Sample records for fluid injection techniques

  1. Simultaneous Determination of Fluid Shifts during Thermal Stress in a Small Animal Model,

    DTIC Science & Technology

    1985-09-01

    extracellular fluid voitmie (BCF) was measured using a single injection c- inulin , technique, and plasma voilme (PV) was determined by ca.rdio--yreen dye...using tritiated water, extracell1ular fluid volume (ECF) was measured using a single injection C- inulin technique, and plasma volume (PV) was...space. However, inulin (10) has several advantages over the aforementioned because it Is not metabolized, stored, or incorporated by cells or

  2. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  3. Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques.

    PubMed

    Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T

    2018-01-01

    Data comparing the denture tooth movement of computer-aided design and computer-aided manufacturing (CAD-CAM) and conventional denture processing techniques are lacking. The purpose of this in vitro study was to compare the denture tooth movement of pack-and-press, fluid resin, injection, CAD-CAM-bonded, and CAD-CAM monolithic techniques for fabricating dentures to determine which process produces the most accurate and reproducible prosthesis. A total of 50 dentures were evaluated, 10 for each of the 5 groups. A master denture was fabricated and milled from prepolymerized poly(methyl methacrylate). For the conventional processing techniques (pack-and-press, fluid resin, and injection) a polyvinyl siloxane putty mold of the master denture was made in which denture teeth were placed and molten wax injected. The cameo surface of each wax-festooned denture was laser scanned, resulting in a standard tessellation language (STL) format file. The CAD-CAM dentures included 2 subgroups: CAD-CAM-bonded teeth in which the denture teeth were bonded into the milled denture base and CAD-CAM monolithic teeth in which the denture teeth were milled as part of the denture base. After all specimens had been fabricated, they were hydrated for 24 hours, and the cameo surface laser scanned. The preprocessing and postprocessing scan files of each denture were superimposed using surface-matching software. Measurements were made at 64 locations, allowing evaluation of denture tooth movement in a buccal, lingual, mesial-distal, and occlusal direction. The use of median and interquartile range values was used to assess accuracy and reproducibility. Levene and Kruskal-Wallis analyses of variance were used to evaluate differences between processing techniques (α=.05). The CAD-CAM monolithic technique was the most accurate, followed by fluid resin, CAD-CAM-bonded, pack-and-press, and injection. CAD-CAM monolithic technique was the most reproducible, followed by pack-and-press, CAD-CAM-bonded, injection, and fluid resin. Techniques involving compression during processing showed increased positive occlusal tooth movement compared with techniques not involving compression. CAD-CAM monolithic dentures produced the best combination of accuracy and reproducibility of the tested techniques. The results from this study demonstrate that varying amounts of tooth movement can be expected depending on the processing technique. However, the clinical significance of these differences is unknown. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations

    NASA Astrophysics Data System (ADS)

    Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.

    2012-12-01

    Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast reaction of the injected CO2 with the ambient reservoir fluid and rocks. Mixing and in situ CO2-water-rock reactions are detected by changes in the different tracer ratios. The feasibility of 14C as a reactive tracer for geologic CO2 storage also depends on the analytical technique used to measure 14C activities. Currently, 14C is analyzed using Accelerator Mass Spectrometery (AMS), which is expensive and requires centralized facilities. To enable real time online monitoring and verification, we are developing an alternative detection method for radiocarbon. The IntraCavity OptoGalvanic Spectroscopy (ICOGS) system is using a CO2 laser to detect carbon isotope ratios at environmental levels. Results from our prototype of this bench-top technology demonstrate that an ICOGS system can be used in a continuous mode with analysis times of the order of minutes, and can deliver data of similar quality as AMS.

