matter or methane as substrate at this leg. The downhole consumption of sulfate coincides with a concomitant increase in alkalinity and a decrease of Mn, Ca, Mg, Sr, and Li. Furthermore, initial pore water chemistry results appear to be influence by hydrogeologic fluid flow in both basins. Coincidence between pore water profile concentration maxima and parallel seismic reflectors may suggest that these seismic surfaces occur along specific stratigraphic units, which serve as channels for lateral fluid flow. Overall, the downhole variations in interstitial water chemistry may reflect a combination of processes, including anaerobic degradation of organic matter, diagenetic carbonate precipitation/dissolution, and fluid flow pathways.

  11. Computations of Axisymmetric Flows in Hypersonic Shock Tubes

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Wilson, Gregory J.

    1995-01-01

    A time-accurate two-dimensional fluid code is used to compute test times in shock tubes operated at supersonic speeds. Unlike previous studies, this investigation resolves the finer temporal details of the shock-tube flow by making use of modern supercomputers and state-of-the-art computational fluid dynamic solution techniques. The code, besides solving the time-dependent fluid equations, also accounts for the finite rate chemistry in the hypersonic environment. The flowfield solutions are used to estimate relevant shock-tube parameters for laminar flow, such as test times, and to predict density and velocity profiles. Boundary-layer parameters such as bar-delta(sub u), bar-delta(sup *), and bar-tau(sub w), and test time parameters such as bar-tau and particle time of flight t(sub f), are computed and compared with those evaluated by using Mirels' correlations. This article then discusses in detail the effects of flow nonuniformities on particle time-of-flight behind the normal shock and, consequently, on the interpretation of shock-tube data. This article concludes that for accurate interpretation of shock-tube data, a detailed analysis of flowfield parameters, using a computer code such as used in this study, must be performed.

  12. Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2018-05-01

    The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.

  13. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  14. Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.

    PubMed

    Tabassum, Rabil; Mehmood, R; Nadeem, S

    2017-09-01

    This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Stabilization of miscible viscous fingering by a step-growth polymerization reaction

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.

  16. Responsive Copolymers for Enhanced Petroleum Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Charles; Hester, Roger

    The objectives of this work was to: (1) synthesize responsive, amphiphilic systems; (2) characterize molecular structure and solution behavior; (3) measure rheological properties of the aqueous fluids including behavior in fixed geometry flow profiles and beds; and (4) to tailor polymer compositions for in situ rheology control under simulated reservoir conditions.

  17. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  18. Modelling Time and Length Scales of Scour Around a Pipeline

    NASA Astrophysics Data System (ADS)

    Smith, H. D.; Foster, D. L.

    2002-12-01

    The scour and burial of submarine objects is an area of interest for engineers, oceanographers and military personnel. Given the limited availability of field observations, there exists a need to accurately describe the hydrodynamics and sediment response around an obstacle using numerical models. In this presentation, we will compare observations of submarine pipeline scour with model predictions. The research presented here uses the computational fluid dynamics (CFD) model FLOW-3D. FLOW-3D, developed by Flow Science in Santa Fe, NM, is a 3-dimensional finite-difference model that solves the Navier-Stokes and continuity equations. Using the Volume of Fluid (VOF) technique, FLOW-3D is able to resolve fluid-fluid and fluid-air interfaces. The FAVOR technique allows for complex geometry to be resolved with rectangular grids. FLOW-3D uses a bulk transport method to describe sediment transport and feedback to the hydrodynamic solver is accomplished by morphology evolution and fluid viscosity due to sediment suspension. Previous investigations by the authors have shown FLOW-3D to well-predict the hydrodynamics around five static scoured bed profiles and a stationary pipeline (``Modelling of Flow Around a Cylinder Over a Scoured Bed,'' submit to Journal of Waterway, Port, Coastal, and Ocean Engineering). Following experiments performed by Mao (1986, Dissertation, Technical University of Denmark), we will be performing model-data comparisons of length and time scales for scour around a pipeline. Preliminary investigations with LES and k-ɛ closure schemes have shown that the model predicts shorter time scales in scour hole development than that observed by Mao. Predicted time and length scales of scour hole development are shown to be a function of turbulence closure scheme, grain size, and hydrodynamic forcing. Subsequent investigations consider variable wave-current flow regimes and object burial. This investigation will allow us to identify different regimes for the scour process based on dimensionless parameters such as the Reynolds number, the Keulegan-Carpenter number, and the sediment mobility number. This research is sponsored by the Office of Naval Research - Mine Burial Program.

  19. Modeling Fluid Flow and Microbial Reactions in the Peru Accretionary Complex

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Matmon, D.

    2002-12-01

    Accretionary complexes are sites where sediment compaction and deeper reactions drive large-scale flow systems that can affect global solute budgets. Extensive modeling and drilling studies have elucidated the origin of the fluids, pore pressures, duration of flow, and major flow paths in these settings. An important research goal is to quantify the effect of these flow systems on global chemical budgets of reactive solutes such as carbon. The Peru margin represents an end member setting that can serve as a basis to extend the results to other margins. The sediments are relatively high in organic carbon with an average value of 2.6%. The subduction rate at ~9 cm/yr and taper angle at 14-17° are among the largest in the world. Recent microbial studies on Ocean Drilling Program Leg 201 at the Peru accretionary margin provide many key elements needed to quantify the processes affecting organic carbon in an accretionary complex. Pore water chemistry data from Site 1230 located in the Peru accretionary prism indicate that sulfate reduction is important in the top 8 mbsf. Below this depth, methanogenesis is the dominant process and methane concentrations are among the highest measured at any site on Leg 201. The presence of high methane concentrations at shallow depths suggests that methane is transported upward in the prism by fluid flow. Measurements of in-situ pore pressures and temperatures also support the presence of upward fluid flow. A single in-situ pressure measurement at ~100 mbsf indicated an overpressure of 0.14 MPa. For a reasonable formation permeability of ~ 10-16 m2, the measured overpressure is adequate to produce flow at a rate of ~5 mm/yr. This rate is comparable to previous model estimates for flow rates in the Peru accretionary prism. In addition, curvature in the downhole temperature profile can best be explained by upward fluid flow of 1-10 mm/yr. These data are used to constrain a two-dimensional coupled fluid flow and reactive transport model focusing on the fate of organic carbon entering in the Peru accretionary complex. The proposed work is the first attempt at a quantitative estimate of the processes affecting the fate of organic carbon entering a subduction zone.

  20. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  1. Characteristics of Helical Flow through Neck Cutoffs

    NASA Astrophysics Data System (ADS)

    Richards, D.; Konsoer, K. M.; Turnipseed, C.; Willson, C. S.

    2017-12-01

    Meander cutoffs and oxbows lakes are a ubiquitous feature of riverine landscapes yet there is a paucity of detailed investigations concentrated on the three-dimensional flow structure through evolving neck cutoffs. The purpose of this research is to investigate and characterize helical flow through neck cutoffs with two different planform configurations: elongate meander loops and serpentine loops. Three-dimensional velocity measurements was collected with an acoustic Doppler current profiler for five cutoffs on the White River, Arkansas. Pronounced helical flow was found through all elongate loop cutoff sites, formed from the balance between centrifugal force resulting from the curving of flow through the cutoff channel and pressure gradient force resulting from water surface super-elevation between primary flow and flow at the entrance and exit of the abandoned loop. The sense of motion of the helical flow caused near-surface fluid to travel outward toward the abandoned loop while near-bed fluid was redirected toward the downstream channel. Another characteristic of the helical flow structure for elongate loop cutoffs was the reversal of helical flow over a relatively short distance, causing patterns of secondary circulation that differed from typical patterns observed through curved channels with point bars. Lastly, helical flow was revealed within zones of strong flow recirculation, enhanced by an exchange of streamwise momentum between shear layers.

  2. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  3. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-01-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  4. An improved algorithm for the modeling of vapor flow in heat pipes

    NASA Astrophysics Data System (ADS)

    Tower, Leonard K.; Hainley, Donald C.

    1989-12-01

    A heat pipe vapor flow algorithm suitable for use in codes on microcomputers is presented. The incompressible heat pipe vapor flow studies of Busse are extended to incorporate compressibility effects. The Busse velocity profile factor is treated as a function of temperature and pressure. The assumption of a uniform saturated vapor temperature determined by the local pressure at each cross section of the pipe is not made. Instead, a mean vapor temperature, defined by an energy integral, is determined in the course of the solution in addition to the pressure, saturation temperature at the wall, and the Busse velocity profile factor. For alkali metal working fluids, local species equilibrium is assumed. Temperature and pressure profiles are presented for several cases involving sodium heat pipes. An example for a heat pipe with an adiabatic section and two evaporators in sequence illustrates the ability to handle axially varying heat input. A sonic limit plot for a short evaporator falls between curves for the Busse and Levy inviscid sonic limits.

  5. Prediction of far-field wind turbine noise propagation with parabolic equation.

    PubMed

    Lee, Seongkyu; Lee, Dongjai; Honhoff, Saskia

    2016-08-01

    Sound propagation of wind farms is typically simulated by the use of engineering tools that are neglecting some atmospheric conditions and terrain effects. Wind and temperature profiles, however, can affect the propagation of sound and thus the perceived sound in the far field. A better understanding and application of those effects would allow a more optimized farm operation towards meeting noise regulations and optimizing energy yield. This paper presents the parabolic equation (PE) model development for accurate wind turbine noise propagation. The model is validated against analytic solutions for a uniform sound speed profile, benchmark problems for nonuniform sound speed profiles, and field sound test data for real environmental acoustics. It is shown that PE provides good agreement with the measured data, except upwind propagation cases in which turbulence scattering is important. Finally, the PE model uses computational fluid dynamics results as input to accurately predict sound propagation for complex flows such as wake flows. It is demonstrated that wake flows significantly modify the sound propagation characteristics.

  6. Jet Noise Reduction Potential from Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  7. Jet Noise Reduction Potential From Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  8. Non-axisymmetric Flows and Transport in the Edge of MST

    NASA Astrophysics Data System (ADS)

    Miller, Matthew Charles

    Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.

  9. Numerical modelling on pulsatile flow of Casson nanofluid through an inclined artery with stenosis and tapering under the influence of magnetic field and periodic body acceleration

    NASA Astrophysics Data System (ADS)

    Ponalagusamy, R.; Priyadharshini, S.

    2017-11-01

    The present study investigates the pulsatile flow of Casson nanofluid through an inclined and stenosed artery with tapering in the presence of magnetic field and periodic body acceleration. The iron oxide nanoparticles are allowed to flow along with it. The governing equations for the flow of Casson fluid when the artery is tapered slightly having mild stenosis are highly non-linear and the momentum equations for temperature and concentration are coupled and are solved using finite difference numerical schemes in order to find the solutions for velocity, temperature, concentration, wall shear stress, and resistance to blood flow. The aim of the present study is to analyze the effects of flow parameters on the flow of nanofluid through an inclined arterial stenosis with tapering. These effects are represented graphically and concluded that the wall shear stress profiles enhance with increase in yield stress, magnetic field, thermophoresis parameter and decreases with Brownian motion parameter, local temperature Grashof number, local nanoparticle Grashof number. The significance of the model is the existence of yield stress and it is examined that when the rheology of blood changes from Newtonian to Casson fluid, the percentage of decrease in the flow resistance is higher with respect to the increase in the parameters local temperature Grashof number, local nanoparticle Grashof number, Brownian motion parameter, and Prandtl number. It is pertinent to observe that increase in the Brownian motion parameter leads to increment in concentration and temperature profiles. It is observed that the concentration of nanoparticles decreases with increase in the value of thermophoresis parameter.

  10. Phonological studies of the new gas-induced agitated reactor using computational fluid dynamics.

    PubMed

    Yang, T C; Hsu, Y C; Wang, S F

    2001-06-01

    An ozone-induced agitated reactor has been found to be very effective in degrading industrial wastewater. However, the cost of the ozone generation as well as its short residence time in reactors has restricted its application in a commercial scale. An innovated gas-induced draft tube installed inside a conventional agitated reactor was proved to effectively retain the ozone in a reactor. The setup was demonstrated to significantly promote the ozone utilization rate up to 96% from the conventional rate of 60% above the onset speed. This work investigates the mixing mechanism of an innovated gas-induced reactor for the future scale-up design by using the technique of computational fluid dynamics. A three-dimensional flow model was proposed to compute the liquid-gas free surface as well as the flow patterns inside the reactor. The turbulent effects generated by two 45 degrees pitch-blade turbines were considered and the two phases mixing phenomena were also manipulated by the Eulerian-Eulerian techniques. The consistency of the free surface profiles and the fluid flow patterns proved a good agreement between computational results and the experimental observation.

  11. Design of a microfluidic system for red blood cell aggregation investigation.

    PubMed

    Mehri, R; Mavriplis, C; Fenech, M

    2014-06-01

    The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.

  12. On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.

    2018-03-01

    This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.

  13. Volume-Of-Fluid Simulation for Predicting Two-Phase Cooling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Gorle, Catherine; Parida, Pritish; Houshmand, Farzad; Asheghi, Mehdi; Goodson, Kenneth

    2014-11-01

    Two-phase flow in microfluidic geometries has applications of increasing interest for next generation electronic and optoelectronic systems, telecommunications devices, and vehicle electronics. While there has been progress on comprehensive simulation of two-phase flows in compact geometries, validation of the results in different flow regimes should be considered to determine the predictive capabilities. In the present study we use the volume-of-fluid method to model the flow through a single micro channel with cross section 100 × 100 μm and length 10 mm. The channel inlet mass flux and the heat flux at the lower wall result in a subcooled boiling regime in the first 2.5 mm of the channel and a saturated flow regime further downstream. A conservation equation for the vapor volume fraction, and a single set of momentum and energy equations with volume-averaged fluid properties are solved. A reduced-physics phase change model represents the evaporation of the liquid and the corresponding heat loss, and the surface tension is accounted for by a source term in the momentum equation. The phase change model used requires the definition of a time relaxation parameter, which can significantly affect the solution since it determines the rate of evaporation. The results are compared to experimental data available from literature, focusing on the capability of the reduced-physics phase change model to predict the correct flow pattern, temperature profile and pressure drop.

  14. An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids

    NASA Astrophysics Data System (ADS)

    Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad

    The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.

  15. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    PubMed

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  16. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  17. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  18. Responsive Copolymers for Enhanced Petroleum Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, C.; Hester, R.

    The objectives of this work was to: synthesize responsive copolymer systems; characterize molecular structure and solution behavior; measure rheological properties of aqueous fluids in fixed geometry flow profiles; and to tailor final polymer compositions for in situ rheology control under simulated conditions. This report focuses on the synthesis and characterization of novel stimuli responsive copolymers, the investigation of dilute polymer solutions in extensional flow and the design of a rheometer capable of measuring very dilute aqueous polymer solutions at low torque.

  19. Transonic airfoil and axial flow rotary machine

    DOEpatents

    Nagai, Naonori; Iwatani, Junji

    2015-09-01

    Sectional profiles close to a tip 124 and a part between a midportion 125 and a hub 123 are shifted to the upstream of an operating fluid flow in a sweep direction. Accordingly, an S shape is formed in which the tip 124 and the part between the midportion 125 and the hub 123 protrude. As a result, it is possible reduce various losses due to shook, waves, thereby forming a transonic airfoil having an excellent aerodynamic characteristic.

  20. Human cochlear hydrodynamics: A high-resolution μCT-based finite element study.

    PubMed

    De Paolis, Annalisa; Watanabe, Hirobumi; Nelson, Jeremy T; Bikson, Marom; Packer, Mark; Cardoso, Luis

    2017-01-04

    Measurements of perilymph hydrodynamics in the human cochlea are scarce, being mostly limited to the fluid pressure at the basal or apical turn of the scalae vestibuli and tympani. Indeed, measurements of fluid pressure or volumetric flow rate have only been reported in animal models. In this study we imaged the human ear at 6.7 and 3-µm resolution using µCT scanning to produce highly accurate 3D models of the entire ear and particularly the cochlea scalae. We used a contrast agent to better distinguish soft from hard tissues, including the auditory canal, tympanic membrane, malleus, incus, stapes, ligaments, oval and round window, scalae vestibule and tympani. Using a Computational Fluid Dynamics (CFD) approach and this anatomically correct 3D model of the human cochlea, we examined the pressure and perilymph flow velocity as a function of location, time and frequency within the auditory range. Perimeter, surface, hydraulic diameter, Womersley and Reynolds numbers were computed every 45° of rotation around the central axis of the cochlear spiral. CFD results showed both spatial and temporal pressure gradients along the cochlea. Small Reynolds number and large Womersley values indicate that the perilymph fluid flow at auditory frequencies is laminar and its velocity profile is plug-like. The pressure was found 102-106° out of phase with the fluid flow velocity at the scalae vestibule and tympani, respectively. The average flow velocity was found in the sub-µm/s to nm/s range at 20-100Hz, and below the nm/s range at 1-20kHz. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Fluid-structure coupling for an oscillating hydrofoil

    NASA Astrophysics Data System (ADS)

    Münch, C.; Ausoni, P.; Braun, O.; Farhat, M.; Avellan, F.

