NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.
2017-12-01
During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.
Injection-induced moment release can also be aseismic
McGarr, Arthur; Barbour, Andrew J.
2018-01-01
The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.
NASA Astrophysics Data System (ADS)
David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.
2014-12-01
Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was injected. The most remarkable difference is that water injection induces mechanical instability and failure, whereas oil injection does not. This was confirmed by the analysis of acoustic emissions activity and post-mortem sample imaging using CT scan. Contrasting evolutions of the P wave velocity during the fluid front propagation were also observed in both experiments.
Transformation of fault slip modes in laboratory experiments
NASA Astrophysics Data System (ADS)
Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim
2017-04-01
Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random stochastic (irregular mode). To investigate regularities of transformation and get statistically correct results we simulated only regular mode. During the experiments, after the establishment of a regular mode, we injected fluid into central part of interblock contact. Varying injecting fluid we were able both to decrease and increase amplitude of events. For example, after injection of 1 mPa x s fluid (water) in gouge, moisturized with 100 mPa x s fluid (ethylene glycol), peak velocity rose by almost an order. But after injection of an aqueous solution of starch (big viscosity and dilatant rheology) amplitude decreased 1.5 times and then slip almost completely stabilized. It's probably connected with the viscosity of solution, which increases with quick shift. Time of injection also has the significant impact on the possibility of transformation and its efficiency. Thus, it is well known that if the time of injection is in the vicinity of loss of strength moment, any external influence only initiates slip events. Preliminary results of our laboratory experiments show that the fluid injection can both reduce the part of deformation energy going seismic wave radiation, and to increase it. The most effective action observed in experinemts with injection of dilatant fluid. Findings demonstrate the prospectivity of further research in this direction. The work was supported by the Russian Science Foundation (Grant No. 16-17-00095) [1] Fagereng A., Sibson R.H. 2010. Melange rheology and seismic style. Geology. Vol.38, p.751-754. [2] Kocharyan G.G., et al. 2017. A study of different fault slip modes governed by the gouge material composition in laboratory experiments. Geophys. J. Int. Vol.208, p. 521-528. [3] Yamashita T. 2013. Generation of slow slip coupled with tremor due to fluid flow along a fault. Geophys. J. Int. Vol.193, p.375-393. [4] Guglielmi Y., et. al. 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science. Vol.348, p.1224-1226. [5] Wei S., et al. 2015. The 2012 Brawley swarm triggered by injection-induced aseismic slip. EPSL. Vol. 422, p.115-122.
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kukowski, Nina; May, Franz
2017-04-01
Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The breakthrough of the fractures at the surface is accompanied by a significant drop of air pressure at the base of the analogue materials. The width of the dome shaped uplift is narrower and the initiating fluid pressure in the needle valve is lower, if the fluid pressure at the base of the experiment is larger. The experimental outcomes help to evaluate if the injection of CO2 into a reservoir potentially provokes initiation or reactivation of fractures and sediment mobilisation structures.
Stability of fault submitted to fluid injections
NASA Astrophysics Data System (ADS)
Brantut, N.; Passelegue, F. X.; Mitchell, T. M.
2017-12-01
Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes recently observed in Oklahoma (Mw 5.6, 2016).
Fracture propagation during fluid injection experiments in shale at elevated confining pressures.
NASA Astrophysics Data System (ADS)
Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter
2017-04-01
The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.
Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix
NASA Astrophysics Data System (ADS)
Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard
2016-11-01
We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.
Monitoring artificially stimulated fluid movement in the Cretaceous Dakota aquifer, western Kansas
Macfarlane, P.A.; Forster, A.; Merriam, D.F.; Schrotter, J.; Healey, J.M.
2002-01-01
Aquifer properties can be evaluated by monitoring artificially stimulated fluid movements between wells, if the fluid is heated. Changes in the temperature profile recorded in observation wells indicate the flow path of the heated fluid, which in effect acts as a tracer. A fluid-flow experiment in the Cretaceous Dakota Formation at the Hodgeman County site, west-central Kansas, demonstrated the advantage of using the distributed optical-fiber temperature sensing method for monitoring transient temperature conditions in his hydrological application. The fluid flow in the aquifer was increased by producing water from a pumping well and injecting heated water in an injection well 13 m (43 ft) distant from the pumping well. The time-temperature series data obtained and compared with results from previous pumping tests point to interwell heterogeneity of the aquifer and to a zone in the sandstone aquifer of high hydraulic conductivity. However, the experiment would have allowed further clarification of aquifer heterogeneity and thermal properties if at least one observation well had been present between the injection and production wells.
INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.
Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek
2015-06-12
Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Lo Re, C.; Kaszuba, J. P.; Moore, J.; McPherson, B. J.
2011-12-01
Supercritical CO2 may be a viable working fluid in enhanced geothermal systems (EGS) due to its large expansivity, low viscosity, and reduced reactivity with rock as compared to water. Hydrothermal experiments are underway to evaluate the geochemical impact of using supercritical CO2 as a working fluid in granite-hosted geothermal systems. Synthetic aqueous fluid and a model granite are reacted at 250 °C and 250 bars in a rocking autoclave and Au-Ti reaction cell for a minimum of 28 days (water:rock ratio of approximately 20:1). Subsequent injection of supercritical CO2 increases pressure, which decays over time as the CO2 dissolves into the aqueous fluid. Initial experiments decreased to a steady state pressure of 450 bars approximately 14 hours after injection of supercritical CO2. Post-injection reaction is allowed to continue for at least an additional 28 days. Excess CO2 is injected to produce a separate supercritical fluid phase (between 1.7 and 3.1 molal), ensuring aqueous CO2 saturation for the duration of each experiment. The granite was created using mineral separates and consists of ground (75 wt%, <45 microns) and chipped (25 wt%, 0.5-1.0 cm), sub-equal portions of quartz, perthitic potassium feldspar (~ 25 wt% albite and 75 wt% potassium feldspar), oligoclase, and a minor (4 wt%) component of Fe-rich biotite. The synthetic saline water (I = 0.12 m) contains molal quantities of Na, Cl, and HCO3 and millimolal quantities of K, SiO2, SO4, Ca, Al, and Mg, in order of decreasing molality. Aqueous fluids are sampled approximately 10 times over the course of each experiment and analyzed for total dissolved carbon and sulfide by coulometric titration, anions by ion chromatography, and major, minor, and trace cations by ICP-OES and -MS. Bench pH measurements are paired with aqueous analyses to calculate in-situ pH. Solid reactants are evaluated by SEM-EDS, XRD, and/or bulk chemical analysis before and after each experiment. Analytical data are reviewed alongside geochemical models to evaluate fluid-rock interactions and the capacity of theoretical models to predict the observed outcome. Data derived from this study will inform our understanding of how a real world geothermal system may respond geochemically and mineralogically given 'spontaneous' injection of CO2, whether by an anthropogenic or natural source. Companion modeling work is also underway, which will use these experiments to calibrate EGS models for field application.
Fluid Induced Earthquakes: From KTB Experiments to Natural Seismicity Swarms.
NASA Astrophysics Data System (ADS)
Shapiro, S. A.
2006-12-01
Experiments with borehole fluid injections are typical for exploration and development of hydrocarbon or geothermal reservoirs (e.g., fluid-injection experiments at Soultz, France and at Fenton-Hill, USA). Microseismicity occurring during such operations has a large potential for understanding physics of the seismogenic process as well as for obtaining detailed information about reservoirs at locations as far as several kilometers from boreholes. The phenomenon of microseismicity triggering by borehole fluid injections is related to the process of the Frenkel-Biot slow wave propagation. In the low-frequency range (hours or days of fluid injection duration) this process reduces to the pore pressure diffusion. Fluid induced seismicity typically shows several diffusion indicating features, which are directly related to the rate of spatial grow, to the geometry of clouds of micro earthquake hypocentres and to their spatial density. Several fluid injection experiments were conducted at the German Continental Deep Drilling Site (KTB) in 1994, 2000 and 2003-2005. Microseismicity occurred at different depth intervals. We analyze this microseismicity in terms of its diffusion-related features. Its relation to the 3-D distribution of the seismic reflectivity has important rock physical and tectonic implications. Starting from such diffusion-typical signatures of man-made earthquakes, we seek analogous patterns for the earthquakes in Vogtland/Bohemia at the German/Czech border region in central Europe. There is strong geophysical evidence that there seismic events are correlated to fluid-related processes in the crust. We test the hypothesis that ascending magmatic fluids trigger earthquakes by the mechanism of pore pressure diffusion. This triggering process is mainly controlled by two physical fields, the hydraulic diffusivity and the seismic criticality (i.e., critical pore pressure value leading to failure; stable locations are characterized by higher critical pressures), both heterogeneously distributed in rocks. The results of the analysis of the most significant and best studied (year 2000) earthquake swarm support this concept. Using a numerical model, where spatially correlated diffusivity and criticalit y patches (where patches with higher diffusivity are assumed to be less stable) are considered, we successfully simulate a general seismicity pattern of the swarms, including the spatio-temporal clustering of events and the migration of seismic activity. Therefore, in some cases spontaneously triggered natural seismicity, like earthquake swarms, also shows diffusion-typical signatures mentioned above. However, it seems that there are also some principle differences. They are emphasized in this presentation.
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
NASA Astrophysics Data System (ADS)
Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.
2018-02-01
In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.
Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus
2011-04-23
A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less
NASA Astrophysics Data System (ADS)
Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.
2017-12-01
Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated in the borehole wall.
NASA Astrophysics Data System (ADS)
Shrestha, Pranav; Stoeber, Boris
2017-11-01
Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.
Study of injection molded microcellular polyamide-6 nanocomposites
Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler
2004-01-01
This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...
Dispersion in Fractures with Ramified Dissolution Patterns
NASA Astrophysics Data System (ADS)
Xu, Le; Marks, Benjy; Toussaint, Renaud; Flekkøy, Eirik G.; Måløy, Knut J.
2018-04-01
The injection of a reactive fluid into an open fracture may modify the fracture surface locally and create a ramified structure around the injection point. This structure will have a significant impact on the dispersion of the injected fluid due to increased permeability, which will introduce large velocity fluctuations into the fluid. Here, we have injected a fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure. The transparency of the model makes it possible to follow the detailed dispersion of the tracer concentration. The experiments have been compared to two dimensional (2D) computer simulations which include both convective motion and molecular diffusion. A comparison was also performed between the dispersion from an initially ramified dissolution structure and the dispersion from an initially circular region. A significant difference was seen both at small and large length scales. At large length scales, the persistence of the anisotropy of the concentration distribution far from the ramified structure is discussed with reference to some theoretical considerations and comparison with simulations.
Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response
NASA Astrophysics Data System (ADS)
Prasad, M.; Livo, K.
2017-12-01
Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.
Hydraulic fracturing in granite under geothermal conditions
Solberg, P.; Lockner, D.; Byerlee, J.D.
1980-01-01
The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.
Induced and triggered earthquakes at The Geysers geothermal reservoir
NASA Astrophysics Data System (ADS)
Johnson, Lane R.; Majer, Ernest L.
2017-05-01
The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.
NASA Astrophysics Data System (ADS)
Zhai, G.; Shirzaei, M.
2017-12-01
Across the Barnett Shale, Texas a noticeable increase in seismic activity was observed during 2007 and 2015, which was accompanied by high volume injection at several nearby disposal wells. Many studies focused on the positive correlation between injection rate at individual wells and the adjacent seismicity, suggesting that seismicity is triggered or induced due to increased pore fluid pressure associated with fluid injection in hydraulically connected geological units. However, investigating temporal evolution of total volume of injected fluid and concurrent earthquakes in a larger area indicates more complex patterns, requiring a more comprehensive analysis of the spatiotemporal evolution of coupled poroelastic stress and pore fluid pressure. In this study, we created a coupled poroelastic model to simulate large scale spatiotemporal evolution of pore pressure, poroelastic stresses, and Coulomb failure stress in the Barnett Shale using injection time series of 96 high-volume injection wells spanning from 2007 to 2015. We additionally account for a layered poroelastic medium, where its parameters are set up using geological maps and seismic tomographic data sets. Fault orientations and relevant frictional properties are also extracted from published literatures. We further integrate observation of surface deformation obtained from interferometric processing of 16 ALOS L-Band SAR images to optimize rock hydraulic diffusivity and constrain the extent to which fluid may migrate. The preliminary modeling result shows that poroelastic stress is only 10% of pore pressure. However, the superimposition of these two effects is spatially and temporally responsible for the occurrence of earthquakes in the Barnett Shale. Also, not all area with increased Coulomb failure stress experiences elevated seismicity, suggesting possible heterogeneous background tectonic stresses, lacking pre-existing faults, and/or heterogeneous fault orientations.
Numerical simulation of water injection into vapor-dominated reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.
1995-01-01
Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.
Pattern formation during healing of fluid-filled cracks: an analog experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Renard; D. K. Dysthe; J. G. Feder
2009-11-01
The formation and subsequent healing of cracks and crack networks may control such diverse phenomena as the strengthening of fault zones between earthquakes, fluid migrations in the Earth's crust, or the transport of radioactive materials in nuclear waste disposal. An intriguing pattern-forming process can develop during healing of fluid-filled cracks, where pockets of fluid remain permanently trapped in the solid as the crack tip is displaced driven by surface energy. Here, we present the results of analog experiments in which a liquid was injected into a colloidal inorganic gel to obtain penny-shaped cracks that were subsequently allowed to close andmore » heal under the driving effect of interfacial tension. Depending on the properties of the gel and the injected liquid, two modes of healing were obtained. In the first mode, the crack healed completely through a continuous process. The second mode of healing was discontinuous and was characterized by a 'zipper-like' closure of a front that moved along the crack perimeter, trapping fluid that may eventually form inclusions trapped in the solid. This instability occurred only when the velocity of the crack tip decreased to zero. Our experiments provide a cheap and simple analog to reveal how aligned arrays of fluid inclusions may be captured along preexisting fracture planes and how small amounts of fluids can be permanently trapped in solids, modifying irreversibly their material properties.« less
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Fisher, A. T.; Winslow, D. M.; Stauffer, P. H.; Gable, C. W.
2017-12-01
The flanks of mid-ocean ridges experience coupled flows of fluid, heat, and solutes that are critical for a wide range of global processes, including the cycling of carbon and nutrients, which supports a vast crustal biosphere. Only a few ridge-flank sites have been studied in detail; hydrogeologic conditions and processes in the volcanic crust are best understood on the eastern flank of the Juan de Fuca Ridge. This area has been extensively explored with decades of drilling, submersible, observatory, and survey expeditions and experiments, including the first hole-to-hole tracer injection experiment in the ocean crust. This study describes the development of reactive transport simulations for this ridge-flank setting using three-dimensional coupled (thermal-hydrological) models of crustal-scale circulation, beginning with the exploration of tracer transport. The prevailing flow direction is roughly south to north as a result of outcrop-to-outcrop flow, with a bulk flow rate in the range of meters/year. However, tracer was detected 500 m south ("upstream") from the injection borehole during the first year following injection. This may be explained by local mixing and/or formation fluid discharge from the southern borehole during and after injection. The constraints and parameters required to fit the observed tracer behavior can be used as a basis for modeling reactive transport processes such as nutrient delivery or microbial community evolution as a function of fluid flow. For example, the sulfate concentration in fluid samples from Baby Bare outcrop ( 8 km south of the tracer transport experiment) was 17.8 mmol/kg, whereas at Mama Bare outcrop ( 8 km to north of the tracer transport experiment) the sulfate concentration was 16.3 mmol/mg. By integrating laboratory-derived sulfate reduction rates from microbial samples originating from Juan de Fuca borehole observatories into reactive transport models, we can explore the range of microbial activity that supports the observed concentration gradients of sulfate and other solutes in the volcanic ocean crust.
Injection System for Multi-Well Injection Using a Single Pump
Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.
2015-01-01
Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014
Experimental Insights into Multiphase (H2O-CO2) Fluid-Rock Interactions in Geothermal Systems
NASA Astrophysics Data System (ADS)
Kaszuba, J. P.; Lo Re, C.; Martin, J.; McPherson, B. J.; Moore, J. N.
2012-12-01
Integrated hydrothermal experiments and geochemical modeling elucidate fluid-rock interactions and reaction pathways in both natural and anthropogenic systems, including enhanced geothermal systems (EGS) in which CO2 is introduced as a working fluid. Experiments are conducted in rocker bombs and flexible Au-Ti reaction cells. Individual experiments require one to three months to complete; intensive in-situ fluid/gas sampling gauges reaction progress. Investigation of granitic reservoirs and associated vein minerals are broadly based on the Roosevelt Hot Springs thermal area, Utah, USA. The granite consists of subequal amounts of quartz, perthitic K-feldspar (~25% wt% albite and 75% wt% K-feldspar), and oligoclase (An23), and 4 wt% Fe-rich biotite. Vein minerals include epidote and chlorite (clinochlore). Experiments are conducted at 250°C and 25 to 45 MPa. Each experiment uses mineral powders (75 wt% of rock mass, ground to <45 um) to increase reactivity and also mineral pieces (0.1-0.7 cm in size) to promote petrologic evaluation of mineral reactions. The water (I ≈ 0.1 molal) initially contains millimolal quantities of SiO2, Al, Ca, Mg, K, SO4, and HCO3 and is designed to be saturated with all of the minerals present at the start of each experiment. Excess CO2 is injected to saturate the water and maintain an immiscible supercritical fluid phase. The entire evolutionary path of the natural system is not replicated at laboratory scales. Instead, experiments define a segment of the reaction path and, in combination with geochemical modeling, provide clear trajectories towards equilibrium. Reaction of granite+water yields illite+zeolite; smectite subsequently precipitates in response to CO2 injection. Reaction of granite+epidote+water yields illite+zeolite+smectite; zeolite does not precipitate after CO2 is injected. Water in all experiments become saturated with chalcedony. Carbonate minerals do not precipitate but are predicted as final equilbrium products. Enhanced Geothermal Systems are expected to follow similar reaction pathways and produce metastable minerals during initial development.
A Novel Light Trapping Phenomenon in Fluid Media.
ERIC Educational Resources Information Center
Devlin, J. C.; Tolles, W. M.
1979-01-01
Describes an experiment on light trapping in thin liquid films. Injection of a thin layer of solution at the boundary of a moving solvent is utilized to create a thin fluid sheet having an index of refraction greater than that of the surrounding medium. (Author/SA)
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Turbulent acidic jets and plumes injected into an alkaline environment
NASA Astrophysics Data System (ADS)
Ulpre, Hendrik
2012-11-01
The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.
NASA Technical Reports Server (NTRS)
Hailey, M.; Bayuse, T.
2010-01-01
Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.
Spheromak plasma flow injection into a torus chamber and the HIST plasmas
NASA Astrophysics Data System (ADS)
Hatuzaki, Akinori
2005-10-01
The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.
NASA Astrophysics Data System (ADS)
Solazzi, Santiago G.; Guarracino, Luis; Rubino, J. Germán.; Müller, Tobias M.; Holliger, Klaus
2017-11-01
Quantifying seismic attenuation during laboratory imbibition experiments can provide useful information toward the use of seismic waves for monitoring injection and extraction of fluids in the Earth's crust. However, a deeper understanding of the physical causes producing the observed attenuation is needed for this purpose. In this work, we analyze seismic attenuation due to mesoscopic wave-induced fluid flow (WIFF) produced by realistic fluid distributions representative of imbibition experiments. To do so, we first perform two-phase flow simulations in a heterogeneous rock sample to emulate a forced imbibition experiment. We then select a subsample of the considered rock containing the resulting time-dependent saturation fields and apply a numerical upscaling procedure to compute the associated seismic attenuation. By exploring both saturation distributions and seismic attenuation, we observe that two manifestations of WIFF arise during imbibition experiments: the first one is produced by the compressibility contrast associated with the saturation front, whereas the second one is due to the presence of patches containing very high amounts of water that are located behind the saturation front. We demonstrate that while the former process is expected to play a significant role in the case of high injection rates, which are associated with viscous-dominated imbibition processes, the latter becomes predominant during capillary-dominated processes, that is, for relatively low injection rates. We conclude that this kind of joint numerical analysis constitutes a useful tool for improving our understanding of the physical mechanisms producing seismic attenuation during laboratory imbibition experiments.
The mixability of angiographic contrast with arterial blood
Lieber, Baruch B.; Sadasivan, Chander; Hao, Qing; Seong, Jaehoon; Cesar, Liliana
2009-01-01
Purpose: Angiographic contrast that is routinely injected into arteries is used not only to evaluate arterial geometry but also in many cases to assess perfusion. The authors conducted two experiments to examine the dispersion of angiographic contrast injected antegradely into an artery under conditions similar to those found in selective (carotid artery) or superselective (circle of Willis) angiography in order to determine the distance from the catheter tip at which the contrast can be considered fully mixed with the blood. A third experiment investigated whether the contrast once mixed with blood will separate from the mixture under the gravitational field due to a density mismatch. Methods: Experiment I—Under high-speed angiographic acquisition, a bolus of contrast was injected through a catheter along the flow direction of a blood analog fluid flowing through a straight, long, cylindrical tube. The variation in grayscale intensity along the length of the tube was acquired and modeled as the step response to a second-order system. The distance from the catheter tip at which the contrast mixes with the working fluid, the mixing length, was determined as the length along the tube after which the step response settles to within 3% of the steady state value. Experiment II—A bolus of angiographic contrast was injected at rates varying from 0.1 to 1 cc∕s through three different catheter sizes in the left common carotid artery of three rabbits. The average cross-sectional grayscale intensity over one cardiac cycle was calculated at four locations along the artery: Immediately distal to the catheter tip, at location of maximum grayscale intensity, and at 10 and 20 arterial diameters from the catheter tip. The status of mixing within 10 arterial diameters was assessed by differences between the grayscale value at this location and that at the maximum and 20 arterial diameter location. Experiment III—Angiographic contrast was premixed by agitation in three separate vials containing normal saline, canine blood, and glycerol∕distilled-water mixture. The vials were then stationed vertically and angiographic images obtained every 5 min for 1 h. The average intensity of contrast along the vertical length of each vial was obtained for every time point to record any changes in the distribution of contrast over time. Results: The first experiment shows that angiographic contrast completely mixes with steady flowing blood analog fluid within about eight tube diameters of the injection site. The second experiment shows that contrast completely mixes with blood within ten arterial diameters under appropriate injection parameters. The third experiment shows that angiographic contrast does not separate from, or settle out of, contrast-carrying fluid mixtures for a period of 1 h. Conclusions: The results demonstrate that under typical injection conditions in the clinical setting, contrast issuing from the catheter completely mixes with the blood within ten artery diameters downstream of the catheter tip. Once mixed, it does not separate from the blood due to gravity. PMID:19994517
Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore
NASA Astrophysics Data System (ADS)
Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua
2018-06-01
It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.
Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane
NASA Technical Reports Server (NTRS)
2003-01-01
This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.
NASA Astrophysics Data System (ADS)
Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.
2016-12-01
Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo
We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA – for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5more » samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 °C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.« less
Solution mining systems and methods for treating hydrocarbon containing formations
Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX
2009-07-14
A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.
NASA Astrophysics Data System (ADS)
Zemke, K.; Kummmerow, J.; Wandrey, M.; Co2SINK Group
2009-04-01
Since June of 2008 carbon dioxide has been injected into a saline aquifer at the Ketzin test site [Würdemann et al., this volume]. The food grade CO2 is injected into a sandstone zone of the Stuttgart formation at ca. 650 m depth at 35°C reservoir temperature and 62 bar reservoir pressure. With the injection of CO2 into the geological formation, chemical and physical reservoir characteristics are changed depending on pressure, temperature, fluid chemistry and rock composition. Fluid-rock interaction could comprise dissolution of non-resistant minerals in CO2-bearing pore fluids, cementing of the pore space by precipitating substances from the pore fluid, drying and disintegration of clay minerals and thus influence of the composition and activities of the deep biosphere. To testing the injection behaviour of CO2 in water saturated rock and to evaluate the geophysical signature depending on the thermodynamic conditions, flow experiments with water and CO2 have been performed on cores of the Stuttgart formation from different locations including new wells of ketzin test site. The studied core material is an unconsolidated fine-grained sandstone with porosity values from 15 to 32 %. Permeability, electrical resistivity, and sonic wave velocities and their changes with pressure, saturation and time have been studied under simulated in situ conditions. The flow experiments conducted over several weeks with brine and CO2 showed no significant changes of resistivity and velocity and a slightly decreasing permeability. Pore fluid analysis showed mobilization of clay and some other components. A main objective of the CO2Sink laboratory program is the assessment of the effect of long-term CO2 exposure on reservoir rocks to predict the long-term behaviour of geological CO2 storage. For this CO2 exposure experiments reservoir rock samples were exposed to CO2 saturated reservoir fluid in corrosion-resistant high pressure vessels under in situ temperature and pressure conditions over a period of several months. Before and after the CO2 exposure experiment cyclic measurements of physical properties were carried out on these cores in a mechanical testing system. After experimental runs of up to 3 months no significant changes in flow and petrophysical data were observed. [For the microbilogical studies see Wandrey et al., this volume.] To study the impact of fluid-rock interactions on petrophysical parameters, porosity and pore radii distribution have been investigated before and after the experiment by NMR relaxation and mercury-injection. NMR measurements on rock core plugs saturated with brine may return valuable information on the porous structure of the rock core. The distribution of NMR-T2 values (CPMG) reflects the pore sizes within the rock core. NMR pore size is a derivative of the ratio pore surface/volume. The mercury injection pore size is an area-equivalent diameter of the throats connecting the pore system. Most of the tested samples show in the NMR measurements a slightly increasing porosity and a higher part of large pores. The mercury measurements and thin- section for microstructural characterisation after the CO2 exposure will be done at a later date.
NASA Astrophysics Data System (ADS)
Tutolo, B. M.; Luhmann, A. J.; Kong, X.; Saar, M. O.; Seyfried, W. E.
2013-12-01
Injecting surface temperature CO2 into geothermally warm reservoirs for geologic storage or energy production may result in depressed temperature near the injection well and thermal gradients and mass transfer along flow paths leading away from the well. Thermal gradients are particularly important to consider in reservoirs containing carbonate minerals, which are more soluble at lower temperatures, as well as in CO2-based geothermal energy reservoirs where lowering heat exchanger rejection temperatures increases efficiency. Additionally, equilibrating a fluid with cation-donating silicates near a low-temperature injection well and transporting the fluid to higher temperature may enhance the kinetics of mineral precipitation in such a way as to overcome the activation energy required for mineral trapping of CO2. We have investigated this process by subjecting a dolomite core to a 650-hour temperature series experiment in which the fluid was saturated with CO2 at high pressure (110-126 bars) and 21°C. This fluid was recirculated through the dolomite core, increasing permeability from 10-16 to 10-15.2 m2. Subsequently, the core temperature was raised to 50° C, and permeability decreased to 10-16.2 m2 after 289 hours, due to thermally-driven CO2 exsolution. Increasing core temperature to 100°C for the final 145 hours of the experiment caused dolomite to precipitate, which, together with further CO2 exsolution, decreased permeability to 10-16.4 m2. Post-experiment x-ray computed tomography and scanning electron microscope imagery of the dolomite core reveals abundant matrix dissolution and enlargement of flow paths at low temperatures, and subsequent filling-in of the passages at elevated temperature by dolomite. To place this experiment within the broader context of geologic CO2 sequestration, we designed and utilized a reactive transport simulator that enables dynamic calculation of CO2 equilibrium constants and fugacity and activity coefficients by incorporating mineral, fluid, and aqueous species equations of state into its structure. Phase equilibria calculations indicate that fluids traveling away from the depressed temperature zone near the injection well may exsolve and precipitate up to 200 cc CO2, 1.45 cc dolomite, and 2.3 cc calcite, per kg, but we use the reactive transport simulator to place more realistic limits on these calculations. The simulations show that thermally-induced CO2 exsolution creates velocity gradients within the modeled domain, leading to increased velocities at lower pressure due to the increasingly gas-like density of CO2. Because dolomite precipitation kinetics strongly depend on temperature, modeled dolomite precipitation effectively concentrates within high temperature regions, while calcite precipitation is predicted to occur over a broader range. Additionally, because the molar volume of dolomite is almost double that of calcite, transporting a low temperature, dolomite-saturated fluid across a thermal gradient can lead to more substantial pore space clogging. We conclude that injecting cool CO2 into geothermally warm reservoirs may substantially alter formation porosity, permeability, and injectivity, and can result in favorable conditions for permanent storage of CO2 as a solid carbonate phase.
An experiment to evaluate liquid hydrogen storage in space
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Fester, D. A.; Johns, W. A.; Marino, J. S.
1981-01-01
The design and verification of a Cryogenic Fluid Management Experiment for orbital operation on the Shuttle is described. The experiment will furnish engineering data to establish design criteria for storage and supply of cryogenic fluids, mainly hydrogen, for use in low gravity environments. The apparatus comprises an LAD (liquid acquisition device) and a TVS (thermodynamic vent system). The hydrogen will be either vented or forced out by injected helium and the flow rates will be monitored. The data will be compared with ground-based simulations to determine optimal flow rates for the pressurizing gas and the release of the cryogenic fluid. It is noted that tests on a one-g, one-third size LAD system are under way.
Numerical Simulation Applications in the Design of EGS Collab Experiment 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; White, Mark D.; Fu, Pengcheng
The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less
NASA Astrophysics Data System (ADS)
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard
2017-11-01
Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.
NASA Astrophysics Data System (ADS)
Scuderi, M. M.; Collettini, C.; Marone, C.
2017-11-01
It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.
NASA Astrophysics Data System (ADS)
Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.
2009-04-01
Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical predictions of White's model. The results illustrate the non-unique relationships between saturation and velocity in sandstones dependent on texture and fluid displacement history: fuller understanding of these phenomena is needed for accurate assessment of time lapse seismic measurements, be they for oil and gas recovery or for CO2 disposal purposes. Gassmann, F., 1951, Elastic waves through a packing of spheres. Geophysics 16, 673-685; Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The Rock Physics Handbook: Tools for seismic analysis in porous media: Cambridge University Press. Wood, A. W., 1955, A Textbook of Sound, The MacMillan Co., New York, 360 pp. Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357-372. Hill, R., 1952, The elastic behavior of crystalline aggregates. Proc. Physical Soc., London, A65, 349-354. J. Toms, T.M. Mueller, B. Gurevich, 2007 Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55, 671-678.
NASA Astrophysics Data System (ADS)
Viesca, R. C.
2015-12-01
Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.
Using well casing as an electrical source to monitor hydraulic fracture fluid injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris
2016-03-09
The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less
Taoka, Toshiaki; Jost, Gregor; Frenzel, Thomas; Naganawa, Shinji; Pietsch, Hubertus
2018-04-12
The glymphatic system is a recently hypothesized waste clearance system of the brain in which perivascular space constitutes a pathway similar to the lymphatic system in other body regions. Sleep and anesthesia are reported to influence the activity of the glymphatic system. Because rats are nocturnal animals, the glymphatic system is expected to be more active during the day. We attempted to elucidate the influence of the glymphatic system for intravenously injected gadodiamide in the rat brain by 2 experiments. One was a magnetic resonance imaging (MRI) experiment to evaluate the short-term dynamics of signal intensity changes after gadodiamide administration. The other was a quantification experiment to evaluate the concentration of retained gadolinium within the rat brain after repeated intravenous administration of gadodiamide at different times of day and levels of anesthesia. The imaging experiment was performed on 6 rats that received an intravenous injection of gadodiamide (1 mmol/kg) and dynamic MRI for 3 hours at 2.4-minute intervals. The time course of the signal intensity changes was evaluated for different brain structures. The tissue quantification experiment was performed on 24 rats divided into 4 groups by injection time (morning, late afternoon) and anesthesia (none, short, long) during administration. All animals received gadodiamide (1.8 mmol/kg, 8 times over 2 weeks). Gadolinium concentration of dissected brain tissues was quantified 5 weeks after the last administration by inductively coupled plasma mass spectrometry. In the imaging experiment, muscle and the fourth ventricle showed an instantaneous signal intensity increase immediately after gadodiamide injection. The signal curve of the cerebral cortex and deep cerebellar nuclei reached the peak signal intensity later than the fourth ventricle but earlier than that of the prepontine cistern. In the gadolinium quantification experiment, the concentration in the group with the morning injection showed a significantly lower concentration than the late afternoon injection group. The lowest tissue gadolinium concentrations were found in the groups injected in the morning during long anesthesia. Instantaneous transition of gadodiamide from blood to cerebrospinal fluid was indicated by dynamic MRI. The gadodiamide distribution to the cerebral cortex and deep cerebellar nuclei seemed to depend on both blood flow and cerebrospinal fluid. This confirms previous studies indicating that the cerebrospinal fluid is one potential pathway of gadolinium-based contrast agent entry into the brain. For the distribution and clearance of the gadodiamide from brain tissue, involvement of the glymphatic system seemed to be indicated in terms of the influence of sleep and anesthesia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine K; Kim, Hyoungsoo; Stone, Howard A
2017-12-12
Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oostrom, Martinus; Truex, Michael J.; Vermeul, Vincent R.
2014-08-19
The use of shear thinning fluids (STFs) containing xanthan is a potential enhancement for emplacing a solute amendment near the water table and within the capillary fringe. Most research to date related to STF behavior has involved saturated and confined conditions. A series of flow cell experiments were conducted to investigate STF emplacement in variable saturated homogeneous and layered heterogeneous systems. Besides flow visualization using dyes, amendment concentrations and pressure data were obtained at several locations. The experiments showed that injection of STFs considerably improved the subsurface distribution near the water table by mitigating preferential flow through higher permeability zonesmore » compared to no-polymer injections. The phosphate amendment migrated with the xanthan SFT without retardation. Despite the high viscosity of the STF, no excessive mounding or preferential flow were observed in the unsaturated zone. The STOMP simulator was able to predict the experimentally observed fluid displacement and amendment concentrations reasonably well. Cross flow between layers could be interpreted as the main mechanism to transport STFs into lower permeability layers based on the observed pressure gradient and concentration data in layers of differing hydraulic conductivity.« less
Fractal Viscous Fingering in Fracture Networks
NASA Astrophysics Data System (ADS)
Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.
2007-12-01
We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.
NASA Astrophysics Data System (ADS)
Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.
2012-04-01
Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure diffusion. Permeability increases both reversibly and, if a certain pressure threshold is reached, irreversibly in the form of a smoothed step-function. The models are able to reproduce realistic well head pressure magnitudes for injection rates common during reservoir stimulation. We connect this numerical model with the semi-stochastic seismicity model, and demonstrate the role of non-linear pressure diffusion on earthquakes probability estimates. We further use the model to explore various injection histories to assess the dependence of seismicity on injection strategy. It allows to qualitatively explore the probability of larger magnitude earthquakes (M>3) for different injection volumes, injection times, as well as injection build-up and shut-in strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
A qualitative view of cryogenic fluid injection into high speed flows
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Schlumberger, J.; Proctor, M.
1991-01-01
The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.
NASA Astrophysics Data System (ADS)
Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.
2010-12-01
In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.
Improved silicon carbide for advanced heat engines. I - Process development for injection molding
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Trela, Walter
1989-01-01
Alternate processing methods have been investigated as a means of improving the mechanical properties of injection-molded SiC. Various mixing processes (dry, high-sheer, and fluid) were evaluated along with the morphology and particle size of the starting beta-SiC powder. Statistically-designed experiments were used to determine significant effects and interactions of variables in the mixing, injection molding, and binder removal process steps. Improvements in mechanical strength can be correlated with the reduction in flaw size observed in the injection molded green bodies obtained with improved processing methods.
NASA Astrophysics Data System (ADS)
Edel, S.; Bilek, S. L.; Garcia, K.
2014-12-01
Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Instability patterns in a miscible core annular flow
NASA Astrophysics Data System (ADS)
D'Olce, Marguerite; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique; Talon, Laurent
2006-11-01
Laboratoire FAST, batiment 502, campus universitaire, 91405 Orsay Cedex (France). Experiments are performed with two miscible fluids of equal density but different viscosities. The fluids are injected co-currently and concentrically into a cylindrical pipe. The so-obtained base state is an axisymmetric parallel flow, for which the ratio of the flow rates of the two fluids monitors the relative amount (and so the radius) of the fluids. Depending on this relative amount and on the total flow rate of the fluids, unstable axisymmetric patterns such as mushrooms and pearls are observed. We delineate the diagram of occurrence of the two patterns and characterize the instabilities.
Maximum magnitude earthquakes induced by fluid injection
McGarr, Arthur F.
2014-01-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Axisymmetric flows from fluid injection into a confined porous medium
NASA Astrophysics Data System (ADS)
Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.
2016-02-01
We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical engineering projects of geological CO2 sequestration, enhanced oil recovery, and underground waste disposal.
Injectable barriers for waste isolation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persoff, P.; Finsterle, S.; Moridis, G.J.
In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less
NASA Astrophysics Data System (ADS)
Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.
2013-08-01
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
Parada, M A; Puig de Parada, M; Hernandez, L; Hoebel, B G
1995-08-01
A low-torque, bubble-free and multiple-channel fluid swivel of easy construction was recently described. This paper describes the design, construction and testing of 3 electrical channels added to the original fluid swivel. The new channels were tested monitoring intrahypothalamic temperature (T(hy)) by means of a copper-constantan thermocouple in freely moving rats, before and after a single intraperitoneal (i.p.) amphetamine injection (3 mg/kg). This test showed an increase in T(hy) after the injection and the maintenance of the electrical continuity along the whole testing period, even when the animals were hyperactive. With this improvement the original swivel was transformed in a more versatile device for experiments requiring fluid handlings and electrophysiological manipulations. Electrical stimulation as in kindling or brain self-stimulation, and electrophysiological recordings as in electroencephalography, electromiography, electrocardiography, in vivo voltammetry and even neuronal unit recording, are just examples of the electrophysiological methods that can be combined with drug self-administration and microdialysis using the present device.
CO2 injection into fractured peridotites: a reactive percolation experiment
NASA Astrophysics Data System (ADS)
Escario, S.; Godard, M.; Gouze, P.; Leprovost, R.; Luquot, L.; Garcia-Rios, M.