  5. Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media

    NASA Astrophysics Data System (ADS)

    Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)

  6. A Noninvasive Method to Study Regulation of Extracellular ...

    EPA Pesticide Factsheets

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % fluid, and is a measure of unbound water in the vascular and extracelular spaces. We hypothesized that injecting a bolus of fluid into the peritoneal cavity would lead to an abrupt increase in %fluid and the rate of clearance monitored with TD-NMR would provide a noninvasive assessment of the free water homeostasis in an awake rat. Several strains of laboratory rats were injected intraperitoneally with 10 ml/kg isotonic or hypertonic saline and % fluid was monitored repeatedly with a Bruker "Minispec" TD-NMR body composition system.Following isotonic saline, %fluid increased immediately by 0.5% followed by a recovery over ~6h. Injecting hypertonic (3 times normal saline) resulted in a significantly greater rise in %fluid and longer recovery. lntraperitoneal and subcutaneous fluid injection led to similar rates of clearance. The Wistar-Kyoto rat strain displayed significantly slower recovery to fluid loads compared with Long-Evans and Sprague-Dawley strains. Rats exercised chronically showed significant increases in %fluid, but the rate of clearance of fluid was similar to that of sedentary animals. We conclude that this technique could be used to study vascular and extracellular volume ho

  7. Effects of long-term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of The Geysers geothermal field

    NASA Astrophysics Data System (ADS)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Dresen, Georg; Bohnhoff, Marco; Sone, Hiroki; Hartline, Craig

    2015-10-01

    The long-term temporal and spatial changes in statistical, source, and stress characteristics of one cluster of induced seismicity recorded at The Geysers geothermal field (U.S.) are analyzed in relation to the field operations, fluid migration, and constraints on the maximum likely magnitude. Two injection wells, Prati-9 and Prati-29, located in the northwestern part of the field and their associated seismicity composed of 1776 events recorded throughout a 7 year period were analyzed. The seismicity catalog was relocated, and the source characteristics including focal mechanisms and static source parameters were refined using first-motion polarity, spectral fitting, and mesh spectral ratio analysis techniques. The source characteristics together with statistical parameters (b value) and cluster dynamics were used to investigate and understand the details of fluid migration scheme in the vicinity of injection wells. The observed temporal, spatial, and source characteristics were clearly attributed to fluid injection and fluid migration toward greater depths, involving increasing pore pressure in the reservoir. The seasonal changes of injection rates were found to directly impact the shape and spatial extent of the seismic cloud. A tendency of larger seismic events to occur closer to injection wells and a correlation between the spatial extent of the seismic cloud and source sizes of the largest events was observed suggesting geometrical constraints on the maximum likely magnitude and its correlation to the average injection rate and volume of fluids present in the reservoir.

  8. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  9. Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.

    Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.

  10. Droplet-Based Segregation and Extraction of Concentrated Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buie, C R; Buckley, P; Hamilton, J

    2007-02-23

    Microfluidic analysis often requires sample concentration and separation techniques to isolate and detect analytes of interest. Complex or scarce samples may also require an orthogonal separation and detection method or off-chip analysis to confirm results. To perform these additional steps, the concentrated sample plug must be extracted from the primary microfluidic channel with minimal sample loss and dilution. We investigated two extraction techniques; injection of immiscible fluid droplets into the sample stream (''capping'''') and injection of the sample into an immiscible fluid stream (''extraction''). From our results we conclude that capping is the more effective partitioning technique. Furthermore, this functionalitymore » enables additional off-chip post-processing procedures such as DNA/RNA microarray analysis, realtime polymerase chain reaction (RT-PCR), and culture growth to validate chip performance.« less

  11. Carbon nanopipettes for cell probes and intracellular injection

    NASA Astrophysics Data System (ADS)

    Schrlau, Michael G.; Falls, Erica M.; Ziober, Barry L.; Bau, Haim H.

    2008-01-01

    We developed integrated, carbon-based pipettes with nanoscale dimensions (CNP) that can probe cells with minimal intrusion, inject fluids into the cells, and concurrently carry out electrical measurements. Our manufacturing technique does not require cumbersome nanoassembly and is amenable to mass production. Using CNPs, we demonstrate the injection of reagents into cells with minimal intrusion and without inhibiting cell growth.