    2010-08-01

    Fluid-structure investigations in hydraulic machines using coupled simulations are particularly time-consuming. In this study, an alternative method is presented that linearizes the hydrodynamic load of a rigid, oscillating hydrofoil. The hydrofoil, which is surrounded by incompressible, turbulent flow, is modeled with forced and free pitching motions, where the mean incidence angle is 0° with a maximum angle amplitude of 2°. Unsteady simulations of the flow, performed with ANSYS CFX, are presented and validated with experiments which were carried out in the EPFL High-Speed Cavitation Tunnel. First, forced motion is investigated for reduced frequencies ranging from 0.02 to 100. The hydrodynamic load is modeled as a simple combination of inertia, damping and stiffness effects. As expected, the potential flow analysis showed the added moment of inertia is constant, while the fluid damping and the fluid stiffness coefficients depend on the reduced frequency of the oscillation motion. Behavioral patterns were observed and two cases were identified depending on if vortices did or did not develop in the hydrofoil wake. Using the coefficients identified in the forced motion case, the time history of the profile incidence is then predicted analytically for the free motion case and excellent agreement is found for the results from coupled fluid-structure simulations. The model is validated and may be extended to more complex cases, such as blade grids in hydraulic machinery.

  2. Effects of heat and mass transfer on unsteady boundary layer flow of a chemical reacting Casson fluid

    NASA Astrophysics Data System (ADS)

    Khan, Kashif Ali; Butt, Asma Rashid; Raza, Nauman

    2018-03-01

    In this study, an endeavor is to observe the unsteady two-dimensional boundary layer flow with heat and mass transfer behavior of Casson fluid past a stretching sheet in presence of wall mass transfer by ignoring the effects of viscous dissipation. Chemical reaction of linear order is also invoked here. Similarity transformation have been applied to reduce the governing equations of momentum, energy and mass into non-linear ordinary differential equations; then Homotopy analysis method (HAM) is applied to solve these equations. Numerical work is done carefully with a well-known software MATHEMATICA for the examination of non-dimensional velocity, temperature, and concentration profiles, and then results are presented graphically. The skin friction (viscous drag), local Nusselt number (rate of heat transfer) and Sherwood number (rate of mass transfer) are discussed and presented in tabular form for several factors which are monitoring the flow model.

  3. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks

    NASA Astrophysics Data System (ADS)

    Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.

    In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.

  4. Coaxial gas-liquid jet: Dispersion and dynamics

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. Yu.

    2018-03-01

    The aim of the work was to study the pneumatic spraying of liquids in a gas jet with reference to the creation of high-flow nozzles. A complex experimental study of a coaxial jet was performed with a central supply of liquid beyond the cutoff of the confusor nozzle at subsonic and supersonic flow conditions. A set of optical methods for flows diagnostics that can function in dense gas-liquid jets provides new data on the structure of the spray: the gas velocity field without liquid, shadow visualization of the geometry and wave structure of the jet with and without fluid, the velocity profiles of the liquid phase, size distribution of the droplets. The key parameters of the liquid breakup processes for the We numbers are obtained. A dynamic approach to the determination of average droplet sizes is considered. A physical model of a coaxial gas-liquid jet with a central fluid supply is proposed.

  5. Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection

    NASA Astrophysics Data System (ADS)

    Raju, C. S. K.; Ibrahim, S. M.; Anuradha, S.; Priyadharshini, P.

    2016-11-01

    In modern days, the mass transfer rate is challenging to the scientists due to its noticeable significance for industrial as well as engineering applications; owing to this we attempt to study the cross-diffusion effects on the magnetohydrodynamic nonlinear radiative Carreau fluid over a wedge filled with gyro tactic microorganisms. Numerical results are presented graphically as well as in tabular form with the aid of the Runge-Kutta and Newton methods. The effects of pertinent parameters on velocity, temperature, concentration and density of motile organism distributions are presented and discussed for two cases (suction and injection flows). For real-life application we also calculated the local Nusselt and Sherwood numbers. It is observed that thermal and concentration profiles are not uniform in the suction and injection flow cases. It is found that the heat and mass transport phenomenon is high in the injection case, while heat and mass transfer rates are high in the suction flow case.

  6. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  7. Intracellular microrheology of motile Amoeba proteus.

    PubMed

    Rogers, Salman S; Waigh, Thomas A; Lu, Jian R

    2008-04-15

    The motility of Amoeba proteus was examined using the technique of passive particle tracking microrheology, with the aid of newly developed particle tracking software, a fast digital camera, and an optical microscope. We tracked large numbers of endogeneous particles in the amoebae, which displayed subdiffusive motion at short timescales, corresponding to thermal motion in a viscoelastic medium, and superdiffusive motion at long timescales due to the convection of the cytoplasm. Subdiffusive motion was characterized by a rheological scaling exponent of 3/4 in the cortex, indicative of the semiflexible dynamics of the actin fibers. We observed shear-thinning in the flowing endoplasm, where exponents increased with increasing flow rate; i.e., the endoplasm became more fluid-like. The rheology of the cortex is found to be isotropic, reflecting an isotropic actin gel. A clear difference was seen between cortical and endoplasmic layers in terms of both viscoelasticity and flow velocity, where the profile of the latter is close to a Poiseuille flow for a Newtonian fluid.

  8. Intracellular Microrheology of Motile Amoeba proteus

    PubMed Central

    Rogers, Salman S.; Waigh, Thomas A.; Lu, Jian R.

    2008-01-01

    The motility of Amoeba proteus was examined using the technique of passive particle tracking microrheology, with the aid of newly developed particle tracking software, a fast digital camera, and an optical microscope. We tracked large numbers of endogeneous particles in the amoebae, which displayed subdiffusive motion at short timescales, corresponding to thermal motion in a viscoelastic medium, and superdiffusive motion at long timescales due to the convection of the cytoplasm. Subdiffusive motion was characterized by a rheological scaling exponent of 3/4 in the cortex, indicative of the semiflexible dynamics of the actin fibers. We observed shear-thinning in the flowing endoplasm, where exponents increased with increasing flow rate; i.e., the endoplasm became more fluid-like. The rheology of the cortex is found to be isotropic, reflecting an isotropic actin gel. A clear difference was seen between cortical and endoplasmic layers in terms of both viscoelasticity and flow velocity, where the profile of the latter is close to a Poiseuille flow for a Newtonian fluid. PMID:18192370

  9. Intracellular Microrheology of Motile Amoeba proteus

    NASA Astrophysics Data System (ADS)

    Rogers, S.; Waigh, T.; Lu, J.

    2008-04-01

    The motility of motile Amoeba proteus was examined using the technique of passive particle tracking microrheology, with the aid of newly-developed particle tracking software, a fast digital camera and an optical microscope. We tracked large numbers of endogeneous particles in the amoebae, which displayed subdiffusive motion at short time scales, corresponding to thermal motion in a viscoelastic medium, and superdiffusive motion at long time scales due to the convection of the cytoplasm. Subdiffusive motion was characterised by a rheological scaling exponent of 3/4 in the cortex, indicative of the semiflexible dynamics of the actin fibres. We observed shear-thinning in the flowing endoplasm, where exponents increased with increasing flow rate; i.e. the endoplasm became more fluid-like. The rheology of the cortex is found to be isotropic, reflecting an isotropic actin gel. A clear difference was seen between cortical and endoplasmic layers in terms of both viscoelasticity and flow velocity, where the profile of the latter is close to a Poiseuille flow for a Newtonian fluid.

  10. NIMROD modeling of poloidal flow damping in tokamaks using kinetic closures

    NASA Astrophysics Data System (ADS)

    Jepson, J. R.; Hegna, C. C.; Held, E. D.

    2017-10-01

    Calculations of poloidal flow damping in a tokamak are undertaken using two different implementations of the ion drift kinetic equation (DKE) in the extended MHD code NIMROD. The first approach is hybrid fluid/kinetic and uses a Chapman Enskog-like (CEL) Ansatz. Closure of the evolving lower-order fluid moment equations for n, V , and T is provided by solutions to the ion CEL-DKE written in the macroscopic flow reference frame. The second implementation solves the DKE using a delta-f approach. Here, the delta-f distribution describes all of the information beyond a static, lowest-order Maxwellian. We compare the efficiency and accuracy of these two approaches for a simple initial value problem that monitors the relaxation of the poloidal flow profile in high- and low-aspect-ratio tokamak geometry. The computation results are compared against analytic predictions of time dependent closures for the parallel viscous force. Supported by DoE Grants DE-FG02-86ER53218 and DE-FG02-04ER54746.

  11. Modeling the purging of dense fluid from a street canyon driven by an interfacial mixing flow and skimming flow

    NASA Astrophysics Data System (ADS)

    Baratian-Ghorghi, Z.; Kaye, N. B.

    2013-07-01

    An experimental study is presented to investigate the mechanism of flushing a trapped dense contaminant from a canyon by turbulent boundary layer flow. The results of a series of steady-state experiments are used to parameterize the flushing mechanisms. The steady-state experimental results for a canyon with aspect ratio one indicate that dense fluid is removed from the canyon by two different processes, skimming of dense fluid from the top of the dense layer; and by an interfacial mixing flow that mixes fresh fluid down into the dense lower layer (entrainment) while mixing dense fluid into the flow above the canyon (detrainment). A model is developed for the time varying buoyancy profile within the canyon as a function of the Richardson number which parameterizes both the interfacial mixing and skimming processes observed. The continuous release steady-state experiments allowed for the direct measurement of the skimming and interfacial mixing flow rates for any layer depth and Richardson number. Both the skimming rate and the interfacial mixing rate were found to be power-law functions of the Richardson number of the layer. The model results were compared to the results of previously published finite release experiments [Z. Baratian-Ghorghi and N. B. Kaye, Atmos. Environ. 60, 392-402 (2012)], 10.1016/j.atmosenv.2012.06.077. A high degree of consistency was found between the finite release data and the continuous release data. This agreement acts as an excellent check on the measurement techniques used, as the finite release data was based on curve fitting through buoyancy versus time data, while the continuous release data was calculated directly by measuring the rate of addition of volume and buoyancy once a steady-state was established. Finally, a system of ordinary differential equations is presented to model the removal of dense fluid from the canyon based on empirical correlations of the skimming and interfacial mixing taken form the steady-state experiments. The ODE model predicts well the time taken for a finite volume of dense fluid to be flushed from a canyon.

  12. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer.

    PubMed

    Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges

    2010-10-15

    When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Thermal Field Imaging Using Ultrasound

    NASA Technical Reports Server (NTRS)

    Andereck, D.; Rahal, S.; Fife, S.

    2000-01-01

    It is often desirable to be able to determine the temperature field in the interiors of opaque fluids forced into convection by externally imposed temperature gradients. To measure the temperature at a point in an opaque fluid in the usual fashion requires insertion of a probe, and to determine the full field therefore requires either the ability to move this probe or the introduction of multiple probes. Neither of these solutions is particularly satisfactory, although they can lead to quite accurate measurements. As an alternative we have investigated the use of ultrasound as a relatively non-intrusive probe of the temperature field in convecting opaque fluids. The temperature dependence of the sound velocity can be sufficiently great to permit a determination of the temperature from timing the traversal of an ultrasound pulse across a chamber. In this paper we will present our results on convecting flows of transparent and opaque fluids. Our experimental cells consist of relatively narrow rectangular cavities made of thermally insulating materials on the sides, and metal top and bottom plates. The ultrasound transducer is powered by a pulser/receiver, the signal output of which goes to a very high speed signal averager. The average of several hundred to several thousand signals is then sent to a computer for storage and analysis. The experimental procedure is to establish a convective flow by imposing a vertical temperature gradient on the chamber, and then to measure, at several regularly spaced locations, the transit time for an ultrasound pulse to traverse the chamber horizontally (parallel to the convecting rolls) and return to the transducer. The transit time is related to the temperature of the fluid through which the sound pulse travels. Knowing the relationship between transit time and temperature (determined in a separate experiment), we can extract the average temperature across the chamber at that location. By changing the location of the transducer it is then possible to find the average temperature at different locations along the chamber, thereby determining the temperature profile along the system. (In the future we will construct an array of transducers. This will give us the capability to determine the temperature profile much more rapidly than at present, an important consideration if time-dependent phenomena are to be studied.) To validate our procedure we introduced encapsulated liquid crystal particles into glycerol. The liquid crystal particles' color varies depending on the temperature of the fluid. A photograph of the fluid through transparent sidewalls therefore gives a picture of the temperature field of the convecting fluid, independent of our ultrasound imaging. A representative result is shown in the Figure 1, which reveals a very satisfying correspondence between the two techniques. Therefore we have a great deal of confidence that the ultrasound imaging approach is indeed measuring the actual temperature profile of the fluid. The technique has also been applied to convecting liquid metal flows, and representative data will be presented from those experiments as well.

  14. Episodic thermal perturbations associated with groundwater flow: An example from Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Hurwitz, S.; Ingebritsen, S.E.; Sorey, M.L.

    2002-01-01

    Temperature measurements in deep drill holes on volcano summits or upper flanks allow a quantitative analysis of groundwater induced heat transport within the edifice. We present a new temperature-depth profile from a deep well on the summit of Kilauea Volcano, Hawaii, and analyze it in conjunction with a temperature profile measured 26 years earlier. We propose two groundwater flow models to interpret the complex temperature profiles. The first is a modified confined lateral flow model (CLFM) with a continuous flux of hydrothermal fluid. In the second, transient flow model (TFM), slow conductive cooling follows a brief, advective heating event. We carry out numerical simulations to examine the timescales associated with each of the models. Results for both models are sensitive to the initial conditions, and with realistic initial conditions it takes between 750 and 1000 simulation years for either model to match the measured temperature profiles. With somewhat hotter initial conditions, results are consistent with onset of a hydrothermal plume ???550 years ago, coincident with initiation of caldera subsidence. We show that the TFM is consistent with other data from hydrothermal systems and laboratory experiments and perhaps is more appropriate for this highly dynamic environment. The TFM implies that volcano-hydrothermal systems may be dominated by episodic events and that thermal perturbations may persist for several thousand years after hydrothermal flow has ceased.

  15. Magnetic field effects for copper suspended nanofluid venture through a composite stenosed arteries with permeable wall

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Butt, Adil Wahid

    2015-05-01

    In the present paper magnetic field effects for copper nanoparticles for blood flow through composite stenosis in arteries with permeable wall are discussed. The copper nanoparticles for the blood flow with water as base fluid is not explored yet. The equations for the Cu-water nanofluid are developed first time in the literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. The effect of various flow parameters on the flow and heat transfer characteristics is utilized.

  16. Measuring Density Stratification and Understanding its Impact on Sediment Transport in Fine-grained Rivers, Based on Observations from the Lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Lamb, M. P.; Carlson, B.; Kineke, G. C.; Parker, G.

    2017-12-01

    High concentrations of suspended sediment in channelized fluid flow produces density stratification that can alter the turbulent flow structure, thus limiting fluid momentum redistribution and affecting sediment transport capacity. A low channel-bed slope and large flow depth are hypothesized to be additional important factors contributing to density stratification. However, there are limited observations of density stratification in large rivers, especially those that carry significant fluxes of mud, and so the conditions leading to the development of density stratification are poorly constrained. The Yellow River, China, is a fine-grained and low-sloping river that maintains some of the highest suspended sediment concentrations in large rivers worldwide, making it an ideal natural laboratory for studying density stratification and its impact on sediment transport. Suspended sediment samples from the lower Yellow River, collected over a range of discharge conditions, produced sediment concentration profiles that are used in conjunction with velocity profiles to determine the threshold shear velocity for density stratification effects to develop. Comparing measured and predicted concentration and velocity profiles demonstrates that, there is no significant density stratification for base flow conditions; however, above a shear velocity value of 0.05 m/s, there is a progressive offset between the measured and predicted profiles, indicating that density stratification is increasingly important with higher shear stress values. The analyses further indicate that sediment entrainment from the bed and sediment diffusivity within the water column are significantly impacted by density stratification, suggesting that shear stress and sediment transport rates are inhibited by the development of density stratification. Near-bed concentration measurements are used to assess a stress-to-entrainment relationship, accounting for density stratification. These measurements are being used to refine relations for sediment entrainment and sediment flux in sandy and muddy, lowland rivers and deltas.

  17. Impact of mismatched and misaligned laser light sheet profiles on PIV performance

    NASA Astrophysics Data System (ADS)

    Grayson, K.; de Silva, C. M.; Hutchins, N.; Marusic, I.