2017-12-01
Mantle peridotites have the potential to trap CO2 as carbonates. This process observed in ophiolites and in oceanic environments provides a long term and safe storage for CO2. It occurs as a part of a complex suite of fluid-rock reactions involving silicate dissolution and precipitation of hydrous phases, carbonates and minor phases that may in turn modify the hydrodynamic properties and the reactivity of the reacted rocks. The efficiency and lastingness of the process require the renewal of fluids at the mineral-fluid interface. Fractures are dominant flow paths in exhumed mantle sections. This study aims at better understanding the effect of CO2-enriched saline fluids on hydrodynamic and chemical processes through fractured peridotites. Experiments were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. It allows monitoring the permeability changes during experiments. Effluents are recurrently sampled for analysing cation concentration, pH and alkalinity. Reacted rock samples were characterized by high resolution X-ray microtomography (ESRF ID19, Grenoble, France) and SEM. Experiments consisted in injecting CO2-enriched brines (NaCl 0.5 M) at a rate of 6 mL.h-1 into artificially fractured cores (9 mm diameter × 20 mm length) of Oman harzburgites at T=170°C and Ptotal = 25 MPa for up to 2 weeks. Fractures are of few µm apertures with rough walls. Three sets of experiments were performed at increasing value of [CO2] (0, 0.1 and 1 mol/kg). All experiments showed a decrease in permeability followed by steady state regime that can be caused by a decrease in the roughness of fracture walls (dissolution dominated process), thus favouring fracture closing, or by the precipitation of secondary phases. Maximum enrichments in Mg, Fe and Ca of the effluent fluids occur during the first 2 hours of the experiments whereas Si displays a maximum enrichment at t = 20 h, suggesting extensive dissolution. Maximum enrichments are observed with the highest values of the [CO2]. After one day, effluent fluid concentrations decrease and become constant. By analysing both the permeability and the outlet fluid concentration one can investigate the coupling processes controlling the transport and the reaction mechanisms that in turn act at maintaining the circulation in the fractures.
NASA Astrophysics Data System (ADS)
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Viesca, R. C.
2017-12-01
In the absence of in situ field-scale observations of quantities such as fault slip, shear stress and pore pressure, observational constraints on models of fault slip have mostly been limited to laboratory and/or remote observations. Recent controlled fluid-injection experiments on well-instrumented faults fill this gap by simultaneously monitoring fault slip and pore pressure evolution in situ [Gugleilmi et al., 2015]. Such experiments can reveal interesting fault behavior, e.g., Gugleilmi et al. report fluid-activated aseismic slip followed only subsequently by the onset of micro-seismicity. We show that the Gugleilmi et al. dataset can be used to constrain the hydro-mechanical model parameters of a fluid-activated expanding shear rupture within a Bayesian framework. We assume that (1) pore-pressure diffuses radially outward (from the injection well) within a permeable pathway along the fault bounded by a narrow damage zone about the principal slip surface; (2) pore-pressure increase ativates slip on a pre-stressed planar fault due to reduction in frictional strength (expressed as a constant friction coefficient times the effective normal stress). Owing to efficient, parallel, numerical solutions to the axisymmetric fluid-diffusion and crack problems (under the imposed history of injection), we are able to jointly fit the observed history of pore-pressure and slip using an adaptive Monte Carlo technique. Our hydrological model provides an excellent fit to the pore-pressure data without requiring any statistically significant permeability enhancement due to the onset of slip. Further, for realistic elastic properties of the fault, the crack model fits both the onset of slip and its early time evolution reasonably well. However, our model requires unrealistic fault properties to fit the marked acceleration of slip observed later in the experiment (coinciding with the triggering of microseismicity). Therefore, besides producing meaningful and internally consistent bounds on in-situ fault properties like permeability, storage coefficient, resolved stresses, friction and the shear modulus, our results also show that fitting the complete observed time history of slip requires alternative model considerations, such as variations in fault mechanical properties or friction coefficient with slip.
PROTEIN METABOLISM AND EXCHANGE AS INFLUENCED BY CONSTRICTION OF THE VENA CAVA
McKee, Frank W.; Hyatt, Robert E.; Wilt, William G.; Tishkoff, Garson H.; Whipple, George H.
1949-01-01
Further studies of ascitic fluid production and related factors in dogs with constriction of the vena cava above the diaphragm are reported. Whole dog plasma given intravenously to such animals produces a rise in circulating plasma protein to normal levels, but increases the output of ascitic fluid with a loss of protein via the ascites equivalent to 72, 76, and 65 per cent respectively, of the injected protein. Forced ingestion of water in excess of the test animal's normal needs and desires produces no significant changes in the circulating plasma protein level or in ascitic fluid production. Amino acid growth mixtures given intravenously in distilled water cause weight loss, elevation of circulating plasma proteins, a slightly negative nitrogen balance, but no ascitic fluid production. Amino acid growth mixtures given intravenously in normal saline cause depression of the circulating plasma proteins, negative nitrogen balance, and significant ascitic fluid production. Ascitic fluid given intravenously to the test animals causes a marked depression of circulating plasma proteins, a marked increase in ascitic fluid production containing the equivalent of 116 and 98 per cent of the injected protein, and a negative nitrogen balance. Ascitic fluid given orally produces a marked depression of circulating plasma proteins, and a marked increase in ascitic fluid secretion, containing the equivalent of 66, 66, and 54 per cent respectively, of the ingested protein. Sodium chloride is a dominant factor in some of these experiments where abundant ascites production is recorded. Protein levels and intake are important, but take second place to sodium. Ascitic fluids show electrophoretic patterns which are almost identical to the plasma patterns. The A/G ratios are often equal in ascitic fluid and plasma, sometimes even lower in the ascitic fluid. This emphasizes the ease with which globulins pass cell or other membrane barriers in these experiments. PMID:18143588
Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Julio Enrique
2003-01-01
Injection of carbon dioxide (CO 2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO 2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO 2 and NaCl has beenmore » conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO 2-H 2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO 2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO 2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO 2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO 2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO 2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO 2) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO 2 displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.« less
Long-Time Asymptotics of a Box-Type Initial Condition in a Viscous Fluid Conduit
NASA Astrophysics Data System (ADS)
Franco, Nevil; Webb, Emily; Maiden, Michelle; Hoefer, Mark; El, Gennady
2017-11-01
The initial value problem for a localized hump disturbance is fundamental to dispersive nonlinear waves, beginning with studies of the celebrated, completely integrable Korteweg-de Vries equation. However, understanding responses to similar disturbances in many realistic dispersive wave systems is more complicated because they lack the mathematical property of complete integrability. This project applies Whitham nonlinear wave modulation theory to estimate how a viscous fluid conduit evolves this classic initial value problem. Comparisons between theory, numerical simulations, and experiments are presented. The conduit system consists of a viscous fluid column (glycerol) and a diluted, dyed version of the same fluid introduced to the column through a nozzle at the bottom. Steady injection and the buoyancy of the injected fluid leads to the eventual formation of a stable fluid conduit. Within this structure, a one hump disturbance is introduced and is observed to break up into a quantifiable number of solitons. This structure's experimental evolution is to Whitham theory and numerical simulations of a long-wave interfacial model equation. The method presented is general and can be applied to other dispersive nonlinear wave systems. Please email me, as I am the submitter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djabbarah, N.F.
A miscible displacement process for recovering oil from a subterranean, oil-containing formation penetrated by at least one injection well and at least one spaced-apart production well and having fluid communication between the injection and the production wells is described comprising: (a) injecting a slug of til oil into the formation through the injection well; (b) injecting a slug of a displacing fluid into the formation through the injection well, the displacing fluid being selected from the group consisting of carbon monoxide, carbon dioxide, methane, nitrogen, air, flue gas, combustion gas and mixtures thereof, the injection of the tall oil loweringmore » the minimum miscibility pressure of the displacing fluid in the formation oil; and (c) recovering the oil through the production well.« less
NASA Astrophysics Data System (ADS)
Abdelghafour, H.; Brondolo, F.; Denchik, N.; Pezard, P. A.
2014-12-01
The controllability of CO2 geological storage can ensure the integrity of storage operations, requiring a precise monitoring of reservoir fluids and properties during injection and over time. In this context, deep saline aquifers offer a large capacity of storing CO2, but the accessibility to long term behavior studies remains limited until now. The Maguelone shallow experimental site located near Montpellier (Languedoc, France) provides such an opportunity for the understanding and accuracy of hydrogeophysical monitoring methods. The geology, petrophysic and hydrology of this site have been studied in details in previous studies, revealing the presence of a thin saline aquifer at 13-16 m depth surrounded by clay-rich materials. The site as a whole provides a natural laboratory to study CO2 injection at field scale, shallow depth, hence reasonable costs. The monitoring setup is composed of a series of hydrogeophysical and geochemical methods offering measurements of fluid pore pressure, electrical resistivity, acoustic velocities as well as pH and fluid properties and chemistry. To assess the response of the reservoir during CO2 injection, all measurements need to be compared to a representative baseline. Long after a series of gas injection experiments at Maguelone, fluctuations overtime of reservoir fluids and properties (such as pore fluid pH) were discovered at steady state, demonstrating the natural variability of the site in terms of biogenic gas (H2S, CH4, CO2) production and transfer. For this, a new resistivity baseline had to be constructed for all observatories. From this, the downhole gas saturation was determined versus depth and time from time-lapse resistivity logs analysed on the basis of other logs and laboratory measurements. The Waxman and Smits model (1968) for electrical properties of sand-clay formations was modified to estimate the gas saturation in 4D, to account for surface conductivity and pore connectivity. High frequency logging and monitoring of electrical properties both, with several measurements per hour and a dm-scale resolution, provide and insight into subsurface dynamics in terms of gas flow and storage, with biogenic gas saturations ranging from 0.1 to 5.0 %. This natural contribution has to be taken into account for upcoming experiments.
Mignan, A; Broccardo, M; Wiemer, S; Giardini, D
2017-10-19
The rise in the frequency of anthropogenic earthquakes due to deep fluid injections is posing serious economic, societal, and legal challenges to many geo-energy and waste-disposal projects. Existing tools to assess such problems are still inherently heuristic and mostly based on expert elicitation (so-called clinical judgment). We propose, as a complementary approach, an adaptive traffic light system (ATLS) that is function of a statistical model of induced seismicity. It offers an actuarial judgement of the risk, which is based on a mapping between earthquake magnitude and risk. Using data from six underground reservoir stimulation experiments, mostly from Enhanced Geothermal Systems, we illustrate how such a data-driven adaptive forecasting system could guarantee a risk-based safety target. The proposed model, which includes a linear relationship between seismicity rate and flow rate, as well as a normal diffusion process for post-injection, is first confirmed to be representative of the data. Being integrable, the model yields a closed-form ATLS solution that is both transparent and robust. Although simulations verify that the safety target is consistently ensured when the ATLS is applied, the model from which simulations are generated is validated on a limited dataset, hence still requiring further tests in additional fluid injection environments.
Re-injection feasibility study of fracturing flow-back fluid in shale gas mining
NASA Astrophysics Data System (ADS)
Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao
2018-02-01
Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.
Experimental constraints on the deformation and breakup of injected magma
NASA Astrophysics Data System (ADS)
Hodge, Kirsten F.; Carazzo, Guillaume; Jellinek, A. Mark
2012-04-01
The injection, breakup and stirring of dikes entering convecting silicic magma chambers can govern how they grow and differentiate, as well as influence their potential for eruption at the surface. Enclaves observed in plutons may preserve a record of this process and, thus, identifying and understanding the physical processes underlying their formation is a crucial issue in volcanology. We use laboratory experiments and scaling theory to investigate the mechanical and rheological conditions leading to the deformation and breakup of analog crystal-rich dikes injected as discrete plumes that descend into an underlying imposed shear flow. To scale the experiments and map the results across a wide range of natural conditions we define the ratio S of the timescale for the growth of a gravitational Rayleigh-Taylor (R-T) instability of the sheared, injected material to the timescale for settling through the fluid layer and the ratio Y of the timescales for shearing and lateral disaggregation of the particle-fluid mixture (yielding). At low S (< 3) and high Y (> 40), descending plumes are stretched and tilted before undergoing R-T instability, forming drips with a wavelength that is comparable to the initial diameter of the injection. At low Y (< 40) and S values that increase from ∼ 3 as Y → 0, an injection yields in tension before a R-T instability can grow, forming discrete particle-fluid blobs that are much smaller than the initial injection diameter and separated by thin filaments of the original mixture. At high S (> 3) and high Y (> 40), injections remain intact as they settle through the layer and pond at the floor. Applied to magma chambers, our results do not support the production of a continuum of enclave sizes. Indeed, from scaling analyses we expect the two breakup regimes to form distinct size populations: Whereas enclaves formed in the R-T regime will be comparable to the injection size, those formed in the tension regime will be much smaller. We show that enclave size distributions observed in the field can potentially be used to infer the Y - S conditions for the magma chamber at the time of injection. In addition, these observations can constrain aspects of the styles of flow, stirring, and mixing within the magma chamber, as well as the rheological contrast between the injected and host magma at the time of enclave formation. Our work shows that the contrast in composition between the injected and host magmas will have a strong effect on the mingling structures that are likely to be generated.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2012-06-05
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2010-06-08
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process
NASA Astrophysics Data System (ADS)
Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi
2009-11-01
Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.
NASA Astrophysics Data System (ADS)
Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves
2018-05-01
We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.
Plyler, Kimberly S; Daniels, Derek
2017-09-01
Ghrelin acts in the CNS to decrease fluid intake under a variety of dipsogenic and natriorexigenic conditions. Previous studies on this topic, however, focused on the forebrain as a site of action for this effect of ghrelin. Because the hindbrain contains neural substrates that are capable of mediating the well-established orexigenic effects of ghrelin, the current study tested the hypothesis that ghrelin applied to the hindbrain also would affect fluid intake. To this end, water and saline intakes were stimulated by central injection of angiotensin II (AngII) in rats that also received injections of ghrelin (0.5μg/μl) into either the lateral or fourth ventricle. Ghrelin injected into either ventricle reduced both water and 1.8% NaCl intake that was stimulated by AngII. The nature of the intake effect revealed some differences between the injection sites. For example, forebrain application of ghrelin reduced saline intake by a reduction in both the number of licking bursts and the size of each licking burst, but hindbrain application of ghrelin had a more selective effect on burst number. In an attempt to elucidate a brain structure in which hindbrain-administered ghrelin and forebrain-administered AngII interact to cause the ingestive response, we used Fos-immunohistochemistry in rats given the treatments used in the behavioral experiments. Although several brain areas were found to respond to either ghrelin or AngII, of the sites examined, only the paraventricular nucleus of the hypothalamus (PVN) emerged as a potential site of interaction. Specifically, AngII treatment caused expression of Fos in the PVN that was attenuated by concomitant treatment with ghrelin. These experiments provide the novel finding that the hindbrain contains elements that can respond to ghrelin and cause decreases in AngII-induced fluid intake, and that direct actions by ghrelin on forebrain structures is not necessary. Moreover, these studies suggest that the PVN is an important site of interaction between these two peptides. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2014-05-01
Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.
Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio
2013-01-01
Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ(13)Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate.
Ohtomo, Yoko; Ijiri, Akira; Ikegawa, Yojiro; Tsutsumi, Masazumi; Imachi, Hiroyuki; Uramoto, Go-Ichiro; Hoshino, Tatsuhiko; Morono, Yuki; Sakai, Sanae; Saito, Yumi; Tanikawa, Wataru; Hirose, Takehiro; Inagaki, Fumio
2013-01-01
Geological CO2 sequestration in unmineable subsurface oil/gas fields and coal formations has been proposed as a means of reducing anthropogenic greenhouse gasses in the atmosphere. However, the feasibility of injecting CO2 into subsurface depends upon a variety of geological and economic conditions, and the ecological consequences are largely unpredictable. In this study, we developed a new flow-through-type reactor system to examine potential geophysical, geochemical and microbiological impacts associated with CO2 injection by simulating in-situ pressure (0–100 MPa) and temperature (0–70°C) conditions. Using the reactor system, anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 ml/min, respectively) were continuously supplemented into a column comprised of bituminous coal and sand under a pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. 16S rRNA gene analysis of the bacterial components showed distinct spatial separation of the predominant taxa in the coal and sand over the course of the experiment. Cultivation experiments using sub-sampled fluids revealed that some microbes survived, or were metabolically active, under CO2-rich conditions. However, no methanogens were activated during the experiment, even though hydrogenotrophic and methylotrophic methanogens were obtained from conventional batch-type cultivation at 20°C. During the reactor experiment, the acetate and methanol concentration in the fluids increased while the δ13Cacetate, H2 and CO2 concentrations decreased, indicating the occurrence of homo-acetogenesis. 16S rRNA genes of homo-acetogenic spore-forming bacteria related to the genus Sporomusa were consistently detected from the sandstone after the reactor experiment. Our results suggest that the injection of CO2 into a natural coal-sand formation preferentially stimulates homo-acetogenesis rather than methanogenesis, and that this process is accompanied by biogenic CO2 conversion to acetate. PMID:24348470
Portable device and method for determining permeability characteristics of earth formations
Shuck, Lowell Z.
1977-01-01
The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation: Continuing Toward Dual Rocket Effects
NASA Technical Reports Server (NTRS)
West, Jeff; Ruf, Joseph H.; Turner, James E. (Technical Monitor)
2000-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi -dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code [2] was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for the Diffusion and Afterburning (DAB) test conditions at the 200-psia thruster operation point, Results with and without downstream fuel injection are presented.
NASA Astrophysics Data System (ADS)
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa
2017-01-01
Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.
Acoustic emission of rock mass under the constant-rate fluid injection
NASA Astrophysics Data System (ADS)
Shadrin Klishin, AV, VI
2018-03-01
The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.
NASA Astrophysics Data System (ADS)
Kavanagh, Janine; Dennis, David
2015-04-01
We present the results from a series of analogue experiments that use gelatine injected by water to study magma ascent dynamics in the crust. Gelatine is a viscoelastic material that displays predominantly elastic deformation when used at low temperatures (5-10 °C) and mid-to-low concentrations (2-5 wt%). To study dyke propagation we have used a combination of Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) to characterise the dynamics of fluid flow within the intrusion and contemporaneous deformation of the host gelatine. Experiments are prepared by filling a 40 cm x 40 cm x 30 cm clear-Perspex tank with a gelatine mixture that has been seeded with neutrally buoyant fluorescent particles. Water, also seeded with tracer particles, is then injected into the solid gelatine from below under a constant flux or constant head pressure. This causes a vertical penny-shaped crack (dyke) to propagate through the gelatine and erupt at the surface. During the experiment, a vertical high-power laser sheet positioned along the centre of the tank is triggered to illuminate the seeding particles with short intense pulses, and two Dantec CCD cameras record successive images. Using PIV and DIC, vector fields of fluid flow within the intrusion and strain within the gelatine host is calculated by cross-correlation between successive images at a defined time interval. The experiments indicate that, prior to eruption, dyke propagation is characterised by rapid centralised and upwards fluid flow with accompanying downwards motion at the intrusion margin. Deformation of the gelatine solid is focused at a small head region, with the tail remaining relatively static as the dyke grows. Upon eruption, rapid centralised fluid evacuation occurs with contemporaneous contraction of the dyke and relaxation of the host gelatine. Models that can couple fluid dynamics and host deformation during magma ascent and eruption will make an important step towards improving our understanding of the dynamics of magma transport through the crust, and may help to constrain the tendency for eruption.
Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump
Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.
2001-01-01
An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.
NASA Astrophysics Data System (ADS)
Kavanagh, J. L.; Dennis, D. J.
2014-12-01
Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
Yeck, William; Hayes, Gavin; McNamara, Daniel E.; Rubinstein, Justin L.; Barnhart, William; Earle, Paul; Benz, Harley M.
2017-01-01
The 3 September 2016, Mw 5.8 Pawnee earthquake was the largest recorded earthquake in the state of Oklahoma. Seismic and geodetic observations of the Pawnee sequence, including precise hypocenter locations and moment tensor modeling, shows that the Pawnee earthquake occurred on a previously unknown left-lateral strike-slip basement fault that intersects the mapped right-lateral Labette fault zone. The Pawnee earthquake is part of an unprecedented increase in the earthquake rate in Oklahoma that is largely considered the result of the deep injection of waste fluids from oil and gas production. If this is, indeed, the case for the M5.8 Pawnee earthquake, then this would be the largest event to have been induced by fluid injection. Since 2015, Oklahoma has undergone wide-scale mitigation efforts primarily aimed at reducing injection volumes. Thus far in 2016, the rate of M3 and greater earthquakes has decreased as compared to 2015, while the cumulative moment—or energy released from earthquakes—has increased. This highlights the difficulty in earthquake hazard mitigation efforts given the poorly understood long-term diffusive effects of wastewater injection and their connection to seismicity.
Self-induced seismicity due to fluid circulation along faults
NASA Astrophysics Data System (ADS)
Aochi, Hideo; Poisson, Blanche; Toussaint, Renaud; Rachez, Xavier; Schmittbuhl, Jean
2014-03-01
In this paper, we develop a system of equations describing fluid migration, fault rheology, fault thickness evolution and shear rupture during a seismic cycle, triggered either by tectonic loading or by fluid injection. Assuming that the phenomena predominantly take place on a single fault described as a finite permeable zone of variable width, we are able to project the equations within the volumetric fault core onto the 2-D fault interface. From the basis of this `fault lubrication approximation', we simulate the evolution of seismicity when fluid is injected at one point along the fault to model-induced seismicity during an injection test in a borehole that intercepts the fault. We perform several parametric studies to understand the basic behaviour of the system. Fluid transmissivity and fault rheology are key elements. The simulated seismicity generally tends to rapidly evolve after triggering, independently of the injection history and end when the stationary path of fluid flow is established at the outer boundary of the model. This self-induced seismicity takes place in the case where shear rupturing on a planar fault becomes dominant over the fluid migration process. On the contrary, if healing processes take place, so that the fluid mass is trapped along the fault, rupturing occurs continuously during the injection period. Seismicity and fluid migration are strongly influenced by the injection rate and the heterogeneity.
NASA Astrophysics Data System (ADS)
Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.
2013-12-01
The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
NASA Astrophysics Data System (ADS)
Trevisan, L.; Illangasekare, T. H.; Rodriguez, D.; Sakaki, T.; Cihan, A.; Birkholzer, J. T.; Zhou, Q.
2011-12-01
Geological storage of carbon dioxide in deep geologic formations is being considered as a technical option to reduce greenhouse gas loading to the atmosphere. The processes associated with the movement and stable trapping are complex in deep naturally heterogeneous formations. Three primary mechanisms contribute to trapping; capillary entrapment due to immobilization of the supercritical fluid CO2 within soil pores, liquid CO2 dissolving in the formation water and mineralization. Natural heterogeneity in the formation is expected to affect all three mechanisms. A research project is in progress with the primary goal to improve our understanding of capillary and dissolution trapping during injection and post-injection process, focusing on formation heterogeneity. It is expected that this improved knowledge will help to develop site characterization methods targeting on obtaining the most critical parameters that capture the heterogeneity to design strategies and schemes to maximize trapping. This research combines experiments at the laboratory scale with multiphase modeling to upscale relevant trapping processes to the field scale. This paper presents the results from a set of experiments that were conducted in an intermediate scale test tanks. Intermediate scale testing provides an attractive alternative to investigate these processes under controlled conditions in the laboratory. Conducting these types of experiments is highly challenging as methods have to be developed to extrapolate the data from experiments that are conducted under ambient laboratory conditions to high temperatures and pressures settings in deep geologic formations. We explored the use of a combination of surrogate fluids that have similar density, viscosity contrasts and analogous solubility and interfacial tension as supercritical CO2-brine in deep formations. The extrapolation approach involves the use of dimensionless numbers such as Capillary number (Ca) and the Bond number (Bo). A set of experiments that captures some of the complexities of the geologic heterogeneity and injection scenarios are planned in a 4.8 m long tank. To test the experimental methods and instrumentation, a set of preliminary experiments were conducted in a smaller tank with dimensions 90 cm x 60 cm. The tank was packed to represent both homogeneous and heterogeneous conditions. Using the surrogate fluids, different injection scenarios were tested. Images of the migration plume showed the critical role that heterogeneity plays in stable entrapment. Destructive sampling done at the end of the experiments provided data on the final saturation distributions. Preliminary analysis suggests the entrapment configuration is controlled by the large-scale heterogeneities as well as the pore-scale entrapment mechanisms. The data was used in modeling analysis that is presented in a companion abstract.
NASA Astrophysics Data System (ADS)
Faulkner, D. R.; Armitage, P. J.
2011-12-01
Geothermal fields rely on permeable fracture networks that can act for significant periods of time. In crystalline rocks, permeability may be stimulated by injections of fluid pressure at depth. We show how high-pressure laboratory experiments can be used to quantify the effects of different stress states on the permeability of two rocks; Darley Dale sandstone (~10-16 m2 permeability) and Westerly granite (~10-20 m2 permeability). It is well known that microfractures start to grow at stresses around one half of the failure stress. Failure in the experiments was reproduced in several ways: (1) by fixing σ3 and increasing σ1 - equivalent to a compressive or strike-slip tectonic regime (2) by fixing σ1 and decreasing σ3 - equivalent to an extensional tectonic regime (3) by increasing the pore fluid pressure at a fixed differential stress to simulate high pore fluid pressure failure, and (4) by fixing the mean stress while increasing σ1 and decreasing σ3 in sympathy. Permeability was monitored during all of these tests. From these tests we are able to quantify the relative contributions of mean stress, differential stress and pore fluid pressure on the permeability in the pre-failure region. This provides key data on the development of microfracture permeability that might be produced during the stimulation of geothermal fields during injection within different tectonic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Oldenburg, C.; Moridis, G.
1997-12-31
This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport.more » A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.« less
NASA Astrophysics Data System (ADS)
Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie
2014-05-01
Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.
NASA Astrophysics Data System (ADS)
Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.
2018-03-01
Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.
In an attempt to determine the time required for adrenocortical steroids to pass from the bloodstream to parotid fluid, twenty subjects were given...intravenous injections of cortisol and parotid fluid was collected continuously for 120 minutes after injection. Additional studies were carried out...with intramuscular injections and oral administration of cortisol. The parotid fluid free 17-OHCS mean rose from 3.51 (S.D. = 1.57) to 21.34 (S.D
NASA Astrophysics Data System (ADS)
Toussaint, R.; Turkaya, S.; Eriksen, F.; Clément, C.; Sanchez-Colina, G.; Maloy, K. J.; Flekkoy, E.; Aharonov, E.; Lengliné, O.; Daniel, G.; Altshuler, E.; Batista-Leyva, A.; Niebling, M.
2016-12-01
We present here the deformation of porous media in two different situations: 1. The formation of channels and fracture during pressurization of pore fluids, as happens during eruptions or injection of fluids and gas into soils and rocks. 2. The liquefaction of soils at different degrees of saturations during Earthquakes. The formation of channels during hydrofracture and pneumatic fractures is studied in laboratory experiments and in numerical models. The experiments are done on different types of porous media in Hele-Shaw cells, where fluid is injected at controlled overpressures, and various boundary conditions are used. Using fast cameras, we determine the strain and velocity fields from the images. We also record the characteristics of micro-seismic emissions during the process, and link this seismic record features and the direct image of the displacement responsible for the seismic sources in the medium. We also carry out numerical simulations, using coupled fluid/solid hydrid models that capture solid stress, pore pressure, solid and fluid elasticity - a full poro-elasto-plastic model using granular representation of the solid and a continuous one for the fluid.Next, Soil liquefaction is a significant natural hazard associated with earthquakes. Some of its devastating effects include tilting and sinking of buildings and bridges, and destruction of pipelines. Conventional geotechnical engineering assumes liquefaction occurs via elevated pore pressure. This assumption guides construction for seismically hazardous locations, yet evidence suggests that liquefaction strikes also under currently unpredicted conditions. We show, using theory, simulations and experiments, another mechanism for liquefaction in saturated soils, without high pore fluid pressure and without special soils, whereby liquefaction is controlled by buoyancy forces. This new mechanism enlarges the window of conditions under which liquefaction is predicted to occur, and may explain previously not understood cases such as liquefaction in well-compacted soils, under drained conditions, repeated liquefaction cases, far-field liquefaction and the basics of sinking in quicksand. These results may greatly impact hazard assessment and mitigation in seismically active areas.
NASA Astrophysics Data System (ADS)
Zemke, Kornelia; Liebscher, Axel
2014-05-01
Petrophysical properties like porosity and permeability are key parameters for a safe long-term storage of CO2 but also for the injection operation itself. These parameters may change during and/or after the CO2 injection due to geochemical reactions in the reservoir system that are triggered by the injected CO2. Here we present petrophysical data of first ever drilled cores from a newly drilled well at the active CO2 storage site - the Ketzin pilot site in the Federal State of Brandenburg, Germany. By comparison with pre-injection baseline data from core samples recovered prior to injection, the new samples provide the unique opportunity to evaluate the impact of CO2 on pore size related properties of reservoir and cap rocks at a real injection site under in-situ reservoir conditions. After injection of 61 000 tons CO2, an additional well was drilled and new rock cores were recovered. In total 100 core samples from the reservoir and the overlaying caprock were investigated by NMR relaxation. Permeability of 20 core samples was estimated by nitrogen and porosity by helium pycnometry. The determined data are comparable between pre-injection and post-injection core samples. The lower part of the reservoir sandstone is unaffected by the injected CO2. The upper part of the reservoir sandstone shows consistently slightly lower NMR porosity and permeability values in the post-injection samples when compared to the pre-injection data. This upper sandstone part is above the fluid level and CO2 present as a free gas phase and a possible residual gas saturation of the cores distorted the NMR results. The potash-containing drilling fluid can also influence these results: NMR investigation of twin samples from inner and outer parts of the cores show a reduced fraction of larger pores for the outer core samples together with lower porosities and T2 times. The drill mud penetration depth can be controlled by the added fluorescent tracer. Due to the heterogeneous character of the Stuttgart Formation it is difficult to estimate definite CO2 induced changes from petrophysical measurements. The observed changes are only minor. Several batch experiments on Ketzin samples drilled prior injection confirm the results from investigation of the in-situ rock cores. Core samples of the pre-injection wells were exposed to CO2 and brine in autoclaves over various time periods. Samples were characterized prior to and after the experiments by NMR and Mercury Injection Porosimetry (MIP). The results are consistent with the logging data and show only minor change. Unfortunately, also in these experiments observed mineralogical and petrophysical changes were within the natural heterogeneity of the Ketzin reservoir and precluded unequivocal conclusions. However, given the only minor differences between post-injection well and pre-injection well, it is reasonable to assume that the potential dissolution-precipitation processes appear to have no severe consequences on reservoir and cap rock integrity or on the injection behaviour. This is also in line with the continuously recorded injection operation parameter. These do not point to any changes in reservoir injectivity.|
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari
2017-04-01
Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.
Overview and First Results of an In-situ Stimulation Experiment in Switzerland
NASA Astrophysics Data System (ADS)
Amann, F.; Gischig, V.; Doetsch, J.; Jalali, M.; Valley, B.; Evans, K. F.; Krietsch, H.; Dutler, N.; Villiger, L.
2017-12-01
A decameter-scale in-situ stimulation and circulation (ISC) experiment is currently being conducted at the Grimsel Test Site in Switzerland with the objective of improving our understanding of key seismo-hydro-mechanical coupled processes associated with high pressure fluid injections in a moderately fractured crystalline rock mass. The ISC experiment activities aim to support the development of EGS technology by 1) advancing the understanding of fundamental processes that occur within the rock mass in response to relatively large-volume fluid injections at high pressures, 2) improving the ability to estimate and model induced seismic hazard and risks, 3) assessing the potential of different injection protocols to keep seismic event magnitudes below an acceptable threshold, 4) developing novel monitoring and imaging techniques for pressure, temperature, stress, strain and displacement as well as geophysical methods such as ground penetration radar, passive and active seismic and 5) generating a high-quality benchmark datasets that facilitates the development and validation of numerical modelling tools. The ISC experiment includes six fault slip and five hydraulic fracturing experiments at an intermediate scale (i.e. 20*20*20m) at 480m depth, which allows high resolution monitoring of the evolution of pore pressure in the stimulated fault zone and the surrounding rock matrix, fault dislocations including shear and dilation, and micro-seismicity in an exceptionally well characterized structural setting. In February 2017 we performed the fault-slip experiments on interconnected faults. Subsequently an intense phase of post-stimulation hydraulic characterization was performed. In Mai 2017 we performed hydraulic fracturing tests within test intervals that were free of natural fractures. In this contribution we give an overview and show first results of the above mentioned stimulation tests.
Wettability control on fluid-fluid displacements in patterned microfluidics
NASA Astrophysics Data System (ADS)
Zhao, B.; MacMinn, C. W.; Juanes, R.
2015-12-01
Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we conduct two-phase flow experiments via radial displacement of viscous silicone oil by water, in planar microfluidic devices patterned with vertical posts. These devices allow for visualization of flow through a complex but well-defined microstructure. In addition, the surface energy of the devices can be tuned over a wide range of contact angles, allowing us to access different wettability conditions. We use a fluorescent dye to measure the in-plane water saturation. We perform constant-rate injection experiments with highly unfavorable mobility contrast (viscosity of injected water is 350 times less than the displaced silicone oil) at injection rates over four orders of magnitude. We focus on three particular wetting conditions: drainage (θ=120°), weak imbibition (θ=60°), and strong imbibition (θ=7°). In drainage, we observe a transition from viscous fingering at high capillary numbers to a morphology that, in contrast with conventional knowledge, is different from capillary fingering. In weak imbibition, we observe an apparent stabilization of flow instabilities, as a result of cooperative invasion at the pore scale. In strong imbibition, we find that the flow behavior is heavily influenced by a precursor front that emanates from the main imbibition front. The nature of the precursor front depends on the capillary number. At intermediate capillary numbers, the precursor front consists primarily of corner flow that connects the surface of neighboring posts, forming ramified fingers. The progress of corner flow is overtaken by the spreading of precursor film (~1 um thick) at lower capillary numbers. The ensuing main imbibition front preferentially invades areas already coated by the precursor film, forming a more compact invasion pattern. Our work demonstrates the important, yet intricate, impact of wettability on the morphology of fluid-fluid displacement in porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-02-01
A novel high pressure column flow reactor was used to investigate the evolution of solute chemistry along a 2.3 m flow path during pure water- and CO2-charged water-basaltic glass interaction experiments at 22 and 50 °C and 10-5.7 to 22 bars partial pressure of CO2. Experimental results and geochemical modelling showed the pH of injected pure water evolved rapidly from 6.7 to 9-9.5 and most of the iron released to the fluid phase was subsequently consumed by secondary minerals, similar to natural meteoric water-basalt systems. In contrast to natural systems, however, the aqueous aluminium concentration remained relatively high along the entire flow path. The aqueous fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. As CO2-charged water replaced the alkaline fluid within the column, the fluid briefly became supersaturated with respect to siderite. Basaltic glass dissolution in the column reactor, however, was insufficient to overcome the pH buffer capacity of CO2-charged water. The pH of this CO2-charged water rose from an initial 3.4 to only 4.5 in the column reactor. This acidic reactive fluid was undersaturated with respect to carbonate minerals but supersaturated with respect to clays and Fe hydroxides at 22 °C, and with respect to clays and Al hydroxides at 50 °C. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility and aqueous concentration of several metals increased significantly with the addition of CO2 to the inlet fluid, and some metals, including Mn, Cr, Al, and As exceeded the allowable drinking water limits. Iron became mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Although carbonate minerals did not precipitate in the column reactor in response to CO2-charged water-basaltic glass interaction, once this fluid exited the reactor, carbonates precipitated as the fluid degassed at the outlet. Substantial differences were found between the results of geochemical modelling calculations and the observed chemical evolution of the fluids during the experiments. These differences underscore the need to improve the models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface. The pH increase from 3.4 to 4.5 of the CO2-rich inlet fluid does not immobilize toxic elements at ambient temperature but immobilizes Al and Cr at 50 °C. This indicates that further neutralization of CO2-charged water is required for decreased toxic element mobility. The CO2-charged water injection enhances the mobility of redox sensitive Fe2+ significantly making it available for the storage of injected carbon as iron carbonate minerals. The precipitation of aluminosilicates likely occurred at a pH of 4.2-4.5 in CO2-charged waters. These secondary phases can (1) fill the available pore space and therefore clog the host rock in the vicinity of the injection well, and (2) incorporate some divalent cations limiting their availability for carbon storage. The inability of simple reactive transport models to describe accurately the fluid evolution in this well constrained one dimensional flow system suggests that significant improvements need to be made to such models before we can predict with confidence the fate and consequences of injecting carbon dioxide into the subsurface. Column reactors such as that used in this study could be used to facilitate ex situ carbon mineral storage. Carbonate precipitation at the outlet of the reactor suggests that the harvesting of divalent metals from rocks using CO2-charged waters could potentially be upscaled to an industrial carbonation process.
The Complex Physical-Chemical Interaction of Fracking Fluids with Gas Shale
NASA Astrophysics Data System (ADS)
Cathles, L. M.; Engelder, T.; Bryndzia, T.
2014-12-01
The chemical aspects of hydrofracturing might seem straight forward: Inject a fluid with sand and some chemicals, recover the injected water now contaminated with chemicals from the shale, and produce gas. But there are some complications that turn out to be very interesting. First of all, it is possible to recover only about 20% of the injected water. Secondly, the fresh injected water (1-5 kppm) has been turned into a very saline bine (~200 kppm). It's easy to say the water has just been imbibed into the gas-filled dry shale, like water into a dry sponge, except the organic parts of the shale which host nearly all the porosity are hydrophobic. The shale is strongly oil wet; nevertheless it imbibes water. It's easy to say the water just mixed with water in the shale and became salty, but there is almost no water in the shale, and no salt either. How the water becomes salty begs easy explanation. The talk will quantitatively discuss these issues in light of experiments we have carried out, concluding that powerful capillary and osmotic forces draw fracking water into the shale while making the return waters salty. How this is achieved will certainly tell us something about the fracture network and its connections. The practical implication is that hydrofracture fluids will be locked into the same "permeability jail" that sequestered overpressured gas for over 200 million years. If one wants to dispose of fracking waters, one could probably not choose a safer way to do so that to inject them into a gas shale.
Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection
NASA Astrophysics Data System (ADS)
Chang, K. W.; Yoon, H.; Martinez, M. J.