  12. Carbon nanopipettes for cell probes and intracellular injection.

    PubMed

    Schrlau, Michael G; Falls, Erica M; Ziober, Barry L; Bau, Haim H

    2008-01-09

    We developed integrated, carbon-based pipettes with nanoscale dimensions (CNP) that can probe cells with minimal intrusion, inject fluids into the cells, and concurrently carry out electrical measurements. Our manufacturing technique does not require cumbersome nanoassembly and is amenable to mass production. Using CNPs, we demonstrate the injection of reagents into cells with minimal intrusion and without inhibiting cell growth.

  13. Electrochemical attosyringe.

    PubMed

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  14. Electrochemical attosyringe

    PubMed Central

    Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.

    2007-01-01

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612

  15. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging.

    PubMed

    Prodanović, M; Lindquist, W B; Seright, R S

    2006-06-01

    Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.

  16. Fracture Flow Characterization from Seismic and Electric Properties: Insight from Experimental and Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Sawayama, K.; Kitamura, K.; Tsuji, T.; Fujimitsu, Y.

    2017-12-01

    The estimation of fluid flow and its distribution in the fracture is essential to evaluate subsurface fluid (e.g., geothermal water, ground water, oil and gas). Recently, fluid flow in the geothermal reservoir has been attracting attention to develop EGS (enhanced geothermal system) technique. To detect the fluid distribution under the ground, geophysical exploration such as seismic and electromagnetic methods have been broadly applied. For better interpretation of these exploration data, more detailed investigation about the effect of fluid on seismic and electric properties of fracture is required. In this study, we measured and calculated seismic and electric properties of a cracked rock to discuss the effect of water distribution and saturation on them as well as fluid flow. For the experimental observation, we developed the technique to measure electrical impedance, P-wave velocity and water saturation simultaneously during the fluid-flow test. The test has been conducted as follows; a cracked andesite core sample was filled with nitrogen gas (Pp = 10 MPa) under 20 MPa of confining pressure and then, brine (1wt.%-KCl, 1.75 S/m) was injected into the sample to replace the gas. During the test, water saturation, permeability, electrical impedance and P-wave velocity were measured. As a result of this experimental study, electrical impedance dramatically decreased from 105 to 103 Ω and P-wave velocity increased by 2% due to the brine injection. This remarkable change of the electrical impedance could be due to the replacement of pre-filled nitrogen gas to the brine in the broad fracture. After the brine injection, electrical impedance decreased with injection pressure by up to 40% while P-wave velocity was almost constant. This decrease of electrical impedance could be related to the flow to the narrow path (microcrack) which cannot be detected by P-wave velocity. These two types of fluid flow mechanism were also suggested from other parameters such as permeability, water saturation and saturation exponent of Archie's law. To quantify the fluid flow and its distribution in the fracture, we applied fluid flow simulation by LBM (Lattice Boltzmann Method). From this result, we calculate physical parameters by FEM and FDM and then discuss effect of fluid on them as well as their comparison with experimental results.

  17. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    NASA Astrophysics Data System (ADS)

    Habouti, Salah; Kunstmann-Olsen, Casper; Hoyland, James D.; Rubahn, Horst-Günter; Es-Souni, Mohammed

    2014-05-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers.

  18. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  19. An anatomic study of local infiltration analgesia in total knee arthroplasty.