    2018-01-01

    The effect of mismatched or misaligned laser light sheet profiles on the quality of particle image velocimetry (PIV) results is considered in this study. Light sheet profiles with differing widths, shapes, or alignment can reduce the correlation between PIV images and increase experimental errors. Systematic PIV simulations isolate these behaviours to assess the sensitivity and implications of light sheet mismatch on measurements. The simulations in this work use flow fields from a turbulent boundary layer; however, the behaviours and impacts of laser profile mismatch are highly relevant to any fluid flow or PIV application. Experimental measurements from a turbulent boundary layer facility are incorporated, as well as additional simulations matched to experimental image characteristics, to validate the synthetic image analysis. Experimental laser profiles are captured using a modular laser profiling camera, designed to quantify the distribution of laser light sheet intensities and inform any corrective adjustments to an experimental configuration. Results suggest that an offset of just 1.35 standard deviations in the Gaussian light sheet intensity distributions can cause a 40% reduction in the average correlation coefficient and a 45% increase in spurious vectors. Errors in measured flow statistics are also amplified when two successive laser profiles are no longer well matched in alignment or intensity distribution. Consequently, an awareness of how laser light sheet overlap influences PIV results can guide faster setup of an experiment, as well as achieve superior experimental measurements.

  18. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  19. Effect of thermal radiation and chemical reaction on non-Newtonian fluid through a vertically stretching porous plate with uniform suction

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Khan, Ilyas; Ullah, Murad; Tlili, I.

    2018-06-01

    In this work, we discuss the unsteady flow of non-Newtonian fluid with the properties of heat source/sink in the presence of thermal radiation moving through a binary mixture embedded in a porous medium. The basic equations of motion including continuity, momentum, energy and concentration are simplified and solved analytically by using Homotopy Analysis Method (HAM). The energy and concentration fields are coupled with Dankohler and Schmidt numbers. By applying suitable transformation, the coupled nonlinear partial differential equations are converted to couple ordinary differential equations. The effect of physical parameters involved in the solutions of velocity, temperature and concentration profiles are discussed by assign numerical values and results obtained shows that the velocity, temperature and concentration profiles are influenced appreciably by the radiation parameter, Prandtl number, suction/injection parameter, reaction order index, solutal Grashof number and the thermal Grashof. It is observed that the non-Newtonian parameter H leads to an increase in the boundary layer thickness. It was established that the Prandtl number decreases thee thermal boundary layer thickness which helps in maintaining system temperature of the fluid flow. It is observed that the temperature profiles higher for heat source parameter and lower for heat sink parameter throughout the boundary layer. Fromm this simulation it is analyzed that an increase in the Schmidt number decreases the concentration boundary layer thickness. Additionally, for the sake of comparison numerical method (ND-Solve) and Adomian Decomposition Method are also applied and good agreement is found.

  20. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    NASA Astrophysics Data System (ADS)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  1. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.

    PubMed

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-05-25

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.

  2. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

    PubMed Central

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-01-01

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  4. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  5. Applicability of Kinematic and Diffusive models for mud-flows: a steady state analysis

    NASA Astrophysics Data System (ADS)

    Di Cristo, Cristiana; Iervolino, Michele; Vacca, Andrea

    2018-04-01

    The paper investigates the applicability of Kinematic and Diffusive Wave models for mud-flows with a power-law shear-thinning rheology. In analogy with a well-known approach for turbulent clear-water flows, the study compares the steady flow depth profiles predicted by approximated models with those of the Full Dynamic Wave one. For all the models and assuming an infinitely wide channel, the analytical solution of the flow depth profiles, in terms of hypergeometric functions, is derived. The accuracy of the approximated models is assessed by computing the average, along the channel length, of the errors, for several values of the Froude and kinematic wave numbers. Assuming the threshold value of the error equal to 5%, the applicability conditions of the two approximations have been individuated for several values of the power-law exponent, showing a crucial role of the rheology. The comparison with the clear-water results indicates that applicability criteria for clear-water flows do not apply to shear-thinning fluids, potentially leading to an incorrect use of approximated models if the rheology is not properly accounted for.

  6. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres.

    PubMed

    Narayani, R; Rao, K P

    1994-01-01

    Biodegradable hydrophilic gelatin microspheres containing the anticancer drug methotrexate (MTX) of different mean particle sizes (1-5, 5-10, and 15-20 microns) were prepared by polymer dispersion technique and crosslinked with glutaraldehyde. The microspheres were uniform, smooth, solid and in the form of free-flowing powder. About 80 per cent of MTX was incorporated in gelatin microspheres of different sizes. The in vitro release of MTX was investigated in two different media, namely simulated gastric and intestinal fluids. The release profiles indicated that gelatin microspheres released MTX in a zero-order fashion for 4-6 days in simulated gastric fluid and for 5-8 days in simulated intestinal fluid. The rate of release of MTX decreased with increase in the particle size of the microspheres. MTX release was faster in gastric fluid when compared to intestinal fluid.

  7. Numerical Investigation of Statistical Turbulence Effects on Beam Propagation through 2-D Shear Mixing Layer

    DTIC Science & Technology

    2010-03-01

    instrumental in helping me refine my grid and flow profile to produce my investigation flow field. Dr. Brooks and Dr. Grismer helped me by getting me current ...wavelength of the source and changes in the index of refraction from density changes in the medium. They are directly attributed to three physical phenomenon...Turbulence arises from injection of energy into the fluid causing the motion to become unstable. This source of this energy injection is usually

  8. The role of advection and diffusion in waste disposal by sea urchin embryos

    NASA Astrophysics Data System (ADS)

    Clark, Aaron; Licata, Nicholas

    2014-03-01

    We determine the first passage probability for the absorption of waste molecules released from the microvilli of sea urchin embryos. We calculate a perturbative solution of the advection-diffusion equation for a linear shear profile similar to the fluid environment which the embryos inhabit. Rapid rotation of the embryo results in a concentration boundary layer of comparable thickness to the length of the microvilli. A comparison of the results to the regime of diffusion limited transport indicates that fluid flow is advantageous for efficient waste disposal.

  9. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    PubMed

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  10. Wind-US Unstructured Flow Solutions for a Transonic Diffuser

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    The Wind-US Computational Fluid Dynamics flow solver computed flow solutions for a transonic diffusing duct. The calculations used an unstructured (hexahedral) grid. The Spalart-Allmaras turbulence model was used. Static pressures along the upper and lower wall agreed well with experiment, as did velocity profiles. The effect of the smoothing input parameters on convergence and solution accuracy was investigated. The meaning and proper use of these parameters are discussed for the benefit of Wind-US users. Finally, the unstructured solver is compared to the structured solver in terms of run times and solution accuracy.

  11. Simulation of non-Newtonian oil-water core annular flow through return bends

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Wang, Ke; Skote, Martin; Wong, Teck Neng; Duan, Fei

    2018-01-01

    The volume of fluid (VOF) model is used together with the continuum surface force (CSF) model to numerically simulate the non-Newtonian oil-water core annular flow across return bends. A comprehensive study is conducted to generate the profiles of pressure, velocity, volume fraction and wall shear stress for different oil properties, flow directions, and bend geometries. It is revealed that the oil core may adhere to the bend wall under certain operating conditions. Through the analysis of the total pressure gradient and fouling angle, suitable bend geometric parameters are identified for avoiding the risk of fouling.

  12. A computational analysis subject to thermophysical aspects of Sisko fluid flow over a cylindrical surface

    NASA Astrophysics Data System (ADS)

    Awais, M.; Khalil-Ur-Rehman; Malik, M. Y.; Hussain, Arif; Salahuddin, T.

    2017-09-01

    The present analysis is devoted to probing the salient features of the mixed convection and non-linear thermal radiation effects on non-Newtonian Sisko fluid flow over a linearly stretching cylindrical surface. Properties of heat transfer are outlined via variable thermal conductivity and convective boundary conditions. The boundary layer approach is implemented to construct the mathematical model in the form of partial differential equations. Then, the requisite PDEs are transmuted into a complex ordinary differential system by invoking appropriate dimensionless variables. Solution of subsequent ODEs is obtained by utilizing the Runge-Kutta algorithm (fifth order) along with the shooting scheme. The graphical illustrations are presented to interpret the features of the involved pertinent flow parameters on concerning profiles. For a better description of the fluid flow, numerical variations in local skin friction coefficient and local Nusselt number are scrutinized in tables. From thorough analysis, it is inferred that the mixed convection parameter and the curvature parameter increase the velocity while temperature shows a different behavior. Additionally, both momentum and thermal distribution of fluid flow decrease with increasing values of the non-linearity index. Furthermore, variable thermal parameter and heat generation/absorption parameter amplify the temperature significantly. The skin friction is an increasing function of all momentum controlling parameters. The local Nusselt number also shows a similar behavior against heat radiation parameter and variable thermal conductivity parameter while it shows a dual nature for the heat generation/absorption parameter. Finally, the obtained results are validated by comparison with the existing literature and hence the correctness of the analysis is proved.

  13. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M.

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity andmore » temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.« less

  14. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo

    2012-12-01

    Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.

  15. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  16. Experiment-Model Comparisons of Turbulence, Transport, and Flows in a Magnetized Linear Plasma Using a Global Two-Fluid Braginskii Solver

    NASA Astrophysics Data System (ADS)

    Gilmore, M.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Rogers, B. N.

    2017-10-01

    Ongoing experiments and numerical modeling of the dynamics of electrostatic turbulence and transport in the presence of flow shear are being conducted in helicon plasmas in the linear HelCat (Helicon-Cathode) device. Modeling is being done using GBS, a 3D, global two-fluid Braginskii code that solves self-consistently for plasma equilibrium as well as fluctuations. Past experimental measurements of flows have been difficult to reconcile with simple expectations, such as azimuthal flows being dominated by Er x Bz rotation. Therefore, recent measurements have focused on understanding plasma flows, and the role of neutral dynamics. In the model, a set of two-fluid drift-reduced Braginskii equations are evolved using the Global Braginskii Solver Code (GBS). For low-field helicon-sourced Ar plasmas a non-negligible cross-field thermal collisional term must be added to shift the electric potential in the ion momentum and vorticity equations as the ions are unmagnetized. Significant radially and axially dependent neutral profiles are also included in the simulations to try and match those observed in HelCat. Ongoing simulations show a mode dependence on the axial magnetic field along with strong axial variations that suggest drift waves may be important in the low-field case. Supported by U.S. National Science Foundation Award 1500423.

  17. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.

  18. Aerodynamic analysis of natural flapping flight using a lift model based on spanwise flow

    NASA Astrophysics Data System (ADS)

    Alford, Lionel D., Jr.

    This study successfully described the mechanics of flapping hovering flight within the framework of conventional aerodynamics. Additionally, the theory proposed and supported by this research provides an entirely new way of looking at animal flapping flight. The mechanisms of biological flight are not well understood, and researchers have not been able to describe them using conventional aerodynamic forces. This study proposed that natural flapping flight can be broken down into a simplest model, that this model can then be used to develop a mathematical representation of flapping hovering flight, and finally, that the model can be successfully refined and compared to biological flapping data. This paper proposed a unique theory that the lift of a flapping animal is primarily the result of velocity across the cambered span of the wing. A force analysis was developed using centripetal acceleration to define an acceleration profile that would lead to a spanwise velocity profile. The force produced by the spanwise velocity profile was determined using a computational fluid dynamics analysis of flow on the simplified wing model. The overall forces on the model were found to produce more than twice the lift required for hovering flight. In addition, spanwise lift was shown to generate induced drag on the wing. Induced drag increased both the model wing's lift and drag. The model allowed the development of a mathematical representation that could be refined to account for insect hovering characteristics and that could predict expected physical attributes of the fluid flow. This computational representation resulted in a profile of lift and drag production that corresponds to known force profiles for insect flight. The model of flapping flight was shown to produce results similar to biological observation and experiment, and these results can potentially be applied to the study of other flapping animals. This work provides a foundation on which to base further exploration and hypotheses regarding flapping flight.

  19. Cross diffusion effect on MHD mixed convection flow of nonlinear radiative heat and mass transfer of Casson fluid over a vertical plate

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Archana, M.; Gireesha, B. J.; Krishanamurthy, M. R.; Rudraswamy, N. G.

    2018-03-01

    A study on magnetohydrodynamic mixed convection flow of Casson fluid over a vertical plate has been modelled in the presence of Cross diffusion effect and nonlinear thermal radiation. The governing partial differential equations are remodelled into ordinary differential equations by using similarity transformation. The accompanied differential equations are resolved numerically by using Runge-Kutta-Fehlberg forth-fifth order along with shooting method (RKF45 Method). The results of various physical parameters on velocity and temperature profiles are given diagrammatically. The numerical values of the local skin friction coefficient, local Nusselt number and local Sherwood number also are shown in a tabular form. It is found that, effect of Dufour and Soret parameter increases the temperature and concentration component correspondingly.

  20. Laboratory study of forced rotating shallow water turbulence

    NASA Astrophysics Data System (ADS)

    Espa, Stefania; Di Nitto, Gabriella; Cenedese, Antonio

    2011-12-01

    During the last three decades several authors have studied the appearance of multiple zonal jets in planetary atmospheres and in the Earths oceans. The appearance of zonal jets has been recovered in numerical simulations (Yoden & Yamada, 1993), laboratory experiments (Afanasyev & Wells, 2005; Espa et al., 2008, 2010) and in field measurements of the atmosphere of giant planets (Galperin et al., 2001). Recent studies have revealed the presence of zonation also in the Earths oceans, in fact zonal jets have been found in the outputs of Oceanic General Circulation Models-GCMs (Nakano & Hasumi, 2005) and from the analysis of satellite altimetry observations (Maximenko et al., 2005). In previous works (Espa et al., 2008, 2010) we have investigated the impact of the variation of the rotation rate and of the fluid depth on jets organization in decaying and forced regimes. In this work we show results from experiments performed in a bigger domain in which the fluid is forced continuously. The experimental set-up consists of a rotating tank (1m in diameter) where the initial distribution of vorticity has been generated via the Lorentz force in an electromagnetic cell. The latitudinal variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the rotating fluid. Flow measurements have been performed using an image analysis technique. Experiments have been performed changing the tank rotation rate and the fluid thickness. We have investigated the flow in terms of zonal and radial flow pattern, flow variability and jet scales.

  1. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  2. Temporal characteristics of coherent flow structures generated over alluvial sand dunes, Mississippi River, revealed by acoustic doppler current profiling and multibeam echo sounding

    USGS Publications Warehouse

    Czuba, John A.; Oberg, Kevin A.; Best, Jim L.; Parsons, Daniel R.; Simmons, S. M.; Johnson, K.K.; Malzone, C.

    2009-01-01

    This paper investigates the flow in the lee of a large sand dune located at the confluence of the Mississippi and Missouri Rivers, USA. Stationary profiles collected from an anchored boat using an acoustic Doppler current profiler (ADCP) were georeferenced with data from a real-time kinematic differential global positioning system. A multibeam echo sounder was used to map the bathymetry of the confluence and provided a morphological context for the ADCP measurements. The flow in the lee of a low-angle dune shows good correspondence with current conceptual models of flow over dunes. As expected, quadrant 2 events (upwellings of low-momentum fluid) are associated with high backscatter intensity. Turbulent events generated in the lower lee of a dune near the bed are associated with periods of vortex shedding and wake flapping. Remnant coherent structures that advect over the lower lee of the dune in the upper portion of the water column, have mostly dissipated and contribute little to turbulence intensities. The turbulent events that occupy most of the water column in the upper lee of the dune are associated with periods of wake flapping.

  3. Rheological properties of simulated debris flows in the laboratory environment

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung; Jan, Chyan-Deng; ,

    1990-01-01

    Steady debris flows with or without a snout are simulated in a 'conveyor-belt' flume using dry glass spheres of a uniform size, 5 or 14 mm in diameter, and their rheological properties described quantitatively in constants in a generalized viscoplastic fluid (GVF) model. Close agreement of the measured velocity profiles with the theoretical ones obtained from the GVF model strongly supports the validity of a GVF model based on the continuum-mechanics approach. Further comparisons of the measured and theoretical velocity profiles along with empirical relations among the shear stress, the normal stress, and the shear rate developed from the 'ring-shear' apparatus determine the values of the rheological parameters in the GVF model, namely the flow-behavior index, the consistency index, and the cross-consistency index. Critical issues in the evaluation of such rheological parameters using the conveyor-belt flume and the ring-shear apparatus are thus addressed in this study.

  4. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Shaheen, A.; Hussain, S.

    2015-12-01

    This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  5. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  6. Transport and Reactive Flow Modelling Using A Particle Tracking Method Based on Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2017-12-01

    Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in transport heterogeneity at latter times, representing the increase in rock heterogeneity. Evolution of transit time distribution is associated with the evolution of concentration profiles, thus highlighting the impact of initial rock structure on the reactive transport for a range of Pe and Da numbers.