2017-12-01
Subsurface energy activities such as geological CO2 storage and wastewater injection require injecting large amounts of fluid into the subsurface, which will alter the states of pore pressure and stress in the storage formation. One of the main issues for injection-induced seismicity is the post shut-in increases in the seismicity rate, often observed in the fluid-injection operation sites. The rate surge can be driven by the following mechanisms: (1) pore-pressure propagation into distant faults after shut-in and (2) poroelastic stressing caused by well operations, depending on fault geometry, hydraulic and mechanical properties of the formation, and injection history. We simulate the aerial view of the target reservoir intersected by strike-slip faults, in which injection-induced pressure buildup encounters the faults directly. We examine the poroelastic response of the faults to fluid injection and perform a series of sensitivity tests considering: (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injection point, and (3) well operations with varying the injection rate. Our analysis of the Coulomb stress change suggests that the sealing fault confines pressure diffusion which stabilizes or weakens the nearby conductive fault depending on the injection location. We perform the sensitivity test by changing injection scenarios (time-dependent rates), while keeping the total amount of injected fluids. Sensitivity analysis shows that gradual reduction of the injection rate minimizes the Coulomb stress change and the least seismicity rates are predicted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
Fluid injection device for high-pressure systems
NASA Technical Reports Server (NTRS)
Copeland, E. J.; Ward, J. B.
1970-01-01
Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.
Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.
Brodsky, Emily E; Lajoie, Lia J
2013-08-02
Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.
NASA Astrophysics Data System (ADS)
Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume
2014-05-01
The characterization and comprehension of rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control,volcanic eruptions), or in the industry, as CO2 sequestration. Even though the fluids and rocks are relatively easier to understand individually, the coupled behaviour of porous media with a dynamic fluid flow makes the system difficult to comprehend. The dynamic interaction between flow and the porous media, rapid changes in the local porosity due to the compaction and migration of the porous material, fracturing due to the momentum exchange in fast flow, make understanding of such a complex system a challenge. In this study, analogue models are developed to predict and control the mechanical stability of rock and soil formations during the injection or extraction of fluids. The models are constructed and calibrated based on the experimental data acquired. This experimental data obtained from solid-fluid interaction are monitored using a combination of techniques, both from geophysics and from experimental fluid mechanics. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. Non expanding polystyrene beads around 80μm size are used as solid particles and air is used as the intruding fluid. During the experiments, the fluid is injected steadily (or injected and suddenly stopped to see the pushback in a setup with four impermeable boundaries) into the system from the point opposite to the semi-permeable boundary so that the fluid penetrates into the solid and makes a way via creating channels, fractures or directly using the pore network to the semi-permeable boundary. The acoustic signals emitted during the mentioned solid-fluid interactions are recorded by various sensors - i.e. Piezoelectric Shock Accelerometer (Freq. range: 1Hz - 26kHz) and Piezoelectrical Sensors (Freq. range: 100kHz - 1MHz) with a sampling rate of 1MHz - on the Hele-Shaw cell. After the experiment, those signals are compared and investigated further in both time and frequency domains. Moreover, by using different techniques localization of the acoustic emissions are done and compared. Furthermore, during the experiments pictures of the Hele-Shaw cell are taken using a high speed camera. Thus, it is possible to visualize the solid-fluid interaction and to process images to gather information about the mechanical properties of the solid partition. The link between the visual and the mechanical wave signals is investigated. The spectrum of the signal is observed to be strongly affected by the size and shape of deforming channels created during the process. The power of the recorded signal is related to the integrated deformation rate in the process. Fast avalanches and rearrangements of grains at small scales are related to high frequency (above 10 kHz) acoustic emissions.
Can a fractured caprock self-heal?
NASA Astrophysics Data System (ADS)
Elkhoury, Jean E.; Detwiler, Russell L.; Ameli, Pasha
2015-05-01
The ability of geologic seals to prevent leakage of fluids injected into the deep subsurface is critical for mitigating risks associated with greenhouse-gas sequestration and natural-gas production. Fractures caused by tectonic or injection-induced stresses create potential leakage pathways that may be further enhanced by mineral dissolution. We present results from reactive-flow experiments in fractured caprock (dolomitic anhydrite), where additional dissolution occurs in the rock matrix adjacent to the fracture surfaces. Preferential dissolution of anhydrite left a compacted layer of dolomite in the fractures. At lower flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. At higher flow rate, permeability decreased by a dramatic two orders of magnitude. This laboratory-scale observation of self-healing argues against the likelihood of runaway permeability growth in fractured porous caprock composed of minerals with different solubilities and reaction kinetics. However, scaling arguments suggest that at larger length scales this self-healing process may be offset by the formation of dissolution channels. Our results have relevance beyond the greenhouse-gas sequestration problem. Chemical disequilibrium at waste injection sites and in hydrothermal reservoirs will lead to reactive flows that may also significantly alter formation permeability.
Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M
2016-10-01
Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. © 2016 Anatomical Society.
Potential Experimental Topics for EGS Collab Experiment 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Henry; Mattson, Earl; Blankenship, Douglas
To facilitate the success of FORGE, the DOE GTO has initiated a new research effort, the EGS Collab project, which will utilize readily accessible underground facilities that can refine our understanding of rock mass response to stimulation and provide a test bed at intermediate (~10 m) scale for the validation of thermal-hydrological-mechanical-chemical modeling approaches as well as novel monitoring tools. The first two EGS Experiments 1 and 2 are planned be performed under different stress/fracture conditions, and will evaluate different stimulation processes: Experiment 1 will focus on hydrofracturing of a competent rock mass, while Experiment 2 will concentrate on hydroshearingmore » of a rock mass that contains natural fractures. Experiment 3 is scheduled to begin in 2019 will build off the lessons learned in Experiments 1 and 2 and will investigate alternate stimulation and operation methods to improve heat extraction in an EGS reservoir. This paper evaluates potential experiments that could potentially be conducted in Experiment 3. The two technical parameters defining energy extracted from EGS reservoirs with the highest economic uncertainty and risk are the production well flow rates and the reservoir thermal drawdown rate. A review of historical and currently on-going EGS studies has identified that over 1/2 of the projects have identified heat extraction challenges during their operation associated with these two parameters as well as some additional secondary issues. At present, no EGS reservoir has continuously produced flow rates on the order of 80 kg/s. Short circuiting (i.e. early thermal breakthrough) has been identified in numerous cases. In addition, working fluid loss (i.e. the difference between the injected fluid mass and the extracted fluid mass as compared to the injected mass) has been as high as 90%. Finally, the engineering aspects of operating a true EGS multi-fracture reservoir such as repairing/modifying fractures and controlling working fluid fluxes within multiple fractures for the effective EGS fracture management has not been sufficiently studied. To examine issues such as these, EGS Collab Experiment 3 may be conducted in the testbeds prepared for Experiments 1 and 2 by improving the previously performed stimulations, or conducted at a new site performing new stimulations with alternate method. Potential experiments may include using different stimulation and working fluids, evaluating different stimulation methods, using proppants to enhance permeability, and other high-risk high-reward methods that can be evaluated at the 10-m scale environment.« less
Determining the Area of Review for Industrial Waste Disposal Wells.
1981-12-01
pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an
Monitoring an EGS injection at Newberry Volcano using Magnetotelluric dimensionality analysis
NASA Astrophysics Data System (ADS)
Bowles-martinez, E.; Schultz, A.; Rose, K.; Urquhart, S.
2016-12-01
The sensitivity of magnetotelluric (MT) data to the presence of electrically conductive subsurface features makes it applicable for determining the extent of injected fluids in enhanced geothermal systems (EGS). We use MT to monitor fluid injection during tests of a proposed EGS site at Newberry Volcano in Central Oregon, USA. Newberry is a large shield volcano located where fault systems of the northern Basin and Range meet the Cascade Arc and the high lava plains. Its strong potential for geothermal energy has made it a target for energy exploration for over 40 years. MT measurements were made before, during, and after an EGS stimulation in 2014 in an effort to detect subsurface pathways taken by fluids that are attributable to stimulation. We begin by creating a baseline model from inverting over 200 wideband MT stations located in the western half of the volcano. This model is constrained by well logs, as well as by high resolution gravity and seismic velocity modeling. Our model shows conductive regions associated with the caldera's ring fault, likely showing where hydrothermal fluids or their mineral alteration products are present. However, as this is an EGS study, we are interested in detecting fluid intrusion into hot, dry rock. Therefore, our primary target is a resistive zone on the western flank of Newberry volcano that is interpreted as a series of hot intrusive sequences. Well bottom temperatures in this area have been measured in excess of 300 °C. The stimulation's effect on resistivity is subtle, in part because the injected fluid is fresh groundwater, the injected volume is modest, and the target depth is 2,000-3,000 m below ground level. We found that it is advantageous to look at the impedance tensor data directly to detect injected fluids. Because fluids and their associated change in resistivity are expected to be concentrated around the injection well, the injection will exhibit a highly three-dimensional resistivity structure. Therefore, we examine the impedance tensor for changes in dimensionality to mark the arrival of injected fluids. We then present a method of inverting MT data for changes in impedance rather than for resistivity.
Reactivation of a Propped Hydraulic Fracture
NASA Astrophysics Data System (ADS)
Sarvaramini, E.; Garagash, D.
2014-12-01
The problem of massive fluid injection into a pre-existing fracture has many applications in petroleum industry including underground liquid waste disposal and waterflooding to increase recovery from a hydrocarbon reservoir. Understanding the conditions leading to the re-activation of pre-existing fractures and ensuing propagation is critical for a successful injection project design, and it may also help to mitigate potential environmental hazards, such as contamination of underground aquifers and induced seismicity. The problem of injection of a low viscosity fluid into a permeable formation can be distinguished from conventional hydraulic fracture by the mechanism of fluid leak-off. In conventional fracturing, high viscosity and cake building properties of injected fluid limit leak-off to a 1-D boundary layer incasing the crack. In the case of injection of low viscosity fluid into a fracture, leak-off and related pore fluid diffusion will take place over wider range of scales, from 1-D to 2 or 3-D. We consider a pre-existing stationary propped hydraulic fracture with constrained height into which a fluid is injected under constant flow rate. Although the net effective stress on the crack is initially compressive, the proppant keeps the crack open. It is worthwhile to note that during injection and related pressurization of a propped crack, the fracture breakdown is to be achieved prior to the fracture re-opening. Therefore, the effect of the change of the propped fracture storage on the pressurization dynamics can be neglected. The objective of this work is to study the transient pressurization and the onset of the propagation for a propped fracture. To the end, we formulate and solve a general problem of injection into a fracture accounting for viscous dissipation (i.e. non-uniform pressure distribution). We quantify how the fracture breakdown condition depends upon the rock and fluid properties, the in-situ stress and the fluid injection rate. We also establish a criterion when the assumption of negligible viscous dissipation is justified. The obtained solution is also transportable to the production well test analysis of a fractured well (Cinco et al., SPE 1978).
Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop
NASA Astrophysics Data System (ADS)
Johann, L.; Dinske, C.; Shapiro, S. A.
2016-11-01
Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.
NASA Astrophysics Data System (ADS)
Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.
2015-12-01
Results from recent field trials suggest that natural gas could be produced from marine gas hydrate reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas hydrate conversion after injection of CO2-rich fluids. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas hydrate production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas hydrate production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows fluid and particle transport at different fluid injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich fluids. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-hydrate formation and gas production.
Rutter, Ernest; Hackston, Abigail
2017-09-28
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.
NASA Astrophysics Data System (ADS)
Rutter, Ernest; Hackston, Abigail
2017-08-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.
Hackston, Abigail
2017-01-01
Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423
Quantification of CO2-FLUID-ROCK Reactions Using Reactive and Non-Reactive Tracers
NASA Astrophysics Data System (ADS)
Matter, J.; Stute, M.; Hall, J. L.; Mesfin, K. G.; Gislason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Alfredsson, H. A.; Gunnlaugsson, E.; Broecker, W. S.
2013-12-01
Carbon dioxide mineralization via fluid-rock reactions provides the most effective and long-term storage option for geologic carbon storage. Injection of CO2 in geologic formations induces CO2 -fluid-rock reactions that may enhance or decrease the storage permanence and thus the long-term safety of geologic carbon storage. Hence, quantitative characterization of critical CO2 -fluid-rock interactions is essential to assess the storage efficiency and safety of geologic carbon storage. In an attempt to quantify in-situ fluid-rock reactions and CO2 transport relevant for geologic carbon storage, we are testing reactive (14C, 13C) and non-reactive (sodium fluorescein, amidorhodamine G, SF5CF3, and SF6) tracers in an ongoing CO2 injection in a basaltic storage reservoir at the CARBFIX pilot injection site in Iceland. At the injection site, CO2 is dissolved in groundwater and injected into a permeable basalt formation located 500-800 m below the surface [1]. The injected CO2 is labeled with 14C by dynamically adding calibrated amounts of H14CO3-solution into the injection stream in addition to the non-reactive tracers. Chemical and isotopic analyses of fluid samples collected in a monitoring well, reveal fast fluid-rock reactions. Maximum SF6 concentration in the monitoring well indicates the bulk arrival of the injected CO2 solution but dissolved inorganic carbon (DIC) concentration and pH values close to background, and a potentially lower 14C to SF6 ratio than the injection ratio suggest that most of the injected CO2 has reacted with the basaltic rocks. This is supported by δ13CDIC, which shows a drop from values close to the δ 13C of the injected CO2 gas (-3‰ VPDB) during breakthrough of the CO2 plume to subsequent more depleted values (-11.25‰ VPDB), indicating precipitation of carbonate minerals. Preliminary mass balance calculations using mixing relationships between the background water in the storage formation and the injected solution, suggest that approximately 85% of the injected CO2 must have reacted along the flow path from the injection well to the monitoring well within less than one year. Monitoring is still going on and we will extend the time series and the mass balance accordingly. Our study demonstrates that by combining reactive and non-reactive tracers, we are able to quantify CO2-fluid-rock interactions on a reservoir scale. [1] Gislason et al. (2010), Int. J. Greenh. Gas Con. 4, 537-545.
Purefoy Johnson, Jessica; Stack, John David; Rowan, Conor; Handel, Ian; O'Leary, John Mark
2017-05-22
To compare accuracy of the ultrasound-guided craniodorsal (CrD) approach with the dorsal (D) approach to the cervical articular process joints, and to evaluate the effect of the transducer, needle gauge, and operator experience. Cervical articular process joints from 14 cadaveric neck specimens were injected using either a D or CrD approach, a linear (13 MHx) or microconvex transducer (10 MHz), and an 18 or 20 gauge needle, by an experienced or inexperienced operator. Injectate consisted of an iodinated contrast material solution. Time taken for injection, number of redirects, and retrieval of synovial fluid were recorded. Accuracy was assessed using a scoring system for contrast seen on computed tomography (CT). The successful performance of intra-articular injections of contrast detected by CT using the D (61/68) and CrD (57/64) approaches was comparable. No significant effect of approach, transducer or needle gauge was observed on injection accuracy, time taken to perform injection, or number of redirects. The 18 gauge needle had a positive correlation with retrieval of synovial fluid. A positive learning curve was observed for the inexperienced operator. Both approaches to the cervical articular process joints were highly accurate. Ultrasound-guided injection of the cervical articular process joints is an easily-learnt technique for an inexperienced veterinarian. Either approach may be employed in the field with a high level of accuracy, using widely available equipment.
NASA Astrophysics Data System (ADS)
Yushi, Zou; Xinfang, Ma; Tong, Zhou; Ning, Li; Ming, Chen; Sihai, Li; Yinuo, Zhang; Han, Li
2017-09-01
Hydraulic fracture (HF) height containment tends to occur in layered formations, and it significantly influences the entire HF geometry or the stimulated reservoir volume. This study aims to explore the influence of preexisting bedding planes (BPs) on the HF height growth in layered formations. Laboratory fracturing experiments were performed to confirm the occurrence of HF height containment in natural shale that contains multiple weak and high-permeability BPs under triaxial stresses. Numerical simulations were then conducted to further illustrate the manner in which vertical stress, BP permeability, BP density(or spacing), pump rate, and fluid viscosity control HF height growth using a 3D discrete element method-based fracturing model. In this model, the rock matrix was considered transversely isotropic and multiple BPs can be explicitly represented. Experimental and numerical results show that the vertically growing HF tends to be limited by multi-high-permeability BPs, even under higher vertical stress. When the vertically growing HF intersects with the multi-high-permeability BPs, the injection pressure will be sharply reduced. If a low pumping rate or a low-viscosity fluid is used, the excess fracturing fluid leak-off into the BPs obviously decreases the rate of pressure build up, which will then limit the growth of HF. Otherwise, a higher pumping rate and/or a higher viscosity will reduce the leak-off time and fluid volume, but increase the injection pressure to drive the HF to grow and to penetrate through the BPs.
Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Mark D.; Lee, Won Suk
A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapidmore » exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest molecules, for up to three gas hydrate guest molecules: CH4, CO2, and N2. The independent tracking of mobile fluid and hydrate guest molecules allows for the kinetic exchange of guest molecules between the mobile fluids and hydrate. The particular interest of this numerical investigation is to determine whether kinetic exchange parameters, determined from laboratory-scale experiments, are directly applicable to interpreting the Ignik Sikumi #1 data.« less
Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael
2015-01-01
Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities
NASA Astrophysics Data System (ADS)
Chuprakov, D.; Melchaeva, O.; Prioul, R.
2014-09-01
We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.
Role of fiber dissolution in biological activity in rats.
Eastes, W; Hadley, J G
1994-12-01
This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.
NASA Astrophysics Data System (ADS)
Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.
2015-12-01
Carbon dioxide (CO2) capture and storage (CCS) is recently expected as the promising method to reduce greenhouse gas emissions. It is important to investigate CO2 behavior in the reservoir, to evaluate the safety and to account the stored CO2 volume. In this study, experimental investigation is conducted to discuss the relationships between injected fluid speed (Flow rate: FR) or capillary number (Ca) and non-wetting fluid flow by compressional wave velocity (Vp) and electrical impedance (Z). In the experiment, N2 and supercritical CO2 were injected into the two sandstones with different porosity (φ), Berea sandstone (φ: 18 %), and Ainoura sandstone (φ: 11.9 %). The dimension of the rock specimens is cored cylinder with a 35 mm diameter and 70 mm height. Experimental conditions are nearly same as the reservoir of deep underground (Confining pressure:15MPa, 40℃). Initial conditions of the specimen are brine (0.1wt%-KCl) saturated. Four piezo-electrical transducers (PZTs) are set on the each surface of the top, middle, lower of the specimen to monitor the CO2 bahavior by Vp. To measuring Z, we use for electrodes method with Ag-AgCl electrodes. Four electrodes are wounded around specimen on the both sides of PZTs. We measured the changes of these parameters with injecting N2, injected fluid speed (FR), the differential pore pressure (DP), N2 saturation (SN2), P-wave velocity (Vp) and electrical impedance (Z), respectively. We also estimated the Ca from measured FR. From these experimental results, there are no obvious Vp changes with increasing Ca, while Z measurement indicates clear and continuous increment. In regards to Vp, Vp reduced at the small FR (0.1 to 0.2 ml/min). As the Ca increases, Vp doesn't indicate large reduction. On the other hand, Z is more sensitive to change the fluid saturation than Vp. It is well-known that both of Vp and Z are the function of fluid saturation. Though, these experimental results are not consistent with previous studies. In this study, we will discuss this mismatch by using fluid mechanical theory and numerical simulation of two-phase fluid flow in porous geological medium based on experimental results of two different types of sandstone.
A microfluidic investigation of gas exsolution in glass and shale fracture networks
NASA Astrophysics Data System (ADS)
Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.
2016-12-01
Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.
Study of pore pressure reaction on hydraulic fracturing
NASA Astrophysics Data System (ADS)
Trimonova, Mariia; Baryshnikov, Nikolay; Turuntaev, Sergey; Zenchenko, Evgeniy; Zenchenko, Petr
2017-04-01
We represent the results of the experimental study of the hydraulic fracture propagation influence on the fluid pore pressure. Initial pore pressure was induced by injection and production wells. The experiments were carried out according to scaling analysis based on the radial model of the fracture. All required geomechanical and hydrodynamical properties of a sample were derived from the scaling laws. So, gypsum was chosen as a sample material and vacuum oil as a fracturing fluid. The laboratory setup allows us to investigate the samples of cylindrical shape. It can be considered as an advantage in comparison with standard cubic samples, because we shouldn't consider the stress field inhomogeneity induced by the corners. Moreover, we can set 3D-loading by this setting. Also the sample diameter is big enough (43cm) for placing several wells: the fracturing well in the center and injection and production wells on two opposite sides of the central well. The experiment consisted of several stages: a) applying the horizontal pressure; b) applying the vertical pressure; c) water solution injection in the injection well with a constant pressure; d) the steady state obtaining; e) the oil injection in the central well with a constant rate. The pore pressure was recorded in the 15 points along bottom side of the sample during the whole experiment. We observe the pore pressure change during all the time of the experiment. First, the pore pressure changed due to water injection. Then we began to inject oil in the central well. We compared the obtained experimental data on the pore pressure changes with the solution of the 2D single-phase equation of pore-elasticity, and we found significant difference. The variation of the equation parameters couldn't help to resolve the discrepancy. After the experiment, we found that oil penetrated into the sample before and after the fracture initiation. This fact encouraged us to consider another physical process - the oil-water displacement. Have taken into account the phenomenon, we could find the parameter values for the best matching the experimental data with the analytical one. After such a comparison, we could estimate the permeability variation in the different directions due to changes in the pore pressure during fracturing. Thus it was found that for the correct solution of hydrodynamic problems in relation with hydraulic fracturing (for example, to estimate the production rate of the fractured well) one should take into account the change of the permeability in the vicinity of the fracture and solve nonlinear pore-elasticity problem.
Hauksson, Egill; Goebel, Thomas; Ampuero, Jean-Paul; Cochran, Elizabeth S.
2015-01-01
Most of the seismicity in the Los Angeles Basin (LA Basin) occurs at depth below the sediments and is caused by transpressional tectonics related to the big bend in the San Andreas fault. However, some of the seismicity could be associated with fluid extraction or injection in oil fields that have been in production for almost a century and cover ∼ 17% of the basin. In a recent study, first the influence of industry operations was evaluated by analyzing seismicity characteristics, including normalized seismicity rates, focal depths, and b-values, but no significant difference was found in seismicity characteristics inside and outside the oil fields. In addition, to identify possible temporal correlations, the seismicity and available monthly fluid extraction and injection volumes since 1977 were analyzed. Second, the production and deformation history of the Wilmington oil field were used to evaluate whether other oil fields are likely to experience similar surface deformation in the future. Third, the maximum earthquake magnitudes of events within the perimeters of the oil fields were analyzed to see whether they correlate with total net injected volumes, as suggested by previous studies. Similarly, maximum magnitudes were examined to see whether they exhibit an increase with net extraction volume. Overall, no obvious previously unidentified induced earthquakes were found, and the management of balanced production and injection of fluids appears to reduce the risk of induced-earthquake activity in the oil fields.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O.; Walsh, Michael M.
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Design Constraints Regarding The Use Of Fluids In Emergency Medical Systems For Space Flight
NASA Technical Reports Server (NTRS)
McQuillen, John
2013-01-01
The Exploration Medical Capability Project of the Human Research Program is tasked with identifying, investigating and addressing gaps existing gaps in either knowledge or technology that need to be addressed in order to enable safer exploration missions. There are several gaps that involve treatment for emergency medical situations. Some of these treatments involve the handling of liquids in the spacecraft environment which involve gas-liquid mixtures handling, dissolution chemistry and thermal issues. Some of the recent technology efforts include the Intravenous fluid generation (IVGEN) experiment, the In-Suit Injection System (ISIS) experiment, and medical suction. Constraints include limited volume, shelf life, handling biohazards, availability of power, crew time and medical training.
NASA Astrophysics Data System (ADS)
Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin
2016-07-01
Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.
NASA Astrophysics Data System (ADS)
Girard, G.; Stix, J.
2006-12-01
Recharge of magma chambers by new inputs of magma is often identified as a trigger for eruptions. However, most studies to date have been carried out on mafic to intermediate composition melts replenishing mafic to silicic reservoirs, often with large compositional differences. Here we focus on rhyolites at large silicic centers such as Yellowstone where no differentiated material other than rhyolite is erupted. We investigate the behavior of rhyolite magma intruding reservoirs of similar composition and temperature, by using analogue experiments with water/corn syrup solutions as analogue magma. The density and viscosity of these solutions range from 1130 to 1320 kg m-3 and 0.008 to 8 Pa s, respectively. The fate of the injected liquid is mainly controlled by the density difference between the injected and resident liquids. Intruding material denser than resident liquid is not able to rise into the reservoir, instead building a flat basal layer or a cone above the discharge point. No further interaction such as mixing occurs. Buoyant injected material rises vertically to the top of the reservoir, also with little interaction involving resident liquid during its ascent. The injected fluid eventually spreads at the top of the reservoir, followed by mixing with the resident phase through the entire reservoir. Variables such as injection rate and viscosity mostly influence the timing and duration of this sequence of events, without changing the final result. The presence of a basal crystal mush, modeled by adding Elvacite plastic grains of 0.15 mm diameter with a density of 1160 kg m-3, does not influence the behavior of a slightly buoyant injection; the injected fluid creates its own path through the mush, eventually rising to the top of the liquid upper part of the reservoir. At the beginning of the injection, however, the intruding liquid must establish a path through the mush. At this stage, the intruding fluid violently entrains substantial numbers of particles which travel through the liquid upper part of the reservoir together with the intruding plume. The particles then travel laterally a short distance and settle towards the mush. These experiments show that injected melt may not be easily distinguished from resident melt due to their similar compositions and mixing processes. However, the remobilization of a basal mush by intruding magma has key implications with regard to crystals in upper layers of magma reservoirs. If the crystals are erupted before settling, they will bear the imprint of strong pressure and temperature changes they have undergone during entrainment by the rising replenishing magma. These entrainment processes may be manifested by dissolution and/or overgrowth features, while the higher pressure at which the crystals first formed will be reflected by a core composition typical of deeper environments.
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.
2005-01-01
This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.
Field experiment on CO2 back-production at the Ketzin pilot site
NASA Astrophysics Data System (ADS)
Martens, Sonja; Möller, Fabian; Schmidt-Hattenberger, Cornelia; Streibel, Martin; Szizybalski, Alexandra; Liebscher, Axel
2015-04-01
The operational phase of the Ketzin pilot site for geological CO2 storage in Germany started in June 2008 and ended in August 2013. Over the period of approximately five years, a total amount of 67 kt of CO2 was successfully injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. The CO2 used was mainly of food grade quality. In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (lignite power plant CO2) was used in 2011. At the end of the injection period, 32 t N2 and 613 t CO2 were co-injected during a four-week field test in July and August 2013. In October 2014, a field experiment was carried out at Ketzin with the aim to back-produce parts of the injected CO2 during a two-week period. This experiment addressed two main questions: (i) How do reservoir and wellbore behave during back-production of CO2? and (ii) What is the composition of the CO2 and the co-produced formation fluid? The back-production was carried out through the former injection well. It was conducted continuously over the first week and with an alternating regime including production during day-time and shut-ins during night-time in the second week. During the test, a total amount of 240 t of CO2 and 57 m3 of brine were safely back-produced from the reservoir. Production rates up to 3,200 kg/h - which corresponds to the former highest injection rate - could be tested. Vital monitoring parameters included production rates of CO2 and brine, wellhead and bottomhole pressure and temperature at the production and observation wells and distributed temperature sensing (DTS) along the production well. A permanently installed geoelectrical array was used for crosshole electrical resistivity tomography (ERT) monitoring of the reservoir. Formation fluid and gas samples were collected and analysed. The measured compositions allow studying the geochemical interactions between CO2, formation fluid and rocks under in-situ conditions The field experiment indicates that a safe back-production of CO2 is generally feasible and can be performed at both, stable reservoir and wellbore conditions. ERT monitoring shows that the geoelectrical array at the production well was capable of tracking the back-production process, e.g. the back-flow of brine into the parts formerly filled with CO2. Preliminary results also show that the back-produced CO2 at Ketzin has a purity > 97 per cent. Secondary component in the CO2 stream is N2 with < 3 per cent which probably results from former injection operation and field tests. The results will help to verify geochemical laboratory experiments which are typically performed in simplified synthetic systems. The results gained at the Ketzin site refer to the pilot scale. Upscaling of the results to industrial scale is possible but must first be tested and validated at demo projects.
Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao
Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.
Polymeric nanospheres as a displacement fluid in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Hendraningrat, Luky; Zhang, Julien
2015-12-01
This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.
Investigation of the Profile Control Mechanisms of Dispersed Particle Gel
Zhao, Guang; Dai, Caili; Zhao, Mingwei
2014-01-01
Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174
NASA Astrophysics Data System (ADS)
Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig
2015-10-01
The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.
Microcontroller-driven fluid-injection system for atomic force microscopy.
Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G
2010-01-01
We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.
Glacial uplift: fluid injection beneath an elastic sheet on a poroelastic substrate
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Hewitt, Duncan; Chini, Greg
2016-11-01
Supraglacial lakes can drain to the base of glaciers extremely rapidly, causing localised uplift of the surrounding glacier and affecting its sliding velocity. The means by which large volumes of drained water interact with and leak into the subglacial hydrological system is unclear, as is the role of the basal till. A theoretical study of the spread of fluid injected below an elastic sheet (the ice) is presented, where the ice lies above, and initially compresses, a deformable poroelastic layer. As pressurized fluid is injected, the deformable layer swells to accommodate more fluid. If sufficient fluid is injected, a 'blister' of fluid forms above the layer, causing the overburden to lift off the base. The flow is controlled by the local pressure drop across the tip of this blister, which depends subtly on both the flow of fluid through the porous layer below the tip, and on poroelastic deformation in the till ahead of the tip. The spreading behaviour and dependence on key parameters is analysed. Predictions of the model are compared to field measurements of uplift from draining glacial lakes in Greenland.
Fuel injection assembly for use in turbine engines and method of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2015-03-24
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.
Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations
NASA Astrophysics Data System (ADS)
Collettini, Cristiano; Scuderi, Marco; Marone, Chris
2017-04-01
Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.
Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, R.D.; Udseth, H.R.
1982-07-01
The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less
A Noninvasive Method to Study Regulation of Extracellular ...
Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % fluid, and is a measure of unbound water in the vascular and extracelular spaces. We hypothesized that injecting a bolus of fluid into the peritoneal cavity would lead to an abrupt increase in %fluid and the rate of clearance monitored with TD-NMR would provide a noninvasive assessment of the free water homeostasis in an awake rat. Several strains of laboratory rats were injected intraperitoneally with 10 ml/kg isotonic or hypertonic saline and % fluid was monitored repeatedly with a Bruker "Minispec" TD-NMR body composition system.Following isotonic saline, %fluid increased immediately by 0.5% followed by a recovery over ~6h. Injecting hypertonic (3 times normal saline) resulted in a significantly greater rise in %fluid and longer recovery. lntraperitoneal and subcutaneous fluid injection led to similar rates of clearance. The Wistar-Kyoto rat strain displayed significantly slower recovery to fluid loads compared with Long-Evans and Sprague-Dawley strains. Rats exercised chronically showed significant increases in %fluid, but the rate of clearance of fluid was similar to that of sedentary animals. We conclude that this technique could be used to study vascular and extracellular volume ho
Barry, S L; Martinez, S A; Davies, N M; Remsberg, C M; Sayre, C L; Bachelez, A
2015-02-01
Intra-articular bupivacaine helps alleviate pain in animals receiving joint surgery, but its use has become controversial as ex vivo studies have illuminated the potential for chondrotoxicity. Such studies typically involve cell cultures incubated in solutions containing high bupivacaine concentrations for long durations. The aim of this study was to measure the actual synovial fluid bupivacaine concentrations after intra-articular injection. Eight healthy beagles with normal stifles and 22 large and giant-breed dogs with stifle osteoarthritis (OA) were treated with a single intra-articular injection of bupivacaine (1 mg/kg) into a stifle. Joint fluid samples were taken from the treated stifle immediately after injection and 30 min after injection and analyzed for bupivacaine concentrations. Immediately after injection, the median bupivacaine concentrations in normal and OA stifles were 3.6 and 2.5 mg/mL, respectively. Thirty minutes after injection, bupivacaine concentrations in normal and OA stifles were 0.4 and 0.6 mg/mL, respectively. These results provide insight into the pharmacokinetics of bupivacaine after injection into a joint. Given its immediate dilution and rapid drop in synovial fluid concentration, bupivacaine is unlikely to damage chondrocytes when administered as a single intra-articular injection. © 2014 John Wiley & Sons Ltd.
Modelling induced seismicity due to fluid injection
NASA Astrophysics Data System (ADS)
Murphy, S.; O'Brien, G. S.; Bean, C. J.; McCloskey, J.; Nalbant, S. S.
2011-12-01
Injection of fluid into the subsurface alters the stress in the crust and can induce earthquakes. The science of assessing the risk of induced seismicity from such ventures is still in its infancy despite public concern. We plan to use a fault network model in which stress perturbations due to fluid injection induce earthquakes. We will use this model to investigate the role different operational and geological factors play in increasing seismicity in a fault system due to fluid injection. The model is based on a quasi-dynamic relationship between stress and slip coupled with a rate and state fiction law. This allows us to model slip on fault interfaces over long periods of time (i.e. years to 100's years). With the use of the rate and state friction law the nature of stress release during slipping can be altered through variation of the frictional parameters. Both seismic and aseismic slip can therefore be simulated. In order to add heterogeneity along the fault plane a fractal variation in the frictional parameters is used. Fluid injection is simulated using the lattice Boltzmann method whereby pore pressure diffuses throughout a permeable layer from the point of injection. The stress perturbation this causes on the surrounding fault system is calculated using a quasi-static solution for slip dislocation in an elastic half space. From this model we can generate slip histories and seismicity catalogues covering 100's of years for predefined fault networks near fluid injection sites. Given that rupture is a highly non-linear process, comparison between models with different input parameters (e.g. fault network statistics and injection rates) will be based on system wide features (such as the Gutenberg-Richter b-values), rather than specific seismic events. Our ultimate aim is that our model produces seismic catalogues similar to those observed over real injection sites. Such validation would pave the way to probabilistic estimation of reactivation risk for injection sites using such models. Preliminary results from this model will be presented.
A borehole-to-surface electromagnetic survey
Tseng, H.-W.; Becker, A.; Wilt, M.J.; Deszcz-Pan, M.
1998-01-01
The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A vertical EM profiling experiment was done at the University of California Richmond Field Station, where we simulated a brine spill plume by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic measurements in that the EM transmitter traversed the PVC-cased borehole used for fluid injection and extraction while the receivers were deployed on the surface. The EM measurements were made at 9.6 kHz with an accuracy of 1% in signal amplitude and 1??in signal phase. Observations were taken at 5-m intervals along two intersecting profiles that were centered on the injection well and extended for 60 m on either side of it. The presence of the injected salt water, at the expected 30 m depth, was indicated clearly by differences between the pre-extraction and postextraction data. A limited amount of numerical modeling showed that the experimental data were consistent with the presence of two superposed saline plumes. The uppermost of these, located at 26 m depth, was 2 m thick and had an area of 30 m2. The lower plume, located at 30 m, is the major cause of the observed anomally, as it has an areal extent of 120 m2 and a thickness of 3 m. Surprisingly, the measurements were very sensitive to the presence of cultural surficial conductivity anomalies. These spurious effect were reduced by spatial filtering of the data prior to interpretation.The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A brine spill plume is simulated by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic measurements in that the EM transmitter traversed the polyvinyl chloride-cased borehole used for fluid injection and extraction while the receivers were deployed on the surface. Observations were taken at 5-m intervals along two intersecting profiles that were centered on the injection well and extended for 60 m on either side of it.
Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection
NASA Astrophysics Data System (ADS)
McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.
2013-12-01
High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been rotated far from the ambient stress field; the ';structural keel' provided by the geology suppresses induction since the fluid induced stress levels are much smaller than the breaking strain of the host rocks. In addition, we observe a systematic increase in observed biggest magnitude event with time during any injection indicating that in none of our simulations is the maximum magnitude event observed; mmax is in fact not estimable from any of our simulations and is unlikely to be observed in any given injection scenario.
An in-mold packaging process for plastic fluidic devices.
Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K
2011-01-01
Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.
Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales
NASA Astrophysics Data System (ADS)
Collettini, C.; Scuderi, M. M.; Marone, C.
2017-12-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.
Reverse-Tangent Injection in a Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2007-01-01
Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.
Pore fluid pressure and the seismic cycle
NASA Astrophysics Data System (ADS)
French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.
2017-12-01
In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes seismogenesis in the brittle shallow crust where fluid pressures are elevated but sub-lithostatic and promote slow, stable failure near seismic to aseismic transitions and under near-lithostatic fluid pressures.
NASA Technical Reports Server (NTRS)
Kurk, Michael A. (Andy)
2015-01-01
Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.
Vascular basement membranes as pathways for the passage of fluid into and out of the brain.
Morris, Alan W J; Sharp, Matthew MacGregor; Albargothy, Nazira J; Fernandes, Rute; Hawkes, Cheryl A; Verma, Ajay; Weller, Roy O; Carare, Roxana O
2016-05-01
In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5 min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed.
Thermal inertia and reversing buoyancy in flow in porous media
NASA Astrophysics Data System (ADS)
Menand, Thierry; Raw, Alan; Woods, Andrew W.
2003-03-01
The displacement of fluids through porous rocks is fundamental for the recharge of geothermal and hydrocarbon reservoirs [Grant et al., 1982; Lake, 1989], for contaminant dispersal through the groundwater [Bear, 1972] and in controlling mineral reactions in permeable rocks [Phillips, 1991]. In many cases, the buoyancy force associated with density differences between the formation fluid and the displacing fluid controls the rate and pattern of flow through the permeable rock [Phillips, 1991; Barenblatt, 1996; Turcotte and Schubert, 2002]. Here, using new laboratory experiments, we establish that a striking range of different flow patterns may develop depending on whether this density contrast is associated with differences in temperature and/or composition between the two fluids. Owing to the effects of thermal inertia in a porous rock, thermal fronts lag behind compositional fronts [Woods and Fitzgerald, 1993; Turcotte and Schubert, 2002], so that two zones of different density develop in the region flooded with injected fluid. This can lead to increasing, decreasing or even reversing buoyancy in the injected liquid; in the latter case it may then form a double-flood front, spreading along both the upper and lower boundary of the rock. Recognition of these different flow regimes is key for predicting sweep efficiency and dispersal patterns in natural and engineered flows, and offers new opportunities for the enhanced recovery of natural resources in porous rocks.
CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes
NASA Astrophysics Data System (ADS)
Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.
2014-12-01
The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.
Passive electrical monitoring and localization of fluid leakages from wells
NASA Astrophysics Data System (ADS)
Revil, A.; Mao, D.; Haas, A. K.; Karaoulis, M.; Frash, L.
2015-02-01
Electrokinetic phenomena are a class of cross-coupling phenomena involving the relative displacement between the pore water (together with the electrical diffuse layer) with respect to the solid phase of a porous material. We demonstrate that electrical fields of electrokinetic nature can be associated with fluid leakages from wells. These leakages can be remotely monitored and the resulting signals used to localize their causative source distribution both in the laboratory and in field conditions. The first laboratory experiment (Experiment #1) shows how these electrical fields can be recorded at the surface of a cement block during the leakage of a brine from a well. The measurements were performed with a research-grade medical electroencephalograph and were inverted using a genetic algorithm to localize the causative source of electrical current and therefore, localize the leak in the block. Two snapshots of electrical signals were used to show how the leak evolved over time. The second experiment (Experiment #2) was performed to see if we could localize a pulse water injection from a shallow well in field conditions in the case of a heterogeneous subsurface. We used the same equipment as in Experiment #1 and processed the data with a trend removal algorithm, picking the amplitude from 24 receiver channels just after the water injection. The amplitude of the electric signals changed from the background level indicating that a volume of water was indeed flowing inside the well into the surrounding soil and then along the well. We used a least-square inversion algorithm to invert a snapshot of the electrical potential data at the injection time to localize the source of the self-potential signals. The inversion results show positive potential anomalies in the vicinity of the well. For both experiments, forward numerical simulations of the problem using a finite element package were performed in order to assess the underlying physics of the causative source of the observed electrical potential anomalies and how they are related to the flow of the water phase.
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Escario, Sofia; Godard, Marguerite; Gouze, Philippe; Smal, Pavel; Rodriguez, Olivier; Leprovost, Richard
2017-04-01
Serpentinization is the main hydrothermal process driving the alteration of the mantle lithosphere by seawater at ridges. It consists in the alteration of olivine to serpentine and is associated to processes such as oxidation as well as carbonation when CO2 is present. The sustainability and efficiency of the reaction requires penetration and renewal of fluids at the mineral-fluid interface. Yet the secondary low density minerals can fill the porous network, clogging flow paths efficiently. This study aims at better understanding the coupled hydrodynamic and chemical processes driving the earliest stages of alteration of the ultramafic basement, when seawater-derived hydrothermal fluids penetrate and interact with exposed mantle rocks at slow spreading ridges. We investigate the structural changes of the rock in relation to dissolution-precipitation reactions triggered by the injection CO2-rich seawater using an experimental approach. The experiments simulate open conditions and were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. ICARE 3 allows to continuously measuring permeability changes during experiments and sampling the outlet fluids passing through the sample. We analysed the reacted samples before and after the experiments using a combination of geochemical (TGA-MS) and high resolution X-Ray microtomography (ESRF ID19 synchrotron beamline, Grenoble) approaches. A series of experiments was carried out at 190°C and 25 MPa. CO2 enriched natural seawater (XCO2 5.24 mmol/kg) was injected into Titanium capsules (2 mm diameter, 6 mm length) filled by pressed powdered San Carlos olivine (Fo90; grains 150-200 µm). The outlet section of the samples were analysed at 0.65 µm resolution using microtomography before and after the experiments. The reacted powdered sample was analysed by TGA-MS. Comparison of microtomography images of reacted and unreacted samples shows evidences of olivine dissolution and secondary minerals precipitation during the 14 days long experiments. A new method based on image registration enables to identify the dissolution mainly localized at grain borders and the precipitation localizes in fractures and at grain borders. Dissolution appears to be dominant in the outlet section of the sample. The equilibrium of the reaction will be determined by the comparison of thermogravimetry (TGA-MS) analysis of the reacted sample after the experiment and thermodynamic modelling of the experiment in equilibrium.
Shimada, Hiroyuki
2014-01-01
Vitrectomy is one of the ophthalmic surgeries that require a large number of instruments. Despite a growing array of single-use disposable instruments, vitrectomies for refractory diseases still involve complicated procedures and many surgical devices. As to the arrangement of materials and instruments on the surgical table, fluids that must not be introduced intraocularly, infusion fluid for washing the ocular surface, fluids for intraocular injection, and fluids for periocular injection are classified and marked to avoid using the wrong fluid. Since bacteria are present in the fluid retained in the fluid catch bag, the accumulated infusion fluid should be removed by aspiration. © 2014 S. Karger AG, Basel
NASA Astrophysics Data System (ADS)
De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario
2016-04-01
Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity and deformation; they may work as a template for modelling future events in the case the volcano was approaching eruption conditions.
Fluid injection and induced seismicity
NASA Astrophysics Data System (ADS)
Kendall, Michael; Verdon, James
2016-04-01
The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity during injection, with the aim of mitigating large induced events before they happen. Microseismic event population statistics can be used to make forecasts about the future maximum event magnitude as the injection program continues. By making such forecasts, mitigating actions may be possible if forecast maximum magnitudes exceed a predefined limit.
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...
14 CFR 25.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.
2014-01-01
With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to investigate different injector concepts, improve understanding of the flow structure and flow physics, and develop functional relationships. Both RAS and large eddy simulations (LES) are planned for post-test analysis of the experimental data.
40 CFR 146.69 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pursuant to § 146.67(f) and the response taken; (4) The total volume of fluid injected; (5) Any change in the annular fluid volume; (6) The physical, chemical and other relevant characteristics of injected...
NASA Astrophysics Data System (ADS)
Johnsen, O.; Chevalier, C.; Toussaint, R.; Lindner, A.; Niebling, M.; Schmittbuhl, J.; Maloy, K. J.; Clement, E.; Flekkoy, E. G.
2009-04-01
We present experimental systems where we inject a fluid at high pressure in a poorly cohesive porous material saturated with the same fluid. This fluid is either a highly compressible gas (air), or an almost incompressible and viscous fluid (oil), in an otherwise identical porous matrix. We compare both situations. These porous materials are designed as analogs to real rocks in terms of processes, but their cohesion and geometry are tuned so that the hydrofracture process can be followed optically in the lab, in addition to the ability to follow the imposed pressure and fluxes. Namely, we work with lowly cohesive granular materials, confined in thin elongated Hele-Shaw cell, and follow it with high speed cameras. The fluid is injected on the side of the material, and the injection overpressure is maintained constant after the start. At sufficiently high overpressures, the mobilization of grains is observed, and the formation of hydrofracture fingering patterns is followed and analyzed quantitatively. The two situations where air is injected and where oil is injected are compared together. Many striking similarities are observed between both situations about the shape selections and dynamics, when time is rescaled according to the viscosity of the interstitial fluid. Some differences survive in the speed of the traveling hydrofracture, and their physical origin is discussed. In practice, this problem is relevant for important aspects in the formation and sustenance of increased permeability macroporous networks as demonstrated in nature and industry in many situations. E.g., in active hydrofracture in boreholes, piping/internal erosion in soils and dams, sand production in oil or water wells, and wormholes in oil sands. It is also important to understand the formation of macroporous channels, and the behavior of confined gouges when overpressured fluids are mobilized in seismic sources. Indeed, the formation of preferential paths in this situation can severely affect the fluid and heat transport properties in this situations, and thus affect the pore pressurization effects.
Flow monitoring and control system for injection wells
Corey, John C.
1993-01-01
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Flow monitoring and control system for injection wells
Corey, J.C.
1993-02-16
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk
2014-01-01
Purpose To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. Methods A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initialintravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Results Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. Conclusions IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism. PMID:25120338
Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong
2014-08-01
To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.
Tracing Injection Fluids in Engineered Geothermal Systems
NASA Astrophysics Data System (ADS)
Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.
2011-12-01
The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical simulation studies have served to identify candidate compounds for use as reactive tracers. An emerging class of materials that show promise for use as geothermal and EGS tracers are colloidal nanocrystals (quantum dots). These are semiconductor particles that fluoresce as a function of particle size. Preliminary laboratory experimentation has demonstrated that these thermally stable, water-soluble particles can serve as conservative tracers for geothermal applications. Likewise, they show promise as potential reactive tracers, since their surfaces can be modified to be reversibly sorptive and their diameters are sufficiently large to allow for contrasts in diffusivity with solute tracers.
Fluid-injection and the mechanics of frictional stability of shale-bearing faults
NASA Astrophysics Data System (ADS)
Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris
2017-04-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.
2015-08-01
of the injection purpose, i.e., secondary oil and gas recovery, disposal of waste fluids, geothermal energy, and/or UHP hydraulic fracturing...activities such as reservoir impoundment, mining, wastewater injection, geothermal systems and CO2 capture have been linked directly to induced...activities, e.g., deep fluid injection, geothermal injection, and/or UHP wells, that critically affect deep lithologies and alter the existing mechanical
Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.
McKenna, J; Sherlock, D; Evans, B
2001-12-01
This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.
NASA Astrophysics Data System (ADS)
Rodríguez de Castro, Antonio; Radilla, Giovanni
2017-02-01
The flow of shear-thinning fluids through unconsolidated porous media is present in a number of important industrial applications such as soil depollution, Enhanced Oil Recovery or filtration of polymeric liquids. Therefore, predicting the pressure drop-flow rate relationship in model porous media has been the scope of major research efforts during the last decades. Although the flow of Newtonian fluids through packs of spherical particles is well understood in most cases, much less is known regarding the flow of shear-thinning fluids as high molecular weight polymer aqueous solutions. In particular, the experimental data for the non-Darcian flow of shear-thinning fluids are scarce and so are the current approaches for their prediction. Given the relevance of non-Darcian shear-thinning flow, the scope of this work is to perform an experimental study to systematically evaluate the effects of fluid shear rheology on the flow rate-pressure drop relationships for the non-Darcian flow through different packs of glass spheres. To do so, xanthan gum aqueous solutions with different polymer concentrations are injected through four packs of glass spheres with uniform size under Darcian and inertial flow regimes. A total of 1560 experimental data are then compared with predictions coming from different methods based on the extension of widely used Ergun's equation and Forchheimer's law to the case of shear thinning fluids, determining the accuracy of these predictions. The use of a proper definition for Reynolds number and a realistic model to represent the rheology of the injected fluids results in the porous media are shown to be key aspects to successfully predict pressure drop-flow rate relationships for the inertial shear-thinning flow in packed beads.
NASA Astrophysics Data System (ADS)
Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.
2013-12-01
The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic' fracture, followed by a gas injection in the fracture plan, - An assessment of temperature influences on carbonate and water content which affect carbonate bearing fault gouge using shear experiments at 20C and 120C on simulated fault gouges prepared by crushed OPA samples. To evaluate the interactions between CO2 (and formation fluids) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1:1 scale experiment has been set in the OPA to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations (OPA). Innovative probabilistic modelling tools are also under development in order to build robust calibration methods for uncertainty management of the simulated long term scenarios.
NASA Astrophysics Data System (ADS)
Renard, F.; Montes-Hernandez, G.
2013-12-01
The long-term injection of carbon dioxide into geological underground reservoirs may lead to leakage events that will enhance fluid-rock interactions and question the safety of these repositories. If injection of carbon dioxide into natural reservoirs has been shown to mobilize some species into the pore fluid, including heavy metals and other toxic ions, the detailed interactions remain still debated because two main processes could interact and modify fluid composition: on the one hand dissolution/precipitation reactions may release/incorporate trace elements, and on the other hand adsorption/desorption reactions on existing mineral surfaces may also mobilize or trap these elements. We analyze here, through laboratory experiments, a scenario of a carbon dioxide reservoir that leaks into a fresh water aquifer through a localized leakage zone such as a permeable fault zone localized in the caprock and enhance toxic ions mobilization. Our main goal is to evaluate the potential risks on potable water quality. In a series of experiments, we have injected carbon dioxide into a fresh water aquifer-like medium that contained carbonate and/or iron oxide particles, pure water, and various concentrations of trace elements (copper, arsenic, cadmium, and selenium, in various states of oxidation). This analogue and simplified medium has been chosen because it contains two minerals (calcite, goethite) widespread found in freshwater aquifers. The surface charge of these minerals may vary with pH and therefore control how trace elements are adsorbed or desorbed, depending on fluid composition. Our experiments show that these minerals could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if carbon dioxide is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from carbon dioxide intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in the aquifer. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These ions adsorbed on calcite are not remobilized when carbon dioxide is intruded into the system, even if calcite dissolution is intensified. On the other hand, arsenite As(III), significantly adsorbed on goethite, is partially remobilized by carbon dioxide intrusion. These results show that carbon dioxide may, in some case remobilize some toxic ions in the pore fluid, but the pH effect may also enhance adsorption of other toxic ione on calcite and goethite particles.
Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.; Cochran, Elizabeth S.
2013-01-01
Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.
Passive injection control for microfluidic systems
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2004-12-21
Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.
Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diabira, I.; Castanier, L.M.; Kovscek, A.R.
2001-04-19
An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.
Transition duct with late injection in turbine system
LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray; Flanagan, James Scott; Kim, Won -Wook; McMahan, Kevin Weston
2015-09-15
A system for supplying an injection fluid to a combustor is disclosed. The system includes a transition duct comprising an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The passage defines a combustion chamber. The system further includes a tube providing fluid communication for the injection fluid to flow through the transition duct and into the combustion chamber.
Containment of subsurface contaminants
Corey, John C.
1994-01-01
A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.
NASA Astrophysics Data System (ADS)
Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas
2012-07-01
We analyzed 118 well-constrained focal mechanisms to estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland. This technique, termed focal mechanism tomography (FMT), uses the orientations of slip planes within the prevailing regional stress field as an indicator of the fluid pressure along the plane at the time of slip. The maximum value and temporal change of excess pore fluid pressures are consistent with the known history of the wellhead pressure applied at the borehole. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, which are consistent with the spatiotemporal evolution of the induced microseismicity. Our results demonstrate that FMT is a robust approach, being validated at the meso-scale of the Basel stimulation experiment. We found average earthquake triggering excess pore fluid pressures of about 10 MPa above hydrostatic. Overpressured fluids induced many small events (M < 3) along faults unfavorably oriented relative to the tectonic stress pattern, while the larger events tended to occur along optimally oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, and shows that the system is highly permeable along flow paths that allow fast pressure diffusion to the boundaries of the stimulated region.
... can be: taken as a pill, capsule, or liquid that is swallowed given by injection into a muscle or the skin injected into spinal fluid through a needle inserted into a fluid-filled space in the lower spine (below the spinal cord) ...
Moncada, S; Ferreira, S H; Vane, J R
1975-04-01
A method has been developed to measure the analgesic action of aspirin-like drugs in knee joints of anaesthetized dogs. Bradykinin, injected into the joint cavity, induced a reflex rise in blood pressure which was dose-dependent; this was used as a measure of nociceptive activity. The joint cavity became more sensitive to bradykinin as the experiment proceeded, or when a low concentration of prostaglandin E1 or E2 was infused locally. The increase in sensitivity with time was prevented by local injection of aspirin or indomethacin, but that induced by exogenous prostaglandin infusion was not. Injections of carrageenin into dog knee joints increased the prostaglandin E2 content of synovial fluid by up to 160 ng per joint; indomethacin prevented this increase. These experiments support our previous conclusion that local biosynthesis of a prostaglandin (induced by mild trauma) sensitizes pain receptors to mechanical or chemical stimuli. Aspirin-like drugs are analgesic because they prevent prostaglandin biosynthesis, thereby preventing this sensitization.
NASA Astrophysics Data System (ADS)
Terakawa, T.; Miller, S. A.; Deichmann, N.
2011-12-01
We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.
NASA Astrophysics Data System (ADS)
Wu, Z.; Luhmann, A. J.; Rinehart, A. J.; Mozley, P.; Dewers, T. A.
2017-12-01
Carbon Capture, Utilization and Storage (CCUS) in transmissive reservoirs is a proposed mechanism in reducing CO2 emissions. Injection of CO2 perturbs reservoir chemistry, and can modify porosity and permeability and alter mineralogy. However, little work has been done on the coupling of rock alteration by CO2 injection and the mechanical integrity of the reservoir. In this study, we perform flow-through experiments on calcite- and dolomite-cemented Pennsylvanian Morrow B Sandstone (West Texas, USA) cores. We hypothesize that poikilotopic calcite cement has a larger impact on chemo-mechanical alteration than disseminated dolomite cement given similar CO2 exposure. With one control brine flow-through experiment and two CO2-plus-brine flow-through experiments for each cement composition, flow rates of 0.1 and 0.01 ml/min were applied under 4200 psi pore fluid pressure and 5000 psi confining pressure at 71 °C. Fluid chemistry and permeability data enable monitoring of mineral dissolution. Ultrasonic velocities were measured pre-test using 1.2 MHz source-receiver pairs at 0.5 MPa axial load and show calcite-cemented samples with higher dynamic elastic moduli than dolomite-cemented samples. Velocities measured post-experiment will identify changes from fluid-rock interaction. We plan to conduct cylinder-splitting destructive mechanical test (Brazil test) to measure the pristine and altered tensile strength of different cemented sandstones. The experiments will identify extents to which cement composition and texture control chemo-mechanical degradation of CCUS reservoirs. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
NASA Astrophysics Data System (ADS)
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Coupled Hydro-Mechanical Modeling of Fluid Geological Storage
NASA Astrophysics Data System (ADS)
Castelletto, N.; Garipov, T.; Tchelepi, H. A.
2013-12-01
The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.
Containment of subsurface contaminants
Corey, J.C.
1994-09-06
A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.
In-situ remediation system for groundwater and soils
Corey, John C.; Kaback, Dawn S.; Looney, Brian B.
1993-01-01
A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.
In-situ remediation system for groundwater and soils
Corey, J.C.; Kaback, D.S.; Looney, B.B.
1993-11-23
A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Bazant, Martin
2017-11-01
Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.
Salt, Alec N; Hartsock, Jared J; Gill, Ruth M; Piu, Fabrice; Plontke, Stefan K
2012-12-01
Perilymph pharmacokinetics was investigated by a novel approach, in which solutions containing drug or marker were injected from a pipette sealed into the perilymphatic space of the lateral semi-circular canal (LSCC). The cochlear aqueduct provides the outlet for fluid flow so this procedure allows almost the entire perilymph to be exchanged. After wait times of up to 4 h the injection pipette was removed and multiple, sequential samples of perilymph were collected from the LSCC. Fluid efflux at this site results from cerebrospinal fluid (CSF) entry into the basal turn of scala tympani (ST) so the samples allow drug levels from different locations in the ear to be defined. This method allows the rate of elimination of substances from the inner ear to be determined more reliably than with other delivery methods in which drug may only be applied to part of the ear. Results were compared for the markers trimethylphenylammonium (TMPA) and fluorescein and for the drug dexamethasone (Dex). For each substance, the concentration in fluid samples showed a progressive decrease as the delay time between injection and sampling was increased. This is consistent with the elimination of substance from the ear with time. The decline with time was slowest for fluorescein, was fastest for Dex, with TMPA at an intermediate rate. Simulations of the experiments showed that elimination occurred more rapidly from scala tympani (ST) than from scala vestibuli (SV). Calculated elimination half-times from ST averaged 54.1, 24.5 and 22.5 min for fluorescein, TMPA and Dex respectively and from SV 1730, 229 and 111 min respectively. The elimination of Dex from ST occurred considerably faster than previously appreciated. These pharmacokinetic parameters provide an important foundation for understanding of drug treatments of the inner ear.
Multi-fluid renewable geo-energy systems and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buscheck, Thomas A.
A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portionmore » of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.« less
Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.
Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés
2014-01-01
Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.
Earthquakes induced by fluid injection and explosion
Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.
1970-01-01
Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.
Systems and methods for multi-fluid geothermal energy systems
Buscheck, Thomas A.
2017-09-19
A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs
Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien
2017-01-01
Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID:28817653
Enhancing the performance of the domestic refrigerator with hot gas injection to suction line
NASA Astrophysics Data System (ADS)
Berman, E. T.; Hasan, S.; Mutaufiq
2016-04-01
The purpose of this study was to determine the increase in performance of a domestic refrigerator that uses hot gas injection (IHG) to the suction line. The experiment was conducted by flowing refrigerant from the discharge line to the suction line. To get performance data, measurements performed on the liquid brine as cooling load with various temperatures (range from 3°C to - 3°C). The working fluid is used as a cooling medium is R-134a. The experimental results showed that the injection of hot gas to the suction line generates an increase in the coefficient of performance systems (COPs) of 7% and is able to lower the discharge temperature, causing the compressor to work lighter/easier, saving electric power needed by the refrigerator.
Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.
2009-01-01
Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the Bulli 4 coal did not show any significant variation with pressure, a phenomenon which we assign to the extremely small amount of porosity of this coal in the pore size range between 35 and 100,000????. ?? 2008 Elsevier B.V.
Large poroelastic deformation of a soft material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2014-11-01
Flow through a porous material will drive mechanical deformation when the fluid pressure becomes comparable to the stiffness of the solid skeleton. This has applications ranging from hydraulic fracture for recovery of shale gas, where fluid is injected at high pressure, to the mechanics of biological cells and tissues, where the solid skeleton is very soft. The traditional linear theory of poroelasticity captures this fluid-solid coupling by combining Darcy's law with linear elasticity. However, linear elasticity is only volume-conservative to first order in the strain, which can become problematic when damage, plasticity, or extreme softness lead to large deformations. Here, we compare the predictions of linear poroelasticity with those of a large-deformation framework in the context of two model problems. We show that errors in volume conservation are compounded and amplified by coupling with the fluid flow, and can become important even when the deformation is small. We also illustrate these results with a laboratory experiment.
Impact of a complex fluid droplet on wettable and non wettable surfaces
NASA Astrophysics Data System (ADS)
Bolleddula, Daniel; Aliseda, Alberto
2008-11-01
The impact of liquid droplets is a phenomenon prevalent in many natural and industrial processes. Such events include rain drops, fuel injection, and ink-jet printing. To date, research in atomization and droplet impact has been focused on Newtonian fluids. In the coating of pharmaceutical tablets, the coating solutions contain polymers, surfactants, and large concentrations of insoluble solids in suspension which inherently exhibit non-Newtonian behavior. In this work, we will present ongoing droplet impact experiments using complex rheology fluids under a wide range of Weber and Ohnesorge numbers. Both hydrophilic and hydrophobic surfaces are been studied, and the effect of surface roughness has also been considered. We will describe the limits of bouncing, spreading, and splashing for these complex fluids. We will also discuss quantitative information such as spreading rates and contact angle measurements on wettable and non-wettable surfaces obtained from high speed images.
NASA Astrophysics Data System (ADS)
Gischig, Valentin; Broccardo, Marco; Amann, Florian; Jalali, Mohammadreza; Esposito, Simona; Krietsch, Hannes; Doetsch, Joseph; Madonna, Claudio; Wiemer, Stefan; Loew, Simon; Giardini, Domenico
2016-04-01
A decameter in-situ stimulation experiment is currently being performed at the Grimsel Test Site in Switzerland by the Swiss Competence Center for Energy Research - Supply of Electricity (SCCER-SoE). The underground research laboratory lies in crystalline rock at a depth of 480 m, and exhibits well-documented geology that is presenting some analogies with the crystalline basement targeted for the exploitation of deep geothermal energy resources in Switzerland. The goal is to perform a series of stimulation experiments spanning from hydraulic fracturing to controlled fault-slip experiments in an experimental volume approximately 30 m in diameter. The experiments will contribute to a better understanding of hydro-mechanical phenomena and induced seismicity associated with high-pressure fluid injections. Comprehensive monitoring during stimulation will include observation of injection rate and pressure, pressure propagation in the reservoir, permeability enhancement, 3D dislocation along the faults, rock mass deformation near the fault zone, as well as micro-seismicity. The experimental volume is surrounded by other in-situ experiments (at 50 to 500 m distance) and by infrastructure of the local hydropower company (at ~100 m to several kilometres distance). Although it is generally agreed among stakeholders related to the experiments that levels of induced seismicity may be low given the small total injection volumes of less than 1 m3, detailed analysis of the potential impact of the stimulation on other experiments and surrounding infrastructure is essential to ensure operational safety. In this contribution, we present a procedure how induced seismic hazard can be estimated for an experimental situation that is untypical for injection-induced seismicity in terms of injection volumes, injection depths and proximity to affected objects. Both, deterministic and probabilistic methods are employed to estimate that maximum possible and the maximum expected induced earthquake magnitude. Deterministic methods are based on McGarr's upper limit for the maximum induced seismic moment. Probabilistic methods rely on estimates of Shapiro's seismogenic index and seismicity rates from past stimulation experiments that are scaled to injection volumes of interest. Using rate-and-state frictional modelling coupled to a hydro-mechanical fracture flow model, we demonstrate that large uncontrolled rupture events are unlikely to occur and that deterministic upper limits may be sufficiently conservative. The proposed workflow can be applied to similar injection experiments, for which hazard to nearby infrastructure may limit experimental design.
Fuel injection assembly for use in turbine engines and method of assembling same
Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho
2015-12-15
A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.
Insights gained from relating cumulative seismic moments to fluid injection activities
NASA Astrophysics Data System (ADS)
McGarr, A.; Barbour, A. J.
2017-12-01
The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay
Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is usefulmore » when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.« less
Piek, J; Raes, P
1996-01-01
We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light
Pigmentation, anesthesia, behavioral factors, and salicylate uptake.
Jastreboff, P J; Issing, W; Brennan, J F; Sasaki, C T
1988-02-01
In four experiments, 54 pigmented rats were used to examine the time course of sodium salicylate uptake in serum, cerebrospinal fluid, and perilymph. Subjects were tested under sodium pentobarbital anesthesia or while conscious. Compared with previously reported data from albino rats, pigmented subjects generally showed increased salicylate uptake. Moreover, the data suggested two different, time-dependent clearance mechanisms in conscious animals not observed in anesthetized rats. Daily injections of salicylate did not produce an accumulation of salicylate in serum. Systematically higher levels of salicylate were observed in perilymph compared with cerebrospinal fluid. Behavioral procedures, including water deprivation and conditioned suppression of ongoing drinking levels, had no effect on salicylate levels.
Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media
NASA Astrophysics Data System (ADS)
Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)
Overview of HIT-SI3 experiment: Simulations, Diagnostics, and Summary of Current Results
NASA Astrophysics Data System (ADS)
Penna, James; Jarboe, Thomas; Nelson, Brian; Hossack, Aaron; Sutherland, Derek; Morgan, Kyle; Hansen, Chris; Benedett, Thomas; Everson, Chris; Victor, Brian
2016-10-01
The Helicity Injected Torus - Steady Inductive 3(HIT-SI3)experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI). Three injector units allow for continuous injection of helicity into a copper flux conserver in order to sustain a spheromak. Firing of the injectors with a phase difference allows finite rotation of the plasma to provide a stabilizing effect. Simulations in the MHD code NIMROD and the fluid-model code PSI-TET provide validation and a basis for interpretation of the observed experimental data. Thompson Scattering (TS) and Far Infrared (FIR) Interferometer systems allow temperature and line-averaged density measurements to be taken. An Ion Doppler Spectroscopy (IDS) system allows measurement of the plasma rotation and velocity. HIT-SI3 data has been used for validation of IDCD predictions, in particular the projected impedance of helicity injectors according to the theory. The experimental impedances have been calculated here for the first time for different HIT-SI3 regimes. Such experimental evidence will contribute to the design of future experiments employing IDCD as a current-drive mechanism. Work supported by the D.O.E., Office of Science, Office of Fusion Science.
Secondary air injection system and method
Wu, Ko-Jen; Walter, Darrell J.
2014-08-19
According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.
Nusinersen injection comes as a solution (liquid) to inject intrathecally (into the fluid-filled space of the spinal canal). Nusinersen injection is given by a doctor in a medical office or clinic. It is usually given as ...
NASA Astrophysics Data System (ADS)
Park, A. J.; Tuncay, K.; Ortoleva, P. J.
2003-12-01
An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.
NASA Astrophysics Data System (ADS)
Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.
2017-10-01
A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.
NASA Astrophysics Data System (ADS)
Dávila Ordoñez, M. G.; Zahasky, C.; Crandall, D.; Druhan, J. L.
2017-12-01
Thus far, one million metric tons of CO2 have been injected into the lower Mt. Simon formation as part of the Decatur CO2 Capture and Storage Project. Micro-seismic events were observed within the CO2 plume both during and after pressurization associated with the primary injection. The Mt. Simon reservoir rock consists of 76.5 wt.% quartz, 2.1 wt.% calcite, 17.3 wt.% K-feldspar, 1.1 wt.% chlorite, 0.7 wt.% illite and lesser extents of siderite, kaolinite, dolomite and marcasite, and is thus anticipated to become geochemically altered by exposure to acidified CO2-rich brine. However, the extent to which the geochemical reactivity contributes to structural weakening is unknown. To explore relationships between the principle geochemical reactions, evolution of fluid transport properties and physical alteration, we performed a series of flow-through experiments using Mt. Simon core (5 cm diameter, ranging from 4.3 - 8.6 cm length) and fluids representative of acidified reservoir brine. Experiments were operated under P = 1450 bar, Pconfining = 1900 - 3000 bar and T = 53 ºC conditions, and flow rates varied from 0.08 to 5.00 mL h-1 over a period of 166 h. A 2D reactive transport code (Crunch-Tope) was used to simulate these experiments, constrained by measured time series aqueous concentrations of Ca, Mg, S, Si, K and Fe and pH during the CO2-rich brine interaction. The model domain was divided into 30 nodes in x at a spacing of 0.12 cm, and 40 nodes in y at a spacing of 0.22 cm, and initial permeability measured for the core was specified and allowed to evolve over the course of the simulation using measured flow rate as a constraint. All relevant kinetic and thermodynamic reaction parameters were obtained from the literature. Solute time series from both experiments and simulations indicated that the acidified brine introduced continuously into the column promoted dissolution of K-feldspar, chloride, illite, pyrite and calcite, and the precipitation of Ca-, Fe- and Si -bearing secondary phases, resulting in a net porosity increase at the inlet. Despite this opening of the inlet pore space, permeability decreased over the length of the column (kfinal/kinitial = 0.76), thus altering local resistance to fluid phase pressure gradients.
NASA Astrophysics Data System (ADS)
Maher, K.; Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Kiss, A. M.; Kohli, A. H.; Thomas, D.; Joe-Wong, C. M.; Brown, G. E.; Bargar, J.
2016-12-01
The extraction of oil and gas resources from low permeability shale reservoirs using hydraulic fracturing techniques has increased significantly in recent years. During hydraulic fracturing, large volumes of fluid are injected into subsurface shale formations, which drives substantial fluid-rock interaction that can release contaminants and alter rock permeability. Here, a combined experimental, imaging, and modeling approach was employed to systematically evaluate the impact of shale mineralogy on its physical and chemical alteration when exposed to fracturing fluids of different composition. Batch reactor experiments contained different shales with unique mineralogical compositions that were exposed to simulated hydraulic fracturing fluid. Experiments revealed that the balance between fluid acidity and acid neutralizing capacity of the rock was the strongest control on the evolution of fluid and rock chemistry. Carbonate mineral-rich shales rapidly recovered solution pH to circum-neutral conditions, whereas fluids in contact with carbonate mineral-poor shales remained acidic. The dissolution of shale minerals released metal contaminants, yet the precipitation of Fe(III)-bearing secondary phases helped to attenuate their release via co-precipitation or sorption. Post-reaction imaging illustrated that selective dissolution of carbonate minerals generated secondary porosity, the connectivity of which was dictated by initial carbonate distribution. Conversely, the precipitation of secondary Al- and Fe-bearing phases may occlude porosity, potentially inhibiting transport of water, contaminants, and hydrocarbons. The maturation of secondary Fe-bearing phases from amorphous to crystalline over time suggests that porosity will continue to evolve even after oxidation reactions have effectively ceased. These experiments reveal that the relative abundance and distribution of carbonate minerals is the master variable dictating both porosity alteration and contaminant release from shale formations, implying that the response of a reservoir to hydraulic fracturing can be better assessed using robust mineralogical data.
Ostgaard, G; Reed, R K
1993-11-01
Increased negatively of interstitial fluid pressure (Pif) contributes to rapid edema formation in several acute inflammatory reactions attesting to an "active" role for the loose connective tissues in the transcapillary fluid exchange and edema formation under these circumstances. The present study reports the effect of the complement activator Zymosan on Pif, transcapillary fluid, and albumin flux. Micropipettes (tip diameter 5 to 7 microns) connected to a servo-controlled counterpressure system were used to measure Pif in rat dermis. When compared to saline injection, subdermal injection of 1 mg Zymosan in 10 microliters 0.15 M NaCl increased total tissue water by 1.6 ml/g dry weight in 5 min, corresponding to about 150% increase in interstitial fluid volume. Pif increased from +0.4 to +3.7 mm Hg. Increased negativity of Pif can be masked by the edema formation which will increase Pif. Measurements were therefore also performed after circulatory arrest, when transcapillary fluid flux and edema formation are abolished. Using this experimental protocol Pif fell from +0.3 mm Hg to -2.5 mm Hg 5 min after subdermal injection of Zymosan and remained at this level throughout the observation period of 90 min. Injection of saline alone after circulatory arrest increased Pif transiently by about 1 mm Hg. Thus, subdermal injection of Zymosan causes increased negativity of Pif by about 4 mm Hg. Although the lowering of Pif itself will explain a minor part of the increased fluid filtration, the results attest to the role of loose connective tissues being active in the edema-generating process also in the inflammatory reaction induced by Zymosan.
Invasion-Flowback Processes During Hydraulic Fracturing Well Interference
NASA Astrophysics Data System (ADS)
Kenzhekhanov, Shaken; He, Kai; Xu, Liang; Lord, Paul; Lozano, Martin; Neeves, Keith; Yin, Xiaolong
2017-11-01
Drainage-imbibition cycles that simulate hydraulic fracturing fluid's invasion and flowback during well interference were investigated using NOA81 microfluidic micromodels. Well interference is quite common in unconventional oil and gas fields. It is not unusual for the fracturing fluid injected into a well to be discovered in a nearby well. Normally, the effect of such interference is considered to be negative, as fracturing fluid will be imbibed into the porous rock and block the flow path of hydrocarbons. However, field data show that some interferences are beneficial, and microfluidic experiments presented in this study show that surfactant in the fracturing fluid may be a reason for the observed positive interference. Two fluid drainage-imbibition cycles were conducted in micromodels. The first cycle simulates fracturing of the old well and the second cycle simulates fluid invasion from the new well into the old well's fracture network. The experimental data show that while most such interferences indeed can cause production loss, when the old well's fracturing fluid does not contain surfactant yet the new well's fracturing fluid does, interference can be positive, as the residual water saturation in the porous medium is effectively reduced by surfactants.
Simultaneous flow of gas and water in a damage-susceptible argillaceous rock
NASA Astrophysics Data System (ADS)
Nguyen, T. S.
2011-12-01
A research project has been initiated by the Canadian Nuclear Safety Commission (CNSC) to study the influence of gas generation and migration on the long term safety of deep geological repositories for radioactive wastes. Such facilities rely on multiple barriers to isolate and contain the wastes. Depending on the level of radioactivity of the wastes, those barriers include some or all of the following: corrosion and structurally resistant containers, low permeability seals around the emplacements rooms, galleries and shaft, and finally the host rock formations. Large quantities of gas may be generated from the degradation of the waste forms or the corrosion of the containers. The generated gas pressures, if sufficiently large, can induce cracks and microcracks in the engineered and natural barriers and affect their containment functions. The author has developed a mathematical model to simulate the above effects. The model must be calibrated and validated with laboratory and field experiments in order to provide confidence in its future use for assessing the effects of gas on the long term safety of nuclear wastes repositories. The present communication describes the model and its use in the simulation of laboratory and large scale in-situ gas injection experiments in an argillaceous rock, known as Opalinus clay, from Mont Terri, Switzerland. Both the laboratory and in-situ experiments show that the gas flow rate substantially increases when the injection pressure is higher than the confining stress. The above observation seems to indicate that at high gas injection pressures, damage could possibly be induced in the rock formation resulting in an important increase in its permeability. In order to simulate the experiments, we developed a poro-elastoplastic model, with the consideration of two compressible pore fluids (water and gas). The bulk movement of the pore fluids is assumed to obey the generalized Darcy's law, and their respective degree of saturation is represented by the Van Genuchten's functions. The solid skeleton is assumed to be elastoplastic, with degradation of the strength and elastic modulus accompanied by an increase in permeability when damage is accumulated. The model can predict the three distinct flow regimes found in the experiments: a low flow regime where gas movement is restricted to the injection zone, a moderate flow regime when damage is limited, and a high flow regime when damage induces a substantial increase in the permeability.
NASA Astrophysics Data System (ADS)
Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.
2018-04-01
Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is the onset of eruption, when fluid flow is projected outwards and focused towards the erupting fissure as the dyke closes. A simultaneous and abrupt decrease in sub-surface strain occurs as the fluid pressure is released. Our results provide a comprehensive physical framework upon which to interpret evidence of dyke ascent in nature, and suggest dyke ascent models need to be re-evaluated to account for coupled intrusive and extrusive processes and improve the recognition of monitoring signals that lead to volcanic eruptions in nature.
Sedimentation from Particle-Laden Plumes in Stratified Fluid
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Hong, Youn Sub
2015-11-01
Laboratory experiments are performed in which a mixture of particles, water and a small amount of dye is continuously injected upwards from a localized source into a uniformly stratified ambient. The particle-fluid mixture initially rises as a forced plume (which in most cases is buoyant, though in some cases due to high particle concentration is negative-buoyant at the source), reaches a maximum height, collapses upon itself and then spreads as a radial intrusion. The particles are observed to rain out of the descending intrusion and settle upon the floor of the tank. Using light attenuation, the depth of the particle mound is measured after the experiment has run for a fixed amount of time. In most experiments the distribution of particles is found to be approximately axisymmetric about the source with a near Gaussian structure for height as a function of radius. The results are compared with a code that combines classical plume theory with an adaptation to stratified fluids of the theory of Carey, Sigurdsson and Sparks (JGR, 1988) for the spread and fall of particles from a particle-laden plume impacting a rigid ceiling. Re-entrainment of particles into the plume is also taken into account.