    PubMed

    Quinn, M; Deakin, A H; McDonald, D A; Cunningham, I K T; Payne, A P; Picard, F

    2013-10-01

    Local infiltration analgesia (LIA) is a relatively novel technique developed for effective pain control following total knee arthroplasty (TKA), reducing requirements for epidural or parenteral postoperative analgesia. This study investigated the anatomical spread of an LIA used in TKA to identify the nerve structures reached by the injected fluid. Six fresh-frozen cadaveric lower limbs were injected according to a standardised LIA technique with a solution of latex and India ink to enable visualisation. Wounds were closed and limbs placed flat in a freezer at -20°C for two weeks. Limbs were then either sliced or dissected to identify solution locations. Solution was found from the proximal thigh to the middle of the lower leg. The main areas of concentration were the popliteal fossa, the anterior aspect of the femur and the subcutaneous tissue of the anterior aspect of the knee. There was less solution in the lower popliteal fossa. The solution was found to reach the majority of nerves, with good infiltration of nerves supplying the knee. These results support the positive clinical outcomes with this LIA technique. However, the lack of infiltration into the lower popliteal fossa suggests more fluid or a different injection point could be used. The solution reaching the extensor muscles of the lower leg is likely to have no beneficial analgesic effect for a TKA patient. The LIA technique is already used in clinical practice following total knee arthroplasty. Results from this study show there may be scope to optimise the injection sites in LIA technique. © 2013.

  20. Detection and three-dimensional visualization of lesion models using sonoelastography

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence S.; Gaborski, Thomas R.; Strang, John G.; Rubens, Deborah; Parker, Kevin J.

    2002-04-01

    Sonoelastography is a vibration Doppler technique for imaging the relative elasticity of tissues. Detectability of hard lesions of various sizes has previously been demonstrated in tissue phantoms by our group. Because real tissue differs from phantom material, the injection of formaldehyde in fresh liver tissue is being used as an in-vitro lesion model. Pieces of fresh calf liver were embedded in an agar gel then injected with a bolus of 37% formaldehyde to create a stiff lesion. Two and three-dimensional sonoelastography and b-mode images were acquired. The lesions were visible in each sonoelastography image as a region of reduced vibration. After imaging, lesions were dissected and measured for size and volume. One 0.4 cc bolus injection of formaldehyde created a lesion with a volume of 10.3 cc in the sonoelastography image compared to 9.3 cc using fluid displacement of the dissected lesion. A 0.33 cc injection of formaldehyde lesion created a volume of 5 cc in the sonoelastography image compared to 4.4 cc using fluid displacement. Sonoelastography imaging techniques for imaging hard lesions in phantoms can be successfully extended to imaging formaldehyde induced lesions in real tissue.

  1. Ultrasound-guided approach to the cervical articular process joints in horses: a validation of the technique in cadavers.

    PubMed

    Purefoy Johnson, Jessica; Stack, John David; Rowan, Conor; Handel, Ian; O'Leary, John Mark

    2017-05-22

    To compare accuracy of the ultrasound-guided craniodorsal (CrD) approach with the dorsal (D) approach to the cervical articular process joints, and to evaluate the effect of the transducer, needle gauge, and operator experience. Cervical articular process joints from 14 cadaveric neck specimens were injected using either a D or CrD approach, a linear (13 MHx) or microconvex transducer (10 MHz), and an 18 or 20 gauge needle, by an experienced or inexperienced operator. Injectate consisted of an iodinated contrast material solution. Time taken for injection, number of redirects, and retrieval of synovial fluid were recorded. Accuracy was assessed using a scoring system for contrast seen on computed tomography (CT). The successful performance of intra-articular injections of contrast detected by CT using the D (61/68) and CrD (57/64) approaches was comparable. No significant effect of approach, transducer or needle gauge was observed on injection accuracy, time taken to perform injection, or number of redirects. The 18 gauge needle had a positive correlation with retrieval of synovial fluid. A positive learning curve was observed for the inexperienced operator. Both approaches to the cervical articular process joints were highly accurate. Ultrasound-guided injection of the cervical articular process joints is an easily-learnt technique for an inexperienced veterinarian. Either approach may be employed in the field with a high level of accuracy, using widely available equipment.