  7. Heat-flow and hydrothermal circulation at the ocean-continent transition of the eastern gulf of Aden

    NASA Astrophysics Data System (ADS)

    Lucazeau, Francis; Leroy, Sylvie; Rolandone, Frédérique; d'Acremont, Elia; Watremez, Louise; Bonneville, Alain; Goutorbe, Bruno; Düsünur, Doga

    2010-07-01

    In order to investigate the importance of fluid circulation associated with the formation of ocean-continent transitions (OCT), we examine 162 new heat-flow (HF) measurements in the eastern Gulf of Aden, obtained at close locations along eight seismic profiles and with multi-beam bathymetry. The average HF values in the OCT and in the oceanic domain (~ 18 m.y.) are very close to the predictions of cooling models, showing that the overall importance of fluids remains small at the present time compared to oceanic ridge flanks of the same age. However, local HF anomalies are observed, although not systematically, in the vicinity of the unsedimented basement and are interpreted by the thermal effect of meteoric fluids flowing laterally. We propose a possible interpretation of hydrothermal paths based on the shape of HF anomalies and on the surface morphology: fluids can circulate either along-dip or along-strike, but are apparently focussed in narrow "pipes". In several locations in the OCT, there is no detectable HF anomaly while the seismic velocity structure suggests serpentinization and therefore past circulation. We relate the existence of the present day fluid circulation in the eastern Gulf of Aden to the presence of unsedimented basement and to the local extensional stress in the vicinity of the Socotra-Hadbeen fault zone. At the scale of rifted-margins, fluid circulation is probably not as important as in the oceanic domain because it can be inhibited rapidly with high sedimentation rates, serpentinization and stress release after the break-up.

  8. BORE II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolutionmore » than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  9. Coupled thermal-fluid-mechanics analysis of twin roll casting of A7075 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Lee, Yun-Soo; Kim, Hyoung-Wook; Cho, Jae-Hyung; Chun, Se-Hwan

    2017-09-01

    Better understanding of temperature distribution and roll separation force during twin roll casting of aluminum alloys is critical to successfully fabricate good quality of aluminum strips. Therefore, the simulation techniques are widely applied to understand the twin roll casting process in a comprehensive way and to reduce the experimental time and cost of trial and error. However, most of the conventional approaches are considered thermally coupled flow, or thermally coupled mechanical behaviors. In this study, a fully coupled thermal-fluid-mechanical analysis of twin roll casting of A7075 aluminum strips was carried out using the finite element method. Temperature profile, liquid fraction and metal flow of aluminum strips with different thickness were predicted. Roll separation force and roll temperatures were experimentally obtained from a pilot-scale twin roll caster, and those results were compared with model predictions. Coupling the fluid of the liquid melt to the thermal and mechanical modeling reasonably predicted roll temperature distribution and roll separation force during twin roll casting.

  10. Control of Flowing Liquid Films by Electrostatic Fields in Space

    NASA Technical Reports Server (NTRS)

    Griffing, E. M.; Bankoff, S. G.; Schluter, R. A.; Miksis, M. J.

    1999-01-01

    The interaction of a spacially varying electric field and a flowing thin liquid film is investigated experimentally for the design of a proposed light weight space radiator. Electrodes are utilized to create a negative pressure at the bottom of a fluid film and suppress leaks if a micrometeorite punctures the radiator surface. Experimental pressure profiles under a vertical falling film, which passes under a finite electrode, show that fields of sufficient strength can be used safely in such a device. Leak stopping experiments demonstrate that leaks can be stopped with an electric field in earth gravity. A new type of electrohydrodynamic instability causes waves in the fluid film to develop into 3D cones and touch the electrode at a critical voltage. Methods previously used to calculate critical voltages for non moving films are shown to be inappropriate for this situation. The instability determines a maximum field which may be utilized in design, so the possible dependence of critical voltage on electrode length, height above the film, and fluid Reynolds number is discussed.

  11. DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev

    2016-09-01

    The flow over a 2D leading-edge flat plate is studied at Mach number Ma = (Uinf /√{kBTinf / m }) in the range

  12. Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration

    PubMed Central

    White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A

    2004-01-01

    Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194

  13. Assessing submarine gas hydrate at active seeps on the Hikurangi Margin, New Zealand, using controlled source electromagnetic data with constraints from seismic, geochemistry, and heatflow data

    NASA Astrophysics Data System (ADS)

    Schwalenberg, K.; Haeckel, M.; Pecher, I. A.; Toulmin, S. J.; Hamdan, L. J.; Netzeband, G.; Wood, W.; Poort, J.; Jegen, M. D.; Coffin, R. B.

    2009-12-01

    Electrical resistivity is one of the key properties useful for evaluating submarine gas hydrate deposits. Gas hydrates are electrically insulating in contrast to the conductive pore fluid. Where they form in sufficient quantities the bulk resistivity of the sub-seafloor is elevated. CSEM data were collected in 2007 as part of the German - International “New Vents” project on R/V Sonne, cruise SO191, at three target areas on the Hikurangi subduction margin, New Zealand. The margin is characterized by widespread bottom simulating reflectors (BSR), seep structures, and active methane and fluid venting indicating the potential for gas hydrate formation. Opouawe Bank is one of the ridge and basin systems on the accretionary wedge and is located off the Wairarapa coast at water depths of 1000-1100 m. The first observed seep sites (North Tower, South Tower, Pukeko, Takahe, and Tui) were identified from individual gas flares in hydro-acoustic data and video observations during voyages on R/V Tangaroa. Seismic reflection data collected during SO191 subsequently identified more than 25 new seep structures. Two intersecting CSEM profiles have been surveyed across North Tower, South Tower, and Takahe. 1-D inversion of the data reveals anomalously high resistivities at North Tower and South Tower, moderately elevated resistivities at Takahe, and normal background resistivities away from the seeps. The high resistivities are attributed to gas hydrate layers at intermediate depths beneath the seeps. At South Tower the hydrate concentration could be possibly as much as 25% of the total sediment volume within a 50m thick layer. This conforms with geochemical pore water analyses which show a trend of increased methane flux towards South Tower. At Takahe, gas pockets and patchy gas hydrate, as well as sediment heterogeneities and carbonates, or temperature driven upward fluid flow indicated by the observed higher heat flow at this site may explain the resistivity pattern. Porangahau Ridge is located further north on the margin in water depths of 1900-2000m. A high amplitude reflection zone extending from the BSR around 700mbsf towards the seafloor has been observed at the western flank of the ridge. This is attributed to local shoaling at the base of the hydrate stability zone caused by upward migrating warm fluids. A CSEM profile was surveyed across the same seismic line. The data reveal a pronounced resistivity anomaly at the western rim suggesting a zone of concentrated gas hydrate above the reflection band. Heat flow and geochemistry data collected along the same transect show concave temperature profiles indicating mildly advective heat flow and massive gas and fluid transport on the western flank, particularly at the location where the resistivity anomaly has been observed.

  14. Acoustic concentration of particles in fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Michael W.; Kaduchak, Gregory

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluidmore » flow path to the at least one pressure minima.« less

  15. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling

    PubMed Central

    Bottier, Mathieu; Peña Fernández, Marta; Pelle, Gabriel; Grotberg, James B.

    2017-01-01

    Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures. PMID:28708866

  16. Hybrid finite-difference/lattice Boltzmann simulations of microchannel and nanochannel acoustic streaming driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Yeo, Leslie Y.

    2018-04-01

    A two-dimensional hybrid numerical method that allows full coupling of the elastic motion in a piezoelectric solid (modeled using a finite-difference time-domain technique) with the resultant compressional flow in a fluid (simulated using a lattice Boltzmann scheme) is developed to study the acoustic streaming that arises in both microchannels and nanochannels under surface acoustic wave (SAW) excitation. In addition to verifying the model through a comparison of the simulations with results from experimental and numerical studies of microchannel and nanochannel flows driven by both standing and traveling SAWs in the literature, we highlight salient features of the flow field that arise and discuss the underlying mechanisms responsible for the flow. In microchannels, boundary layer streaming is the dominant mechanism when the channel height is below the sound wavelength in the liquid, whereas Eckart streaming—arising as a consequence of the attenuation of the sound wave in the liquid—dominates in the form of periodic vortices for larger channel heights. The absence of Eckart streaming and the overlapping of boundary layers in nanochannels with heights below the boundary layer thickness, on the other hand, give rise to a time-averaged dynamic acoustic pressure that results in an inertial-dominant flow, which paradoxically possesses a parabolic-like velocity profile resembling pressure-driven laminar flow. In contrast, if the nanochannel were to be filled instead with air, the significantly lower fluid density leads to a considerable reduction in the dynamic acoustic pressure and hence inertial forcing such that boundary layer streaming once again dominates, asymptotically imposing a slip condition along the channel surface that results in a negative pluglike velocity profile.

  17. Two-fluid dynamo relaxation and momentum transport induced by CHI on HIST

    NASA Astrophysics Data System (ADS)

    Nagata, Masayoshi; Hirono, Hidetoshi; Hanao, Takafumi; Hyobu, Takahiro; Ito, Kengo; Matsumoto, Keisuke; Nakayama, Takashi; Oki, Nobuharu; Kikuchi, Yusuke; Fukumoto, Naoyuki

    2013-10-01

    Non-inductive current drive by using Multi-pulsing coaxial helicity injection was studied on HIST. In the double-pulsing CHI experiment, we have examined two-fluid effects by reversing polarity of the bias poloidal coil current. In the ST magnetic configurations with the right-handed magnetic field (positive CHI), there are a diamagnetic structure in the open flux column region and a paramagnetic structure in the closed flux region. It is naturally understood that the direction of the poloidal magnetic field (toroidal current) is reversed in reversing the polarity of the bias flux from positive to negative. However, the poloidal current is surprisingly reversed in reversing the magnetic helicity polarity. The direction of the poloidal current is opposite in the each region. The toroidal flow is reversed, but a shear profile of the poloidal flow is not changed significantly. In this configuration, the diamagnetic structure appears in the closed flux region. Thus, not only Jt×Bp but also Jp×Bt force contributes on pressure balance leading to a higher beta. We are studying a more general helicity conservation that constrains the interaction between flows and magnetic fields and momentum transport in the two-fluid framework.

  18. Experimental study of mixing mechanisms in stably stratified Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Augier, Pierre; Caulfield, Colm-Cille; Dalziel, Stuart

    2014-11-01

    We consider experimentally the mechanisms of mixing in stably stratified Taylor-Couette (TC) flow in a TC apparatus for which both cylinders can rotate independently. In the case for which only the inner cylinder rotates, centrifugal instability rapidly splits an initially linear density profile into an array of thin nearly homogeneous layers. Shadowgraph, PIV and density profiles measured by a moving conductivity probe allow us to characterise this process and the resulting flow. In particular, we observe turbulent intrusions of mixed fluid propagating relatively slowly around the tank at the interfaces between the layers, leading to a time-dependent variation in the sharpness and turbulent activity at these interfaces, whose period scales with (but is much larger than) the rotation period. Interestingly, the turbulent intrusions are anti-correlated between adjacent interfaces leading to snake-skin-like patterns in the spatio-temporal diagrams of the density profiles. We also explore how the presence of a density stratification modifies end effects at the top and bottom of the cylinders, in both the presence and absence of primary centrifugal instability.

  19. Effect of surface tension on global modes of confined wake flows

    NASA Astrophysics Data System (ADS)

    Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel

    2011-01-01

    Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.

  20. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  1. Kinetics of reciprocating drug delivery to the inner ear.

    PubMed

    Pararas, Erin E Leary; Chen, Zhiqiang; Fiering, Jason; Mescher, Mark J; Kim, Ernest S; McKenna, Michael J; Kujawa, Sharon G; Borenstein, Jeffrey T; Sewell, William F

    2011-06-10

    Reciprocating drug delivery is a means of delivering soluble drugs directly to closed fluid spaces in the body via a single cannula without an accompanying fluid volume change. It is ideally suited for drug delivery into small, sensitive and unique fluid spaces such as the cochlea. We characterized the pharmacokinetics of reciprocating drug delivery to the scala tympani within the cochlea by measuring the effects of changes in flow parameters on the distribution of drug throughout the length of the cochlea. Distribution was assessed by monitoring the effects of DNQX, a reversible glutamate receptor blocker, delivered directly to the inner ear of guinea pigs using reciprocating flow profiles. We then modeled the effects of those parameters on distribution using both an iterative curve-fitting approach and a computational fluid dynamic model. Our findings are consistent with the hypothesis that reciprocating delivery distributes the drug into a volume in the base of the cochlea, and suggest that the primary determinant of distribution throughout more distal regions of the cochlea is diffusion. Increases in flow rate distributed the drug into a larger volume that extended more apically. Over short time courses (less than 2h), the apical extension, though small, significantly enhanced apically directed delivery of drug. Over longer time courses (>5h) or greater distances (>3mm), maintenance of drug concentration in the basal scala tympani may prove more advantageous for extending apical delivery than increases in flow rate. These observations demonstrate that this reciprocating technology is capable of providing controlled delivery kinetics to the closed fluid space in the cochlea, and may be suitable for other applications such as localized brain and retinal delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Kinetics of Reciprocating Drug Delivery to the Inner Ear

    PubMed Central

    Leary Pararas, Erin E.; Chen, Zhiqiang; Fiering, Jason; Mescher, Mark J.; Kim, Ernest S.; McKenna, Michael J.; Kujawa, Sharon G.; Borenstein, Jeffrey T.; Sewell, William F.

    2011-01-01

    Reciprocating drug delivery is a means of delivering soluble drugs directly to closed fluid spaces in the body via a single cannula without an accompanying fluid volume change. It is ideally suited for drug delivery into small, sensitive and unique fluid spaces such as the cochlea. We characterized the pharmacokinetics of reciprocating drug delivery to the scala tympani within the cochlea by measuring the effects of changes in flow parameters on the distribution of drug throughout the length of the cochlea. Distribution was assessed by monitoring the effects of DNQX, a reversible glutamate receptor blocker, delivered directly to the inner ear of guinea pigs using reciprocating flow profiles. We then modeled the effects of those parameters on distribution using both an iterative curve-fitting approach and a computational fluid dynamic model. Our findings are consistent with the hypothesis that reciprocating delivery distributes the drug into a volume in the base of the cochlea, and suggest that the primary determinant of distribution throughout more distal regions of the cochlea is diffusion. Increases in flow rate distributed the drug into a larger volume that extended more apically. Over short time courses (less than 2 h), the apical extension, though small, significantly enhanced apically directed delivery of drug. Over longer time courses (>5 h) or greater distances (>3 mm), maintenance of drug concentration in the basal scala tympani may prove more advantageous for extending apical delivery than increases in flow rate. These observations demonstrate that this reciprocating technology is capable of providing controlled delivery kinetics to the closed fluid space in the cochlea, and may be suitable for other applications such as localized brain and retinal delivery. PMID:21385596

  3. Fluid dynamic modelling of renal pelvic pressure during endoscopic stone removal

    NASA Astrophysics Data System (ADS)

    Oratis, Alexandros; Subasic, John; Bird, James; Eisner, Brian

    2015-11-01

    Endoscopic kidney stone removal procedures are known to increase internal pressure in the renal pelvis, the kidney's urinary collecting system. High renal pelvic pressure incites systemic absorption of irrigation fluid, which can increase the risk of postoperative fever and sepsis or the unwanted absorption of electrolytes. Urologists choose the appropriate surgical procedure based on patient history and kidney stone size. However, no study has been conducted to compare the pressure profiles of each procedure, nor is there a precise sense of how the renal pelvic pressure scales with various operational parameters. Here we develop physical models for the flow rates and renal pelvic pressure for various procedures. We show that the results of our models are consistent with existing urological data on each procedure and that the models can predict pressure profiles where data is unavailable.

  4. A comparative study of computational solutions to flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.

    1993-01-01

    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.

  5. Flow Dynamics of Contrast Dispersion in the Aorta

    NASA Astrophysics Data System (ADS)

    Eslami, Parastou; Seo, Jung-Hee; Chen, Marcus; Mittal, Rajat

    2016-11-01

    The time profile of the contrast concentration or arterial input function (AIF) has many fundamental clinical implications and is of importance for many imaging modalities and diagnosis such as MR perfusion, CT perfusion and CT angiography (CTA). Contrast dispersion in CTA has been utilized to develop a novel method- Transluminal Attenuation Flow Encoding (TAFE)- to estimate coronary blood flow (CBF). However, in clinical practice, AIF is only available in the descending aorta and is used as a surrogate of the AIF at the coronary ostium. In this work we use patient specific computational models of the complete aorta to investigate the fluid dynamics of contrast dispersion in the aorta. The simulation employs a realistic kinematic model of the aortic valve and the dispersion patterns are correlated with the complex dynamics of the pulsatile flow in the curved aorta. The simulations allow us to determine the implications of using the descending aorta AIF as a surrogate for the AIF at the coronary ostium. PE is supported by the NIH Individual Partnership Program. -/abstract- Category: 4.7.1: Biological fluid dynamics: Physiological - Cardiovasc This work was done at Johns Hopkins University.

  6. Viscoacoustic model for near-field ultrasonic levitation.

    PubMed

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  7. Viscoacoustic model for near-field ultrasonic levitation

    NASA Astrophysics Data System (ADS)

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  8. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    NASA Astrophysics Data System (ADS)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  9. Numerical simulation of particle transport and deposition in the pulmonary vasculature.