Simultaneous Determination of Fluid Shifts during Thermal Stress in a Small Animal Model,
1985-09-01
extracellular fluid voitmie (BCF) was measured using a single injection c- inulin , technique, and plasma voilme (PV) was determined by ca.rdio--yreen dye...using tritiated water, extracell1ular fluid volume (ECF) was measured using a single injection C- inulin technique, and plasma volume (PV) was...space. However, inulin (10) has several advantages over the aforementioned because it Is not metabolized, stored, or incorporated by cells or
Chen, Carl P C; Hsu, Chih Chin; Pei, Yu-Cheng; Chen, Ruo Li; Zhou, Shaobo; Shen, Hsuan-Chen; Lin, Shih-Cherng; Tsai, Wen Chung
2014-04-01
Knee pain is commonly seen in orthopedic and rehabilitation outpatient clinical settings, and in the aging population. Bursitis of the knee joint, especially when the volume of the synovial fluid is large enough, can compress and distend the nearby soft tissues, causing pain in the knee joint. Out of all the bursae surrounding the knee joint, supra-patellar bursitis is most often associated with knee pain. Treatment strategies in managing supra-patellar bursitis include the aspiration of joint synovial fluid and then followed by steroid injection into the bursa. When supra-patellar bursitis is caused by degenerative disorders, the concept of viscosupplementation treatment may be effective by injecting hyaluronic acid into the bursa. However, the rheology or the changes in the concentrations of proteins (biomarkers) that are related to the development of bursitis in the synovial fluid is virtually unexplored. Therefore, this study aimed to identify the concentration changes in the synovial fluid total protein amount and individual proteins associated with supra-patellar bursitis using the Bradford protein assay and western immunoglobulin methods. A total of 20 patients were divided into two groups with 10 patients in each group. One group received the high molecular weight hyaluronic acid product of Synvisc Hylan G-F 20 and the other group received the low molecular weight hyaluronic acid product of Hya-Joint Synovial Fluid Supplement once per week injection into the bursa for a total of 3 weeks. Significant decreases in the synovial fluid total protein concentrations were observed after the second dosage of high molecular weight hyaluronic acid injections. Apolipoprotein A-I, interleukin 1 beta, alpha 1 antitrypsin, and matrix metalloproteinase 1 proteins revealed a trend of decreasing western immunoblotting band densities after hyaluronic acid injections. The decreases in apolipoprotein A-I and interleukin 1 beta protein band densities were significant in the high molecular weight hyaluronic acid injection group. Transthyretin, complement 5, and matrilin 3 proteins revealed a trend of increasing western immunoblotting band densities after hyaluronic acid injections. Transthyretin revealed significant increases in protein band densities in both the high and low molecular weight hyaluronic acid injection groups. This study may provide the rationale for targeting several biomarkers associated with lipid transport, inflammation, and anti-aging as possible disease modifying therapies for the treatment of supra-patellar bursitis and even degenerative joint disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out
NASA Astrophysics Data System (ADS)
Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen
2014-05-01
The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.
Temporal pore pressure induced stress changes during injection and depletion
NASA Astrophysics Data System (ADS)
Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas
2016-04-01
Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.
NASA Astrophysics Data System (ADS)
Baker, G. S.; Wu, Y.; Hubbard, S. S.; Wu, W.; Gaines, D. P.; Pratt, J. C.; Modi, A. L.; Watson, D.; Jardine, P.
2009-05-01
We present results from surface time-lapse electrical resistivity tomography (TLERT) data collected within a uranium-contaminated unconfined aquifer underlying the Oak Ridge Field Research Center (ORFRC) located at the Oak Ridge National Laboratory (ORNL) in Tennessee. As part of an Integrated Field Research Challenge (IFRC) project supported by the DOE Environmental Remediation Sciences Program (ERSP), bioreduction of U(VI) to U(IV) with ethanol as an electron donor has been tested during the last four years. Low U concentration (below US EPA MCL of 0.03 mg/L) can be achieved by frequent injection of electron donor. To reduce the costs and improve the sustainability for remediation and site maintenance, our IFRC team is exploring the effectiveness of a slowly degrading substrate such as commercial emulsified vegetable oil substrate (EVO) as alternative electron donor sources. Laboratory batch and flow-through column experiments were carried out to investigate the sensitivity of various physical properties (e.g., electrical conductivity) to EVO injection to test the applicability of geophysics as a monitoring tool at the field scale. Results revealed increased electrical conductivity during both EVO injection and subsequent degradation of surfactant with an overall increase in conductivity of ˜35%; thus, surface TLERT was selected as a monitoring tool to supplement well fluid samples. The field stimulation test began at Area 2 during early February 2009. Prior to the injection of the EVO, preliminary characterization completed, including a geochemical survey of the ground water from ˜50 wells, microbial samples of groundwater and sediment collected from selected wells, and site hydrology characterized by bromide tracer test and surface ERT methods. On February 9, 2009, diluted EVO solution (20% concentration, 900 gal vol) was injected into three injection wells within 1.5 hours. Distribution of the injected EVO and accompanying biogeochemical processes has been monitored since injection through analysis of numerous well fluid samples and TLERT data from 2 profiles. Initial TLERT data were collected at the 2 profiles over a two-week period at 12 different time steps. The surface profiles, situated parallel to and perpendicular to the major flow direction (as delineated by tracer tests), are each 40 m long and consist of 52 electrodes spaced at 0.75 m. Initial analysis indicate good correlation between well fluid samples and TLERT data and allow for improved extrapolation of well data to the field scale. Long-term monitoring is in place to track the continuing hydrologic dynamics and reduction duration in this test area throughout Spring 2009.
NASA Astrophysics Data System (ADS)
DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB
2018-03-01
Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.
NASA Astrophysics Data System (ADS)
Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.
2015-12-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan
2015-01-01
Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
40 CFR 147.3013 - Information to be considered for Class I wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2014 CFR
2014-01-01
... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...
14 CFR 23.1143 - Engine controls.
Code of Federal Regulations, 2013 CFR
2013-01-01
... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...
Hyporheic less-mobile porosity and solute transport in porous media
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.
2017-12-01
Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.
Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Vermeul, Vincent R.; Adamson, David
2015-03-01
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Doughty, C.
2010-01-15
Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
NASA Astrophysics Data System (ADS)
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.
Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V
2007-07-17
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.
Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.
2007-01-01
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612
Curved film cooling admission tube
NASA Astrophysics Data System (ADS)
Graham, R. W.; Papell, S. S.
1980-10-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Curved film cooling admission tube
NASA Technical Reports Server (NTRS)
Graham, R. W.; Papell, S. S. (Inventor)
1980-01-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Capillary Imbibition of Hydraulic Fracturing Fluids into Partially Saturated Shale
NASA Astrophysics Data System (ADS)
Birdsell, D.; Rajaram, H.; Lackey, G.
2015-12-01
Understanding the migration of hydraulic fracturing fluids injected into unconventional reservoirs is important to assess the risk of aquifer contamination and to optimize oil and gas production. Capillary imbibition causes fracturing fluids to flow from fractures into the rock matrix where the fluids are sequestered for geologically long periods of time. Imbibition could explain the low amount of flowback water observed in the field (5-50% of the injected volume) and reduce the chance of fracturing fluid migrating out of formation towards overlying aquifers. We present calculations of spontaneous capillary imbibition in the form of an "imbibition rate parameter" (A) based on the only known exact analytical solution for spontaneous capillary imbibition. A depends on the hydraulic and capillary properties of the reservoir rock, the initial water saturation, and the viscosities of the wetting and nonwetting fluids. Imbibed volumes can be large for a high permeability shale gas reservoir (up to 95% of the injected volume) or quite small for a low permeability shale oil reservoir (as low as 3% of the injected volume). We also present a nondimensionalization of the imbibition rate parameter, which facilitates the calculation of A and clarifies the relation of A to initial saturation, porous medium properties, and fluid properties. Over the range of initial water saturations reported for the Marcellus shale (0.05-0.6), A varies by less than factors of ~1.8 and ~3.4 for gas and oil nonwetting phases respectively. However, A decreases significantly for larger initial water saturations. A is most sensitive to the intrinsic permeability of the reservoir rock and the viscosity of the fluids.
NASA Astrophysics Data System (ADS)
Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas
2016-09-01
Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.
Propagation of a viscous thin film over an elastic membran
NASA Astrophysics Data System (ADS)
Zheng, Zhong; Griffiths, Ian; Stone, Howard
2016-11-01
We study the buoyancy-driven spreading of a thin viscous film over a thin elastic membrane. Neglecting the effects of membrane bending and the membrane weight, we study the case of constant fluid injection and obtain a system of coupled partial differential equations to describe the shape of the air-liquid interface, and the deformation and the radial tension of the stretched membrane. We obtain self-similar solutions to describe the dynamics. In particular, in the early time period, the dynamics is dominated by buoyancy-driven spreading of the liquid film, and membrane stretching is a response to the buoyancy-controlled distribution of liquid weight; the location of the liquid front obeys the power-law form rf (t) t 1 / 2 . However, in the late time period, the system is quasi-steady, the air-liquid interface is flat, and membrane stretching, due to the liquid weight, causes the spreading of the liquid front; the location of the front obeys a different power-law form rf (t) t 1 / 4 before the edge effects of the membrane become significant. In addition, we report laboratory experiments for constant fluid injection using different viscous liquids and thin elastic membranes. Very good agreement is obtained between the theory and experiments.
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove
2016-04-01
Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR, Ellsworth WL, Stump BW, Hayward C, Frohlich C, Oldham HR, Olson JE, Magnani MB, Brokaw C, Luetgert JH, 2015, Causal factors for seismicity near Azle, Texas, nature communications 6:6728, DOI: 10.1038/ncomms7728 [3] Yoon JS, Zimmermann G, Zang A, Stephansson O, 2015, Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault, Can Geotech J 52: 1457-1465, DOI: 10.1139/cgj-2014-0435.
NASA Astrophysics Data System (ADS)
Liang, Y. H.
2017-06-01
This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.
Scientific Exploration of Induced SeisMicity and Stress (SEISMS)
NASA Astrophysics Data System (ADS)
Savage, Heather M.; Kirkpatrick, James D.; Mori, James J.; Brodsky, Emily E.; Ellsworth, William L.; Carpenter, Brett M.; Chen, Xiaowei; Cappa, Frédéric; Kano, Yasuyuki
2017-11-01
Several major fault-drilling projects have captured the interseismic and postseismic periods of earthquakes. However, near-field observations of faults immediately before and during an earthquake remain elusive due to the unpredictable nature of seismicity. The Scientific Exploration of Induced SeisMicity and Stress (SEISMS) workshop met in March 2017 to discuss the value of a drilling experiment where a fault is instrumented in advance of an earthquake induced through controlled fluid injection. The workshop participants articulated three key issues that could most effectively be addressed by such an experiment: (1) predictive understanding of the propensity for seismicity in reaction to human forcing, (2) identification of earthquake nucleation processes, and (3) constraints on the factors controlling earthquake size. A systematic review of previous injection experiments exposed important observational gaps in all of these areas. The participants discussed the instrumentation and technological needs as well as faults and tectonic areas that are feasible from both a societal and scientific standpoint.
Detecting subsurface fluid leaks in real-time using injection and production rates
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Huerta, Nicolas J.
2017-12-01
CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.
A transition in the viscous fingering instability in miscible fluids
NASA Astrophysics Data System (ADS)
Videbaek, Thomas; Nagel, Sidney R.
2017-11-01
The viscous fingering instability in a quasi-two dimensional Hele-Shaw cell is an example of complex structure formation from benign initial conditions. When the invading fluid has the lesser viscosity, the interface between the two fluids is unstable to finger formation. Here, we study the instability between pairs of miscible fluids in a circular cell with fluid injected at its center. As the injection rate is decreased, diffusion will smooth out the discontinuity in the gap-averaged viscosity at the interface between the fluids. At high injection rates (i.e., high Péclet number, Pe), fingering is associated with three-dimensional structure within the gap between the confining plates. On lowering Pe, we find a sharp transition in the finger morphology at a critical value, Pec (ηi /ηo) 1 / 2 , with ηi (ηo) being the viscosity of the inner (outer) fluid; at this point, the width of the fingers jumps, the length of the fingers shrinks towards zero and the three-dimensional structure goes from half filling to fully filling the gap. Thus, by controlling the viscosity contrast at the interface, one can alter and even completely suppress the instability.
Intracochlear drug injections through the round window membrane: Measures to improve drug retention
Plontke, Stefan K.; Hartsock, Jared J.; Gill, Ruth M.; Salt, Alec N.
2016-01-01
The goal of this study was to develop appropriate methodology to apply drugs quantitatively to perilymph of the ear. Intratympanic applications of drugs to the inner ear often result in variable drug levels in perilymph and can only be used for molecules that readily permeate the round window (RW) membrane. Direct intracochlear and intralabyrinthine application procedures for drugs, genes or cell-based therapies by-pass the tight boundaries at the round window, oval window, otic capsule and the blood-labyrinth barrier. However, perforations can release inner ear pressure, allowing cerebrospinal fluid to enter through the cochlear aqueduct, displacing the injected drug solution into the middle ear. Two markers, fluorescein or fluorescein isothiocyanate (FITC)-labeled dextran, were used to quantify how much of an injected substance was retained in cochlear perilymph following an intracochlear injection. We evaluated whether procedures to mitigate fluid leaks improved marker retention in perilymph. Almost all procedures to reduce volume efflux, including the use of gel for internal sealing and glue for external sealing of the injection site, resulted in improved retention of the marker in perilymph. Adhesive on the RW membrane effectively prevented leaks but also influenced fluid exchange between CSF and perilymph. We conclude that drugs can be delivered to the ear in a consistent, quantitative manner using intracochlear injections if care is taken to control the fluid leaks that result from cochlear perforation. PMID:26905306
Tian, Yi; Jiang, Yanan; Shang, Yanpeng; Zhang, Yu-Peng; Geng, Chen-Fan; Wang, Li-Qiang; Chang, Ya-Qing
2017-06-01
The lysozyme gene was silenced using RNA interference (RNAi) to analyze the function of lysozyme in sea cucumber under salt stress. The interfering efficiency of four lysozyme RNAi oligos ranged from 0.55 to 0.70. From the four oligos, p-miR-L245 was used for further interfering experiments because it had the best silencing efficiency. Peristomial film injection of p-miR-L245 (10 μg) was used for further interfering experiments. The lowest gene expression, determined by RT-PCR assay, in muscle, coelomic fluid, and parapodium occurred 48 h after p-miR-L245 injection, while that of body wall and tube foot was 96 h and 24 h, respectively. Lysozyme activity in muscle and body wall was significantly lower than the controls. The lowest lysozyme activity in muscle, body wall and parapodium, was found at 48, 72, and 48 h, respectively, which was consistent with the transcription expression of lysozyme. The lowest point of lysozyme activity was at 96 h in coelomic fluid and tube foot, which was laid behind lysozyme expression in transcription level. The expression profile of the lysozyme transcription level and lysozyme activity in the body wall and tube foot increased at 12 h after p-miR-L245 injection before the interference effect appeared. NKA gene expression was expressed at a high level in the positive control (PC) and negative control (NC) groups at 12, 24, and 48 h, while NKA was expressed at low levels in the lysozyme RNAi injection group at 12 and 24 h. The level of NKA gene expression recovered to the level of the PC and NC group at 48, 72, and 96 h after the lysozyme RNAi injection. NKCC1 gene expression was high in the PC and NC groups at 96 h, while the NKCC1 was expressed at a low level 96 h after lysozyme RNAi injection. The results suggest that lysozyme decay involves NKA and NKCC1 gene expression under salinity 18 psμ. The K + and Cl - concentration after lysozyme RNAi injection was lower than in the PC and NC group. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis
Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés
2014-01-01
Background Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. Methodology and Findings We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Conclusion and Relevance Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions. PMID:25401332
Gravity-Driven Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.
2014-12-01
This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.
Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.
2008-01-01
A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.
NASA Astrophysics Data System (ADS)
Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri
2016-01-01
Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.
Release of Particulate Iron Sulfide during Shale-Fluid Interaction.
Kreisserman, Yevgeny; Emmanuel, Simon
2018-01-16
During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.
40 CFR 146.12 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water. The casing and cement used in the construction of each newly drilled well shall be designed for... intervals; and (7) Type or grade of cement. (c) All Class I injection wells, except those municipal wells... injection zone, or tubing with an approved fluid seal as an alternative. The tubing, packer, and fluid seal...
An improved apparatus for pressure-injecting fluid into trees
Garold F. Gregory; Thomas W. Jones
1975-01-01
Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.
Monitoring artificially stimulated fluid movement in the Cretaceous Dakota aquifer, western Kansas
NASA Astrophysics Data System (ADS)
Macfarlane, Allen; Förster, Andrea; Merriam, Daniel; Schrötter, Jörg; Healey, John
2002-10-01
Aquifer properties can be evaluated by monitoring artificially stimulated fluid movements between wells, if the fluid is heated. Changes in the temperature profile recorded in observation wells indicate the flow path of the heated fluid, which in effect acts as a tracer. A fluid-flow experiment in the Cretaceous Dakota Formation at the Hodgeman County site, west-central Kansas, demonstrated the advantage of using the distributed optical-fiber temperature sensing method for monitoring transient temperature conditions in this hydrological application. The fluid flow in the aquifer was increased by producing water from a pumping well and injecting heated water in an injection well 13 m (43 ft) distant from the pumping well. The time-temperature series data obtained and compared with results from previous pumping tests point to interwell heterogeneity of the aquifer and to a zone in the sandstone aquifer of high hydraulic conductivity. However, the experiment would have allowed further clarification of aquifer heterogeneity and thermal properties if at least one observation well had been present between the injection and production wells. Résumé. Les caractéristiques d'un aquifère peuvent être évaluées en effectuant un suivi des mouvements du fluide stimulés artificiellement entre des puits, si le fluide est chauffé. Les variations de profils de température enregistrés dans les puits d'observation donnent des informations sur les directions d'écoulement du fluide chauffé, qui en fait se comporte comme un traceur. Réalisée dans la formation crétacée de Dakota, sur le site du Comté de Hodgeman (centre-ouest du Kansas), une expérience a démontré l'intérêt d'utiliser la méthode de détection distribuée de température par fibres optiques pour suivre les variations de température dans cette application hydrologique. L'écoulement du fluide dans l'aquifère a été favorisé en extrayant de l'eau par pompage et en injectant de l'eau chaude dans un puits d'injection distant de 13 m du puits de pompage. La chronique de température obtenue et comparée aux résultats d'essais de pompage précédents fait apparaître l'hétérogénéité de l'aquifère entre les puits et l'existence d'une zone de forte conductivité hydraulique dans l'aquifère de grès. Toutefois, l'expérience aurait fourni des éclaircissements supplémentaires sur l'hétérogénéité de l'aquifère et sur ses propriétés thermiques si au moins un puits d'observation avait été placé entre le puits d'injection et le puits de pompage. Resumen. Se puede evaluar las propiedades de un acuífero mediante la observación del movimiento de un fluido, calentado artificialmente, entre pozos. Los cambios registrados en el perfil de temperatura de los pozos de observación indican la trayectoria del fluido calentado, el cual actúa como un trazador. Un experimento de este tipo que se realizó en la formación cretácica de Dakota, en el condado de Hodgeman (porción occidental del centro de Kansas, Estados Unidos de América), demostró la ventaja de utilizar el método del sensor de temperatura con fibra óptica distribuída para medir condiciones transitorias de temperatura en esta aplicación hidrológica. El flujo del fluido en el acuífero aumentó con el bombeo de un pozo y la inyección de agua caliente en otro sondeo, que distaba 13 m (43 pies) del primero. Las series de temperatura obtenidas y comparadas con resultados de ensayos de bombeo previos resaltan la heterogeneidad del acuífero entre ambos pozos, así como la existencia de una zona de elevada conductividad hidráulica en el acuífero de la arenisca. Sin embargo, el experimento habría proporcionado más información sobre la heterogeneidad de la formación y sus propiedades termales si se hubiera dispuesto al menos de un punto de observación entre los pozos de inyección y bombeo.
NASA Astrophysics Data System (ADS)
Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.
2012-04-01
In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).
Assessing Induced Seismicity Risk at CO 2 Storage Projects: Recent Progress and Remaining Challenges
White, Joshua A.; Foxall, William
2016-04-13
It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to magnitude 5+ events—by altering state-of-stress conditions in the subsurface. This paper reviews recent lessons learned regarding induced seismicity at carbon storage sites. While similar to other subsurface injection practices, CO 2 injection has distinctive features that should be included in a discussion of its seismic hazard. Induced events have been observed at CO 2 injection projects, though to date it has not been a major operational issue. Nevertheless, the hazard exists and experience with this issue will likely grow as new storage operations come online.more » This review paper focuses on specific technical difficulties that can limit the effectiveness of current risk assessment and risk management approaches, and highlights recent research aimed at overcoming them. Finally, these challenges form the heart of the induced seismicity problem, and novel solutions to them will advance our ability to responsibly deploy large-scale CO 2 storage.« less
Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines
NASA Astrophysics Data System (ADS)
Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.
2014-12-01
A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.
NASA Astrophysics Data System (ADS)
Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.
2013-12-01
The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of the ureolytic biofilms and also insured that bacterially-induced mineralization was still occurring after 60 days of operation. Batch rate experiments demonstrated the effective use of alternative sources of substrates for biomineralization, which are economical for use in field-scale remediation. Fertilizer has been shown to be an effective urea source and several economical carbon and nutrient sources such as molasses and whey are being evaluated for stimulating ureolytic microorganisms. This research demonstrates on a bench scale the use of different injection strategies to control precipitation of calcium carbonate, as well as the feasibility of strontium co-precipitation in porous media. The ongoing optimization of strontium co-precipitation will lead to additional work on potential remediation of other heavy metal groundwater contaminants.
NASA Astrophysics Data System (ADS)
Gischig, Valentin S.
2015-09-01
Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.
Schaef, Herbert T.; McGrail, B. Peter
2015-07-28
Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.
Coalescence of Fluid-Driven Fractures
NASA Astrophysics Data System (ADS)
O'Keeffe, Niall; Zheng, Zhong; Huppert, Herbert; Linden, Paul
2017-11-01
We present an experimental study on the coalescence of two in-plane fluid-driven penny-shaped fractures in a brittle elastic medium. Initially, two fluid-driven fractures propagate independently of each other in the same plane. Then when the radial extent of each fracture reaches a certain distance the fractures begin to interact and coalesce. This coalescence forms a bridge between the fractures and then, in an intermediate period following the contact of the two fractures, most growth is observed to focus along this bridge, perpendicular to the line connecting the injection sources. We analyse the growth and shape of this bridge at various stages after coalescence and the transitions between different stages of growth. We also investigate the influence of the injection rate, the distance between two injection points, the viscosity of the fluid and the Young's modulus of the elastic medium on the coalescence of the fractures.
Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.
2018-01-01
Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.
Supercritical fuel injection system
NASA Technical Reports Server (NTRS)
Marek, C. J.; Cooper, L. P. (Inventor)
1980-01-01
a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.
Foreshocks and Swarms of Induced Seismicity in Southern Kansas
NASA Astrophysics Data System (ADS)
Rubinstein, J. L.; Skoumal, R.; Dougherty, S. L.; Cochran, E. S.
2017-12-01
Protracted foreshock sequences and swarm-like behavior have been observed for a number of induced earthquakes, including Guy-Greenbrier, Raton Basin, Youngstown, and the Fairview sequences. Many other induced earthquake sequences have seen intermittent seismicity before the largest earthquake in the sequence. The prevalence of foreshocks and swarms as part of induced earthquake sequences likely reflects the ongoing increase in and expansion of fluid pressure in a region, such that higher magnitude events will occur once a large region has been sufficiently influenced by fluid injection. Diffusion of fluid pressure has been observed in some induced seismicity sequences whereby seismicity moves away from an injector, making the earlier events foreshocks. Natural seismicity in other parts of the central and eastern United States experience far fewer foreshock sequences. This is additional evidence that injection-caused increase in fluid pressure is the reason that these foreshocks and swarms are occurring. To better understand foreshocks and swarm-like behavior of induced seismicity, we examine the seismicity in southern Kansas from 2014-2017. The seismic network in southern Kansas represents the densest, longest-running (>3.5 years) network with publicly available data in near-real-time in an area of induced seismicity. This has yielded a magnitude of completeness of 2.0, which is lower than in most other areas of induced seismicity. We further enhance this catalog by using template matching. With this expanded catalog, we identify and examine foreshock and swarm behavior for all M3.5 and larger mainshocks in Kansas.
NASA Astrophysics Data System (ADS)
Kato, T.; Arafune, T.; Washio, T.; Nakagawa, A.; Ogawa, Y.; Tominaga, T.; Sakuma, I.; Kobayashi, E.
2014-08-01
Recently, fluid jets have become widely used in medical devices and have been created and evaluated in clinical environments. Such devices are classified into two broad groups; those adopting continuous jets and those adopting discrete (or pulsed) jets. We developed a discrete jet device for brain cancer treatment, called a laser-induced liquid jet (LILJ) system. Although several studies have evaluated the availability and described the treatment mechanisms of fluid jet devices, the mechanisms of the fluid and injected material remain under-investigated. In this paper, we report the mechanism of frequent pulsejet injections into a viscoelastic biological material; namely, simulated gelatin brain tissue. The mechanism is evaluated by the injection depth, an easily measured parameter. To explain the injection mechanism, we propose that the pulsejet is pressured by forces introduced by resistance on the side surface of the hole and the reaction force proportionate to the injection depth. The pulsejet generated and propagated cracks in the gelatin, and the resistance eventually fractured the side surface of the hole. We evaluated the proposed model by measuring the behavior of pulsejets injected into gelatin by the LILJ. From the results, the following conclusions were obtained. First, the proposed model accurately describes the behavior of the injected pulsejet. Second, whether the hole or crack growth largely increases the final injection depth can be evaluated from differences in the decay constant. Finally, crack growth increases the final injection depth when the number of the injected pulsejets is greater than the inverse of the decay constant.
van Bree, H; Van Rijssen, B; Tshamala, M; Maenhout, T
1992-09-01
Arthrographic quality and synovial inflammatory response were examined to compare the use of iopromide with that of iotrolan for arthrography of the scapulohumeral joint in 6 dogs. Radiographs obtained 1 and 3 minutes after injection of either nonionic compound were of similar quality, but radiographs obtained 5 minutes after injection of iotrolan were significantly (P less than 0.05) better than those obtained after injection of iopromide. Results of analysis of synovial fluid samples obtained at 1, 3, 7, and 14 days after injection of contrast media were not significantly different between the 2 groups. Histologic examination of synovium and articular cartilage 2 weeks after injection of iopromide or iotrolan revealed minimal inflammatory response for both contrast agents. Injection of iopromide and iotrolan into the scapulohumeral joints of dogs had less effect on synovial fluid than that reported after injection of ionic compounds.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar
2005-06-07
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA
2007-07-24
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
NASA Astrophysics Data System (ADS)
Bachmann, C. E.; Lindsey, N.; Foxall, W.; Robertson, M.
2014-12-01
Earthquakes induced by human activity have become a matter of heightened public concern during recent years. Of particular concern is seismicity associated with wastewater injection, which has included events having magnitudes greater than 5. The causes of the induced events are primarily changes in pore-pressure, fluid volume and perhaps temperature due to injection. Recent research in the US has focused on mid-continental regions having low rates of naturally-occurring seismicity, where induced events can be identified by relatively straightforward spatial and temporal correlation of seismicity with high-volume injection activities. Recent examples include events correlated with injection of wastewater in Oklahoma, Arkansas, Texas and Ohio, and long-term brine injection in the Paradox Valley in Colorado. Even in some of the cases where there appears at first sight to be a clear spatial correlation between seismicity and injection, it has been difficult to establish causality definitively. Here, we discuss methods to identify induced seismicity in active tectonic regions. We concentrate our study on Southern California, where large numbers of wastewater injection wells are located in oil-producing basins that experience moderate to high rates of naturally-occurring seismicity. Using the catalog of high-precision CISN relocations produced by Hauksson et al. (BSSA, 2012), we aim to discriminate induced from natural events based on spatio-temporal patterns of seismicity occurrence characteristics and their relationships to injection activities, known active faults and other faults favorably oriented for slip under the tectonic stress field. Since the vast majority of induced earthquakes are very small, it is crucial to include all events above the detection threshold of the CISN in each area studied. In addition to exploring the correlation of seismicity to injection activities in time and space, we analyze variations in frequency-magnitude distributions, which can be related to differences between the physical conditions at the sources of fluid-induced and natural earthquakes. While induced seismicity often does not show different mechanisms than tectonic earthquakes, an abundance of induced microseismicity causes the slope of the frequency-magnitude distribution to increase locally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm Pitts; Jie Qi; Dan Wilson
2005-04-01
Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less
NASA Astrophysics Data System (ADS)
Li, Minghui; Yin, Guangzhi; Xu, Jiang; Li, Wenpu; Song, Zhenlong; Jiang, Changbao
2016-12-01
Fluid-solid coupling investigations of the geological storage of CO2, efficient unconventional oil and natural gas exploitations are mostly conducted under conventional triaxial stress conditions ( σ 2 = σ 3), ignoring the effects of σ 2 on the geomechanical properties and permeability of rocks (shale, coal and sandstone). A novel multi-functional true triaxial geophysical (TTG) apparatus was designed, fabricated, calibrated and tested to simulate true triaxial stress ( σ 1 > σ 2 > σ 3) conditions and to reveal geomechanical properties and permeability evolutions of rocks. The apparatus was developed with the capacity to carry out geomechanical and fluid flow experiments at high three-dimensional loading forces and injection pressures under true triaxial stress conditions. The control and measurement of the fluid flow with effective sealing of rock specimen corners were achieved using a specially designed internally sealed fluid flow system. To validate that the apparatus works properly and to recognize the effects of each principal stress on rock deformation and permeability, stress-strain and permeability experiments and a hydraulic fracturing simulation experiment on shale specimens were conducted under true triaxial stress conditions using the TTG apparatus. Results show that the apparatus has advantages in recognizing the effects of σ 2 on the geomechanical properties and permeability of rocks. Results also demonstrate the effectiveness and reliability of the novel TTG apparatus. The apparatus provides a new method of studying the geomechanical properties and permeability evolutions of rocks under true triaxial stress conditions, promoting further investigations of the geological storage of CO2, efficient unconventional oil and gas exploitations.
Analysis of pulsed injection for microgravity receiver tank chilldown
NASA Astrophysics Data System (ADS)
Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.
The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.
Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime
NASA Astrophysics Data System (ADS)
Sarvaramini, E.; Garagash, D.
2011-12-01
The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.
Portable Intravenous Fluid Production Device for Ground Use
NASA Technical Reports Server (NTRS)
Scarpa, Philip J.; Scheuer, Wolfgang K.
2012-01-01
There are several medical conditions that require intravenous (IV) fluids. Limitations of mass, volume, storage space, shelf-life, transportation, and local resources can restrict the availability of such important fluids. These limitations are expected in long-duration space exploration missions and in remote or austere environments on Earth. Current IV fluid production requires large factory-based processes. Easy, portable, on-site production of IV fluids can eliminate these limitations. Based on experience gained in developing a device for spaceflight, a ground-use device was developed. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endotoxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (.25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters.
Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing
NASA Astrophysics Data System (ADS)
Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben
2017-11-01
Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.
Effects of hydraulic frac fluids and formation waters on groundwater microbial communities
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2015-04-01
Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperatures, with high pressure, etc.) were conducted using groundwater samples from three different locations. Series of microcosms (3 of each kind) containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides, frac fluids or flowback. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride could be used as substrates, while the effects of others like triethanolamine or light oil distillate hydrogenated depended on the groundwater and could either prevent or have no effect on microbial growth. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.
Effects of hydraulic frac fluids and formation waters on groundwater microbial communities
NASA Astrophysics Data System (ADS)
Krueger, Martin; Jimenez, Nuria
2017-04-01
Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in groundwaters. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.
Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.
Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D
2017-12-01
Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.
Gottås, A; Øiestad, E L; Boix, F; Vindenes, V; Ripel, Å; Thaulow, C H; Mørland, J
2013-01-01
BACKGROUND AND PURPOSE Heroin, with low affinity for μ-opioid receptors, has been considered to act as a prodrug. In order to study the pharmacokinetics of heroin and its active metabolites after i.v. administration, we gave a bolus injection of heroin to rats and measured the concentration of heroin and its metabolites in blood and brain extracellular fluid (ECF). EXPERIMENTAL APPROACH After an i.v. bolus injection of heroin to freely moving Sprague–Dawley rats, the concentrations of heroin and metabolites in blood samples from the vena jugularis and in microdialysis samples from striatal brain ECF were measured by ultraperformance LC-MS/MS. KEY RESULTS Heroin levels decreased very fast, both in blood and brain ECF, and could not be detected after 18 and 10 min respectively. 6-Monoacetylmorphine (6-MAM) increased very rapidly, reaching its maximal concentrations after 2.0 and 4.3 min, respectively, and falling thereafter. Morphine increased very slowly, reaching its maximal levels, which were six times lower than the highest 6-MAM concentrations, after 12.6 and 21.3 min, with a very slow decline during the rest of the experiment and only surpassing 6-MAM levels at least 30 min after injection. CONCLUSIONS AND IMPLICATIONS After an i.v. heroin injection, 6-MAM was the predominant opioid present shortly after injection and during the first 30 min, not only in the blood but also in rat brain ECF. 6-MAM might therefore mediate most of the effects observed shortly after heroin intake, and this finding questions the general assumption that morphine is the main and most important metabolite of heroin. PMID:23865556
Analytical liquid test sample filtration apparatus
Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.
1996-01-09
A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.
Analytical liquid test sample filtration apparatus
Lohnes, Brent C.; Turner, Terry D.; Klingler, Kerry M.; Clark, Michael L.
1996-01-01
A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.
Bioremediation of contaminated groundwater
Hazen, Terry C.; Fliermans, Carl B.
1995-01-01
An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.
Bioremediation of contaminated groundwater
Hazen, T.C.; Fliermans, C.B.
1995-01-24
An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.
Microseismic monitoring: a tool for reservoir characterization.
NASA Astrophysics Data System (ADS)
Shapiro, S. A.
2011-12-01
Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.
NASA Astrophysics Data System (ADS)
Hyman, David; Bursik, Marcus
2018-03-01
The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.
Freifeild, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-01-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
Freifeild, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-01-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
NASA Astrophysics Data System (ADS)
Freifeld, Barry M.; Trautz, Robert C.; Kharaka, Yousif K.; Phelps, Tommy J.; Myer, Larry R.; Hovorka, Susan D.; Collins, Daniel J.
2005-10-01
A novel system has been deployed to obtain geochemical samples of water and gas, at in situ pressure, during a geologic CO2 sequestration experiment conducted in the Frio brine aquifer in Liberty County, Texas. Project goals required high-frequency recovery of representative and uncontaminated aliquots of a rapidly changing two-phase fluid (supercritical CO2 and brine) fluid from 1.5 km depth. The data sets collected, using both the liquid and gas portions of the downhole samples, provide insights into the coupled hydrogeochemical issues affecting CO2 sequestration in brine-filled formations. While the basic premise underlying the U-tube sampler is not new, the system is unique because careful consideration was given to the processing of the recovered two-phase fluids. In particular, strain gauges mounted beneath the high-pressure surface sample cylinders measured the ratio of recovered brine to supercritical CO2. A quadrupole mass spectrometer provided real-time gas analysis for perfluorocarbon and noble gas tracers that were injected along with the CO2. The U-tube successfully acquired frequent samples, facilitating accurate delineation of the arrival of the CO2 plume, and on-site analysis revealed rapid changes in geochemical conditions.
Yilmaz, Mehmet Halit; Kantarci, Fatih; Adaletli, Ibrahim; Ulus, Sila; Gulsen, Fatih; Ozer, Harun; Aktas, Ilknur; Akgun, Kenan; Kanberoglu, Kaya
2007-04-01
Adhesive capsulitis of the shoulder is a condition of unknown aetiology that results in the development of restricted active and passive glenohumeral motion. It has been reported that magnetic resonance (MR) imaging is useful in diagnosing adhesive capsulitis. We carried out this study to assess how pain and/or resistance during contrast material injection affects the diagnosis of adhesive capsulitis on magnetic resonance (MR) arthrography. The study included MR arthrography examinations of 21 patients with a diagnosis of adhesive capsulitis. The control group consisted of 20 patients who presented clinically with rotator cuff tear. The pain (visual analog scale, VAS), resistance to injection and the amount of contrast material that could be injected during injection phase of MR arthrography was assessed and compared between groups. The patients in adhesive capsulitis group (mean VAS score 66.5+/-25.5) experienced more pain when compared with the control group (mean VAS score 34.9+/-27.7, P<0.001). A statistically significant difference (P<0.001) in terms of the amount of the injected fluid (4.3+/-2.6 ml for adhesive capsulitis group, and 10.9+/-4.1 ml for control group) was seen into the joint cavity. Resistance to injection was significantly more (P<0.001) in patients with adhesive capsulitis when compared to control group. Experience of pain during injection, a decreased amount of contrast material injected and resistance to injection in patients during injection phase of MR arthrography may suggest adhesive capsulitis.
On the inclusion of mass source terms in a single-relaxation-time lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel
2018-05-01
We present a lattice Boltzmann algorithm for incorporating a mass source in a fluid flow system. The proposed mass source/sink term, included in the lattice Boltzmann equation, maintains the Galilean invariance and the accuracy of the overall method, while introducing a mass source/sink term in the fluid dynamical equations. The method can, for instance, be used to inject or withdraw fluid from any preferred lattice node in a system. This suggests that injection and withdrawal of fluid does not have to be introduced through cumbersome, and sometimes less accurate, boundary conditions. The method also suggests that, through a chosen equation of state relating mass density to pressure, the proposed mass source term will render it possible to set a preferred pressure at any lattice node in a system. We demonstrate how this model handles injection and withdrawal of a fluid. And we show how it can be used to incorporate pressure boundaries. The accuracy of the algorithm is identified through a Chapman-Enskog expansion of the model and supported by the numerical simulations.