  2. Solution mining systems and methods for treating hydrocarbon containing formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; de Rouffignac, Eric Pierre [Rijswijk, NL; Schoeling, Lanny Gene [Katy, TX

    2009-07-14

    A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

  3. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  4. Analogue modelling of caprock failure and sediment mobilisation due to pore fluid overpressure in shallow reservoirs

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; May, Franz

    2017-04-01

    Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The breakthrough of the fractures at the surface is accompanied by a significant drop of air pressure at the base of the analogue materials. The width of the dome shaped uplift is narrower and the initiating fluid pressure in the needle valve is lower, if the fluid pressure at the base of the experiment is larger. The experimental outcomes help to evaluate if the injection of CO2 into a reservoir potentially provokes initiation or reactivation of fractures and sediment mobilisation structures.

  5. Couette flow of an incompressible fluid in a porous channel with mass transfer

    NASA Astrophysics Data System (ADS)

    Niranjana, N.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    The present discussion deals with the study of couette flow through a porous medium of a viscous incompressible fluid between two infinite horizontal parallel porous flat plates with heat and mass transfer. The stationary plate and the plate in uniform motion are subjected to transverse sinusoidal injection and uniform suction of the fluid. Due to this type of injection velocity, the flow becomes three dimensional. The analytical solutions of the nonlinear partial differential equations of this problem are obtained by using perturbation technique. Expressions for the velocity, temperature fields and the rate of heat and mass transfers are obtained. Effects of the following parameters Schmidt number (Sc), Modified Grashof number (Gm) on the velocity, temperature and concentration fields are obtained numerically and depicted through graphs. The rate of heat and mass transfer are also analyzed.

  6. Injecting 1000 centistoke liquid silicone with ease and precision.

    PubMed

    Benedetto, Anthony V; Lewis, Alan T

    2003-03-01

    Since the Food and Drug Administration approved the use of the 1000 centistoke liquid silicone, Silikon 1000, for intraocular injection, the off-label use of this injectable silicone oil as a permanent soft-tissue filler for facial rejuvenation has increased in the United States. Injecting liquid silicone by the microdroplet technique is the most important preventive measure that one can use to avoid the adverse sequelae of silicone migration and granuloma formation, especially when injecting silicone to improve small facial defects resulting from acne scars, surgical procedures, or photoaging. To introduce an easy method for injecting a viscous silicone oil by the microdroplet technique, using an inexpensive syringe and needle that currently is available from distributors of medical supplies in the United States. We suggest the use of a Becton Dickinson 3/10 cc insulin U-100 syringe to inject Silikon 1000. This syringe contains up to 0.3 mL of fluid, and its barrel is clearly marked with an easy-to-read scale of large cross-hatches. Each cross-hatch marking represents either a unit value of 0.01 mL or a half-unit value of 0.005 mL of fluid, which is the approximate volume preferred when injecting liquid silicone into facial defects. Because not enough negative pressure can be generated in this needle and syringe to draw up the viscous silicone oil, we describe a convenient and easy method for filling this 3/10 cc diabetic syringe with Silikon 1000. We have found that by using the Becton Dickinson 3/10 cc insulin U-100 syringe, our technique of injecting minute amounts of Silikon 1000 is facilitated because each widely spaced cross-hatch on the side of the syringe barrel is easy to read and measures exact amounts of the silicone oil. These lines of the scale on the syringe barrel are so large and clearly marked that it is virtually impossible to overinject the most minute amount of silicone. Sequential microdroplets of 0.01 cc or less of Silikon 1000 can be measured and injected with the greatest ease and precision so that inadvertent overdosing and complications can be avoided.

  7. [Sclerotherapy with 3% polidocanol for hydrocele testis].