    PubMed

    Sohrabi, Salman; Zheng, Junda; Finol, Ender A; Liu, Yaling

    2014-12-01

    To quantify the transport and adhesion of drug particles in a complex vascular environment, computational fluid particle dynamics (CFPD) simulations of blood flow and drug particulate were conducted in three different geometries representing the human lung vasculature for steady and pulsatile flow conditions. A fully developed flow profile was assumed as the inlet velocity, and a lumped mathematical model was used for the calculation of the outlet pressure boundary condition. A receptor-ligand model was used to simulate the particle binding probability. The results indicate that bigger particles have lower deposition fraction due to less chance of successful binding. Realistic unsteady flow significantly accelerates the binding activity over a wide range of particle sizes and also improves the particle deposition fraction in bifurcation regions when comparing with steady flow condition. Furthermore, surface imperfections and geometrical complexity coupled with the pulsatility effect can enhance fluid mixing and accordingly particle binding efficiency. The particle binding density at bifurcation regions increases with generation order and drug carriers are washed away faster in steady flow. Thus, when studying drug delivery mechanism in vitro and in vivo, it is important to take into account blood flow pulsatility in realistic geometry. Moreover, tissues close to bifurcations are more susceptible to deterioration due to higher uptake.

  10. Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties.

    PubMed

    Shahzadi, Iqra; Sadaf, Hina; Nadeem, Sohail; Saleem, Anber

    2017-02-01

    The main objective of this paper is to study the Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. The right and the left walls of the curved channel possess sinusoidal wave that is travelling along the outer boundary. The features of the peristaltic motion are determined by using long wavelength and low Reynolds number approximation. Exact solutions are determined for the axial velocity and for the temperature profile. Graphical results have been presented for velocity profile, temperature and stream function for various physical parameters of interest. Symmetry of the curved channel is disturbed for smaller values of the curvature parameter. It is found that the altitude of the velocity profile increases for larger values of variable viscosity parameter for both the cases (pure blood as well as single wall carbon nanotubes). It is detected that velocity profile increases with increasing values of rigidity parameter. It is due to the fact that an increase in rigidity parameter decreases tension in the walls of the blood vessels which speeds up the blood flow for pure blood as well as single wall carbon nanotubes. Increase in Grashof number decreases the fluid velocity. This is due to the reason that viscous forces play a prominent role that's why increase in Grashof number decreases the velocity profile. It is also found that temperature drops for increasing values of nanoparticle volume fraction. Basically, higher thermal conductivity of the nanoparticles plays a key role for quick heat dissipation, and this justifies the use of the single wall carbon nanotubes in different situations as a coolant. Exact solutions are calculated for the temperature and the velocity profile. Symmetry of the curved channel is destroyed due to the curvedness for velocity, temperature and contour plots. Addition of single wall carbon nanotubes shows a decrease in fluid temperature. Trapping phenomena show that the size of the trapped bolus is smaller for pure blood case as compared to the single wall carbon nanotubes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Transient shear banding in the nematic dumbbell model of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Adams, J. M.; Corbett, D.

    2018-05-01

    In the shear flow of liquid crystalline polymers (LCPs) the nematic director orientation can align with the flow direction for some materials but continuously tumble in others. The nematic dumbbell (ND) model was originally developed to describe the rheology of flow-aligning semiflexible LCPs, and flow-aligning LCPs are the focus in this paper. In the shear flow of monodomain LCPs, it is usually assumed that the spatial distribution of the velocity is uniform. This is in contrast to polymer solutions, where highly nonuniform spatial velocity profiles have been observed in experiments. We analyze the ND model, with an additional gradient term in the constitutive model, using a linear stability analysis. We investigate the separate cases of constant applied shear stress and constant applied shear rate. We find that the ND model has a transient flow instability to the formation of a spatially inhomogeneous flow velocity for certain starting orientations of the director. We calculate the spatially resolved flow profile in both constant applied stress and constant applied shear rate in start up from rest, using a model with one spatial dimension to illustrate the flow behavior of the fluid. For low shear rates flow reversal can be seen as the director realigns with the flow direction, whereas for high shear rates the director reorientation occurs simultaneously across the gap. Experimentally, this inhomogeneous flow is predicted to be observed in flow reversal experiments in LCPs.

  12. Toward a unifying constitutive relation for sediment transport across environments

    NASA Astrophysics Data System (ADS)

    Houssais, Morgane; Jerolmack, Douglas J.

    2017-01-01

    Landscape evolution models typically parse the environment into different process domains, each with its own sediment transport law: e.g., soil creep, landslides and debris flows, and river bed-load and suspended-sediment transport. Sediment transport in all environments, however, contains many of the same physical ingredients, albeit in varying proportions: grain entrainment due to a shear force, that is a combination of fluid flow, particle-particle friction and gravity. We present a new take on the perspective originally advanced by Bagnold, that views the long profile of a hillsope-river-shelf system as a continuous gradient of decreasing granular friction dominance and increasing fluid drag dominance on transport capacity. Recent advances in understanding the behavior and regime transitions of dense granular systems suggest that the entire span of granular-to-fluid regimes may be accommodated by a single-phase rheology. This model predicts a material-flow effective friction (or viscosity) that changes with the degree of shear rate and confining pressure. We present experimental results confirming that fluid-driven sediment transport follows this same rheology, for bed and suspended load. Surprisingly, below the apparent threshold of motion we observe that sediment particles creep, in a manner characteristic of glassy systems. We argue that this mechanism is relevant for both hillslopes and rivers. We discuss the possibilities of unifying sediment transport across environments and disciplines, and the potential consequences for modeling landscape evolution.

  13. Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad

    2018-06-01

    In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.

  14. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Battistin, M.; Berry, S.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less

  15. An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2012-10-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.

  16. Flow and Heat Transfer in Sisko Fluid with Convective Boundary Condition

    PubMed Central

    Malik, Rabia; Khan, Masood; Munir, Asif; Khan, Waqar Azeem

    2014-01-01

    In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a non-isothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like power-law index , magnetic parameter , stretching parameter , generalized Prandtl number Pr and generalized Biot number are presented graphically. It is found that temperature profile increases with the increasing value of and whereas it decreases for . Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case and excellent agreement between results enhance a confidence in the HAM results. PMID:25285822

  17. Behavior of a particle-laden flow in a spiral channel

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon; Stokes, Yvonne; Bertozzi, Andrea L.

    2014-04-01

    Spiral gravity separators are devices used in mineral processing to separate particles based on their specific gravity or size. The spiral geometry allows for the simultaneous application of gravitational and centripetal forces on the particles, which leads to segregation of particles. However, this segregation mechanism is not fundamentally understood, and the spiral separator literature does not tell a cohesive story either experimentally or theoretically. While experimental results vary depending on the specific spiral separator used, present theoretical works neglect the significant coupling between the particle dynamics and the flow field. Using work on gravity-driven monodisperse slurries on an incline that empirically accounts for this coupling, we consider a monodisperse particle slurry of small depth flowing down a rectangular channel that is helically wound around a vertical axis. We use a thin-film approximation to derive an equilibrium profile for the particle concentration and fluid depth and find that, in the steady state limit, the particles concentrate towards the vertical axis of the helix, leaving a region of clear fluid.

  18. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow andmore » heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.« less

  19. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  20. Application of optical coherence tomography attenuation imaging for quantification of optical properties in medulloblastoma

    NASA Astrophysics Data System (ADS)

    Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.

    2015-03-01

    The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.

  1. Bio mathematical venture for the metallic nanoparticles due to ciliary motion.

    PubMed

    Akbar, Noreen Sher; Butt, Adil Wahid

    2016-10-01

    The present investigation is associated with the contemporary study of viscous flow in a vertical tube with ciliary motion. The main flow problem has been modeled using cylindrical coordinates; flow equations are simplified to ordinary differential equations using longwave length and low Reynold's number approximation; and exact solutions have been obtained for velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. Streamlines for the velocity profile are plotted to discuss the trapping phenomenon. It is seen that with an increment in the Grashof number, the velocity of the governing fluids starts to decrease significantly. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  3. An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien

    2018-01-01

    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.

  4. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  5. Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat

    2016-01-01

    We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).

  6. Significant consequences of heat generation/absorption and homogeneous-heterogeneous reactions in second grade fluid due to rotating disk

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sumaira; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    Flow of second grade fluid by a rotating disk with heat and mass transfer is discussed. Additional effects of heat generation/absorption are also analyzed. Flow is also subjected to homogeneous-heterogeneous reactions. The convergence of computed solution is assured through appropriate choices of initial guesses and auxiliary parameters. Investigation is made for the effects of involved parameters on velocities (radial, axial, tangential), temperature and concentration. Skin friction and Nusselt number are also analyzed. Graphical results depict that an increase in viscoelastic parameter enhances the axial, radial and tangential velocities. Opposite behavior of temperature is observed for larger values of viscoelastic and heat generation/absorption parameters. Concentration profile is increasing function of Schmidt number, viscoelastic parameter and heterogeneous reaction parameter. Magnitude of skin friction and Nusselt number are enhanced for larger viscoelastic parameter.

  7. OPEN PROBLEM: Turbulence transition in pipe flow: some open questions

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno

    2008-01-01

    The transition to turbulence in pipe flow is a longstanding problem in fluid dynamics. In contrast to many other transitions it is not connected with linear instabilities of the laminar profile and hence follows a different route. Experimental and numerical studies within the last few years have revealed many unexpected connections to the nonlinear dynamics of strange saddles and have considerably improved our understanding of this transition. The text summarizes some of these insights and points to some outstanding problems in areas where valuable contributions from nonlinear dynamics can be expected.

  8. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarski, Jacek; Ruediger, Guenther

    2007-12-15

    We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less

  10. Simulation of Pellet Ablation

    NASA Astrophysics Data System (ADS)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  11. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Peiyuan; Brown, Timothy; Fullmer, William D.

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling ofmore » the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.« less

  12. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    PubMed

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  13. Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, Z. H.; Zhang, H. H.; Lin, Z. Y.

    2018-04-01

    The Kelvin-Helmholtz instability of a parallel shear flow with a hyperbolic-tangent velocity profile has been simulated numerically at a high Reynolds number. The fluid is perfectly conducting with low viscosity, and the strength of the applied magnetic field varies from weak to strong. We found that the magnetic field parallel to the mainstream direction has a stabilizing effect on the shear flow. The magnetic field mainly stabilizes short-wave perturbations. Small viscosity and/or slight compressibility could introduce some instability even in the presence of a strong magnetic field in a certain circumstance. The suppressing effect of the magnetic field on the instability is accomplished by two parts: the separating effect of the transverse magnetic pressure and the anti-bending effect of magnetic tension pointing to the center of curvature. The former shows prevailingly stronger effect on the fluid interface than the latter does, which is different from the conventional opinion that magnetic tension dominates. Essentially it is mainly the Maxwell stress that weakens and balances the momentum transport conducted by the Reynolds stress, reducing the mixing degree of the upper fluid and the lower fluid.

  14. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  15. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids.

    PubMed

    Hu, Bin; Kieweg, Sarah L

    2012-07-15

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.

  17. Osmotic pressure in a bacterial swarm.

    PubMed

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G; Tang, Jay X; Berg, Howard C

    2014-08-19

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼ 30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼ 120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼ 30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Osmotic Pressure in a Bacterial Swarm

    PubMed Central

    Ping, Liyan; Wu, Yilin; Hosu, Basarab G.; Tang, Jay X.; Berg, Howard C.

    2014-01-01

    Using Escherichia coli as a model organism, we studied how water is recruited by a bacterial swarm. A previous analysis of trajectories of small air bubbles revealed a stream of fluid flowing in a clockwise direction ahead of the swarm. A companion study suggested that water moves out of the agar into the swarm in a narrow region centered ∼30 μm from the leading edge of the swarm and then back into the agar (at a smaller rate) in a region centered ∼120 μm back from the leading edge. Presumably, these flows are driven by changes in osmolarity. Here, we utilized green/red fluorescent liposomes as reporters of osmolarity to verify this hypothesis. The stream of fluid that flows in front of the swarm contains osmolytes. Two distinct regions are observed inside the swarm near its leading edge: an outer high-osmolarity band (∼30 mOsm higher than the agar baseline) and an inner low-osmolarity band (isotonic or slightly hypotonic to the agar baseline). This profile supports the fluid-flow model derived from the drift of air bubbles and provides new (to our knowledge) insights into water maintenance in bacterial swarms. High osmotic pressure at the leading edge of the swarm extracts water from the underlying agar and promotes motility. The osmolyte is of high molecular weight and probably is lipopolysaccharide. PMID:25140422

  19. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.

    PubMed

    Chen, Jie; Lu, Xi-Yun; Wang, Wen

    2006-01-01

    Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.

  20. Dynamics of Deformable Active Particles under External Flow Field

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  1. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  2. Ferromagnetic CNT suspended H2O+Cu nanofluid analysis through composite stenosed arteries with permeable wall

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher

    2015-08-01

    In the present article magnetic field effects for CNT suspended copper nanoparticles for blood flow through composite stenosed arteries with permeable wall are discussed. The CNT suspended copper nanoparticles for the blood flow with water as base fluid is not explored yet. The equations for the CNT suspended Cu-water nanofluid are developed first time in the literature and simplified using long wavelength and low Reynolds number assumptions. Exact solutions have been evaluated for velocity, pressure gradient, the solid volume fraction of the nanoparticles and temperature profile. Effect of various flow parameters on the flow and heat transfer characteristics is utilized. It is also observed that with the increase in slip parameter blood flows slowly in arteries and trapped bolus increases.

  3. Fluid-structure-interaction of a flag in a channel flow

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Yu, Yuelong; Zhou, Wenwu; Wang, Weizhe

    2017-11-01

    The unsteady flow field and flapping dynamics of an inverted flag in water channel are investigated using time resolved particle image velocimetry (TR-PIV) measurements. The dynamically deformed profiles of the inverted flag are determined by a novel algorithm that combines morphological image processing and principle component analysis. Instantaneous flow field, phase averaged vorticity, time-mean flow field and turbulent kinematic energy are addressed for the flow. Four modes are discovered as the dimensionless bending stiffness decreases, i.e., the straight mode, the biased mode, the flapping mode and the deflected mode. Among all modes, the flapping mode is characterized by large flapping amplitude and the reverse von Kármán vortex street wake, which is potential to enhance heat transfer remarkably. National Natural Science Foundation of China.

  4. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    NASA Astrophysics Data System (ADS)

    Bernardi, Tony

    2014-05-01

    Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI) profile data were compiled from previous work with colleagues in this area. Preliminary interpretation of the mapping and the geophysics is that there is a three-layer framework for groundwater modelling: fractured granitic rock with an irregular upper surface, finer-grained (volcanic) rock that has either mantled the older granite or has been intruded into, and a weathering profile developed in relation to the land surface. More careful interpretation of the intervals that shallow and deep piezometers and shallow and deep bores are sampling indicates that variability in water chemistry between holes can, in part, be explained because they are sampling different materials in the sub-surface geology/regolith geology. Quartz is a relatively resistant phase throughout the profiles. For both substrates there is a decrease in the feldspar in increasingly weathered regolith materials, with a corresponding increase in kaolinite clay. There is increased homogenisation of the profile, and some horizonation due to pedogenic processes (e.g. bioturbation, illuviation of fines down profile) nearer the land surface. This results in a concentration of more resistant phases (quartz and remnant primary feldspar as sands) at the land surface over the granitic substrate, however kaolinite persists in the profile over the finer substrate. The presence of measurable ferruginous oxides and sesquioxides relates to localised percolation of oxidising fluids through the profiles. Understanding the configuration and composition of rocks and regolith materials in the Baldry catchment facilitates interpretation of observed patterns in hydrological analyses.

  5. Theoretical fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    This book is concerned with a discussion of the dynamical behavior of a fluid, and is addressed primarily to graduate students and researchers in theoretical physics and applied mathematics. A review of basic concepts and equations of fluid dynamics is presented, taking into account a fluid model of systems, the objective of fluid dynamics, the fluid state, description of the flow field, volume forces and surface forces, relative motion near a point, stress-strain relation, equations of fluid flows, surface tension, and a program for analysis of the governing equations. The dynamics of incompressible fluid flows is considered along with the dynamics of compressible fluid flows, the dynamics of viscous fluid flows, hydrodynamic stability, and dynamics of turbulence. Attention is given to the complex-variable method, three-dimensional irrotational flows, vortex flows, rotating flows, water waves, applications to aerodynamics, shock waves, potential flows, the hodograph method, flows at low and high Reynolds numbers, the Jeffrey-Hamel flow, and the capillary instability of a liquid jet.

  6. Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism.

    PubMed

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2017-03-01

    In this article, simultaneous effects of coagulation (blood clot) and variable magnetic field on peristaltically induced motion of non-Newtonian Jeffrey nanofluid containing gyrotactic microorganism through an annulus have been studied. The effects of an endoscope also taken into consideration in our study as a special case. The governing flow problem is simplified by taking the approximation of long wavelength and creeping flow regime. The resulting highly coupled differential equations are solved analytically with the help of perturbation method and series solution have been presented up to second order approximation. The impact of all the sundry parameters is discussed for velocity profile, temperature profile, nanoparticle concentration profile, motile microorganism density profile, pressure rise and friction forces. Moreover, numerical integration is also used to evaluate the expressions for pressure rise and friction forces for outer tube and inner tube. It is found that velocity of a fluid diminishes near the walls due to the increment in the height of clot. However, the influence of magnetic field depicts opposite behavior near the walls. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Laminar flow drag reduction on soft porous media.