Luukkainen, R; Hakala, M; Sajanti, E; Huhtala, H; Yli-Kerttula, U; Hämeenkorpi, R
1992-01-01
The predictive relevance of synovial fluid analysis and some other variables for the efficacy of intra-articular corticosteroid injections in 30 patients with rheumatoid arthritis and hydropsy in a knee joint was evaluated in a prospective study. At the onset of the study, the knee joints were aspirated and 30 mg triamcinolone hexacetonide injected intra-articularly. The circumferences and the tenderness scores of the knee joints were measured at onset, after two months, and at the end of the six months' follow up. Of the variables studied, synovial fluid C4, percentage of synovial fluid polymorphonuclear leucocytes, blood haemoglobin, and serum C3 correlated significantly with the decrease in knee joint circumference after two months, whereas only the percentage of synovial fluid polymorphonuclear leucocytes correlated significantly after six months. Between the patients with and without improvement in the tenderness scores of the knee joints, only serum IgM differed at the examination after two months; this was higher in patients whose scores showed no improvement. PMID:1632661
Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L
2011-04-01
The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.
NASA Astrophysics Data System (ADS)
Inauen, C.; Green, A.; Rabenstein, L.; Greenhalgh, S.; Kinzelbach, W.; Doetsch, J.; Hertrich, M.; Smoorenburg, M.; Volze, N.
2012-04-01
Understanding the relationships between precipitation volumes, surface runoff and subsurface storage, drainage and flow processes on mountain slopes is critical for flood management in alpine regions. In the Schächen catchment (central Switzerland) an unexpectedly delayed and heavy flood reaction to a long duration rainfall event was observed in 2005. It is believed that the steep creeping landmass slopes with thick soils were responsible for the delay. To better comprehend and visualise water infiltration and runoff formation we conducted a 3D time-lapse ERT experiment during a water sprinkling and injection experiment on the side of a hill in the Schächental region presumed representative of soil and other conditions associated with the delayed flood. Constant sprinkling at a rate of about 10mm/h was applied to a plot of area 30m x 5m. The electrical conductivity of the sprinkled water was approximately that of the pore water (25mS/m). A total of 33 consecutive ERT data sets, each comprising 3521 measured electrode configurations, were recorded with a 96-electrode array over an area of 27.5m x 14m, which included two thirds of the sprinkled area. Each electrode configuration was measured at a repeat interval of 2 to 2.8 hours. The entire 3D ERT monitoring experiment was divided into two separate time intervals: (1) the initial 25 hour period involving only freshwater sprinkling, until steady state was reached, (2) the following 35 hour period during which, in addition to the sprinkling, salt water was injected in two boreholes at a depth of 1m (unsaturated zone). The salt water injections were separated by 17 hours, and monitored until 14 hours after sprinkling stopped. During the first interval all changes in the subsurface resistivity are caused by changes in the water saturation and the temperature of the fluid, whereas in the second interval they are mainly due to changes in salt concentration of the pore fluid. Supplementary measurements of water table elevation and fluid electric conductivity were made in several boreholes. To image the subsurface resistivity changes, we inverted the ratios of time-lapse resistances to their background (pre-sprinkling) values. The sprinkling during time interval 1 allowed us to examine near-surface infiltration. Even from the first time window, the emergence of a shallow wetting front could be observed in the inverted depth sections as a decrease in bulk resistivity. Both salt water plumes during interval 2 were found to move laterally as well as vertically through the soil into a zone of fissured Flysch. Below the water table, the plume could be tracked further as a weaker ERT signal, which shows a flow component parallel to the water table in the downslope direction where it eventually breaks the surface. 3D ERT monitoring has proven to be a powerful tool to monitor water sprinkling and injection experiments. Due to its advantageous ability to resolve changes, both in time and in space, it captured most of the soil moisture and flow dynamics. Processes, such as infiltration and drainage, which are important for the understanding of runoff formation, could be readily visualized.
Hydrologic Responses to CO2 Injection in Basalts Based on Flow-through Experiments
NASA Astrophysics Data System (ADS)
Thomas, D.; Hingerl, F.; Garing, C.; Bird, D. K.; Benson, S. M.; Maher, K.
2015-12-01
Experimental studies of basalt-CO2 interactions have increased our ability to predict geochemical responses within a mafic reservoir during geologic CO2 sequestration. However, the lack of flow-through experiments prevents the use of coupled hydrologic-geochemical models to predict evolution of permeability and porosity, critical parameters for assessing storage feasibility. We present here results of three flow-through experiments on an intact basalt core during which we employed X-ray Computed Tomography (CT) to quantify porosity evolution and fluid flow. Using a single core of glassy basaltic tuff from the Snake River Plain (Menan Buttes complex), we performed tracer tests using a solution of NaI (~100,000 ppm) before and after injection of CO2-saturated water at reservoir conditions (90 bar, 50°C) to image porosity and flow path distribution. During the tracer tests, CT scans were taken at 2.5-minute intervals, and outlet fluid was discretely sampled at the same intervals and subsequently measured via ICP-MS, enabling interpretation of the tracer breakthrough curve through both imaging and geochemical analyses. Comparison of the porosity distribution from before and after injection of CO2 shows an overall decrease in core-averaged porosity from 34% to 31.1%. Permeability decreased exponentially from ~4.9x10-12 m2 to 1.18 x10-12 m2. The decrease in porosity and permeability suggests geochemical transformations in the mineral assemblage of the core, which we observe through petrographic analysis of an unaltered sample of the same lithology in contrast with the altered core. There is a significant increase in grain coatings, as well as reduction in the grain size, suggesting dissolution re-precipitation mechanisms. Finally, to develop a framework for the coupled geochemical and hydrologic responses observed experimentally, we have calibrated a reactive transport model at the core scale using the TOUGHREACT simulator [1]. [1] Xu et al. (2011) Comput. Geosci.
NASA Astrophysics Data System (ADS)
Levandowski, W. B.; Walsh, F. R. R.; Yeck, W.
2016-12-01
Quantifying the increase in pore-fluid pressure necessary to cause slip on specific fault planes can provide actionable information for stakeholders to potentially mitigate hazard. Although the M5.8 Pawnee earthquake occurred on a previously unmapped fault, we can retrospectively estimate the pore-pressure perturbation responsible for this event. We first estimate the normalized local stress tensor by inverting focal mechanisms surrounding the Pawnee Fault. Faults are generally well oriented for slip, with instabilities averaging 96% of maximum. Next, with an estimate of the weight of local overburden we solve for the pore pressure needed at the hypocenters. Specific to the Pawnee fault, we find that hypocentral pressure 43-104% of hydrostatic (accounting for uncertainties in all relevant parameters) would have been sufficient to cause slip. The dominant source of uncertainty is the pressure on the fault prior to fluid injection. Importantly, we find that lower pre-injection pressure requires lower resultant pressure to cause slip, decreasing from a regional average of 30% above hydrostatic pressure if the hypocenters begin at hydrostatic pressure to 6% above hydrostatic pressure with no pre-injection fluid. This finding suggests that underpressured regions such as northern Oklahoma are predisposed to injection-induced earthquakes. Although retrospective and forensic, similar analyses of other potentially induced events and comparisons to natural earthquakes will provide insight into the relative importance of fault orientation, the magnitude of the local stress field, and fluid-pressure migration in intraplate seismicity.
Guillaumin, Julien; Olp, Nichole M; Magnusson, Karissa D; Butler, Amy L; Daniels, Joshua B
2017-09-01
To assess the rate of bacterial contamination of fluid and ports in intravenous bags in a veterinary emergency room (ER) and intensive care unit (ICU). Experimental model. Ninety intravenous fluid bags of lactated balanced-electrolytes solution (1 L) hung in a university hospital. Bags were hung in 2 different locations in the ER (sink and bins) and one location in the ICU (sink) for 11 days. Bags were punctured 3 times daily with a sterile needle to simulate clinical use. Injection ports were swabbed and 50 mL of fluid were collected in duplicates on days 0, 2, 4, 7, and 10. Aerobic bacterial cultures were performed on the fluid and injection port. Contamination was defined as bacterial growth of a similar phenotype across 2 consecutive times. Increase in the fluid contamination rate from day 0 was tested using an exact binomial test. Port contamination rate between locations was tested using Fisher's exact test. Combined bacterial growth on injection ports reached a mean (95% confidence interval) of 8.1 (0.005-16.2) cfu/port on day 10. The combined port contamination was 3.3%, 11.1%, 17.8%, and 31.1% on days 0, 2, 4, and 7, respectively. Port contamination was similar between ER and ICU. However, port contamination was higher in the sink versus the bins area (38.3% vs 16.7%, P = 0.032). No fluid bag was contaminated at days 0 and 2. The contamination rate of fluid bag was 1.1% and 4.4% on days 4 and 7, respectively. All bags with contaminated fluid were in the ER (6.7%, 95% exact binomial confidence interval 1.9-16.2%). Injection port contamination reached 31.1% on day 7. Contamination was more likely when the bags were hung next to a sink. In our model of bag puncture, fluid contamination occurred between days 2 and 4. © Veterinary Emergency and Critical Care Society 2017.
NASA Astrophysics Data System (ADS)
Mier-Torrecilla, Monica; Geyer, Adelina; Phillips, Jeremy C.; Idelsohn, Sergio R.; Oñate, Eugenio
2010-05-01
In this work we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method (PFEM), a newly developed tool that combines the flexibility of particle-based methods with the accuracy of the finite element discretization. In order to test the applicability of PFEM to the study of negatively buoyant jets, we have compared the two-dimensional numerical results with experiments investigating the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter were varied to cover a wide range of Reynolds Re and Froude numbers Fr, such that 0.1 < Fr < 30, reproducing both weak and strong fountains in a laminar regime (8 < Re < 1350). Numerical results, together with the experimental observations, allow us to describe three different fountain behaviors that have not been previously reported. Based on the Re and Fr values for the numerical and experimental simulations, we have built a regime map to define how these values may control the occurrence of each of the observed flow types. Whereas the Fr number itself provides a prediction of the maximum penetration height of the jet, its combination with the Re number provides a prediction of the flow behavior for a specific nozzle diameter and injection velocity. Conclusive remarks concerning the dynamics of negatively buoyant jets may be applied later on to several geological situations, e.g. the flow structure of a fully submerged subaqueous eruptive vent discharging magma or the replenishment of magma chambers in the Earth's crust.
Schölvinck, D W; Alvarez Herrero, L; Goto, O; Meijer, S L; Neuhaus, H; Schumacher, B; Bergman, J J G H M; Weusten, B L A M
2015-09-01
Endoscopic submucosal dissection (ESD) is technically demanding. A viscous gel for submucosal lifting might induce mechanical submucosal dissection facilitating easier and safer ESD. In 12 female pigs (median 64 kg), ESDs of simulated lesions were performed at the posterior wall and greater curvature in the gastric body (one ESD per location) with randomly assigned injection fluids: gel or control fluid (0.9% saline with hydroxypropyl methylcellulose 3 mg/ml [7:1] and indigo carmine droplets). Additionally, 10 cc gel was injected into the submucosa at the anterior wall without ESD to assess effects of inappropriate injection. Pigs were euthanized at day 0, 3 or 28. In four additional pigs (euthanized day 3 or 28) 10 cc gel was injected into the muscularis propria (MP) after four endoscopic mucosal resections in the gastric body. Both fluid groups showed equal ESD-procedure times (28 [gel] vs. 26 min [control]) and complications. Gel-ESDs required less accessory interchanges (3.5 vs. 5.5; p = 0.01). Mechanical dissection after circumferential incision was achieved in 25% of gel-ESDs; none in control-ESDs. The severity of inflammation and fibrosis was equal in both fluid groups. Normal architecture and vital mucosa were found after inappropriate submucosal injection. MP-injections resulted in one transmural hematoma (day 3), and intramuscular encapsulation in 25% of the sites (day 28). A pig's stomach differs from the human stomach. The mechanical dissection properties of the gel may reduce the need for submucosal dissection during ESD. The gel is safe when advertently injected in the submucosa and MP. The porcine model appeared suboptimal to evaluate the true mechanical dissection properties of the gel.
Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin
2016-02-01
The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.
2013-04-01
In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.
Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.
NASA Astrophysics Data System (ADS)
Deng, F.; Dixon, T. H.
2017-12-01
The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WONG, TENG-FONG; Lindquist, Brent
In the context of CO{sub 2} sequestration, the overall objective of this project is to conduct a systematic investigation of how the flow of the acidic, CO{sub 2} saturated, single phase component of the injected/sequestered fluid changes the microstructure, permeability and strength of sedimentary rocks, specifically limestone and sandstone samples. Hydromechanical experiments, microstructural observations and theoretical modeling on multiple scales were conducted.
NASA Astrophysics Data System (ADS)
Rudolf, Pavel; Litera, Jiří; Alejandro Ibarra Bolanos, Germán; Štefan, David
2018-06-01
Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga's idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2015-03-15
The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less
Infusion pressure and pain during microneedle injection into skin of human subjects.
Gupta, Jyoti; Park, Sohyun S; Bondy, Brian; Felner, Eric I; Prausnitz, Mark R
2011-10-01
Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures caused more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reduction of turbomachinery noise
NASA Technical Reports Server (NTRS)
Waitz, Ian A. (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor)
1999-01-01
In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.
Real-time monitoring of moisture levels in wound dressings in vitro: an experimental study.
McColl, David; Cartlidge, Brian; Connolly, Patricia
2007-10-01
Retaining an appropriate level of moisture at the interface between a healing wound and an applied dressing is considered to be critical for effective wound healing. Failure to control exudate at this interface can result in maceration or drying out of the wound surface. The ability to control moisture balance at the wound interface is therefore a key aspect of wound dressing performance. To date it has not been possible to monitor in any effective manner the distribution of moisture within dressings or how this varies with time. A new measurement system is presented based on sensors placed at the wound/dressing interface which are capable of monitoring moisture levels in real time. The system comprises a model wound bed and sensor array complete with fluid injection path to mimic exudate flow. Eight monitoring points, situated beneath the test dressing, allow the moisture profile across the complete dressing to be measured both during and after fluid injection. The system has been used to evaluate the performance of four foam dressings, a composite hydrofibre dressing and a film dressing. Stark contrasts in the performance of the wound contact layer were found between the different wound dressing types. The composite hydrofibre dressing retained moisture at the wound interface throughout the experiments while areas of the foam dressing quickly became dry, even during constant injection of fluid. The abundance of sensors allowed a moisture map of the surface of the wound dressing to be constructed, illustrating that the moisture profile was not uniform across several of the dressings tested during absorption and evaporation of liquid. These results raise questions as to how the dressings behave on a wound in vivo and indicate the need for a similar clinical monitoring system for tracking wound moisture levels.
Hsu, Bertrand D.; Leonard, Gary L.
1988-01-01
A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.
NASA Astrophysics Data System (ADS)
Sivaiah, R.; Hemadri Reddy, R.
2017-11-01
In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.
Fluid flow characteristics during polymer flooding
NASA Astrophysics Data System (ADS)
Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.
2018-05-01
At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.
An injection and mixing element for delivery and monitoring of inhaled nitric oxide.
Martin, Andrew R; Jackson, Chris; Fromont, Samuel; Pont, Chloe; Katz, Ira M; Caillobotte, Georges
2016-08-30
Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices.
Importance of synovial fluid aspiration when injecting intra-articular corticosteroids
Weitoft, T.; Uddenfeldt, P.
2000-01-01
OBJECTIVE—The aim of this prospective study was to find if a complete synovial fluid aspiration before injecting intra-articular corticosteroids influences the treatment result. METHODS—The study was performed in 147 patients with rheumatoid arthritis (RA). One hundred and ninety one knees with synovitis were randomised to arthrocentesis (n=95) or no arthrocentesis (n=96) before 20 mg triamcinolone hexacetonide was injected. The duration of effect was followed up for a period of six months. All patients were instructed to contact the rheumatology department if signs and symptoms from the treated knee recurred. If arthritis could be confirmed by a clinical examination a relapse was noted. RESULTS—There was a significant reduction of relapse in the arthrocentesis group (p=0.001). CONCLUSION—The study shows that aspiration of synovial fluid can reduce the risk for arthritis relapse when treating RA patients with intra-articular corticosteroids. It is concluded that arthrocentesis shall be included in the intra-articular corticosteroid injection procedure. PMID:10700435
Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien
2017-10-01
Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.
40 CFR 146.92 - Injection well plugging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir...
Initial instability of round liquid jet at subcritical and supercritical environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2016-07-15
In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N{sub 2}) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature ofmore » the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N{sub 2} environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N{sub 2} and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N{sub 2} as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.« less
Can we get a better knowledge on dissolution processes in chalk by using microfluidic chips?
NASA Astrophysics Data System (ADS)
Neuville, Amélie; Minde, Mona; Renaud, Louis; Vinningland, Jan Ludvig; Dysthe, Dag Kristian; Hiorth, Aksel
2017-04-01
This work has been initiated in the context of research on improving the oil recovery in chalk bedrocks. One of the methods to improve the oil recovery is to inject "smart water" (acidic water/brines). Experiments on core scale and field tests that have been carried out the last decade have clearly shown that water chemistry affects the final oil recovery. However, there is generally no consensus in the scientific community of why additional oil is released, and it is also still not understood what are the mineralogical and structural changes. Direct in situ observation of the structural changes that occur when chalk is flooded with brines could resolve many of the open questions that remain. One of the highlights of this work is thus the development of an innovative methodology where fluid/rock interactions are observed in-situ by microscopy. To do so, we create several types of custom-made microfluidic systems that embeds reactive materials like chalk and calcite. The methodology we develop can be applied to other reactive materials. We will present an experiment where a calcite window dissolves with a fluid, where we observe in-situ the topography features of the calcite window, as well as the dissolution rate [1]. The injected fluid circulates at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the reactive window and a non-reactive support. While the calcite window reacts, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 μm and a vertical resolution of 50 nm. These experiments are also compared with reactive flow simulations done with Lattice Boltzmann methods. Then, we will present a dissolution experiment done with a microfluidic system that embeds chalk. In this experiment, the main flow takes place at the chalk surface, in contact with fluid flowing in a channel above the chalk sample. Thus the reaction mostly occurs at the surface of the sample. The reacting chalk surface is observed in situ by stereomicroscopy and by interferometry. The dissolution velocities are highly heterogeneous. To identify the mineral change of the surface, a posteriori measurements using field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDS). [1] Neuville et al, 2016, Xurography for microfluidics on a reactive solid, Lab on Chip, DOI: 10.1039/c6lc01253a
Microembolism and catheter ablation II: effects of cerebral microemboli injection in a canine model.
Haines, David E; Stewart, Mark T; Barka, Noah D; Kirchhof, Nicole; Lentz, Linnea R; Reinking, Nicki M; Urban, Jon F; Halimi, Franck; Deneke, Thomas; Kanal, Emanuel
2013-02-01
Asymptomatic cerebral lesions have been observed on diffusion weighted MRI (DWI) scans shortly after catheter ablation of atrial fibrillation, but the pathogenesis of these lesions is incompletely understood. Twelve dogs underwent selective catheterization of the internal carotid or vertebral arteries. Either a microbubbled mixture of air (1.0-4.0 mL), blood, contrast, and saline (n=5), or heat-dried pulverized blood (particle size <600 μm) mixed with saline and contrast (n=6) was injected. One sham control experiment was performed. MRI scans were performed preinjection, and at 1, 2, and 4 days postinjection. Neurological tests were performed daily. Gross pathology and histopathology were performed on the brains after being euthanized on day 4. Three animals died <24 hours after injection. Hyperintense lesions were observed on DWI (median maximum diameter 3.1 mm) in 2 of 4 animals after air embolism and in 3 of 5 animals after particulate embolism. No DWI lesions were detected in the remaining 5 animals (including the sham control). Lesions seen on DWI and confirmed on the fluid attenuating inversion recovery sequence correlated well with anatomic lesions on histopathology. Cerebral embolization of air microbubbles or microparticulate debris that approximate the embolic sources from catheter ablation can create hyperintense DWI punctate lesions in a canine model. The location and size of the DWI/fluid attenuating inversion recovery lesions correlate with pathological findings.
Bohic, S; Weiss, P; Roger, P; Daculsi, G
2001-03-01
Hydroxypropylmethylcellulose (HPMC) is used as a ligand for a bioactive calcium phosphate ceramic (the filler) in a ready-to-use injectable sterilized biomaterial for bone and dental surgery. Light scattering experiments were usually used to study high water-soluble polymers and to determine the basic macromolecular parameters. In order to gain a deeper understanding of polymer/mineral interactions in this type of material, we have investigated the effect of divalent and trivalent ions (Ca(2+), PO(4)(3-)) and steam sterilization on dilute solutions of HPMC and hydroxyethylcellulose (HEC). The sterilization process may cause some degradation of HEC taking into account its high molecular weight and some rigidity of the polymer chain. Moreover, in the case of HPMC, the changes in the conformations rather than degradation process are supposed. These effects of degradation and flocculation are strengthened in alkaline medium. Experimental data suggested the formation of chelate complexes between Ca(2+) and HPMC which improve its affinity to the mineral blend and consolidate the injectable biomaterial even in the case of its hydration by biological fluid. Copyright 2001 Kluwer Academic Publishers
The effects of solidification on sill propagation dynamics and morphology
NASA Astrophysics Data System (ADS)
Chanceaux, L.; Menand, T.
2016-05-01
Sills are an integral part of the formation and development of larger plutons and magma reservoirs. Thus sills are essential for both the transport and the storage of magma in the Earth's crust. However, although cooling and solidification are central to magmatism, their effects on sills have been so far poorly studied. Here, the effects of solidification on sill propagation dynamics and morphology are studied by means of analogue laboratory experiments. Hot fluid vegetable oil (magma analogue), that solidifies during its propagation, is injected as a sill in a colder layered gelatine solid (elastic host rock analogue). The injection flux and temperature are maintained constant during an experiment and systematically varied between each experiment, in order to vary and quantify the amount of solidification between each experiments. The oil is injected directly at the interface between the two gelatine layers. When solidification effects are small (high injection temperatures and fluxes), the propagation is continuous and the sill has a regular and smooth surface. Inversely, when solidification effects are important (low injection temperatures and fluxes), sill propagation is discontinuous and occurs by steps of surface-area creation interspersed with periods of momentary arrest. The morphology of these sills displays folds, ropy structures on their surface, and lobes with imprints of the leading fronts that correspond to each step of area creation. These experiments show that for a given, constant injected volume, as solidification effects increase, the area of the sills decreases, their thickness increases, and the number of propagation steps increases. These results have various geological and geophysical implications. The morphology of sills, such as lobate structures (interpretation of 3D seismic studies in sedimentary basin) and ropy flow structures (field observations) can be related to solidification during emplacement. Moreover, a non-continuous morphology as observed in the field does not necessarily involve multiple injections, but could instead reflect a continuous, yet complex morphology induced by solidification effects during emplacement. Also, a discontinuous sill propagation induced by solidification effects should be associated with bursts of seismic activity. Finally, our study shows that once a sill has initiated, the dimensionless flux influences the sill thermal state, and in turn its propagation, and final extent and thickness. In restricting the lateral extent of sills, magma cooling and solidification are likely to impact directly the size of plutons constructed by amalgamated sills.
The Effect of fluid buoyancy and fracture orientation on CaCO3 Formation in a Fracture
NASA Astrophysics Data System (ADS)
Xu, Z.; Li, Q.; Sheets, J.; Kneafsey, T. J.; Jun, Y. S.; Cole, D. R.; Pyrak-Nolte, L. J.
2016-12-01
Sealing fractures through mineral precipitation is a potential way for improving caprock integrity in subsurface reservoirs. We investigated the effect of buoyancy and fracture orientation on the amount and spatial distribution of calcium carbonate (CaCO3) precipitates in a fracture. To monitor mineral precipitation during reactive flow, transparent acrylic casts of an induced fracture in Austin chalk were used. To trigger CaCO3 precipitates, 1M CaCl2 with either 0.6M NaHCO3 solution (for surface adhering precipitation), or 0.3M Na2CO3 solution (for pore filling precipitation) were injected simultaneously into a saturated fracture. Experiments were performed with the fracture plane oriented either parallel or perpendicular to gravity. Acoustic wave transmission (compressional wave, 1 MHz) and optical imaging were used to monitor the sample prior to, during and after fluid injection. Complementary X-ray computed tomography was performed throughout the experiments on vertical fractures and post injection for the horizontal fractures. For the vertical fractures, the denser CaCl2 almost completely displaced the carbonate solution in the fracture and caused strong localization of the precipitates. The width of the precipitated region grew slowly over time. The horizontal fracture caused the less dense carbonate to flow over the CaCl2 solution thus resulting in more mixing and a more even distribution of precipitates throughout the fracture. The acoustic signatures depended on the type of precipitation that occurred. For pore filling experiments, the compressional wave amplitude increased by 5-20% and the velocity increased for both the vertical and horizontal fractures. However, the acoustic responses differed between the vertical and horizontal fractures for surface adhering experiments. Based on the acoustic response, surface adhering precipitation increased fracture specific stiffness more in the horizontal fracture than in the vertical fracture. The horizontal fracture enabled more mixing of the two solutions within the fracture than the vertical fracture. This work was supported by the Center for Nanoscale Controls on Geologic CO (NCGC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-AC02-05CH11231
NASA Astrophysics Data System (ADS)
Van Damme, H.
2014-12-01
We report the results of simple laboratory experiments aimed at mimicking the generation, migration, and expulsion process of oil or gas from soft clayey sediments, triggered by thermal decomposition of organic matter. In previously published work, we showed that the injection of fluids into a soft sediment layer confined within a quasi-2D Hele-Shaw cell led to the transition from a viscous fingering invasion regime to a viscoelastic fracturing regime. The transition is controlled by the ratio of the characteristic times for the invasion process and for the structural relaxation in the sediment, respectively (Deborah number). Here we show that expulsion is a discontinuous quasi-periodic process, driven by the elastic energy stored in the embedding layers. We report also about two sets of experiments aimed at understanding the conditions in which fluid generation from multiple sources can generate a highly connected network of fractures for expulsion. In a first set of experiments, a Hele-Shaw cell with multiple injection points and multiple outlets was used. It is shown that, due to attractive elastic interactions between cracks, a network spontaneously forms as soon as invasion proceeds in the viscoelastic regime. On the contrary, no network of migration paths is forming in the viscous fingering regime, due to the effective repulsion of the fluid channels. In the second set of analog experiments, we used a thermostated mini-Hele-Shaw cell, the gap of which was filled with a strong clay mud in which microcrystals of reactive organic matter (azoisobutyronitrile, AIBN) are dispersed, or with a mud prepared with clay particles on which the organic matter was pre-impregnated. AIBN decomposes around 70°C, releasing nitrogen gas. It was again observed that, depending on the viscoelastic properties of the clay matrix, gas evolution occurs either by formation and coalescence of bubbles, or by formation of a percolating network of fractures. The length of the fracture network is initially linearly related to the Total (reactive) Organic Matter content. The expulsion process is remarkably effective in the fracturing regime (close to 100 percent), even at vey low TOC (below 0.5 percent). The relevance of these experiments for oil and gas migration in natural conditions will be discussed.
NASA Astrophysics Data System (ADS)
Galeczka, Iwona; Wolff-Boenisch, Domenik; Oelkers, Eric H.; Gislason, Sigurdur R.
2014-05-01
A novel high pressure column flow reactor (HPCFR) was used to investigate the evolution of fluid chemistry along a 2.3 meter flow path during 37-104 days of pure water- and CO2-charged water- (0.3 M CO2(aq)) basaltic glass interaction experiments at 22 and 50 ° C. The scale of the HPCFR, the ability to sample a reactive fluid at discrete spatial intervals under pressure and the possibility to measure the dissolved inorganic carbon and pH in situ all render the HPCFR unique in comparison with other reactors constructed for studies of CO2-charged water-rock interaction. During the pure water-basaltic glass interaction experiment, the pH of the injected water evolved rapidly from 6.7 to 9-9.5 and most of the dissolved iron was consumed by secondary mineral formation, similar to natural basaltic groundwater systems. In contrast to natural systems, however, the dissolved aluminium concentration remained relatively high along the entire flow path. The reactive fluid was undersaturated with respect to basaltic glass and carbonate minerals, but supersaturated with respect to zeolites, clays, and Fe hydroxides. Basaltic glass dissolution in the CO2-charged water was closer to stoichiometry than in pure water. The mobility of metals increased significantly in the reactive fluid and the concentration of some metals, including Mn, Fe, Cr, Al, and As exceeded the WHO (World Health Organisation) allowable drinking water limits. Iron was mobile and the aqueous Fe2+/Fe3+ ratio increased along the flow path. Basaltic glass dissolution in the CO2-charged water did not overcome the pH buffer capacity of the fluid. The pH rose only from an initial pH of 3.4 to 4.5 along the first 18.5 cm of the column, then remained constant during the remaining 2.1 meters of the flow path. Increasing the temperature of the CO2-charged fluid from 22 to 50 ° C increased the relative amount of dissolved divalent iron along the flow path. After a significant initial increase along the first metre of the column, the dissolved aluminium concentration decreased consistent with its incorporation into secondary minerals. The dissolved chromium concentration evolution mimicked that of Al at 50 ° C, suggesting substitution of trivalent Cr for Al in secondary phases. According to PHREEQC calculations, the CO2-charged fluid was always undersaturated with respect to carbonate minerals within the column, but supersaturated with respect to clays and Fe hydroxides at 22 ° C and with respect to clays and Al hydroxides at 50 ° C. Substantial differences were found between modelled and measured dissolved element concentrations in the fluids during the experiments. These differences underscore the need to improve computational models before they can be used to predict with confidence the fate and consequences of carbon dioxide injected into the subsurface.
Fluid-Driven Deformation of a Soft Granular Material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2015-01-01
Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.
NASA Astrophysics Data System (ADS)
Johann, Lisa; Dinske, Carsten; Shapiro, Serge
2017-04-01
Fluid injections into unconventional reservoirs have become a standard for the enhancement of fluid-mobility parameters. Microseismic activity during and after the injection can be frequently directly associated with subsurface fluid injections. Previous studies demonstrate that postinjection-induced seismicity has two important characteristics: On the one hand, the triggering front, which corresponds to early and distant events and envelops farthest induced events. On the other hand, the back front, which describes the lower boundary of the seismic cloud and envelops the aseismic domain evolving around the source after the injection stop. A lot of research has been conducted in recent years to understand seismicity-related processes. For this work, we follow the assumption that the diffusion of pore-fluid pressure is the dominant triggering mechanism. Based on Terzaghi's concept of an effective normal stress, the injection of fluids leads to increasing pressures which in turn reduce the effective normal stress and lead to sliding along pre-existing critically stressed and favourably oriented fractures and cracks. However, in many situations, spatio-temporal signatures of induced events are captured by a rather non-linear process of pore-fluid pressure diffusion, where the hydraulic diffusivity becomes pressure-dependent. This is for example the case during hydraulic fracturing where hydraulic transport properties are significantly enhanced. For a better understanding of processes related to postinjection-induced seismicity, we analytically describe the temporal behaviour of triggering and back fronts. We introduce a scaling law which shows that postinjection-induced events are sensitive to the degree of non-linearity and to the Euclidean dimension of the seismic cloud (see Johann et al., 2016, JGR). To validate the theory, we implement comprehensive modelling of non-linear pore-fluid pressure diffusion in 3D. We solve numerically for the non-linear equation of diffusion with a power-law dependent hydraulic diffusivity on pressure and generate catalogues of synthetic seismicity. We study spatio-temporal features of the seismic clouds and compare the results to theoretical values predicted by the novel scaling law. Subsequently, we apply the scaling relation to real hydraulic fracturing and Enhanced Geothermal System data. Our results show that the derived scaling relations well describe synthetic and real data. Thus, the methodology can be used to obtain hydraulic reservoir properties and can contribute significantly to a general understanding of injection related processes as well as to hazard assessment.
Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration
NASA Astrophysics Data System (ADS)
Xia, Qingfeng; Zhong, Shan
2013-04-01
In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.
NASA Astrophysics Data System (ADS)
Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens
2018-02-01
We studied the relation between rupture and changes in permeability within a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). A series of water injection experiments were performed in a borehole straddle interval set within the damage zone of the main fault. A three-component displacement sensor allowed an estimation of the displacement of a minor fault plane reactivated during a succession of step rate pressure tests. The experiment reveals that the fault hydromechanical (HM) behavior is different from one test to the other with varying pressure levels needed to trigger rupture and different slip behavior under similar pressure conditions. Numerical simulations were performed to better understand the reason for such different behavior and to investigate the relation between rupture nucleation, permeability change, pressure diffusion, and rupture propagation. Our main findings are as follows: (i) a rate frictional law and a rate-and-state permeability law can reproduce the first test, but it appears that the rate constitutive parameters must be pressure dependent to reproduce the complex HM behavior observed during the successive injection tests; (ii) almost similar ruptures can create or destroy the fluid diffusion pathways; (iii) a too high or too low diffusivity created by the main rupture prevents secondary rupture events from occurring whereas "intermediate" diffusivity favors the nucleation of a secondary rupture associated with the fluid diffusion. However, because rupture may in certain cases destroy permeability, this succession of ruptures may not necessarily create a continuous hydraulic pathway.
Bourla, Dan H; Wirthlin, Robert S; Bourla, Nirit; Gupta, Anurag; Stanescu-Segall, Dinu; Schwartz, Steven D; Axer-Siegel, Ruth
2007-06-01
To evaluate the use of eye protection and frequency of eye splash events during intraocular injections as well as infection risk awareness among retina specialists and fellows in training. In a prospective survey of practicing retina specialists and retina fellows, frequency of use and type of eye protection employed during intraocular injections, frequency of eye splash occurrences, description of the eye splash event, number of procedures performed, and awareness of transconjunctival infection risk were investigated. Sixty-four ophthalmologists responded to the questionnaire: 40 retina fellows and 24 retina specialists. The response rate was 100%. Twenty-five percent of the fellows and 33.3% of the specialists reported using eye protection, including corrective glasses, during all intraocular injections. Two of the retina fellows and none of the specialists used special forms of eye protection. Retina fellows had a mean +/- SD of 2.1 +/- 1.3 years experience and the specialists had a mean +/- SD of 10.4 +/- 6.7 years experience in performing intraocular injections. The mean number of injections +/- SD performed by the fellows and specialists was 23 +/- 14.6 and 35 +/- 11.9 per month, respectively. Twelve conjunctival or corneal splash occurrences were reported by six fellows and two retina specialists. Eleven splash events occurred due to reflux of fluid during administration of subconjunctival anesthetic injection, and one event occurred during an anterior chamber tap. Splash events were significantly more likely to occur during procedures performed by fellows, with a relative risk of 8.4 for unprotected procedures (P< 0.001, Fisher exact test). Most (87.5%) of the participants were aware of the risk for transconjunctival viral infection. Special eye protection is seldom used during administration of intraocular injections. Although the risk for eye splash during administration of subconjunctival anesthetic before intraocular injections is relatively small, protective measures may be considered when treating high-risk patients.
NASA Astrophysics Data System (ADS)
Tatomir, Alexandru Bogdan A. C.; Sauter, Martin
2017-04-01
A number of theoretical approaches estimating the interfacial area between two fluid phases are available (Schaffer et al.,2013). Kinetic interface sensitive (KIS) tracers are used to describe the evolution of fluid-fluid interfaces advancing in two phase porous media systems (Tatomir et al., 2015). Initially developed to offer answers about the supercritical (sc)CO2 plume movement and the efficiency of trapping in geological carbon storage reservoirs, KIS tracers are tested in dynamic controlled laboratory conditions. N-octane and water, analogue to a scCO2 - brine system, are used. The KIS tracer is dissolved in n-octane, which is injected as the non-wetting phase in a fully water saturated porous media column. The porous system is made up of spherical glass beads with sizes of 100-250 μm. Subsequently, the KIS tracer follows a hydrolysis reaction over the n-octane - water interface resulting in an acid and phenol which are both water soluble. The fluid-fluid interfacial area is described numerically with the help of constitutive-relationships derived from the Brooks-Corey model. The specific interfacial area is determined numerically from pore scale calculations, or from different literature sources making use of pore network model calculations (Joekar-Niasar et al., 2008). This research describes the design of the laboratory setup and compares the break-through curves obtained with the forward model and in the laboratory experiment. Furthermore, first results are shown in the attempt to validate the immiscible two phase flow reactive transport numerical model with dynamic laboratory column experiments. Keywords: Fluid-fluid interfacial area, KIS tracers, model validation, CCS, geological storage of CO2
NASA Astrophysics Data System (ADS)
Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.
2015-12-01
In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).
NASA Astrophysics Data System (ADS)
Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif
2013-04-01
Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.
Injection of benomyl into elm, oak & maple
Garold F. Gregory; Thomas W. Jones; Percy McWain; Percy McWain
1971-01-01
A newly devised apparatus using pressure to inject fluids into trees was used to inject solubilized benomyl into elms, oaks, and maples. In October and November, injections were made into the outer two annual rings of sapwood at points 2 to 3 feet above ground line. One to 3 weeks after injection, the trees were sampled; and positive bioassays were obtained from branch...
NASA Astrophysics Data System (ADS)
Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes
2013-04-01
With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.
Wettability control on fluid-fluid displacements in patterned microfluidics
NASA Astrophysics Data System (ADS)
Zhao, Benzhong; MacMinn, Christopher; Juanes, Ruben
2015-11-01
Two-phase flow in porous media is important in many natural and industrial processes. While it is well known the wetting properties of porous media can vary drastically depending on the media and the pore fluids, their effect continues to challenge our microscopic and macroscopic descriptions. We conduct experiments via radial displacement of silicone oil by water in microfluidic devices patterned with vertical posts. These devices allow for flow visualization in a complex but well-defined microstructure. Additionally, the surface energy of the devices can be tuned over a wide range of contact angles. We perform injection experiments with highly unfavorable mobility contrast at rates over four orders of magnitude. We focus on three wetting conditions: drainage θ = 120°, weak imbibition θ = 60°, and strong imbibition θ = 7°. In drainage, we see a transition from viscous fingering at high capillary numbers to a morphology that differs from capillary fingering. In weak imbibition, we observe stabilization of flow due to cooperative invasion at the pore scale. In strong imbibition, we find the flow is heavily influenced by a precursor front that emanates from the main imbibition front. Our work shows the important, yet intricate, impact of wettability on immiscible flow in porous media.