    PubMed

    Mizoguchi, H; Imagawa, M; Fukunaga, Y; Nomura, Y; Kubota, M; Okita, J

    1995-12-01

    We studied the clinical efficacy of sclerotherapy with injection of 3% polidocanol for hydrocele testis. From July, 1992 to March, 1995 sclerotherapy with single injection of polidocanol was performed for 11 patients with 12 hydrocele testis on an outpatient basis. We instilled 3 or 5ml of 3% polidocanol after complete removal of fluid in the hydrocele testis. Complete disappearance on ultrasonography was observed in 75% of the hydrocele testis 6 months after this sclerotherapy. There was neither pain during instillation of 3% polidocanol nor any other complication. Two patients with fluid reaccumulation underwent hydrocelectomy 16 and 6 months after sclerotherapy, respectively. This procedure seems to be a safe and useful technique as primary treatment for hydrocele testis.

  8. Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2011-12-01

    The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.

  9. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  10. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable relationships that exist between P-wave velocity and fluid saturation can allow a quantitative assessment of contaminant migration.

  11. Evaluation of performance, safety, subject acceptance, and compliance of a disposable autoinjector for subcutaneous injections in healthy volunteers.

    PubMed

    Berteau, Cecile; Schwarzenbach, Florence; Donazzolo, Yves; Latreille, Mathilde; Berube, Julie; Abry, Herve; Cotten, Joël; Feger, Celine; Laurent, Philippe E

    2010-10-05

    A disposable autoinjector was developed for subcutaneous (SC) self-injection by patients with chronic diseases. To verify its performance and evaluate its acceptance, a clinical study was conducted in healthy volunteers, comparing SC injections performed by subjects using the autoinjector with SC injections performed by nurses using a syringe. This was a randomized, single-center, crossover study comparing SC self-injection using an autoinjector with SC nurse-administered injection using a syringe. Two volumes (0.2 mL and 1 mL) were injected into healthy volunteers. Study objectives included assessment of the accuracy and consistency of the volume injected by the injection systems, and skin reaction and pain associated with the injection. The fluid depot in the SC tissue layer was evaluated by ultrasound. Subject acceptance was evaluated using questionnaires on attitudes and emotions towards the injection technique, and challenged by seeking the subjects' preferred system for a final study injection or future treatment. A total of 960 injections (480 with autoinjector, 480 with syringe) were performed in 40 subjects. There were no significant differences in mean fluid leakage and injected volumes between the systems. Pain associated with the injection was significantly lower with the auto-injector than with the syringe. Local skin reaction at the injection site was overall satisfactory. Injections were appropriately performed by all subjects. At study end, all 40 subjects preferred the autoinjector for a final study injection and for future treatment. This study indicated that the autoinjector used by the subject was similar to a syringe used by a nurse in terms of performance and safety in administering the injections, and better in terms of pain, overall acceptance, and preference.

  12. Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis

    NASA Astrophysics Data System (ADS)

    Thorpe, S. D.; Tiampo, K. F.

    2016-12-01

    In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.

  13. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    EPA Science Inventory

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  14. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Oldenburg, C.; Moridis, G.

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport.more » A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.« less

  15. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  16. Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques

    PubMed Central

    Shaaker, Maghsod; Rahimipour, Ali; Nouri, Mohammad; Khanaki, Korosh; Darabi, Masoud; Farzadi, Laya; Shahnazi, Vahideh; Mehdizadeh, Amir

    2012-01-01

    Background: Fatty acids are known to be critically important in multiple biological functions. Phospholipid fatty acids of follicular fluid, an important microenvironment for the development of oocytes, may contribute to the women’s fertility and the efficacy of assisted reproduction techniques. The aim of this study was to investigate the effect of fatty acid composition of follicular fluid phospholipids on women undergoing assisted reproductive techniques. Methods: Follicular fluid samples were obtained from 100 patients, referred to Tabriz Alzahra Hospital. Seventy-nine subjects underwent in vitro fertilization (IVF) and the remaining 21 underwent intracytoplasmic sperm injection (ICSI). Total lipid of follicular fluid was extracted and fatty acids were analyzed by gas-liquid chromatography. Results: Saturated fatty acids (SFA, P = 0.002) and the ratio of SFA to polyunsaturated fatty acids (P = 0.001) were correlated negatively with a number of mature oocytes after age adjustment. Linoleic acid (P = 0.006) was positively correlated, while the level of arachidonic acid was negatively correlated with fertility percentage after adjustment for body mass index, sperm count, sperm motility. Conclusion: Since phospholipids are one of the major components of lipid metabolism, the results of this study highlight the importance of this component in follicular fluid lipid metabolism. Consequently, it is proposed as an index in determination of the rate of success in assisted reproductive techniques such as IVF/ICSI. PMID:23023218

  17. Supercritical fluid extraction and direct fluid injection mass spectrometry for the determination of trichothecene mycotoxins in wheat samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.