    PubMed

    Mirbod, Parisa; Wu, Zhenxing; Ahmadi, Goodarz

    2017-12-08

    While researches have focused on drag reduction of various coated surfaces such as superhydrophobic structures and polymer brushes, the insights tso understand the fundamental physics of the laminar skin friction coefficient and the related drag reduction due to the formation of finite velocity at porous surfaces is still relatively unknown. Herein, we quantitatively investigated the flow over a porous medium by developing a framework to model flow of a Newtonian fluid in a channel where the lower surface was replaced by various porous media. We showed that the flow drag reduction induced by the presence of the porous media depends on the values of the permeability parameter α = L/(MK) 1/2 and the height ratio δ = H/L, where L is the half thickness of the free flow region, H is the thickness and K is the permeability of the fiber layer, and M is the ratio of the fluid effective dynamic viscosity μ e in porous media to its dynamic viscosity μ. We also examined the velocity and shear stress profiles for flow over the permeable layer for the limiting cases of α → 0 and α → ∞. The model predictions were compared with the experimental data for specific porous media and good agreement was found.

  8. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  9. Effects of non-homogeneous flow on ADCP data processing in a hydroturbine forebay

    DOE PAGES

    Harding, S. F.; Richmond, M. C.; Romero-Gomez, P.; ...

    2016-01-02

    Accurate modeling of the velocity field in the forebay of a hydroelectric power station is important for both power generation and fish passage, and is able to be increasingly well represented by computational fluid dynamics (CFD) simulations. Acoustic Doppler Current Profiler (ADCP) are investigated herein as a method of validating the numerical flow solutions, particularly in observed and calculated regions of non-homogeneous flow velocity. By using a numerical model of an ADCP operating in a velocity field calculated using CFD, the errors due to the spatial variation of the flow velocity are quantified. Furthermore, the numerical model of the ADCPmore » is referred to herein as a Virtual ADCP (VADCP).« less

  10. Active flow control for a NACA-0012 profile

    NASA Astrophysics Data System (ADS)

    Oualli, H.; Mekadem, M.; Boukrif, M.; Saad, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2015-11-01

    Active flow control is applied on a NACA-0012 profile. The experiments are carried out in a wind tunnel, and flow visualizations are conducted using high-resolution visible-light and infrared cameras. Numerical LES finite-volume code is used to complement the physical experiments. The symmetric wing is clipped into two parts, and those parts extend and retract along the chord according to the same sinusoidal law we optimized last year for a circular/elliptical cylinder (B. Am. Phys. Soc., vol. 59, no. 20, p. 319, 2014). The Reynolds number varies in the range of 500-100,000, which is typical of UAVs and micro-UAVs. The nascent cavity resulting from the oscillatory motion of the profile segments is kept open allowing the passage of fluid between the intrados and extrados. The pulsatile motion is characterized by an amplitude and frequency, and the airfoil's angle of attack is changed in the range of 0-30 deg. For certain amplitude and frequency, the drag coefficient is increased over the uncontrolled case by a factor of 300. But when the cavity is covered to prevent the flow from passing through the cavity, the drag coefficient becomes negative, and significant thrust is produced. The results are promising to achieve rapid deceleration and acceleration of UAVs.

  11. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    DOE PAGES

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less

  12. A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Johnson, William P.

    2018-01-01

    We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.

  13. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  14. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  15. Method of moments for the dilute granular flow of inelastic spheres

    NASA Astrophysics Data System (ADS)

    Strumendo, Matteo; Canu, Paolo

    2002-10-01

    Some peculiar features of granular materials (smooth, identical spheres) in rapid flow are the normal pressure differences and the related anisotropy of the velocity distribution function f(1). Kinetic theories have been proposed that account for the anisotropy, mostly based on a generalization of the Chapman-Enskog expansion [N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 (1998)]. In the present paper, we approach the problem differently by means of the method of moments; previously, similar theories have been constructed for the nearly elastic behavior of granular matter but were not able to predict the normal pressures differences. To overcome these restrictions, we use as an approximation of the f(1) a truncated series expansion in Hermite polynomials around the Maxwellian distribution function. We used the approximated f(1) to evaluate the collisional source term and calculated all the resulting integrals; also, the difference in the mean velocity of the two colliding particles has been taken into account. To simulate the granular flows, all the second-order moment balances are considered together with the mass and momentum balances. In balance equations of the Nth-order moments, the (N+1)th-order moments (and their derivatives) appear: we therefore introduced closure equations to express them as functions of lower-order moments by a generalization of the ``elementary kinetic theory,'' instead of the classical procedure of neglecting the (N+1)th-order moments and their derivatives. We applied the model to the translational flow on an inclined chute obtaining the profiles of the solid volumetric fraction, the mean velocity, and all the second-order moments. The theoretical results have been compared with experimental data [E. Azanza, F. Chevoir, and P. Moucheront, J. Fluid Mech. 400, 199 (1999); T. G. Drake, J. Fluid Mech. 225, 121 (1991)] and all the features of the flow are reflected by the model: the decreasing exponential profile of the solid volumetric fraction, the parabolic shape of the mean velocity, the constancy of the granular temperature and of its components. Besides, the model predicts the normal pressures differences, typical of the granular materials.

  16. Inhaled particle deposition in unsteady-state respiratory flow at a numerically constructed model of the human larynx.

    PubMed

    Takano, Hiroshi; Nishida, Naohiro; Itoh, Masayuki; Hyo, Noboru; Majima, Yuichi

    2006-01-01

    To evaluate the clinical effectiveness of aerosol therapy for the lower and upper respiratory airways, particle deposition at the human laryngeal region has been analyzed with various unsteady-state respiratory flow-patterns. The flow profiles and trajectory of aerosol particles were calculated by 3-D thermo-fluid analysis of a finite volume method (FVM) with 8-CPUs parallel computational system. A reconstructed physical model of the real laryngeal airways was modified from 3-D CAM modeling function of Rhinoceros based on the images of Magnetic Resonance Imaging (MRI). By using 104 MRI images taken vertically and horizontally at intervals of 2 mm on the oral cavity and the pharynx-larynx respectively, 3-D physical model of the laryngeal airways was obtained. The numerical results of flow profile analyzed by the unsteady-state respiration model showed that vortex flow was occurred with time at near larynx, showing uniform flow profile in both the oral cavity and upper side of pharynx. The vortex was appeared at the anterior part of the epiglottis and downward of the vocal cord. However, it was confirmed that few particles deposit in the vocal cord. In these cases, the particle deposition was taken place mostly at the oral cavity and the oropharynx. On the other hand, the relationship between the particle deposition efficiency and the impaction in the laryngeal region was well agreement with the data sets of ICRP task group (1993) for the larynx deposition.

  17. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  18. Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.

    PubMed

    Keh, Huan J; Ding, Jau M

    2003-07-15

    An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.

  19. Analysis of non-Newtonian effects within an aorta-iliac bifurcation region.

    PubMed

    Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola

    2017-11-07

    The geometry of the arteries at or near arterial bifurcation influences the blood flow field, which is an important factor affecting arteriogenesis. The blood can act sometimes as a non-Newtonian fluid. However, many studies have argued that for large and medium arteries, the blood flow can be considered to be Newtonian. In this work a comprehensive investigation of non-Newtonian effects on the blood fluid dynamic behavior in an aorta-iliac bifurcation is presented. The aorta-iliac geometry is reconstructed with references to the values reported in Shah et al. (1978); the 3D geometrical model consists of three filleted cylinders of different diameters. Governing equations with the appropriate boundary conditions are solved with a finite-element code. Different rheological models are used for the blood flow through the lumen and detailed comparisons are presented for the aorta-iliac bifurcation. Results are presented in terms of the velocity profiles in the bifurcation zone and Wall Shear Stress (WSS) for different sides of the bifurcation both for male and female geometries, showing that the Newtonian fluid assumption can be made without any particular loss in terms of accuracy with respect to the other more complex rheological models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface

    NASA Astrophysics Data System (ADS)

    Hussain, Sajid; Aziz, Asim; Khalique, Chaudhry Masood; Aziz, Taha

    2017-12-01

    In this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs) along with the slip boundary conditions are transformed into ordinary differential equations(ODEs) using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.

  1. Analysis of heat transfer for unsteady MHD free convection flow of rotating Jeffrey nanofluid saturated in a porous medium

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Nor Athirah; Khan, Ilyas; Shafie, Sharidan; Alshomrani, Ali Saleh

    In this article, the influence of thermal radiation on unsteady magnetohydrodynamics (MHD) free convection flow of rotating Jeffrey nanofluid passing through a porous medium is studied. The silver nanoparticles (AgNPs) are dispersed in the Kerosene Oil (KO) which is chosen as conventional base fluid. Appropriate dimensionless variables are used and the system of equations is transformed into dimensionless form. The resulting problem is solved using the Laplace transform technique. The impact of pertinent parameters including volume fraction φ , material parameters of Jeffrey fluid λ1 , λ , rotation parameter r , Hartmann number Ha , permeability parameter K , Grashof number Gr , Prandtl number Pr , radiation parameter Rd and dimensionless time t on velocity and temperature profiles are presented graphically with comprehensive discussions. It is observed that, the rotation parameter, due to the Coriolis force, tends to decrease the primary velocity but reverse effect is observed in the secondary velocity. It is also observed that, the Lorentz force retards the fluid flow for both primary and secondary velocities. The expressions for skin friction and Nusselt number are also evaluated for different values of emerging parameters. A comparative study with the existing published work is provided in order to verify the present results. An excellent agreement is found.

  2. Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.

    PubMed

    Mukherjee, Tusharmouli; Plakogiannis, Fotios M

    2012-01-01

    The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P < 0.01) and predictive for optimization. This study established a design space for the parameters for solid SME manufacturing process.

  3. On stagnation point flow of a micro polar nanofluid past a circular cylinder with velocity and thermal slip

    NASA Astrophysics Data System (ADS)

    Abbas, Nadeem; Saleem, S.; Nadeem, S.; Alderremy, A. A.; Khan, A. U.

    2018-06-01

    The concerned problem is dedicated to study stagnation point flow of MHD micropolar nanomaterial fluid over a circular cylinder having sinusoidal radius variation. Velocity jump slip phenomenon with porous medium is also taken into account. To be more specific, the physical situation of micropolar fluid in the presence of both weak and strong concentration is mathematically modeled in terms of differential equations. Here, three nanoparticles namely Titania (TiO2) , Copper (Cu) and Alumina (Al2O3) compared with water as base fluids are incorporated for analysis. The resulting non-linear system has been solved by Runge-Kutta-Fehlberg scheme. Numerical solutions for velocities and temperature profiles are settled for alumina-water nanofluid and deliberated through graphs and numerical tables. It is seen that the skin friction coefficients and the rate of heat transfer are maximum for copper-water nanofluid related to the alumina-water and titania-water nanofluids. Also, the precision of the present findings is certified by equating them with the previously published work.

  4. A similarity solution of time dependent MHD liquid film flow over stretching sheet with variable physical properties

    NASA Astrophysics Data System (ADS)

    Idrees, M.; Rehman, Sajid; Shah, Rehan Ali; Ullah, M.; Abbas, Tariq

    2018-03-01

    An analysis is performed for the fluid dynamics incorporating the variation of viscosity and thermal conductivity on an unsteady two-dimensional free surface flow of a viscous incompressible conducting fluid taking into account the effect of a magnetic field. Surface tension quadratically vary with temperature while fluid viscosity and thermal conductivity are assumed to vary as a linear function of temperature. The boundary layer partial differential equations in cartesian coordinates are transformed into a system of nonlinear ordinary differential equations (ODEs) by similarity transformation. The developed nonlinear equations are solved analytically by Homotopy Analysis Method (HAM) while numerically by using the shooting method. The Effects of natural parameters such as the variable viscosity parameter A, variable thermal conductivity parameter N, Hartmann number Ma, film Thickness, unsteadiness parameter S, Thermocapillary number M and Prandtl number Pr on the velocity and temperature profiles are investigated. The results for the surface skin friction coefficient f″ (0) , Nusselt number (heat flux) -θ‧ (0) and free surface temperature θ (1) are presented graphically and in tabular form.

  5. The effect of dense gas dynamics on loss in ORC transonic turbines

    NASA Astrophysics Data System (ADS)

    Durá Galiana, FJ; Wheeler, APS; Ong, J.; Ventura, CA de M.

    2017-03-01

    This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.

  6. Three-dimensional flow measurements in a tesla turbine rotor

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian

    2015-11-01

    Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.

  7. Aerodynamic Validation of Emerging Projectile and Missile Configurations

    DTIC Science & Technology

    2010-12-01

    Inflation Layers at the Surface of the M549 Projectile....................................39 Figure 33. Probe Profile from Nose to Shock Front...behavior is critical for the design of new projectile shapes. The conventional approach to predict this aerodynamic behavior is through wind tunnel ...tool to study fluid flows and complements empirical methods and wind tunnel testing. In this study, the computer program ANSYS CFX was used to

  8. Thermoplastic pultrusion development and characterization of residual in pultruded composites with modeling and experiments

    NASA Astrophysics Data System (ADS)

    Jamiyanaa, Khongor

    Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that unbalanced layup can produce asymmetrical residual stress through the thickness and causes the part to bow. Furthermore, the residual stress through the thickness was mapped with excellent accuracy. A design of experiments around the processing parameters indicated that increase in pull speed or decrease in die temperature increased the residual stress within the part.

  9. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  10. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  11. Swimming in external fields

    NASA Astrophysics Data System (ADS)

    Stark, Holger

    2016-11-01

    Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.

  12. Modeling and measurements of dispersion in a multi-generational model of the human airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank

    2005-11-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment, and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features both theoretical and experimental efforts aimed at elucidating the fluid mechanics of the lung. Steady streaming due to dissimilar velocity profiles between inspiration and expiration is addressed theoretically. This model employs a parameterized velocity profile to determine the effect on mass transport in the limit of no mixing and full mixing in the cross-section. Particle image velocimetry and laser induced fluorescence measurements of oscillatory flows in anatomically accurate models (single and multi-generational) of the conductive region of the lung illustrate pertinent flow features. Results are interpreted in the light of physiological applications.

  13. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; McDougall, Steven R.; Chaplain, Mark A.J.; Cristini, Vittorio; Lowengrub, John

    2013-01-01

    The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform distribution of oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our results suggest the possibility of developing strategies of targeting tumor cells based on the cues in the interstitial fluid. PMID:23220211

  14. Measurement of the fluid-velocity profile using a self-mixing superluminescent diode

    NASA Astrophysics Data System (ADS)

    Rovati, Luigi; Cattini, Stefano; Palanisamy, Nithiyanantham

    2011-02-01

    A novel optical Doppler velocimeter using a self-mixing superluminescent diode is proposed and demonstrated. The operation mechanism uses the photodiode on the back-face of a commercial superluminescent diode to detect the Doppler signal from an interferometer. Thanks to the low coherence length of the optical source, the position of the measuring volume can be easily moved into the sample under test by adjusting the reference arm length, thus allowing us to measure the velocity profile of the flowing scatterers even in turbid media. The proposed velocimeter is expected to have several industrial as well as medical applications.

  15. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions

    NASA Astrophysics Data System (ADS)

    Ahuja, V. R.; van der Gucht, J.; Briels, W. J.

    2018-01-01

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  16. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions.

    PubMed

    Ahuja, V R; van der Gucht, J; Briels, W J

    2018-01-21

    We present a novel coarse-grain particle-based simulation technique for modeling self-developing flow of dilute and semi-dilute polymer solutions. The central idea in this paper is the two-way coupling between a mesoscopic polymer model and a phenomenological fluid model. As our polymer model, we choose Responsive Particle Dynamics (RaPiD), a Brownian dynamics method, which formulates the so-called "conservative" and "transient" pair-potentials through which the polymers interact besides experiencing random forces in accordance with the fluctuation dissipation theorem. In addition to these interactions, our polymer blobs are also influenced by the background solvent velocity field, which we calculate by solving the Navier-Stokes equation discretized on a moving grid of fluid blobs using the Smoothed Particle Hydrodynamics (SPH) technique. While the polymers experience this frictional force opposing their motion relative to the background flow field, our fluid blobs also in turn are influenced by the motion of the polymers through an interaction term. This makes our technique a two-way coupling algorithm. We have constructed this interaction term in such a way that momentum is conserved locally, thereby preserving long range hydrodynamics. Furthermore, we have derived pairwise fluctuation terms for the velocities of the fluid blobs using the Fokker-Planck equation, which have been alternatively derived using the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC) approach in Smoothed Dissipative Particle Dynamics (SDPD) literature. These velocity fluctuations for the fluid may be incorporated into the velocity updates for our fluid blobs to obtain a thermodynamically consistent distribution of velocities. In cases where these fluctuations are insignificant, however, these additional terms may well be dropped out as they are in a standard SPH simulation. We have applied our technique to study the rheology of two different concentrations of our model linear polymer solutions. The results show that the polymers and the fluid are coupled very well with each other, showing no lag between their velocities. Furthermore, our results show non-Newtonian shear thinning and the characteristic flattening of the Poiseuille flow profile typically observed for polymer solutions.