Effect of Rapid Evaporation on Fuel Injection Processes
NASA Astrophysics Data System (ADS)
Sloss, Clayton A.; McCahan, Susan
1996-11-01
In the pursuit of developing more efficient fuel oil burners, ways of improving combustion efficiency through increased fuel atomization are being studied. By preheating the fuel prior to injection it may be possible to induce a superheated state in the l iquid during expansion through the nozzle. This increases the evaporation rate and improves atomization of the fluid. With enough superheat, and using fuels with sufficiently large specific heats, it is theoretically possible to achieve complete evaporati on. In this experiment dodecane, fuel oil, kerosene, and diesel fuel are injected from 10 bar to 1 bar while the upstream temperature is varied from 20^oC to 330^oC. A commercial oil burner nozzle is used to simulate a realistic injection environm ent and a plain converging nozzle is used under the same conditions to isolate and study the thermodynamic effects. Photographic observations of the commercial nozzle spray found smaller droplet sizes and decreased cone angles as the degree of superheat i ncreased. A coherent evaporation wave was observed in dodecane jets at high levels of superheat in the plain converging nozzle. * This work is supported by Imperial Oil/ESTAC
Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F
2005-06-01
The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun-kao; Chen, Wei-shan; Ye, Le; Zhang, Lu
2016-08-01
In order to solve the problem of lubrication failure in bearing systems, a novel lubricating device which can achieve drop-on-demand lubrication is proposed based on piezoelectric micro-jet technology. The injection performance of the novel piezoelectric micro-jet lubricating device are analyzed in this paper. The influences of the fluid-structure interaction to the working frequency are studied by comparing the results of tests with simulations. A method used to forecast the working frequency of the micro-jet is proved to be available. A velocity inlet boundary model at the nozzle is derived under the assumption that the lubricating oil cannot be pressed. Combined with this model, the influences of density, dynamic viscosity and surface tension of the lubricating oil on the injection performance are discussed according to the simulation results. An experiment on the injection performance of the micro-jet for ejecting lubricating oil with different dilution ratios is performed. The recommended excitations are given for ejecting lubricating oil with different properties by analyzing the results.
Angled injection: Hybrid fluid film bearings for cryogenic applications
NASA Technical Reports Server (NTRS)
SanAndres, Luis
1995-01-01
A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.
Vail, III, William B.
1993-01-01
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Prodanović, M; Lindquist, W B; Seright, R S
2006-06-01
Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.
Vail, W.B. III.
1993-02-16
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Apparatus and method for mixing fuel in a gas turbine nozzle
Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight
2014-08-12
A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.
Review: Role of chemistry, mechanics, and transport on well integrity in CO 2 storage environments
Carroll, Susan A.; Carey, William J.; Dzombak, David; ...
2016-03-22
Among the various risks associated with CO 2 storage in deep geologic formations, wells are important potential pathways for fluid leaks and groundwater contamination. Injection of CO 2 will perturb the storage reservoir and any wells that penetrate the CO 2 or pressure footprints are potential pathways for leakage of CO 2 and/or reservoir brine. Well leakage is of particular concern for regions with a long history of oil and gas exploration because they are top candidates for geologic CO 2storage sites. This review explores in detail the ability of wells to retain their integrity against leakage with careful examinationmore » of the coupled physical and chemical processes involved. Understanding time-dependent leakage is complicated by the changes in fluid flow, solute transport, chemical reactions, and mechanical stresses over decade or longer time frames for site operations and monitoring. Almost all studies of the potential for well leakage have been laboratory based, as there are limited data on field-scale leakage. When leakage occurs by diffusion only, laboratory experiments show that while CO 2 and CO 2-saturated brine react with cement and casing, the rate of degradation is transport-limited and alteration of cement and casing properties is low. When a leakage path is already present due to cement shrinkage or fracturing, gaps along interfaces (e.g. casing/cement or cement/rock), or casing failures, chemical and mechanical alteration have the potential to decrease or increase leakage risks. Laboratory experiments and numerical simulations have shown that mineral precipitation or closure of strain-induced fractures can seal a leak pathway over time or conversely open pathways depending on flow-rate, chemistry, and the stress state. Experiments with steel/cement and cement/rock interfaces have indicated that protective mechanisms such as metal passivation, chemical alteration, mechanical deformation, and pore clogging can also help mitigate leakage. The specific rate and nature of alteration depends on the cement, brine, and injected fluid compositions. For example, the presence of co-injected gases (e.g. O 2, H 2S, and SO 2) and pozzolan amendments (fly ash) to cement influences the rate and the nature of cement reactions. A more complete understanding of the coupled physical-chemical mechanisms involved with sealing and opening of leakage pathways is needed. An important challenge is to take empirically based chemical, mechanical, and transport models reviewed here and assess leakage risk for carbon storage at the field scale. Furthermore, field observations to accompany laboratory and modeling studies are critical to validating understanding of leakage risk. Long-term risk at the field scale is an area of active research made difficult by the large variability of material types (cement, geologic material, casing), field conditions (pressure, temperature, gradient in potential, residence time), and leaking fluid composition (CO 2, co-injected gases, brine). Of particular interest are the circumstances when sealing and other protective mechanisms are likely to be effective, when they are likely to fail, and the zone of uncertainty between these two extremes.« less
Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew, S.P.S.
1984-09-25
A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.
Advances in modelling of condensation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Zaltsgendler, E.; Hanna, B.
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less
Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations
Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.
2007-01-01
Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.
SUSTAINED TURBULENCE IN DIFFERENTIALLY ROTATING MAGNETIZED FLUIDS AT A LOW MAGNETIC PRANDTL NUMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nauman, Farrukh; Pessah, Martin E., E-mail: nauman@nbi.ku.dk
2016-12-20
We show for the first time that sustained turbulence is possible at a low magnetic Prandtl number in local simulations of Keplerian flows with no mean magnetic flux. Our results indicate that increasing the vertical domain size is equivalent to increasing the dynamical range between the energy injection scale and the dissipative scale. This has important implications for a large variety of differentially rotating systems with low magnetic Prandtl number such as protostellar disks and laboratory experiments.
A magnetic method for determining the geometry of hydraulic fractures
Byerlee, J.D.; Johnston, M.J.S.
1976-01-01
We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.
NASA Astrophysics Data System (ADS)
Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart
2016-04-01
Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution. References: Györe, D., Stuart, F.M., Gilfillan, S.M.V., Waldron, S., 2015. Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Int. J. Greenh. Gas Con. 42, 554-561.
Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA
NASA Astrophysics Data System (ADS)
Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.
2009-12-01
At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2. Comparison between preinjection and postinjection fluid analyses also shows little difference. It suggests that CO2 injection has not induced significant mineral-water reactions to change water chemistry. In October 2009, CO2 will be injected into the down-dip, non-productive Tuscaloosa Formation on the east side of the same field. In-situ fluid and gas samples will be collected using downhole U-tube. Fluid chemistry data through time will reveal mineral reactions during and after injection and confine timescales of the interactions. This project was funded thought the National Energy Technology Laboratory Regional Carbon Sequestration Partnership Program as part of the Southeast Regional Carbon Sequestration Partnership.
Heat transfer to a full-coverage film-cooled surface with 30 degree slant-hole injection
NASA Technical Reports Server (NTRS)
Crawford, M. E.; Kays, W. M.; Moffat, R. J.
1976-01-01
Heat transfer behavior was studied in a turbulent boundary layer with full coverage film cooling through an array of discrete holes and with injection 30 deg to the wall surface in the downstream direction. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.3, and a range of Reynolds number Re sub x of 150,000 to 5 million. Air was used as the working fluid, and the mainstream velocity varied from 9.8 to 34.2 m/sec (32 to 112 ft/sec). The data were taken for secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. The data may be used to obtain Stanton number as a continuous function of the injectant temperature by use of linear superposition theory. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling. A differential prediction method was developed to predict the film cooling data base. The method utilizes a two-dimensional boundary layer program with routines to model the injection process and turbulence augmentation. The program marches in the streamwise direction, and when a row of holes is encountered, it stops and injects fluid into the boundary layer. The turbulence level is modeled by algebraically augmenting the mixing length, with the augmentation keyed to a penetration distance for the injected fluid.
Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...
Seismic rupture and ground accelerations induced by CO 2 injection in the shallow crust
Cappa, Frédéric; Rutqvist, Jonny
2012-09-01
We present that because of the critically stressed nature of the upper crust, the injection of large volumes of carbon dioxide (CO 2) into shallow geological reservoirs can trigger seismicity and induce ground deformations when the injection increases the fluid pressure in the vicinity of potentially seismic faults. The increased fluid pressure reduces the strength against fault slip, allowing the stored elastic energy to be released in seismic events that can produce felt ground accelerations. Here, we seek to explore the likelihood ground motions induced by a CO 2 injection using hydromechanical modelling with multiphase fluid flow and dynamic rupture,more » including fault-frictional weakening. We extend the previous work of Cappa and Rutqvist, in which activation of a normal fault at critical stress may be possible for fast rupture nucleating by localized increase in fluid pressure and large decrease in fault friction. In this paper, we include seismic wave propagation generated by the rupture. For our assumed system and injection rate, simulations show that after a few days of injection, a dynamic fault rupture of few centimetres nucleates at the base of the CO 2 reservoir and grows bilaterally, both toward the top of the reservoir and outside. The rupture is asymmetric and affects a larger zone below the reservoir where the rupture is self-propagating (without any further pressure increase) as a result of fault-strength weakening. The acceleration and deceleration of the rupture generate waves and result in ground accelerations (~0.1–0.6 g) consistent with observed ground motion records. Finally, the maximum ground acceleration is obtained near the fault, and horizontal accelerations are generally markedly higher than vertical accelerations.« less
Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.
2015-12-01
Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based upon 2-D, steady-state thermal and flow regimes. We reiterate the importance of 4-D time evolution in subduction models. Analogue experiments allow added feedbacks and complexity improving intuition and providing insight for further investigation.
Automated Cell-Cutting for Cell Cloning
NASA Astrophysics Data System (ADS)
Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro
We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.
Transient response of a liquid injector to a steep-fronted transverse pressure wave
NASA Astrophysics Data System (ADS)
Lim, D.; Heister, S.; Stechmann, D.; Kan, B.
2017-12-01
Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.
Transient response of a liquid injector to a steep-fronted transverse pressure wave
NASA Astrophysics Data System (ADS)
Lim, D.; Heister, S.; Stechmann, D.; Kan, B.
2018-07-01
Motivated by the dynamic injection environment posed by unsteady pressure gain combustion processes, an experimental apparatus was developed to visualize the dynamic response of a transparent liquid injector subjected to a single steep-fronted transverse pressure wave. Experiments were conducted at atmospheric pressure with a variety of acrylic injector passage designs using water as the working fluid. High-speed visual observations were made of the injector exit near field, and the extent of backflow and the time to refill the orifice passage were characterized over a range of injection pressures. A companion transient one-dimensional model was developed for interpretation of the results and to elucidate the trends with regard to the strength of the transverse pressure wave. Results from the model were compared with the experimental observations.
Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake
NASA Astrophysics Data System (ADS)
Evans, R. L.; Key, K.; Atekwana, E. A.
2016-12-01
Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.
NASA Astrophysics Data System (ADS)
Agne, Aboubakry; Barrière, Thierry
2018-05-01
Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.
NASA Astrophysics Data System (ADS)
Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.
2017-12-01
The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as permeability, water saturation and saturation exponent of Archie's law. To quantify the fluid flow and its distribution in the fracture, we applied fluid flow simulation by LBM (Lattice Boltzmann Method). From this result, we calculate physical parameters by FEM and FDM and then discuss effect of fluid on them as well as their comparison with experimental results.
Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.
2016-01-01
This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068
Epstein, Nancy E.
2013-01-01
Background: Multiple type of spinal injections, whether epidural/translaminar or transforaminal, facet injections, are offered to patients with/without surgical spinal lesions by pain management specialists (radiologists, physiatrists, and anesthesiologists). Although not approved by the Food and Drug Administration (FDA), injections are being performed with an increased frequency (160%), are typically short-acting and ineffective over the longer-term, while exposing patients to major risks/complications. Methods: For many patients with spinal pain alone and no surgical lesions, the “success” of epidural injections may simply reflect the self-limited course of the disease. Alternatively, although those with surgical pathology may experience transient or no pain relief, undergoing these injections (typically administered in a series of three) unnecessarily exposes them to the inherent risks, while also delaying surgery and potentially exposing them to more severe/permanent neurological deficits. Results: Multiple recent reports cite contaminated epidural steroid injections resulting in meningitis, stroke, paralysis, and death. The Center for Disease Control (CDC) specifically identified 25 deaths (many due to Aspergillosis), 337 patients sickened, and 14,000 exposed to contaminated steroids. Nevertheless, many other patients develop other complications that go unreported/underreported: Other life-threatening infections, spinal fluid leaks (0.4-6%), positional headaches (28%), adhesive arachnoiditis (6-16%), hydrocephalus, air embolism, urinary retention, allergic reactions, intravascular injections (7.9-11.6%), stroke, blindness, neurological deficits/paralysis, hematomas, seizures, and death. Conclusions: Although the benefits for epidural steroid injections may include transient pain relief for those with/without surgical disease, the multitude of risks attributed to these injections outweighs the benefits. PMID:23646278
NASA Astrophysics Data System (ADS)
Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.
2017-12-01
One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.
40 CFR 146.7 - Corrective action.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146.7 Corrective action. In...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...
Shadowgraphy of transcritical cryogenic fluids
NASA Technical Reports Server (NTRS)
Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.
1994-01-01
The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.
Coanda injection system for axially staged low emission combustors
Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC
2012-05-15
The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.
Density and mixture fraction measurements in a GO2/GH2 uni-element rocket chamber
NASA Technical Reports Server (NTRS)
Moser, M. D.; Pal, S.; Santoro, R. J.
1994-01-01
In recent years, there has been a renewed interest in gas/gas injectors for rocket combustion. Specifically, the proposed new concept of full-flow oxygen rich preburner systems calls for the injection of both oxygen and hydrogen into the main chamber as gaseous propellants. The technology base for gas/gas injection must mature before actual booster class systems can be designed and fabricated. Since the data base for gas/gas injection is limited to studies focusing on the global parameters of small reaction engines, there is a critical need for experiment programs that emphasize studying the mixing and combustion characteristics of GO2 and GH2 propellants from a uni-element injector point of view. The experimental study of the combusting GO2/GH2 propellant combination in a uni-element rocket chamber also provides a simplified environment, in terms of both geometry and chemistry, that can be used to verify and validate computational fluid dynamic (CFD) models.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
Gas-assisted gravity drainage (GAGD) process for improved oil recovery
Rao, Dandina N [Baton Rouge, LA
2012-07-10
A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).
Analysis of the injection of a heated turbulent jet into a cross flow
NASA Technical Reports Server (NTRS)
Campbell, J. F.; Schetz, J. A.
1973-01-01
The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.
Morimoto, N; Sumi, H; Tsushima, H; Etou, Y; Yoshida, E; Mihara, H
1991-10-01
To identify the relationship of the severity of inflammation and fibrinolytic activity in arthritis, the fibrinolytic activity of synovial fluid was studied in acute experimental arthritis induced by injecting monosodium urate crystals into dogs' knee joints. The maximum activity in the synovial fluid was observed 6 h after crystal injection. It was inferred that the fibrinolytic activity was mainly due to plasminogen activator based on fibrin plate assays, substrate specificity, inhibitor effects and zymography. On the other hand, the activity of lysosomal enzymes (beta-glucuronidase and cathepsin G) reached a peak in the synovia after 12 h. Histological examination of the synovial membrane after 12 h also showed greater inflammation than at 6 h. The peak in fibrinolytic activity preceded the peak of lysosomal enzymes and histological changes. These results suggest that an increase in fibrinolytic activity by plasminogen activator may contribute to the development of an acute inflammatory response.
Evaluating the Gutenberg-Richter Relationship for Induced Seismicity
NASA Astrophysics Data System (ADS)
Tymchak, M. P.; Flewelling, S. A.
2013-12-01
Large volumes of flowback and produced water generated from hydraulic fracturing and oil and gas production have led to increased wastewater disposal through underground injection wells. Several recent studies have linked recently felt seismic events to underground injection wells in Arkansas, Ohio, Texas and Oklahoma, among others. However, in some cases, such as in Oklahoma, there is a lack of consensus as to whether the earthquakes were the result of fluid injection (Keranan et al., 2013), natural tectonic processes (Oklahoma Geological Survey, 2013), or were related to remote events (van der Elst et al., 2013). Moreover, it is unclear why earthquakes have occurred near some injection wells but not others, with apparently similar geology, target reservoirs, and injection rates (e.g., Frohlich, 2012). In instances where injection occurred near a fault (e.g., Rangely, CO), the timing and distribution of seismic events was well correlated to fluid volumes, and the interaction between injection and induced seismicity was easily resolved. In other cases (e.g., Oklahoma, Texas), it appears more difficult to interpret whether a particular injection well was related to observed seismic events. Therefore, metrics are needed as diagnostic tools to help differentiate between natural and induced seismicity. It has been well established that the frequency-magnitude distribution of earthquakes follows the Gutenberg-Richter distribution log N(M) = a - bM, where the slope (b-value) is typically near one. However, in some instances of deep fluid injection, b-values may vary, depending on specific injection activities, such as enhanced geothermal or hydraulic fracturing (Dinske and Shapiro, 2013). In some cases, b-values may vary during successive fracture stages of a single horizontal well (e.g., Williams and Calvarez, 2013), and seismicity associated with hydraulic fracturing may deviate from the Gutenberg-Richter relationship altogether (Hurd and Zoback, 2012). We evaluate whether frequency magnitude distributions could be used as a method to distinguish between natural and induced seismicity, drawing from a number of datasets compiled from different types of injection activities.
NASA Astrophysics Data System (ADS)
Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.
2018-04-01
In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.
Gas driven displacement in a Hele-Shaw cell with chemical reaction
NASA Astrophysics Data System (ADS)
White, Andrew; Ward, Thomas
2011-11-01
Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
NASA Astrophysics Data System (ADS)
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the lenses, TCE migrates down again and eventually accumulates at the bottom of the sandbox. The two models of quantification of fluid saturations for water/gas system and water/NAPL system developed in homogenous porous media give comparatively fit results to the observations and can be used to quantify fluid saturations in heterogeneous porous media.
Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M
2016-04-01
The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.
Elasticity-Driven Backflow of Fluid-Driven Cracks
NASA Astrophysics Data System (ADS)
Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.
2016-11-01
Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.
... severe allergic reactions. It is used in the management of certain types of edema (fluid retention and ... needed for normal body functioning) and in the management of certain types of shock. Dexamethasone injection is ...
Ultra low injection angle fuel holes in a combustor fuel nozzle
York, William David
2012-10-23
A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.
Rull, M; Clayburne, G; Sieck, M; Schumacher, H R
2003-09-01
To examine the effects of three commonly used intra-articular depot corticosteroid preparations tested in a rat air pouch model and their effect against monosodium urate (MSU) crystal-induced inflammation. Rheumatologists use intra-articular corticosteroid preparations to relieve pain and inflammation of acute monoarthritis without really knowing their effects on the synovial fluid and membrane or the differences between distinct preparations. This work compares the effect of three commonly used corticosteroid preparations in vivo, showing that they behave differently. A subcutaneous air pouch was formed in male Sprague-Dawley rats. A first group of 6-day-old air pouches were injected with 10 ml of 6 mg/ml normal saline solution, 6 mg/ml betamethasone containing both depot betamethasone acetate and soluble betamethasone phosphate (Celestone) in 9 ml of normal saline solution, 20 mg/ml of prednisolone tebutate (Hydeltra) in 9 ml of normal saline solution or 20 mg/ml of triamcinolone hexacetonide (Aristospan) in 9 ml of normal saline solution. A second group (group 2) of air pouches were injected with 15 mg of synthetic MSU crystals and 24 h later they were reinjected with 1 ml of the same three corticosteroid suspensions. For each condition four rats were killed at 6, 24, 48 h and 7 days. Pouch fluid and tissue were analysed. In the first 6 h after normal saline solution or corticosteroid injection into the air pouch there were mildly increased leucocyte counts in the air pouch fluid. Betamethasone-injected pouches showed no cells in the fluid after 6 h and no crystals after 24 h, triamcinolone-injected pouches still showed rare cells at 7 days. Both triamcinolone and prednisolone crystals persisted in higher numbers and lasted longer in the fluid than did betamethasone (P<0.05). In group 2 MSU crystal phagocytosis in the fluid was decreased in the betamethasone- (P<0.01), prednisolone- (P<0.003) and triamcinolone- (P<0.006) injected pouches when compared with the MSU crystal-injected pouches alone. Pouches injected with MSU crystals alone showed the most intense tissue inflammation at all times. After MSU, betamethasone-injected pouches had a rapid but mild decrease in the number of lining cells and inflammation. In contrast, triamcinolone- and prednisolone-injected pouches showed a very thin tissue with few or no vessels and almost no inflammation at 7 days. The pouches injected with MSU crystals and any of the corticoid preparations had three times more tophus-like structures and persistent crystals identified than the ones injected with MSU crystals alone. Each of the corticosteroid preparations by themselves produced very mild transient inflammation. The betamethasone preparation with a soluble steroid component had a quicker but milder anti-inflammatory effect on MSU crystal-induced inflammation. In contrast to the doses used, prednisolone tebutate and triamcinolone hexacetonide preparations dramatically suppressed urate crystal-induced inflammation at 7 days, but both produced atrophy and necrosis of the membrane, yielding a very thin membrane with almost no vessels. When used for MSU crystal-induced inflammation these corticosteroid preparations suppressed some aspects of inflammation but may actually promote the persistence of MSU crystals and the formation of tophi.
NASA Astrophysics Data System (ADS)
Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea
2014-05-01
Concentrated suspensions of microscale and nanoscale zerovalent iron particles (MZVI and NZVI) have been studied in recent years for the remediation of contaminated aquifers. The suspensions are injected into the subsurface to generate a reactive zone, and consequently the prediction of the particles distribution during the injection is a key aspect in the design of a field-scale injection. Colloidal dispersions of MZVI and NZVI are not stable in pure water, and shear thinning, environmentally friendly fluids (guar gum and xanthan gum solutions) were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1 - 3). Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. In this work, co-funded by European Union project AQUAREHAB (FP7 - Grant Agreement Nr. 226565), laboratory and pilot field tests for MZVI injection in saturated porous media are reported. MZVI was dispersed in guar gum solutions, and the transport behaviour under several polymer concentrations and injection rates was assessed in column tests (4). Based on the experimental results, a modelling approach is proposed to simulate the transport in porous media of nanoscale iron slurries, implemented in E-MNM1D (www.polito.it/groundwater/software). Colloid transport mechanisms are controlled by particle-collector and particle-particle interactions, usually modelled by a non equilibrium kinetic model accounting for deposition and release processes. The key aspects included in the E-MNM1D are clogging phenomena (i.e. reduction of porosity and permeability due to particles deposition), and the rheological properties of the carrier fluid (in this project, guar gum solution). The influence of colloid transport on porosity, permeability, and fluid viscosity is explicitly lumped into the model and the shear-thinning nature of the iron slurries is described by a modified Darcy law generalized for non Newtonian fluids. Since during the injection in wells the velocity field is not constant over the distance, E-MNM1D was modified in order to account for variable colloidal transport coefficients on flow rate thus allowing the estimation of the radius of influence during a full scale intervention. The flow and transport of MZVI slurries is solved in a radial domain for the simulation of field-scale injection, incorporating the abovementioned relevant mechanisms. The governing equations and model implementation are presented and discussed, along with examples of injection simulations. References 1. Tiraferri, A.; Sethi, R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 2009, 11(3), 635-645. 2. Tiraferri, A.; Chen, K.L.; Sethi, R.; Elimelech, M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science 2008, 324(1-2), 71-79. 3. Dalla Vecchia, E.; Luna, M.; Sethi, R. Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum. Environmental Science & Technology 2009, 43(23), 8942-8947. 4. Tosco, T.; Gastone, F.; Sethi, R. Guar gum solutions for improved delivery of iron particles in porous media (Part 2): iron transport tests and modelling in radial geometry. Journal of Contaminant Hydrology (submitted).
NASA Astrophysics Data System (ADS)
Ground, Cody R.; Gopal, Vijay; Maddalena, Luca
2018-04-01
By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.
Bernardini, Francesco P; Gennai, Alessandro; Izzo, Luigi; Zambelli, Alessandra; Repaci, Erica; Baldelli, Ilaria; Fraternali-Orcioni, G; Hartstein, Morris E; Santi, Pier Luigi; Quarto, Rodolfo
2015-07-01
Although recent research on micro fat has shown the potential advantages of superficial implantation and high stem cell content, clinical applications thus far have been limited. The authors report their experience with superficial enhanced fluid fat injection (SEFFI) for the correction of volume loss and skin aging of the face in general and in the periocular region. The finer SEFFI preparation (0.5 mL) was injected into the orbicularis in the periorbital and perioral areas, and the 0.8-mL preparation was injected subdermally elsewhere in the face. The records of 98 consecutive patients were reviewed. Average follow-up time was 6 months, and average volume of implanted fat was 20 mL and 51.4 mL for the 0.5-mL and 0.8-mL preparations, respectively. Good or excellent results were achieved for volume restoration and skin improvement in all patients. Complications were minor and included an oil cyst in 3 patients. The smaller SEFFI quantity (0.5 mL) was well suited to correct volume loss in the eyelids, especially the deep upper sulcus and tear trough, whereas the larger SEFFI content was effective for larger volume deficits in other areas of the face, including the brow, temporal fossa, zygomatic-malar region, nasolabial folds, marionette lines, chin, and lips. The fat administered by SEFFI is easily harvested via small side-port cannulae, yielding micro fat that is rich in viable adipocytes and stem cells. Both volumes of fat (0.5 mL and 0.8 mL) were effective for treating age-related lipoatrophy, reducing facial rhytids, and improving skin quality. 4 Therapeutic. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
METHODS FOR DETERMINING THE MECHANICAL INTEGRITY OF CLASS II INJECTION WELLS
The mechanical integrity of injection wells must be determined to insure that there is no significant leak in the casing, tubing or packer, and that there is no significant fluid movement through vertical channels adjacent to the injection well. Methods for mechanical integrity t...
Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake
NASA Astrophysics Data System (ADS)
Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.
2009-12-01
We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel dataset in the framework of the multidisciplinary research project GEOTHERM (www.geotherm.ethz.ch) Left) Seismic network in Basel, Switzerland. An epicenter map of the fluid injection-induced seismicity recorded by the seismic network, indicating high event densities in hot colors, is shown in the inset. Right) Fluid injection-induced seismicity recorded by the seismic network.
Wallace, D F; Emmett, S R; Kang, K K; Chahal, G S; Hiskens, R; Balasubramanian, S; McGuinness, K; Parsons, H; Achten, J; Costa, M L
2012-12-01
Intra-operative, peri-articular injection of local anaesthesia is an increasingly popular way of controlling pain following total knee replacement. At the same time, the problems associated with allogenic blood transfusion have led to interest in alternative methods for managing blood loss after total knee replacement, including the use of auto-transfusion of fluid from the patient's surgical drain. It is safe to combine peri-articular infiltration with auto-transfusion from the drain. We performed a randomised clinical trial to compare the concentration of local anaesthetic in the blood and in the fluid collected in the knee drain in patients having either a peri-articular injection or a femoral nerve block. Clinically relevant concentrations of local anaesthetic were found in the fluid from the drains of patients having peri-articular injections (4.92 μg/ml (sd 3.151)). However, none of the patients having femoral nerve blockade had detectable levels. None of the patients in either group had clinically relevant concentrations of local anaesthetic in their blood after re-transfusion. The evidence from this study suggests that it is safe to use peri-articular injection in combination with auto-transfusion of blood from peri-articular drains during knee replacement surgery.
Significance for secure CO2 storage of earthquakes induced by fluid injection
NASA Astrophysics Data System (ADS)
Verdon, James P.
2014-05-01
The link between subsurface fluid injection and induced seismicity has gained recent significance with an increase in earthquakes associated with the disposal of oilfield waste fluids. There are obvious similarities between wastewater reinjection and proposed CO2 storage (CCS) operations. However, as well as the seismic hazard, induced seismicity during CCS operations poses additional risks, because an induced event located above the target reservoir could compromise the hydraulic integrity of the caprock. In this paper we re-examine case examples where earthquakes have been induced by wastewater injection into deep aquifers in the light of proposed future CCS operations. In particular we consider possible controls on event magnitudes, and look at the spatial distributions of events. We find that the majority of events are located below the target reservoirs. This is an encouraging observation from the perspective of caprock integrity, although it presents a challenge in terms of pre-injection characterization of deep-lying faults several kilometres below the target zone. We observe that 99% of events are found within 20 km of injection wells, suggesting a minimum radius for geomechanical characterization and monitoring. We conclude by making recommendations for modelling and monitoring strategies to be followed prior to and during commercial-scale deployment of CO2 storage projects.
Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System
NASA Astrophysics Data System (ADS)
Jarrahi, Miad; Holländer, Hartmut
2017-04-01
The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.
Using discrete multi-physics for detailed exploration of hydrodynamics in an in vitro colon system.
Alexiadis, A; Stamatopoulos, K; Wen, W; Batchelor, H K; Bakalis, S; Barigou, M; Simmons, M J H
2017-02-01
We developed a mathematical model that describes the motion of viscous fluids in the partially-filled colon caused by the periodic contractions of flexible walls (peristalsis). In-vitro data are used to validate the model. The model is then used to identify two fundamental mechanisms of mass transport: the surfing mode and the pouring mode. The first mechanism is faster, but only involves the surface of the liquid. The second mechanism causes deeper mixing, and appears to be the main transport mechanism. Based on the gained understanding, we propose a series of measures that can improve the reliability of in-vitro models. The tracer in PET-like experiments, in particular, should not be injected in the first pocket, and its viscosity should be as close as possible to that of the fluid. If these conditions are not met, the dynamics of the tracer and the fluid diverge, compromising the accuracy of the in-vitro data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nallet, E; Decq, P; Bezzo, A; Le Lievre, G; Peynegre, R; Coste, A
1998-10-01
The incidence and the risk of meningitidis justify treatment in all cases of cerebrospinal fluid rhinorrhea with spontaneous etiology or after traumatic injury. Endonasal surgery with endoscopic instruments provides many advantages compared with transcranial or transfacial approach used by neurosurgeons. We report our experience and our surgical technique in the treatment of CSF leaks in 5 patients. Intrathecal injection of fluoresceine was very useful in all cases for detecting the CSF leak. Total or selected ethmoidectomy depended on the localization of the leakage. Wide sphenoidotomy enables detection and repair of CSF leaks from the sphenoid cavity. A free graft of inferior turbinal mucosal was used to repair the breache. This rapid low morbidity surgery offered secure closure of rhinorrhea in 4 cases after one procedure and in 1 case after two procedures with an average follow up of 22 months. Cerebrospinal fluid rhinorrhea can be managed in first line therapy with endoscopic intranasal surgical techniques when they are localized in the anterior ethmoid or in the sphenoid cavity.
NASA Astrophysics Data System (ADS)
Driba, D. L.; De Lucia, M.; Peiffer, S.
2014-12-01
Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in this simulation reveals that, porosity and permeability near the wellbore are enhanced after injection. This is chiefly due to the dissolution of calcite near the injection well and less extent by dolomite The porosity is improved by more than 14% at the injection well, but then decreases away from the well.
NASA Astrophysics Data System (ADS)
Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis
2018-03-01
The simulation of fluid-driven fracture propagation in a porous medium is a major computational challenge, with applications in geosciences and engineering. The two main families of modeling approaches are those models that represent fractures as explicit discontinuities and solve the moving boundary problem and those that represent fractures as thin damaged zones, solving a continuum problem throughout. The latter family includes the so-called phase field models. Continuum approaches to fracture face validation and verification challenges, in particular grid convergence, well posedness, and physical relevance in practical scenarios. Here we propose a new quasi-static phase field formulation. The approach fully couples fluid flow in the fracture with deformation and flow in the porous medium, discretizes flow in the fracture on a lower-dimension manifold, and employs the fluid flux between the fracture and the porous solid as coupling variable. We present a numerical assessment of the model by studying the propagation of a fracture in the quarter five-spot configuration. We study the interplay between injection flow rate and rock properties and elucidate fracture propagation patterns under the leak-off toughness dominated regime as a function of injection rate, initial fracture length, and poromechanical properties. For the considered injection scenario, we show that the final fracture length depends on the injection rate, and three distinct patterns are observed. We also rationalize the system response using dimensional analysis to collapse the model results. Finally, we propose some simplifications that alleviate the computational cost of the simulations without significant loss of accuracy.
NASA Astrophysics Data System (ADS)
de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.
2015-12-01
We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
MacMinn, Chris; Auton, Lucy
2016-04-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.
Reductant injection and mixing system
Reeves, Matt; Henry, Cary A.; Ruth, Michael J.
2016-02-16
A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.
Occupational Exposure of Shiraz Dental Students to Patients’ Blood and Body Fluid
Shaghaghian, Soheila; Golkari, Ali; Pardis, Soheil; Rezayi, Ali
2015-01-01
Statement of the Problem Exposure to patients’ blood and body fluids would prone the dental students to the risk of blood borne infections. Several studies have shown a high prevalence of these exposures in dental settings particularly in developing countries. However, few studies have evaluated the epidemiology of these exposures in dental students in Iran. Purpose To assess the epidemiology of occupational exposures among dental students and consequently designing the appropriate interventions in order to prevent these exposures. Materials and Method In this cross-sectional study performed during March to June 2011, all 191 Shiraz clinical dental students were asked to complete a self-administered questionnaire. This questionnaire included demographic information and experience of sharp injuries and mucocutaneous contaminations. Chi square and t-test were employed to evaluate the risk factors of exposure. Results 80%of the participants were exposed to the patients’ blood or body fluids during their clinical course. No association was found between the exposure and demographic factors. Injection needle and recapping were the most common causes of these injuries. The most common sites that were injured and caused mucocutaneous contamination were finger and face, respectively. The most frequent activity causing contamination was using high-speed rotary instruments. Only 6.4% of the exposures had been reported to the related authorities and the remains were underreported. Conclusion Blood and body fluid exposure in dental setting is common and a lot of them are not reported. To reduce the hazards of these exposures, infection control authorities should design interventions especially for mentioned high-risk conditions. They should change dental students’ behavior especially regarding not recapping injection needles and using eyewear. Dental schools seem to need a management center and a standard protocol for following up the exposures. PMID:26331151
Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.
2014-01-01
In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.
Llenos, Andrea L.; Michael, Andrew J.
2016-01-01
The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.
NASA Astrophysics Data System (ADS)
Strutz, Tessa J.; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf
2016-08-01
Successful groundwater remediation by injecting nanoscale zero-valent iron (NZVI) particles requires efficient particle transportation and distribution in the subsurface. This study focused on the influence of injection velocity and particle concentration on the spatial NZVI particle distribution, the deposition processes and on quantifying the induced decrease in hydraulic conductivity (K) as a result of particle retention by lab tests and numerical simulations. Horizontal column tests of 2 m length were performed with initial Darcy injection velocities (q0) of 0.5, 1.5, and 4.1 m/h and elemental iron input concentrations (Fe0in) of 0.6, 10, and 17 g/L. Concentrations of Fe0 in the sand were determined by magnetic susceptibility scans, which provide detailed Fe0 distribution profiles along the column. NZVI particles were transported farther at higher injection velocity and higher input concentrations. K decreased by one order of magnitude during injection in all experiments, with a stronger decrease after reaching Fe0 concentrations of about 14-18 g/kg(sand). To simulate the observed nanoparticle transport behavior the existing finite-element code OGS has been successfully extended and parameterized for the investigated experiments using blocking, ripening, and straining as governing deposition processes. Considering parameter relationships deduced from single simulations for each experiment (e.g. deposition rate constants as a function of flow velocity) one mean parameter set has been generated reproducing the observations in an adequate way for most cases of the investigated realistic injection conditions. An assessment of the deposition processes related to clogging effects showed that the percentage of retention due to straining and ripening increased during experimental run time resulting in an ongoing reduction of K. Clogging is mainly evoked by straining which dominates particle deposition at higher flow velocities, while blocking and ripening play a significant role for attachment, mainly at lower injection velocities. Since the injection of fluids at real sites leads to descending flow velocities with increasing radial distance from the injection point, the simulation of particle transport requires accounting for all deposition processes mentioned above. Thus, the derived mean parameter set can be used as a basis for quantitative and predictive simulations of particle distributions and clogging effects at both lab and field scale. Since decreases in K can change the flow system, which may have positive as well as negative implications for the in situ remediation technology at a contaminated site, a reliable simulation is thus of great importance for NZVI injection and prediction.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2014-12-31
The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO 2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of themore » migration and trapping of supercritical CO 2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO 2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.« less
NASA Astrophysics Data System (ADS)
Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.
2017-12-01
Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection should be stopped and how to avoid major events. Our work contributes to the assessment or mitigation of seismic hazard and risk, and our long-term target question is: How to not make an earthquake?
Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester
Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.
2017-01-01
Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167
NASA Astrophysics Data System (ADS)
Hopp, C. J.; Mroczek, S.; Savage, M. K.; Sewell, S. M.; Townend, J.; Sherburn, S.
2017-12-01
Fluid-induced seismicity (FIS) is a useful indicator of thermal and pressure changes within a geothermal reservoir. Given the difficulty of making measurements in the space between wells, FIS provides one of the only direct observations of fluid-related reservoir processes. Understanding exactly why and how these microearthquakes occur helps us unravel the interaction between the movement of fluid and heat at depth and could allow for a better understanding of the creation and destruction of permeability in the reservoir. We begin with an earthquake catalog of roughly 6200 events which occurred between May 2012 and November 2015 at the Mercury geothermal fields at Rotokawa and Ngatamariki. We expand this catalog using matched filter detection to include 350,000 microearthquakes. Earthquakes at the fields are densely clustered in areas of active fluid injection and the rate of seismicity is highly correlated with injection rate. We present high-precision locations as well as frequency-magnitude distributions and source mechanisms for significant events and discuss their relation to injection and production rates at the fields. In particular, we focus on specific periods of interest including the stimulation of well NM08 in June 2012, the Ngatamariki plant startup in April 2013, the switch of injection at Rotokawa to well RK22 in 2013 and a prolonged period of permeability change at well RK24.