  17. Universality Results for Multi-Layer Hele-Shaw and Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2012-11-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface. Motivated by a need to understand the effect of various injection policies currently in practice for chemical enhanced oil recovery, we study linear stability of displacement processes in a Hele-Shaw cell involving injection of an arbitrary number of immiscible fluid phases in succession. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-layer (multi-region) flow in the sense that the results hold with arbitrary number of interfaces. These stability results have been applied to design injection policies that are considerably less unstable than the pure Saffman-Taylor case. In particular, we determine specific values of the viscosity of the fluid layers corresponding to smallest unstable band. Moreover, we discuss universal selection principle of optimal viscous profiles. The talk is based on following papers. Qatar National Fund (a member of the Qatar Foundation).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wareing, Christopher J.; School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT; Fairweather, Michael

    Predicting the correct multi-phase fluid flow behaviour during the discharge process in the near-field of sonic CO{sub 2} jets is of particular importance in assessing the risks associated with transport aspects of carbon capture and storage schemes, given the very different hazard profiles of CO{sub 2} in the gaseous and solid states. In this paper, we apply our state-of-the-art mathematical model implemented in an efficient computational method to available data. Compared to previous applications, an improved equation of state is used. We also compare to all the available data, rather than just subsets as previously, and demonstrate both the improvedmore » performance of the fluid flow model and the variation between the available datasets. The condensed phase fraction at the vent, puncture or rupture release point is revealed to be of key importance in understanding the near-field dispersion of sonic CO{sub 2}.« less

  19. Measuring gravity currents in the Chicago River, Chicago, Illinois

    USGS Publications Warehouse

    Oberg, K.A.; Czuba, J.A.; Johnson, K.K.

    2008-01-01

    Recent studies of the Chicago River have determined that gravity currents are responsible for persistent bidirectional flows that have been observed in the river. A gravity current is the flow of one fluid within another caused by a density difference between the fluids. These studies demonstrated how acoustic Doppler current profilers (ADCP) can be used to detect and characterize gravity currents in the field. In order to better understand the formation and evolution of these gravity currents, the U.S. Geological Survey (USGS) has installed ADCPs and other instruments to continuously measure gravity currents in the Chicago River and the North Branch Chicago River. These instruments include stage sensors, thermistor strings, and both upward-looking and horizontal ADCPs. Data loggers and computers installed at gaging stations along the river are used to collect data from these instruments and transmit them to USGS offices. ?? 2008 IEEE.

  20. Drift wave turbulence simulations in LAPD

    NASA Astrophysics Data System (ADS)

    Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.

    2009-11-01

    We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.

  1. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  2. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  3. Turbidity Currents In The Ocean; Are They Stably Stratified?

    NASA Astrophysics Data System (ADS)

    Kneller, B. C.; Nasr-Azadani, M.; Meiburg, E. H.

    2013-12-01

    A large proportion of the sediment generated by erosion of the continents is ultimately delivered to the deep ocean to form submarine fans, being carried to the margins of these fans by turbidity currents that flow through submarine channels that may be hundreds or even thousands of kilometers long. The persistence of these flows over extremely long distances with gradients that may be 10-4 or less, while maintaining sediment as coarse as fine-grained sand in suspension, is enigmatic, given the drag that one would expect to be experienced by such flows, and the effects of progressive dilution by entrainment of ambient seawater. The commonly-held view of the flow structure of turbidity currents, based on many laboratory and numerical simulations and rare observations in the ocean, is that of a vertical profile of time-averaged horizontal velocity with a maximum value close the bed, largely due to much higher drag on the upper boundary than on the lower. This upper boundary drag is related to Kelvin-Helmholtz (K-H) instabilities generated by shear between the current and the ambient seawater. K-H instabilities result when fluid shear dominates over density stratification within the turbidity current; the dimensionless ratio of these two influences is the gradient Richardson number. When this exceeds a value of 0.25 the stratification is stable, and no K-H instabilities will form, eliminating much of the drag and entrainment. The majority of the entrainment of ambient seawater into the turbidity current also occurs via the K-H instabilities. Analysis by Birman et al. (2009) suggests that there may be little or no entrainment of ambient fluid in turbidity currents flowing over low gradients, implying that K-H instabilities may be absent under these conditions. We examine the case of flows on the extremely low gradients of the ocean floor, and suggest some conditions that may lead to stably-stratified currents, with dramatically reduced drag, and a fundamentally different mean and turbulent velocity structure. We report preliminary results of direct numerical simulations that may help to constrain the conditions under which such currents may form. In order to model accurately the potentially stabilizing effect of significant density gradients within such currents, it may be useful to abandon the Boussinesq approximation (under which density variations appear only in the buoyancy term), and explicitly model the influence of density variations. Experiments reported by Sequeiros at al. (2010) show the type of velocity profiles expected in flows without K-H instabilities, which they relate to Froude-subcritical flow. We suggest that the presence of stable density stratification is far more representative of the structure of turbidity currents in long fan channels than are the more familiar profiles commonly reported. Birman, V.K., Meiburg, E. & Kneller, B., 2009. J. Fluid Mech., 619, 367-376. Sequeiros, O. E.; Spinewine, B., Beaubouef, R.T., Sun, T. García, M.H. & Parker, G. 2010. J. Hydr. Eng, 136, 412-433

  4. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry of constant cross sectional area, and to facilitate fluid filling and draining operations in microgravity. The fluid cells may be used singly for bulk solutions, or in a Stokes diaphragm configuration to investigate membrane mediated phenomena. Thermal and electrical driving potentials are applied to the experiment fluids through boundary plates located at the ends of the fluid cells. In the ground based instrument, two constant temperature baths circulate through reservoirs adjacent to the boundary plates, and establish the thermal environment within the fluid cells. The boundary plates also serve as electrodes for measurement and application of electrical potentials. The Fluid Manipulation System associated with the MTA is a computer controlled system that enables storage and transfer of experiment fluids during on orbit operations. The system is used to automatically initiate experiments and manipulate fluids by orchestrating pump and valve operations through scripted sequences. Unique technologies are incorporated in the MTA for measurement of fluid properties. Volumetric Flow Sensors have been developed for precision measurement of total fluid volume contained within the fluid cells over time. This data is most useful for measuring the kinetics of osmosis, where fluid is transported from one fluid cell to another through a semipermeable membrane. The MicroSensor Array has been designed to perform in situ measurement of several important fluid parameters, providing simultaneous measurement of solution composition at multiple locations within the experiment fluids. Micromachined sensors and interface electronics have been developed to measure temperature, electrical conductivity, pH, cation activity, and anion activity. The Profile Refractometer uses a laser optical system to directly image the fluid Index of Refraction profile that exists along the MTA fluid cell axis. A video system acquires images of the RI profile over time, and records the transport kinetics that occur upon application of chemical, thermal, or electrical driving potentials. Image processing algorithms have been developed to analyze the refractometer images on a pixel by pixel basis, calibrating and scaling the measured Index of Refraction profile to correlated solution properties of interest such as density, concentration, and temperature. Additional software has been developed to compile the processed images into a three dimensional matrix that contains fluid composition data as a function of experiment time and position in the fluid cell. These data are combined with data from the other sensor systems, and analyzed in the context of transport coefficients associated with the various transport phenomena. Analysis protocols have been developed to measure the transient kinetics, and steady state distribution of fluid components that occur in response to the applied driving potentials. The results are expressed in terms of effective transport coefficients. Experiments have been performed using a variety of solutes, and results generated are that are in agreement with published transport coefficient values.

  5. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  6. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  7. Development of guidelines for optimum baghouse fluid-dynamic-system design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskinazi, D.; Gilbert, G.B.

    1982-06-01

    In recent years, the utility industry has turned to fabric filters as an alternative technology to electrostatic precipitators for particulate emission control from pulverized coal-fired power plants. One aspect of baghouse technology which appears to be of major importance in minimizing the size, cost, and operating pressure drop is the development of ductwork and compartment designs which achieve uniform gas and dust flow distribution to individual compartments and bags within a compartment. The objective of this project was to perform an experimental modeling program to develop design guidelines for optimizing the fluid mechanic performance of baghouses. Tasks included formulation ofmore » the appropriate modeling techniques for analysis of the flow of dust-laden gas through the collector system and extensive experimental analysis of fabric filter duct system design. A matrix of geometric configurations and operating conditions was experimentally investigated to establish the characteristics of an optimum system, to identify the level of fluid mechanic sophistication in current designs, and to experimentally develop new ideas and improved designs. Experimental results indicate that the design of the inlet and outlet manifolds, hopper entrance, hopper region below the tubesheet, and the compartment outlet have not been given sufficient attention. Unsteady flow patterns, poor velocity profiles, recirculation zones, and excessive pressure losses may be associated with these regions. It is evident from the results presented here that the fluid mechanic design of fabric filter systems can be improved significantly.« less

  8. Alveolar Thin Layer Flows and Surfactant Dynamics

    NASA Astrophysics Data System (ADS)

    Roumie, Ahmad; Jbaily, Abdulrahman; Szeri, Andrew J.

    2017-11-01

    Pulmonary surfactants play a vital role in everyday respiration. They regulate surface tension in the lungs by diffusing through the hypophase, a liquid layer that lines the interior surface of the alveoli, and adsorbing to the existing air-fluid interface. This decreases the equilibrium surface tension value by as much as a factor of 3, minimizing breathing effort and preventing lung collapse at the end of exhalation. Given that the hypophase thickness h lies within the range 0.1 μm < h <0.5 μm , and that the average alveolar radius R is 100 μm , for some purposes the hypophase may usefully be modeled as a fluid layer on a flat sheet representing the alveolar wall. Moreover, because of the large aspect ratio, the lubrication approximation can be applied. The aim of the present work is to study the interaction between the straining of the alveolar wall and the fluid flow in the hypophase. The analysis is governed by the relative magnitudes of the time scales of surfactant diffusion, adsorption, desorption, viscous dissipation and sheet straining. Cases of particular interest include non-uniform surfactant concentration at the interface, leading to Marangoni flows and a non-uniform hypophase thickness profile. The analytical formulation and numerical simulations are presented. This work is motivated by a need to understand alveolar deformation during breathing, and to do so in a way that derives from improved understanding of the fluid mechanics of the problem.

  9. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    NASA Astrophysics Data System (ADS)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  10. Geometric flow control of shear bands by suppression of viscous sliding

    PubMed Central

    Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-01-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920

  11. Geometric flow control of shear bands by suppression of viscous sliding

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan

    2016-08-01

    Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.

  12. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  13. Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Stone, D.; Lathrop, D. P.

    2014-12-01

    Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.

  14. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions

    NASA Astrophysics Data System (ADS)

    Elbing, Brian R.; Perlin, Marc; Dowling, David R.; Ceccio, Steven L.

    2013-08-01

    The current study explores the influence of polymer drag reduction on the near-wall velocity distribution in a turbulent boundary layer (TBL) and its dependence on Reynolds number. Recent moderate Reynolds number direct numerical simulation and experimental studies presented in White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862 have challenged the classical representation of the logarithmic dependence of the velocity profile for drag-reduced flows, especially at drag reduction levels above 40%. In the present study, high Reynolds number data from a drag reduced TBL is presented and compared to the observations of White et al. [Phys. Fluids 24, 021701 (2012)], 10.1063/1.3681862. Data presented here were acquired in the TBL flow on a 12.9-m-long flat plate at speeds to 20.3 m s-1, achieving momentum thickness based Reynolds number to 1.5 × 105, which is an order of magnitude greater than that available in the literature. Polyethylene oxide solutions with an average molecular weight of 3.9 × 106 g mol-1 were injected into the flow at various concentrations and volumetric fluxes to achieve a particular level of drag reduction. The resulting mean near-wall velocity profiles show distinctly different behavior depending on whether they fall in the low drag reduction (LDR) or the high drag reduction (HDR) regimes, which are nominally divided at 40% drag reduction. In the LDR regime, the classical view that the logarithmic slope remains constant at the Newtonian value and the intercept constant increases with increasing drag reduction appears to be valid. However, in the HDR regime the behavior is no longer universal. The intercept constant continues to increase linearly in proportion to the drag reduction level until a Reynolds-number-dependent threshold is achieved, at which point the intercept constant rapidly decreases to that predicted by the ultimate profile. The rapid decrease in the intercept constant is due to the corresponding increase in the profile slope in the HDR regime. There was significant scatter in the observed slope in the HDR regime, but the scatter did not appear to be Reynolds number dependent. Finally, the ultimate profiles for flows at maximum drag reduction were examined and did not exhibit a logarithmic functional relationship, which is the classical empirical relationship suggested by Virk [J. Am. Inst. Chem. Eng. 21, 625-656 (1975)], 10.1002/aic.690210402.

  15. Combined effects of heat and mass transfer to magneto hydrodynamics oscillatory dusty fluid flow in a porous channel

    NASA Astrophysics Data System (ADS)

    Govindarajan, A.; Vijayalakshmi, R.; Ramamurthy, V.

    2018-04-01

    The main aim of this article is to study the combined effects of heat and mass transfer to radiative Magneto Hydro Dynamics (MHD) oscillatory optically thin dusty fluid in a saturated porous medium channel. Based on certain assumptions, the momentum, energy, concentration equations are obtained.The governing equations are non-dimensionalised, simplified and solved analytically. The closed analytical form solutions for velocity, temperature, concentration profiles are obtained. Numerical computations are presented graphically to show the salient features of various physical parameters. The shear stress, the rate of heat transfer and the rate of mass transfer are also presented graphically.

  16. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  17. "Artificial lymphatic system": a new approach to reduce interstitial hypertension and increase blood flow, pH and pO2 in solid tumors.

    PubMed

    DiResta, G R; Lee, J; Healey, J H; Levchenko, A; Larson, S M; Arbit, E

    2000-05-01

    A mechanical drainage system, the "artificial lymphatic system" (ALS), consisting of a vacuum source and drain, is evaluated for its ability to aspirate the interstitial fluids responsible for the elevated interstitial fluid pressure (IFP) observed in solid tumors. IFP, pH, and pO2 radial profiles were measured before and after aspiration using wick-in-needle (WIN) probes, needle pH and oxygen electrodes, respectively. Laser Doppler flowmetry measured temporal changes in blood flow rate (BFR) at the tumor surface during aspiration. The WIN probe and IFP profile data were analyzed using numerical simulation and distributed mathematical models, respectively. The model parameter, P(E), reflecting central tumor IFP, was reduced from 15.3 to 5.7 mm Hg in neuroblastoma and from 13.3 to 12.1 mm Hg in Walker 256, respectively, following aspiration. The simulation demonstrated that spatial averaging inherent in WIN measurements reduced the calculated magnitude of the model parameter changes. IFP was significantly lower (p<0.05), especially in regions surrounding the drain, and BFR was significantly higher (p<0.05) following 25 and 45 min of aspiration, respectively; pH and pO2 profiles increased following aspiration. The experimental and mathematical findings suggest that ALS aspiration may be a viable way of reducing IFP and increasing BFR, pO2, and pH and should enhance solid tumor chemo and radiation therapy.

  18. Effects of Faults on Petroleum Fluid Dynamics, Borderland Basins of Southern California

    NASA Astrophysics Data System (ADS)

    Jung, B.; Garven, G.; Boles, J. R.

    2012-12-01

    Multiphase flow modeling provides a useful quantitative tool for understanding crustal processes such as petroleum migration in geological systems, and also for characterizing subsurface environmental issues such as carbon sequestration in sedimentary basins. However, accurate modeling of multi-fluid behavior is often difficult because of the various coupled and nonlinear physics affecting multiphase fluid saturation and migration, including effects of capillarity and relative permeability, anisotropy and heterogeneity of the medium, and the effects of pore pressure, composition, and temperature on fluid properties. Regional fault structures also play a strong role in controlling fluid pathlines and mobility, so considering hydrogeologic effects of these structures is critical for testing exploration concepts, and for predicting the fate of injected fluids. To address these issues on spatially large and long temporal scales, we have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method. We have had good success in applying the multiphase flow model to fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, either from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. Our simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central LA basin synclinal region, coupled with a subsiding basin fluid dynamics, favored the massive accumulation and alignment of hydrocarbon pools along the Newport-Inglewood fault zone (NIFZ). According to our multiphase flow calculations, the maximum formation water velocities within fault zones likely ranged between 1 ~ 2 m/yr during the middle Miocene to Pliocene (13 to 2.6 Ma). The estimated time for long-distance (~ 25 km) petroleum migration from source beds in the central basin to oil fields along the NIFZ is approximately 150,000 ~ 250,000 years, depending on the effective permeability assigned to the faults and adjacent interbedded sandstone and siltstone "petroleum aquifers". With an average long-distance flow rate (~ 0.6 m/yr) and fault permeability of 100 millidarcys (10-13 m2), the total petroleum oil of Inglewood oil field of 450 million barrels (~ 1.6 × 105 m3) would have accumulated rather quickly, likely over 25,000 years or less. The results also suggest that besides the thermal and structural history of the basin, the fault permeability, capillary pressure, and the configuration of aquifer and aquitard layers played an important role in controlling petroleum migration rates, patterns of flow, and the overall fluid mechanics of petroleum accumulation.