Spatial and Temporal Distribution of Imidacloprid Within the Crown of Eastern Hemlock
Turcotte, Richard M.; Lagalante, Anthony; Jones, Jonathan; Cook, Frank; Elliott, Thomas; Billings, Anthony A.
2017-01-01
Systemic imidacloprid is the most widely used insecticide to control the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carriére in the United States. This study was conducted to 1) determine the effect of treatment timing (spring vs. fall) and application method (trunk injection vs. soil injection) on the spatial and temporal distribution of imidacloprid within the crown of A. tsugae-free eastern hemlock using a competitive enzyme-linked immunosorbent assay (ELISA), 2) compare ELISA to gas chromatography-mass spectrometry (GC/MS) for the detection of imidacloprid in xylem fluid, and 3) determine the concentration of imidacloprid in leaf tissue using high performance liquid chromatography with tandem mass spectrometric (LC/MS/MS) detection methods. Xylem fluid concentrations of imidacloprid were found to be significantly higher for spring applications than for fall applications and for trunk injections than soil injections in the first year posttreatment. A total of 69% of samples analyzed by ELISA gave 1.8 times higher concentrations of imidacloprid than those found by GC/MS, leading to evidence of a matrix effect and overestimation of imidacloprid in xylem fluid by ELISA. A comparison of the presence of imidacloprid with xylem fluid and in leaf tissue on the same branch showed significant differences, suggesting that imidacloprid moved intermittently within the crown of eastern hemlock. PMID:28130463
NASA Astrophysics Data System (ADS)
Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.
2017-12-01
Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.
NASA Astrophysics Data System (ADS)
Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.
2017-12-01
Fluid injections associated with human activities are well known to induce perturbations in the ambient rock mass. In particular, the hydromechanical response of a nearby fault under an increase of the pore pressure is of great interest in permeability as well as seismicity related problems. We present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). The site was densely instrumented and during the test the pressure, displacements and seismicity were recorded in order to capture the hydro-mechanical response of the surrounding stimulated volume. A numerical model was used including the reactivated structure at the injection point interacting with a plane representing the main fault orientation. A number of calculations were performed in order to estimate the injection characteristics and the state of stress of the test. By making use of the recorded seismic events location an attempt is made to reproduce the spatio-temporal characteristics of the microseismicity cloud. We have introduced in the model heterogeneous frictional properties along the fault plane that result in flow and rupture channeling effects. Based on the spatio-temporal characteristics of these rupture events we attempt to estimate the resulting hydraulic properties of the fault according to the triggering front concept proposed by Shapiro et al. (2002). The effect of the frictional heterogeneities and the fault orientation on the resulting hydraulic diffusivity is discussed. We have so far observed in our model that by statistically taking into account the frictional heterogeneities in our analysis, the spatio-temporal characteristics of the rupture events and the recovered hydraulic properties of the fault are in a satisfying agreement. References: Shapiro, S. A., Rothert, E., Rath, V., & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 67(1), 212-220.
NASA Technical Reports Server (NTRS)
Menon, Suresh
2003-01-01
This report summarizes the progress made in the first 8 to 9 months of this research. The Lattice Boltzmann Equation (LBE) methodology for Large-eddy Simulations (LES) of microblowing has been validated using a jet-in-crossflow test configuration. In this study, the flow intake is also simulated to allow the interaction to occur naturally. The Lattice Boltzmann Equation Large-eddy Simulations (LBELES) approach is capable of capturing not only the flow features associated with the flow, such as hairpin vortices and recirculation behind the jet, but also is able to show better agreement with experiments when compared to previous RANS predictions. The LBELES is shown to be computationally very efficient and therefore, a viable method for simulating the injection process. Two strategies have been developed to simulate multi-hole injection process as in the experiment. In order to allow natural interaction between the injected fluid and the primary stream, the flow intakes for all the holes have to be simulated. The LBE method is computationally efficient but is still 3D in nature and therefore, there may be some computational penalty. In order to study a large number or holes, a new 1D subgrid model has been developed that will simulate a reduced form of the Navier-Stokes equation in these holes.
Learning-Based Cell Injection Control for Precise Drop-on-Demand Cell Printing.
Shi, Jia; Wu, Bin; Song, Bin; Song, Jinchun; Li, Shihao; Trau, Dieter; Lu, Wen F
2018-06-05
Drop-on-demand (DOD) printing is widely used in bioprinting for tissue engineering because of little damage to cell viability and cost-effectiveness. However, satellite droplets may be generated during printing, deviating cells from the desired position and affecting printing position accuracy. Current control on cell injection in DOD printing is primarily based on trial-and-error process, which is time-consuming and inflexible. In this paper, a novel machine learning technology based on Learning-based Cell Injection Control (LCIC) approach is demonstrated for effective DOD printing control while eliminating satellite droplets automatically. The LCIC approach includes a specific computational fluid dynamics (CFD) simulation model of piezoelectric DOD print-head considering inverse piezoelectric effect, which is used instead of repetitive experiments to collect data, and a multilayer perceptron (MLP) network trained by simulation data based on artificial neural network algorithm, using the well-known classification performance of MLP to optimize DOD printing parameters automatically. The test accuracy of the LCIC method was 90%. With the validation of LCIC method by experiments, satellite droplets from piezoelectric DOD printing are reduced significantly, improving the printing efficiency drastically to satisfy requirements of manufacturing precision for printing complex artificial tissues. The LCIC method can be further used to optimize the structure of DOD print-head and cell behaviors.
Effects of multiple-scale driving on turbulence statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Hyunju; Cho, Jungyeon, E-mail: hyunju527@gmail.com, E-mail: jcho@cnu.ac.kr
2014-01-01
Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and the intracluster medium. In turbulence studies, it is customary to assume that fluid is driven on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales. If there are multiple energy-injection scales, the process of energy cascade and turbulence dynamo will be different compared with the case of the single energy-injection scale. In this work, we perform three-dimensional incompressible/compressible magnetohydrodynamic turbulence simulations. We drive turbulence in Fourier space in two wavenumber ranges, 2≤k≤√12 (large scale) and 15 ≲ kmore » ≲ 26 (small scale). We inject different amount of energy in each range by changing the amplitude of forcing in the range. We present the time evolution of the kinetic and magnetic energy densities and discuss the turbulence dynamo in the presence of energy injections at two scales. We show how kinetic, magnetic, and density spectra are affected by the two-scale energy injections and we discuss the observational implications. In the case ε {sub L} < ε {sub S}, where ε {sub L} and ε {sub S} are energy-injection rates at the large and small scales, respectively, our results show that even a tiny amount of large-scale energy injection can significantly change the properties of turbulence. On the other hand, when ε {sub L} ≳ ε {sub S}, the small-scale driving does not influence the turbulence statistics much unless ε {sub L} ∼ ε {sub S}.« less
The CarbFix Pilot Project in Iceland - CO2 capture and mineral storage in basaltic rocks
NASA Astrophysics Data System (ADS)
Sigurdardottir, H.; Sigfusson, B.; Aradottir, E. S.; Gunnlaugsson, E.; Gislason, S. R.; Alfredsson, H. A.; Broecker, W. S.; Matter, J. M.; Stute, M.; Oelkers, E.
2010-12-01
The overall objective of the CarbFix project is to develop and optimize a practical and cost-effective technology for capturing CO2 and storing it via in situ mineral carbonation in basaltic rocks, as well as to train young scientist to carry the corresponding knowledge into the future. The project consists of a field injection of CO2 charged water at the Hellisheidi geothermal power plant in SW Iceland, laboratory experiments, numerical reactive transport modeling, tracer tests, natural analogue and cost analysis. The CO2 injection site is situated about 3 km south of the Hellisheidi geothermal power plant. Reykjavik Energy operates the power plant, which currently produces 60,000 tons/year CO2 of magmatic origin. The produced geothermal gas mainly consists of CO2 and H2S. The two gases will be separated in a pilot gas treatment plant, and CO2 will be transported in a pipeline to the injection site. There, CO2 will be fully dissolved in 20 - 25°C water during injection at 25 - 30 bar pressure, resulting in a single fluid phase entering the storage formation, which consists of relatively fresh basaltic lavas. The CO2 charged water is reactive and will dissolve divalent cations from the rock, which will combine with the dissolved carbon to form solid thermodynamically stable carbonate minerals. The injection test is designed to inject 2200 tons of CO2 per year. In the past three years the CarbFix project has been addressing background fluid chemistries at the injection site and characterizing the target reservoir for the planned CO2 injection. Numerous groundwater samples have been collected and analysed. A monitoring and accounting plan has been developed, which integrates surface, subsurface and atmospheric monitoring. A weather station is operating at the injection site for continuous monitoring of atmospheric CO2 and to track all key parameters for the injection. Environmental authorities have granted licenses for the CO2 injection and the use of tracers, based on the monitoring plan. Pipelines, injection and monitoring wells have been installed and equipment test runs are in the final phase. A bailer has been constructed to be used to retrieve samples at reservoir conditions. Hydrological parameters of a three dimensional field model have been calibrated and reactive transport simulations are ongoing. The key risks that the project is currently facing are technical and financial. Until now the project has been facing incidences that have already impacted the time schedule in the CarbFix project. Furthermore the project is facing world-wide exchange rate uncertainty plus the inherited uncertainty that innovative research projects contain. However, the CarbFix group remains optimistic that injection will start in near future.
Spârchez, Zeno; Radu, Pompilia; Zaharie, Florin; Al Hajjar, Nadim; Sparchez, Mihaela
2014-09-01
Hepatic cysts have a prevalence of 2.5-7% and most of them are asymptomatic. However, large cysts may cause complaints; in such cases an appropriate treatment is necessary (open surgery, laparoscopic deroofing, removal of cystic fluid and injection of a sclerosing agent. The aim of this study was to assess the efficacy and safety of a single session technique with polidocanol in the therapy of symptomatic non parasitic hepatic cysts. MATERIAL AND METHODS. The study included 13 patients with symptomatic liver cysts (range 4-10 cm). All patients underwent percutaneous aspiration of the liver cyst under ultrasound guidance followed by instillation of polidocanol (3%, 4-10 ml). The patients were followed up at 1, 3 and 12 months. The disappearance of the cyst or reduction in volume more than 90% was considered successful. If the fluid was accumulated at 1month the procedure was repeated. If after the second injection the fluid accumulation was more than 50% of the initial volume the case was considered a failure and a laparoscopic deroofing was performed. The procedure was successful in 10 patients, 9 after the first instillation and one after the second (76.9%). The mean initial volume of cysts was 228 ml, and the mean reduction in volume at 1, 3 and 12 months was 80.2%, 91.9% and 96.7%. The cyst resolution was gradual with clinically significant cyst reduction achievement within 1 year after therapy. In 3 patients the fluid reaccumulated at the same volume despite 2 instillations. Those 3 cases the procedure was considered failure and the patients were sent to surgery. In 2 patients (one successfully treated and one with treatment failure) bleeding during the first puncture and aspiration appeared and the therapy was postponed for 1 month. There were no significant adverse effects, and all the patients had relief of symptoms after therapy. This initial experience with percutaneous aspiration and polidocanol sclerosis of hepatic cysts demonstrated that the technique is efficient and safe.
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel plates set at an angle. The HS analogy is extended to power-law fluid flow in porous media with variable properties parallel or transverse to the flow direction. Comparison with experimental results show that the proposed models capture the propagation of the current front and the current profile at intermediate and late time.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Berteau, Cecile; Schwarzenbach, Florence; Donazzolo, Yves; Latreille, Mathilde; Berube, Julie; Abry, Herve; Cotten, Joël; Feger, Celine; Laurent, Philippe E
2010-10-05
A disposable autoinjector was developed for subcutaneous (SC) self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe. This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL) were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects' preferred system for a final study injection or future treatment. A total of 960 injections (480 with autoinjector, 480 with syringe) were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the auto-injector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment. This study indicated that the autoinjector used by the subject was similar to a syringe used by a nurse in terms of performance and safety in administering the injections, and better in terms of pain, overall acceptance, and preference.
Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe
Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen
2013-01-01
Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280
Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis
NASA Astrophysics Data System (ADS)
Thorpe, S. D.; Tiampo, K. F.
2016-12-01
In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.
Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine
2017-08-10
Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.
Fritz, Brandon M.; Boehm, Stephen L.
2014-01-01
We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predis-posed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance. PMID:25454537
4D ERT-based calibration and prediction of biostimulant induced changes in fluid conductivity
NASA Astrophysics Data System (ADS)
Johnson, T. C.; Versteeg, R. J.; Day-Lewis, F. D.; Major, W. R.; Wright, K. E.
2008-12-01
In-situ bioremediation is an emerging and cost-effective method of removing organic contaminants from groundwater. The performance of bioremedial systems depends on the adequate delivery and distribution of biostimulants to contaminated zones. Monitoring the distribution of biostimulants using monitoring wells is expensive, time consuming, and provides inadequate information between sampling wells. We discuss a Hydrogeophysical Performance Monitoring System (HPMS) deployed to monitor bioremediation efforts at a TCE-contaminated Superfund site in Brandywine MD. The HPMS enables autonomous electrical geophysical data acquisition, processing, quality-assurance/quality-control, and inversion. Our objective is to demonstrate the feasibility and cost effectiveness of the HPMS to provide near real-time information on the spatiotemporal behavior of injected biostimulants. As a first step, we use time-lapse electrical resistivity tomography (ERT) to estimate changes in bulk conductivity caused by the injectate. We demonstrate how ERT-based bulk conductivity estimates can be calibrated with a small number of fluid conductivity measurements to produce ERT-based estimates of fluid conductivity. The calibration procedure addresses the spatially variable resolution of the ERT tomograms. To test the validity of these estimates, we used the ERT results to predict the fluid conductivity at tens of points prior to field sampling of fluid conductivity at the same points. The comparison of ERT-predicted vs. observed fluid conductivity displays a high degree of correlation (correlation coefficient over 0.8), and demonstrates the ability of the HPMS to estimate the four-dimensional (4D) distribution of fluid conductivity caused by the biostimulant injection.
NASA Astrophysics Data System (ADS)
Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.
2015-12-01
The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.
Starr, Matthew R; Mahr, Michael A; Barkmeier, Andrew J; Iezzi, Raymond; Smith, Wendy M; Bakri, Sophie J
2018-05-23
The purpose of this study was to investigate whether having macular fluid on the OCT prior to cataract surgery adversely affected vision or anatomic outcomes after cataract surgery in patients with exudative AMD. Retrospective, cohort study. We examined all patients who underwent cataract surgery and were receiving intravitreal anti-VEGF injections from January 1 st , 2012 through December 31 st , 2016. There were 81 eyes that underwent cataract surgery and had received at least one intravitreal anti-VEGF injection for a diagnosis of exudative AMD within 6 months prior to surgery. Data collected included the development of subretinal or intraretinal macular fluid, or subretinal hemorrhage in the 6 months following surgery, number of injections, best corrected visual acuity (BCVA), and central subfield thickness (CST). There was a significant improvement between pre- and post-operative BCVA when comparing all patients (p values <0.0001) and no significant difference in CST before and after surgery (p >0.05). There were 23 eyes with fluid on the pre-operative OCT. There were no differences in final BCVA or CST and no difference in the development of fluid post-operatively when compared to patients without fluid pre-operatively (all p values >0.05). These patients also saw a significant improvement in BCVA (p = 0.006). In a real world setting, patients with both cataracts and wet AMD may safely undergo cataract surgery. Patients with stable pre-operative fluid on OCT should be considered for cataract surgery as these patients did well post-operatively with no worsening of their neovascular process. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm Pitts; Jie Qi; Dan Wilson
2005-10-01
Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less
Patel, Praveen J; Devonport, Helen; Sivaprasad, Sobha; Ross, Adam H; Walters, Gavin; Gale, Richard P; Lotery, Andrew J; Mahmood, Sajjad; Talks, James S; Napier, Jackie
2017-01-01
National recommendations on continued administration of aflibercept solution for injection after the first year of treatment for neovascular age-related macular degeneration (nAMD) have been developed by an expert panel of UK retina specialists, based on clinician experience and treatment outcomes seen in year 2. The 2017 update reiterates that the treatment goal is to maintain or improve the macular structural and functional gains achieved in year 1 while attempting to reduce or minimize the treatment burden, recognizing the need for ongoing treatment. At the end of year 1 (ie, the decision visit at month 11), two treatment options should be considered: do not extend the treatment interval and maintain fixed 8-weekly dosing, or extend the treatment interval using a treat-and-extend regimen up to a maximum 12 weeks. Criteria for considering not extending the treatment interval are persistent macular fluid with stable vision, recurrent fluid, decrease in vision in the presence of fluid, macular hemorrhage, new choroidal neovascularization or any other sign(s) of exudative disease activity considered vision threatening in the opinion of the treating clinician. Treatment extension is recommended for eyes with a dry macula (ie, without macular fluid) and stable vision. Under both options, the treatment interval may be shortened if visual and/or anatomic outcomes deteriorate. Monitoring without treatment may be considered for eyes with a fluid-free macula for a minimum duration of 48 weeks. A patient completing one full year of monitoring without requiring injections may be considered for discharge from clinic. The treatment algorithm incorporates return to fixed 8-weekly dosing for disease reactivation during treatment extension and reinstatement of treatment for disease recurrence following discontinuation or discharge. For bilateral nAMD, either the eye requiring the more intensive treatment or the eye with the better vision, guided by local clinical practice, should determine the retreatment schedule overall. PMID:29184385
Patel, Praveen J; Devonport, Helen; Sivaprasad, Sobha; Ross, Adam H; Walters, Gavin; Gale, Richard P; Lotery, Andrew J; Mahmood, Sajjad; Talks, James S; Napier, Jackie
2017-01-01
National recommendations on continued administration of aflibercept solution for injection after the first year of treatment for neovascular age-related macular degeneration (nAMD) have been developed by an expert panel of UK retina specialists, based on clinician experience and treatment outcomes seen in year 2. The 2017 update reiterates that the treatment goal is to maintain or improve the macular structural and functional gains achieved in year 1 while attempting to reduce or minimize the treatment burden, recognizing the need for ongoing treatment. At the end of year 1 (ie, the decision visit at month 11), two treatment options should be considered: do not extend the treatment interval and maintain fixed 8-weekly dosing, or extend the treatment interval using a treat-and-extend regimen up to a maximum 12 weeks. Criteria for considering not extending the treatment interval are persistent macular fluid with stable vision, recurrent fluid, decrease in vision in the presence of fluid, macular hemorrhage, new choroidal neovascularization or any other sign(s) of exudative disease activity considered vision threatening in the opinion of the treating clinician. Treatment extension is recommended for eyes with a dry macula (ie, without macular fluid) and stable vision. Under both options, the treatment interval may be shortened if visual and/or anatomic outcomes deteriorate. Monitoring without treatment may be considered for eyes with a fluid-free macula for a minimum duration of 48 weeks. A patient completing one full year of monitoring without requiring injections may be considered for discharge from clinic. The treatment algorithm incorporates return to fixed 8-weekly dosing for disease reactivation during treatment extension and reinstatement of treatment for disease recurrence following discontinuation or discharge. For bilateral nAMD, either the eye requiring the more intensive treatment or the eye with the better vision, guided by local clinical practice, should determine the retreatment schedule overall.
General Information About Injection Wells
This webpage provides general background information on injection wells used to place fluids in the subsurface. It also provides information on use, different categories, and how they are regulated. Information on the protection is also provided.
NASA Astrophysics Data System (ADS)
Zakirov, T.; Galeev, A.; Khramchenkov, M.
2018-05-01
The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at different values of interfacial tension. There is a close coincidence in the average diameters of permeable channels, estimated by capillary curves for different interfacial tension and pore network model. The differences do not exceed 15%.
NASA Technical Reports Server (NTRS)
Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.
1983-01-01
Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.
CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment
NASA Astrophysics Data System (ADS)
Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.
2012-04-01
Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated further by analyses of rock and mineral clasts from core. A surprising result of this study is the extent to which CO2 has dissolved in brines to drive fluid-rock reactions during the short duration of this experiment. However, simple one-dimensional flow modelling with lateral diffusion of CO2 into brines demonstrates that the natural heterogeneities in permeability in the reservoir on the scale of ~ 1 m are sufficient to cause extensive fingering of the CO2 along the highest permeability horizons. Because flow of brines is fastest in the relatively high permeability layers adjacent to the CO2-bearing layers, production of this more CO2-rich water dominates the output from production wells.
Engraftment of mouse amniotic fluid-derived progenitor cells after in utero transplantation in mice.
Lin, Kun-Yi; Peng, Shao-Yu; Chou, Chih-Jen; Wu, Chia-Chun; Wu, Shinn-Chih
2015-11-01
Amniotic fluid-derived progenitor cells (AFPCs) are oligopotent and shed from the fetus into the amniotic fluid. It was reported that AFPCs express stem cell-like markers and are capable of differentiating into specific cell type in in vitro experiments. However, no study has fully investigated the potentiality and destiny of these cells in in vivo experiments. Ds-red transgenic mice (on Day 13.5 of pregnancy) were transplanted in utero with enhanced green fluorescent protein-labeled mouse AFPC (EGFP-mAFPCs). After birth, baby mice were euthanized at 3-week intervals beginning 3 weeks postnatally, and the specimens were examined by polymerase chain reaction, histology, and flow cytometry. Our results demonstrate the transplantability of mAFPCs into all three germ layers and the potential of mAFPCs in the study of progenitor cell homing, differentiation, and function. Engraftment of EGFP-mAFPCs was detected in the intestine, kidney, muscle, skin, bladder, heart, stomach, etc., at 3 weeks after delivery. This model using EGFP-mAFPCs injected in utero may provide an ideal method for determining the fate of transplanted cells in recipients and these findings may justify a clinical trial of in utero transplantation during gestation for patients who have inherited genetic disorders. Copyright © 2014. Published by Elsevier B.V.
2003-05-05
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.
NASA Technical Reports Server (NTRS)
Winchester, L. W., Jr.
1980-01-01
Using the finite difference method with overrelaxation, numerical solutions of the steady-state vorticity transport equation were obtained for a continuous flow diffusion chamber of the Hudson-Squires type. The calculation neglected the effects due to temperature, gravity, and saturation. The size and shape of the manifold used to inject the aerosol laden flow were varied to obtain a design which would improve the performance of the chamber from strictly low Reynolds number (less than 20) fluid dynamical considerations.
Numerical prediction of flow induced fibers orientation in injection molded polymer composites
NASA Astrophysics Data System (ADS)
Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.
2015-12-01
Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.
Poromechanical response of naturally fractured sorbing media
NASA Astrophysics Data System (ADS)
Kumar, Hemant
The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derenzo, Stephen E.; Moses, William W.
An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.
2017-07-01
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ⩽ 650 eV, which is in contrast to T i,OV ⩽ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.
Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...
2017-05-16
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less
The U.S. Gas Flooding Experience: CO2 Injection Strategies and Impact on Ultimate Recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunez-Lopez, Vanessa; Hosseini, Seyyed; Gil-Egui, Ramon
The Permian Basin in West Texas and southwestern New Mexico has seen 45 years of oil reserve growth through CO2 enhanced oil recovery (CO2 EOR). More than 60 CO2 EOR projects are currently active in the region’s limestone, sandstone and dolomite reservoirs. Water alternating gas (WAG) has been the development strategy of choice in the Permian for several technical and economic reasons. More recently, the technology started to get implemented in the much more porous and permeable clastic depositional systems of the onshore U.S. Gulf Coast. Continued CO2 injection (CGI), as opposed to WAG, was selected as the injection strategymore » to develop Gulf Coast oil fields, where CO2 injection volumes are significantly larger (up to 6 times larger) than those of the Permian. We conducted a compositional simulation based study with the objective of comparing the CO2 utilization ratios (volume of CO2 injected to produce a barrel of oil) of 4 conventional and novel CO2 injection strategies: (1) continuous gas injection (CGI), (2) water alternating gas (WAG), (3) water curtain injection (WCI), and (4) WAG and WCI combination. These injection scenarios were simulated using the GEM module from the Computer Modeling Group (CMG). GEM is an advanced general equation-of-state compositional simulator, which includes equation of state, CO2 miscible flood, CO2/brine interactions, and complex phase behavior. The simulator is set up to model three fluid phases including water, oil, and gas. Our study demonstrates how the selected field development strategy has a significant impact on the ultimate recovery of CO2-EOR projects, with GCI injection providing maximum oil recovery in absolute volume terms, but with WAG offering a more balanced technical-economical approach.« less
A prototype space flight intravenous injection system
NASA Technical Reports Server (NTRS)
Colombo, G. V.
1985-01-01
Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.
Multipoint Fuel Injection Arrangements
NASA Technical Reports Server (NTRS)
Prociw, Lev Alexander (Inventor)
2017-01-01
A multipoint fuel injection system includes a plurality of fuel manifolds. Each manifold is in fluid communication with a plurality of injectors arranged circumferentially about a longitudinal axis for multipoint fuel injection. The injectors of separate respective manifolds are spaced radially apart from one another for separate radial staging of fuel flow to each respective manifold.
NASA Astrophysics Data System (ADS)
Gu, Rui
Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.
Possible effects of two-phase flow pattern on the mechanical behavior of mudstones
NASA Astrophysics Data System (ADS)
Goto, H.; Tokunaga, T.; Aichi, M.
2016-12-01
To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.
Cytarabine Lipid Complex Injection
Cytarabine lipid complex comes as a liquid to be injected intrathecally (into the fluid-filled space of the spinal canal) over 1 to 5 minutes by a doctor or nurse in a medical facility. At first, cytarabine lipid ...
Alleviating debilitating, chronic constipation with colostomy after appendicostomy: a case study.
Baig, Mirza K; Boyer, Mary Lou; Marquez, Helen; Wexner, Steven D
2005-12-01
Severe chronic constipation is a debilitating condition. Patients not only experience infrequent bowel movements, but also are often frustrated by the sensation of incomplete evacuation; pain; straining; daily use of enemas; and continual concerns regarding diet, fluids, and medications. Diagnostic tests are performed to rule out organic causes of the condition. Common treatment options consist of dietary fiber supplementation, dietary instruction, adequate fluid intake, enemas, and laxatives; additional noninvasive management includes biofeedback training and botulinum toxin type A injections. Surgery is rarely recommended, although a select group of patients may benefit from antegrade continence enema procedure. A female patient presented with a history of long-standing constipation. When antegrade continence enema offered no improvement and other treatment measures failed, she underwent successful laparoscopic-assisted sigmoid resection and end colostomy. This approach may provide options for patients in similar circumstances.
Flow produced by a free-moving floating magnet driven electromagnetically
NASA Astrophysics Data System (ADS)
Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio
2018-04-01
The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.
Marker retention in the cochlea following injections through the round window membrane
Salt, Alec N.; Sirjani, Davud B.; Hartsock, Jared J.; Gill, Ruth M.; Plontke, Stefan K.
2007-01-01
Local delivery of drugs to the inner ear is increasingly being used in both clinical and experimental studies. Although direct injection of drugs into perilymph appears to be the most promising way of administering drugs quantitatively, no studies have yet demonstrated the pharmacokinetics in perilymph following direct injections. In this study, we have investigated the retention of substance in perilymph following a single injection into the basal turn of scala tympani (ST). The substance injected was a marker, trimethylphenylammonium (TMPA) that can be detected in low concentrations with ion-selective microelectrodes. Perilymph pharmacokinetics of TMPA was assessed using sequential apical sampling to obtain perilymph for analysis. The amount of TMPA retained in perilymph was compared for different injection and sampling protocols. TMPA concentrations measured in fluid samples were close to those predicted by simulations when the injection pipette was sealed into the bony wall of ST but were systematically lower when the injection pipette was inserted through the round window membrane (RWM). In the latter condition it was estimated that over 60% of the injected TMPA was lost due to leakage of perilymph around the injection pipette at a rate estimated to be 0.09 μL/min. The effects of leakage during and after injections through the RWM were dramatically reduced when the round window niche was filled with 1% sodium hyaluronate gel before penetrating the RWM with the injection pipette. The findings demonstrate that in order to perform quantitative drug injections into perilymph, even small rates of fluid leakage at the injection site must be controlled. PMID:17662546
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
NASA Astrophysics Data System (ADS)
Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.
2016-12-01
Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.
The Use of Ferrofluids to Model Materials Processing (MSFC Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Leslie, F.; Ramachandran, N.
2000-01-01
Many crystals grown in space have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. To study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received recent, growing interest. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Although any range of concentrations can be realized, photometric constraints impose some limitations on measurements. Results of the ground-based experiments indicate that the species distribution is within 3 percent of the predicted value.
Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.
Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.
Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems
NASA Astrophysics Data System (ADS)
Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.
2017-12-01
Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions that may have occurred in similar systems on the early Earth. [1] Russell, MJ et al. 2014. Astrobiology,14, 4, 308-343. [2] Barge, LM et al. (2015) Journal of Visualized Experiments, 105, DOI: 10.3791/53015.
Lallemand, Elodie; Trencart, Pierre; Tahier, Carine; Dron, Frederic; Paulin, Angelique; Tessier, Caroline
2013-08-01
To evaluate pharmacokinetic-pharmacodynamic variables and local tolerance at injection-site of marbofloxacin administered via regional intravenous limb perfusion (RIVLP) in standing horses. Adult horses (n = 6). RIVLP were performed with rubber tourniquets applied to the forelimbs of standing sedated horses. Marbofloxacin (0.67 mg/kg) was randomly injected in 1 forelimb, with the contralateral limb serving as a control (0.9% NaCl solution). Samples of jugular blood and synovial fluid from the radiocarpal joint of the marbofloxacin-perfused limb were collected before and at intervals after RIVLP for determination of drug concentrations. All injection sites were evaluated before, 24 and 48 hours after RIVLP by means of ultrasonographic examination, circumferential measurements and subjective visible inflammation scores by veterinarians unaware of treatment received. No adverse effects associated with the technique or antibiotic were observed. High marbofloxacin concentrations were obtained in the synovial fluid, AUCINF was significantly higher in synovial fluid than in plasma (78.64 ± 49.41 and 2.85 ± 0.60 µg h/mL respectively, P = .028). The efficacy indices, AUC0-24 /MIC90 and Cmaxobs/MIC90 , predicted a favorable outcome in the treatment of synovial fluid infections caused by enterobacteriaceae and Staphylococcus aureus. After RIVLP, there was no statistically significant difference between marbofloxacin-injected and control limbs for lameness, visual inflammation score, limb circumference, and ultrasonographic appearance of the veins. Marbofloxacin injected limbs had a significantly greater subcutaneous thickness, compared with control limbs. These data suggest that RIVLP of marbofloxacin (0.67 mg/kg) could be a safe and effective method for treatment of infections of the distal portion of the limb for susceptible organisms. © Copyright 2013 by The American College of Veterinary Surgeons.
Andric, S A; Kostic, T S; Dragisic, S M; Andric, N L; Stojilkovic, S S; Kovacevic, R Z
2000-01-01
Polychlorinated biphenyl (PCB)-based transformer fluids belong to a class of environmentally persistent mixtures with known toxic effects. Here, we studied the acute effects of Askarel (which contains Aroclor 1260) and two substitute transformer fluids (the silicone oil-based DC561 and the mineral oil-based ENOL C) on rat testicular steroidogenesis. Single intraperitoneal (ip; 10 mg/kg body weight) or bilateral intratesticular (itt; 25 microg/testis) injections of Askarel markedly decreased serum androgen levels 24 hr after administration. In acute testicular cultures from these animals, chorionic gonadotropin-stimulated progesterone and androgen productions were severely attenuated. When itt was injected or added in vitro, Askarel inhibited 3ss-hydroxysteroid dehydrogenase (3ssHSD), stimulated 17[alpha]-hydroxylase/lyase (P450c17), and did not affect 17ss-hydroxysteroid dehydrogenase in testicular postmitochondrial fractions. The ip-injected Askarel did not affect 3ssHSD, but inhibited P450c17, suggesting that a more intensive metabolism of peripherally injected Askarel reduces the circulating levels of active ingredients below the threshold needed for inhibition of 3ssHSD and generates a derivative that inhibits P450c17. In contrast to Askarel, itt-injection (25 microg/testis) of DC561 and ENOL C did not affect in vivo and in vitro steroidogenesis. These findings show the acute effects of Askarel, but not silicone and mineral oils, on testicular steroidogenesis. PMID:11049815
Pattern palette for complex fluid flows
NASA Astrophysics Data System (ADS)
Sandnes, B.
2012-04-01
From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.
21 CFR 880.5430 - Nonelectrically powered fluid injector.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonelectrically powered fluid injector. 880.5430 Section 880.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hypodermic injection by means of a narrow, high velocity jet of fluid which can penetrate the surface of the...
33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...
Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Edwards, Jack R.
2010-01-01
Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure assumptions.
Piront, M L; Schmidt, R
1988-02-23
Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1985-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter
1983-01-01
A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.
PENETRATION OF RADIOACTIVE SODIUM AND CHLORIDE INTO CEREBROSPINAL FLUID AND AQUEOUS HUMOR
Wang, Jun-Ch'uan
1948-01-01
1. Experiments were performed on six dogs to determine the rate of penetration of Cl33 and Na24 across the blood-aqueous humor and blood-cerebrospinal fluid barriers after intravenous injection of the radioactive ions. The radioactivity measurements were made with an immersion type of Geiger-Müller counter. 2. The concentrations of the labelled ions in the anterior chamber and the cisterna magna increase slowly to approach that of plasma. The rate of penetration k is calculated from a simple exponential equation with the half-value interval t 0.5 or the time required for the labelled-ion concentration in the fluid to reach 50 per cent of that of plasma. The average t 0.5 for Cl38 and Na24 in aqueous humor are 34.3 ± 9 and 27.3 ± 9 minutes, respectively, while those for cerebrospinal fluid are 90 ± 6 and 95 ± 6 minutes, respectively. 3. A study of the radioactivity in plasma was made to determine the per cent remaining after a steady state was reached. By means of this determination the sodium and chloride space was calculated to be 33 ± 5 per cent. PMID:18920614
Element mobilization from Bakken shales as a function of water chemistry.
Wang, Lin; Burns, Scott; Giammar, Daniel E; Fortner, John D
2016-04-01
Waters that return to the surface after injection of a hydraulic fracturing fluid for gas and oil production contain elements, including regulated metals and metalloids, which are mobilized through interactions between the fracturing fluid and the shale formation. The rate and extent of mobilization depends on the geochemistry of the formation and the chemical characteristics of the fracturing fluid. In this work, laboratory scale experiments investigated the influence of water chemistry on element mobilization from core samples taken from the Bakken formation, one of the most productive shale oil plays in the US. Fluid properties were systematically varied and evaluated with regard to pH, oxidant level, solid:water ratio, temperature, and chemical additives. Element mobilization strongly depended on solution pH and redox conditions and to a lesser extent on the temperature and solid:water ratio. The presence of oxygen and addition of hydrogen peroxide or ammonium persulfate led to pyrite oxidation, resulting in elevated sulfate concentrations. Further, depending on the mineral carbonates available to buffer the system pH, pyrite oxidation could lower the system pH and enhance the mobility of several metals and metalloids. Copyright © 2016 Elsevier Ltd. All rights reserved.
Instrumental Implementation of an Experiment to Demonstrate αω -dynamos in Accretion Disks
NASA Astrophysics Data System (ADS)
Si, Jiahe; Sonnenfeld, Richard; Colgate, Art; Li, Hui; Nornberg, Mark
2016-10-01
The New Mexico Liquid Metal αω -dynamo experiment is aimed to demonstrate a galactic dynamo. Our goal is to generate the ω-effect and α-effect by two semi-coherent flows in laboratory. Two coaxial cylinders are used to generate Taylor-Couette flows to simulate the differential rotation of accretion disks. Plumes induced by jets injected into the Couette flows are expected to produce helicities necessary for the α-effect. We have demonstrated an 8-fold poloidal-to-toroidal flux amplification from differential rotation (the ω-effect) by minimizing turbulence in our apparatus. To demonstrate the α-effect, the experimental apparatus is undergoing significant upgrade. We have constructed a helicity injection facility, and are also designing and testing a new data acquisition system capable of transmitting data in a high speed rotating frame. Additional magnetic field diagnostics will also be included. The upgrade is intended to answer the question of whether a self-sustaining αω -dynamo can be constructed with a realistic fluid flow field, as well as to obtain more details to understand dynamo action in highly turbulent Couette flow.
Lu, Jiemin; Kharaka, Yousif K.; Thordsen, James J.; Horita, Juske; Karamalidis, Athanasios; Griffith, Craig; Hakala, J. Alexandra; Ambats, Gil; Cole, David R.; Phelps, Tommy J.; Manning, Michael A.; Cook, Paul J.; Hovorka, Susan D.
2012-01-01
A highly integrated geochemical program was conducted at the Cranfield CO2-enhanced oil recovery (EOR) and sequestration site, Mississippi, U.S.A.. The program included extensive field geochemical monitoring, a detailed petrographic study, and an autoclave experiment under in situ reservoir conditions. Results show that mineral reactions in the Lower Tuscaloosa reservoir were minor during CO2 injection. Brine chemistry remained largely unchanged, which contrasts with significant changes observed in other field tests. Field fluid sampling and laboratory experiments show consistently slow reactions. Carbon isotopic composition and CO2 content in the gas phase reveal simple two-end-member mixing between injected and original formation gas. We conclude that the reservoir rock, which is composed mainly of minerals with low reactivity (average quartz 79.4%, chlorite 11.8%, kaolinite 3.1%, illite 1.3%, concretionary calcite and dolomite 1.5%, and feldspar 0.2%), is relatively unreactive to CO2. The significance of low reactivity is both positive, in that the reservoir is not impacted, and negative, in that mineral trapping is insignificant.
Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.
2018-03-01
Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.
Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.
2009-01-01
Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.
Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems
NASA Astrophysics Data System (ADS)
Zeng, C.; Deng, W.; Wu, C.; Insall, M.
2017-12-01
In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.