  19. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  20. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  1. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.

    PubMed

    Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois

    2015-12-18

    Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Numerical simulation of turbulence and sediment transport of medium sand

    NASA Astrophysics Data System (ADS)

    Schmeeckle, M. W.

    2012-12-01

    Eleven numerical simulations, ranging from no transport to bedload to vigorous suspension transport, are presented of a combined large eddy simulation (LES) and distinct element model (DEM) of an initially flat bed of medium sand. The fluid and particles are fully coupled in momentum. The friction coefficient, defined here as the squared ratio of the friction velocity to the depth-averaged velocity, is in good agreement with well-known rough bed relations at no transport and increases with the intensity of bedload transport. The friction coefficient nearly doubles in value at the onset of sediment suspension owing to a rapid increase of the depth over which particles and fluid exchange momentum. The friction coefficient decreases with increasing suspension intensity because of increasingly stable stratification. Fluid Reynolds stress and time-averaged velocity profiles in the bedload regime agree well with previous experiments and simulations. Also consistent with previous studies of suspended sediment, there is an increase in slope of the lower portion of the velocity profile that has been modeled in the past using stably stratified eddy viscosity closures or an adjusted von Karman constant. Stokes numbers in the simulations, using an estimated lagrangian integral time scale, are less than unity. As such, particles faithfully follow the fluid, except for particle settling and grain-grain interactions near the bed. Fluid-particle velocity correlation coefficients approach one in portions of the flow where volumetric sediment concentrations are below about ten percent. Bedload entrainment is critically connected to vertical velocity fluctuations. When a fluid packet approaches the bed from the interior of the flow (i.e. a sweep), fluid is forced into the bed, and at the edges of the sweep, fluid is forced out of the bed. Much of the particle entrainment occurs at these sweep edges. Fluid velocity statistics following the particles reveal that moving bedload particles are preferentially concentrated in zones of upward fluid velocity. This may explain previous observations noting a rapid vertical rise at the beginning of saltation trajectories. The simulations described here have no lift forces. Because of the short particle time scales relative to that of the turbulent structures, high transport stage bedload entrainment zones involve mutual interaction between turbulence structures and bed deformation. These deformation structures appear as depressed areas of the bed at the center of the sweep and raised areas of entraining particles at the edges of the sweep penetration. Suspended sediment entrainment structures are similar to these bedload entrainment structures but have much larger scales. Preferential concentration of suspended grains in zones of upward moving fluid dampens turbulence intensities and momentum transport. Much of the suspended transport takes place within this highly concentrated near-bed zone of damped turbulence. Particle-fluid correlation coefficients are relatively low in the lower portion of this highly concentrated suspended sediment zone, owing to particle-particle interactions. As such, Rouse-like profiles utilizing eddy viscosity closures, adjusted according to flux Richardson numbers, do not adequately describe the physics of this zone.

  3. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    Knowledge of the structural features is fundamental in evaluating geothermal exchange potential and in modelling geothermal systems. In particular, faults and fractures play an important role for the circulation of fluids in the crust, and structural setting can influence groundwater flow, its regime, chemistry and electrical conductivity. In this context, data coming from accurate studies of groundwater physical properties in the Marche region (Central Italy), concerning electrical conductivity above all, revealed some anomalies in several localities that could be ascribed to a strong structural control. Data acquisition and interpretation of some SW-NE seismic reflection profiles crossing the Apennine chain to the Adriatic sea and kindly provided by ENI S.p.A, highlight important deep Plio-Quaternary structures connected with minor surface ones and to hydrogeological conditions. Seismic profiles interpretation allowed to reconstruct the structural setting and to identify the recent evolution of the Apennine Marche sector in more detail with respect to what is already known. In fact, some high angle structures affecting the whole sedimentary sequence and routing at high depth were labelled. These are NW-SE sub-parallel transpressive structures bounded by SW and NE-dipping high-angle reverse faults reaching > 10 km depth (positive flower structures), and probably involving the upper crust basement. Three main alignments were identified from W to the coast line. In some cases, flower nucleation gives rise to the lifting and counter-clockwise rotation of the Pre-Pliocene substratum blocks, with the upwelling and outcropping of Upper Miocene (Messinian) evaporite deposits along the axial zone of the transpressive structural highs. Noting the analyses of groundwater properties coming from wells placed in proximity of these structures or located along the analysed seismic profiles, anomalies in electrical conductivity are relevant. The activity of the deep rooting structures observed in the seismic profiles and the high degree of fracturing that accompanies these complex and recent fault systems can facilitate the exchange between deep and superficial fluids. In other cases, like in coastal structural high, it can have a role in preventing the sea water ingression. This significant consideration can be supported also by the direct relation of electrical conductivity with the amount of rainfall revealed from studied piezometers along the carbonate Marche ridge. It should be explained through a specific behaviour (typical of carbonate aquifers, known as the "piston-flow phase") which implies an increase of groundwater mineralization as a result of transmission of the hydraulic pressure from the saturated zone, through fractures as important way for fluids circulation. Ultimately, we suggest that the structural control could be an important factor in influencing both the surface and the groundwater flow behaviours, and then convective component of the heat transport in the studied area.

  4. Employing a Modified Diffuser Momentum Model to Simulate Ventilation of the Orion CEV (DRAFT)

    NASA Technical Reports Server (NTRS)

    Straus, John; Ball, Tyler; OHara, William; Barido, Richard

    2011-01-01

    Computational Fluid Dynamics (CFD) is used to model the flow field in the Orion CEV cabin. The CFD model employs a momentum model used to account for the effect of supply grilles on the supply flow. The momentum model is modified to account for non-uniform velocity profiles at the approach of the supply grille. The modified momentum model is validated against a detailed vane-resolved model before inclusion into the Orion CEV cabin model. Results for this comparison, as well as that of a single ventilation configuration are presented.

  5. Application of Differential Transformation Method for Nanofluid Flow in a Semi-Permeable Channel Considering Magnetic Field Effect

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen; Azimi, Mohammadreza; Domiri Ganji, Davood

    2015-07-01

    In this study, we propose a reliable algorithm to develop an analytical solution for the problem of laminar steady magnetohydrodymanics (MHD) nanofluid flow in a semi-permeable channel using the differential transformation method (DTM). The working fluid is water with copper nanoparticles. The effects of Hartmann number and Reynolds number on velocity profiles have been also considered for various numerical cases. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell and Brinkman models, respectively. A close agreement between the obtained solution and some well-known results has been established.

  6. Wave Number Selection for Incompressible Parallel Jet Flows Periodic in Space

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1997-01-01

    The temporal instability of a spatially periodic parallel flow of an incompressible inviscid fluid for various jet velocity profiles is studied numerically using Floquet Analysis. The transition matrix at the end of a period is evaluated by direct numerical integration. For verification, a method based on approximating a continuous function by a series of step functions was used. Unstable solutions were found only over a limited range of wave numbers and have a band type structure. The results obtained are analogous to the behavior observed in systems exhibiting complexity at the edge of order and chaos.

  7. A volume-filtered formulation to capture particle-shock interactions in multiphase compressible flows

    NASA Astrophysics Data System (ADS)

    Shallcross, Gregory; Capecelatro, Jesse

    2017-11-01

    Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.

  8. Applying the new HIT results to tokamak and solar plasmas

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas; Sutherland, Derek; Hossack, Aaron; Nelson, Brian; Morgan, Kyle; Chris, Hansen; Benedett, Thomas; Everson, Chris; Penna, James

    2016-10-01

    Understanding sustainment of stable equilibria with helicity injection in HIT-SI has led to a simple picture of several tokamak features. Perturbations cause a viscous-like force on the current that flattens the λ profile, which sustains and stabilizes the equilibrium. An explanation of the mechanism is based on two properties of stable, ideal, two-fluid, magnetized plasma. First, the electron fluid is frozen to magnetic fields and, therefore, current flow is also magnetic field flow. Second, for a stable equilibrium the structure perpendicular to the flux surface resists deformation. Thus toroidal current is from electrons frozen in nested, rotating resilient flux surfaces. Only symmetric flux surfaces allow free differential current flow. Perturbations cause interference of the flux surfaces. Thus, perturbations cause forces that oppose differential electron rotation and forced differential flow produces a symmetrizing force against perturbations and instability. This mechanism can explain the level of field error that spoils tokamak performance and the rate of poloidal flux loss in argon-induced disruptions in DIII-D. This new understanding has led to an explanation of the source of the solar magnetic fields and the power source for the chromosphere, solar wind and corona. Please place in spheromak and FRC section with other HIT posters.

  9. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  10. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  11. Stability analysis of wall driven nanofluid flow through a tube

    NASA Astrophysics Data System (ADS)

    Hossain, M. Mainul; Khan, M. A. H.

    2017-06-01

    Wall driven incompressible viscous fluid flow with nanoparticles through a tube is considered where two different nanofluids (Cu-water, SiO2-water) are used separately. Flow becomes gradually unstable due to movement of wall and existence of nanoparticles. However, Reynolds number, volume fraction and density ratio are responsible for flow instability. The mathematical model of the problem is constructed and solved by means of series solution method. Special type Hermite-Padé approximation method is used to improve the series solution. The critical point for Reynolds number, volume fraction and density ratio are determined and described using approximation technique and bifurcation diagram for both nanofluids. Moreover, Interaction between these three numbers and their effect on velocity profile are discussed. To indicate the nanofluid which is more effective for flow stability is our major concerned.

  12. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.

    2011-12-01

    In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.

  13. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software - Case study of Baraolt River, Romania

    NASA Astrophysics Data System (ADS)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.

  14. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements

    NASA Astrophysics Data System (ADS)

    Chaves, Arlex; Zahn, Markus; Rinaldi, Carlos

    2008-05-01

    We treat the flow of ferrofluid in a cylindrical container subjected to a uniform rotating magnetic field, commonly referred to as spin-up flow. A review of theoretical and experimental results published since the phenomenon was first observed in 1967 shows that the experimental data from surface observations of tracer particles are inadequate for the assessment of bulk flow theories. We present direct measurements of the bulk flow by using the ultrasound velocity profile method, and torque measurements for water and kerosene based ferrofluids, showing the fluid corotating with the field in a rigid-body-like fashion throughout most of the bulk region of the container, except near the air-fluid interface, where it was observed to counter-rotate. We obtain an extension of the spin diffusion theory of Zaitsev and Shliomis, using the regular perturbation method. The solution is rigorously valid for αK≪√3/2 , where αK is the Langevin parameter evaluated by using the applied field magnitude, and provides a means for obtaining successively higher contributions of the nonlinearity of the equilibrium magnetization response and the spin-magnetization coupling in the magnetization relaxation equation. Because of limitations in the sensitivity of our apparatus, experiments were carried out under conditions for which α ˜1. Still, under such conditions the predictions of the analysis are in good qualitative agreement with the experimental observations. An estimate of the spin viscosity is obtained from comparison of flow measurements and theoretical results of the extrapolated wall velocity from the regular perturbation method. The estimated value lies in the range of 10-8-10-12kgms-1 and is several orders of magnitude higher than that obtained from dimensional analysis of a suspension of noninteracting particles in a Newtonian fluid.

  15. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.

    PubMed

    Nejad, A Abbas; Talebi, Z; Cheraghali, D; Shahbani-Zahiri, A; Norouzi, M

    2018-02-01

    In this study, the interaction of pulsatile blood flow with the viscoelastic walls of the axisymmetric artery is numerically investigated for different severities of stenosis. The geometry of artery is modeled by an axisymmetric cylindrical tube with a symmetric stenosis in a two-dimensional case. The effects of stenosis severity on the axial velocity profile, pressure distribution, streamlines, wall shear stress, and wall radial displacement for the viscoelastic artery are also compared to the elastics artery. Furthermore, the effects of atherosclerosis and polycythemia diseases on the hemodynamics and the mechanical behavior of arterial walls are investigated. The pulsatile flow of non-Newtonian blood is simulated inside the viscoelastic artery using the COMSOL Multiphysics software (version 5) and by employing the fluid-structure interaction (FSI) method and the arbitrary Lagrangian-Eulerian (ALE) method. Moreover, finite element method (FEM) is used to solve the governing equations on the unstructured grids. For modeling the non-Newtonian blood fluid and the viscoelastic arterial wall, the modified Casson model, and generalized Maxwell model are used, respectively. According to the results, with stenosis severity increasing from 25% to 75% at the time of maximum volumetric flow rate, the maximum value of axial velocity and its gradient increase 7.9 and 19.6 times, and the maximum wall shear stress of viscoelastic wall increases 24.2 times in the constriction zone. With the progression of the atherosclerosis disease (fivefold growth of arterial elastic modulus), the wall radial displacement of viscoelastic arterial walls decreases nearly 40%. In this study, axial velocity profile, pressure distribution, streamlines, wall radial displacement, and wall shear stress were examined for different percentages of stenosis (25%, 50%, and 75%). The atherosclerosis disease was investigated by the fivefold growth of viscoelastic arterial elastic modulus and polycythemia disease was examined by the 21-fold increase in the yield stress of the blood fluid. Furthermore, the comparison of results between the elastic and viscoelastic arterial walls shows that the wall radial displacement for viscoelastic artery is lower than that for the elastic artery as much as 21.7% for the severe stenosis of 75%. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    NASA Astrophysics Data System (ADS)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width became wider compared to the KdV solution described by Grimshaw (2002). This is predicted because higher order analytical solution for 2-layer fluids, i.e. the eKdV solution, gives broader solitary wave shape than that of the KdV solution because of the cubic nonlinear term. When we look at the surface velocity distribution, a parabolic shape corresponding to internal solitary wave is clearly seen. According to the fully nonlinear theoretical model for internal wave between two fluids having background linear shear flow profiles (Choi and Camassa1999), the shape of internal wave is influenced by the velocity shear as well. However, we could not clarify the effect of vertical shear because there is no fully nonlinear analytical solution for large amplitude internal wave in continuously stratified fluid. Second series of simulations with uniform flow going through Gaussian Bell topography show that internal solitary wave shows up from sides of the topography. This generation is similar to the one developed in lee side of sill topography by tidal flow. With broader bell topography, generated internal waves become larger. This makes sense because forcing region is wider. A horizontal shape of the internal solitary wave is not parabolic but the two bending line forms from the sides of the island. However, no solitary wave in front of the island develops. Our results imply that vertical shear profile is needed for the formation of the depression type internal solitary, and explains the parabolic bright line observed in the SAR image

  17. Systematic flow manipulation by a deflector-turbine array

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Mangan, Niall M.

    2017-11-01

    Wind and hydrokinetic turbines are often installed in the wake of upstream turbines that limit the energy incident on the downstream ones. In two-dimensions, we describe how an array can deflect the wake away and redirect more energy to itself. Using inviscid fluid dynamics, we formulate the definitions of ``deflectors'' and ``turbines'' as elements that introduce bound and shed vorticity in the flow, respectively. To illustrate the flow manipulation, we consider a deflector-turbine array constrained to a line segment aligned with the freestream and acting as an internal boundary. We impose profiles of bound and shed vorticity on this segment that parameterize the flow deflection and the wake deficit respectively, and analyze the resulting flow using inviscid fluid dynamics. We find that the power extracted by the array is the product of two components: (i) the deflected kinetic energy incident on the array, and (ii) the array efficiency, or its ability to extract a fraction of the incident energy, both of which vary with deflection strength. The array efficiency decreases slightly with increasing deflection from about 57% at weak deflection to 39% at high deflection. This decrease is outweighed by an increase in the incident kinetic energy due to deflection. Funded by the Advanced Research Projects Agency - Energy.

  18. Sensor for Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  19. Temperature, Velocity, and Mean Turbulence Structure in Stongly-Heated Internal Gas Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald Marinus; Mikielewicz, D. P.; Shehata, A. M.

    2002-10-01

    The main objective of the present study is to examine whether "simple" turbulence models (i.e., models requiring two partial differential equations or less for turbulent transport) are suitable for use under conditions of forced flow of gas at low Reynolds numbers in tubes with intense heating, leading to large variations of fluid properties and considerable modification of turbulence. Eleven representative models are considered. The ability of such models to handle such flows was assessed by means of computational simulations of the carefully designed experiments of Shehata and McEligot (IJHMT 41 (1998) 4297) at heating rates of q+in˜0.0018, 0.0035 and 0.0045,more » yielding flows ranging from essentially turbulent to laminarized. The resulting comparisons of computational results with experiments showed that the model by Launder and Sharma (Lett. Heat Transfer 1 (1974) 131) performed best in predicting axial wall temperature profiles. Overall, agreement between the measured velocity and temperature distributions and those calculated using the Launder–Sharma model is good, which gives confidence in the values forecast for the turbulence quantities produced. These have been used to assist in arriving at a better understanding of the influences of intense heating, and hence strong variation of fluid properties, on turbulent flow in tubes.« less

  20. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

Top