    1986-10-01

    The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less

  18. Flow regimes for fluid injection into a confined porous medium

    DOE PAGES

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; ...

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  19. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  20. Maximum magnitude earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  1. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime. The implications of the regime diagram are discussed using practical engineering projects of geological CO2 sequestration, enhanced oil recovery, and underground waste disposal.

  2. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE PAGES

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; ...

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO 2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 millionmore » m 3/yr -1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  3. Fluid Mixing in the Eye Under Rapid Eye Movement

    NASA Astrophysics Data System (ADS)

    Huang, Jinglin; Gharib, Morteza

    2017-11-01

    Drug injection is an important technique in certain treatments of eye diseases. The efficacy of chemical mixing plays an important role in determining pharmacokinetics of injected drugs. In this study, we build a device to study the chemical mixing behavior in a spherical structure. The mixing process is visualized and analyzed qualitatively. We hope to understand the chemical convection and diffusion behaviors in correlation with controlled rapid mechanical movements. The results will have potential applications in treatment of eye diseases. Resnick Institute at Caltech.

  4. RETINA EXPANSION TECHNIQUE FOR MACULAR HOLE APPOSITION REPORT 2: Efficacy, Closure Rate, and Risks of a Macular Detachment Technique to Close Large Full-Thickness Macular Holes.

    PubMed

    Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana

    2018-04-01

    To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.

  5. Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.

    2016-11-01

    The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.

  6. Pharmacokinetics, pharmacodynamics and local tolerance at injection site of marbofloxacin administered by regional intravenous limb perfusion in standing horses.

    PubMed

    Lallemand, Elodie; Trencart, Pierre; Tahier, Carine; Dron, Frederic; Paulin, Angelique; Tessier, Caroline

    2013-08-01

    To evaluate pharmacokinetic-pharmacodynamic variables and local tolerance at injection-site of marbofloxacin administered via regional intravenous limb perfusion (RIVLP) in standing horses. Adult horses (n = 6). RIVLP were performed with rubber tourniquets applied to the forelimbs of standing sedated horses. Marbofloxacin (0.67 mg/kg) was randomly injected in 1 forelimb, with the contralateral limb serving as a control (0.9% NaCl solution). Samples of jugular blood and synovial fluid from the radiocarpal joint of the marbofloxacin-perfused limb were collected before and at intervals after RIVLP for determination of drug concentrations. All injection sites were evaluated before, 24 and 48 hours after RIVLP by means of ultrasonographic examination, circumferential measurements and subjective visible inflammation scores by veterinarians unaware of treatment received. No adverse effects associated with the technique or antibiotic were observed. High marbofloxacin concentrations were obtained in the synovial fluid, AUCINF was significantly higher in synovial fluid than in plasma (78.64 ± 49.41 and 2.85 ± 0.60 µg h/mL respectively, P = .028). The efficacy indices, AUC0-24 /MIC90 and Cmaxobs/MIC90 , predicted a favorable outcome in the treatment of synovial fluid infections caused by enterobacteriaceae and Staphylococcus aureus. After RIVLP, there was no statistically significant difference between marbofloxacin-injected and control limbs for lameness, visual inflammation score, limb circumference, and ultrasonographic appearance of the veins. Marbofloxacin injected limbs had a significantly greater subcutaneous thickness, compared with control limbs. These data suggest that RIVLP of marbofloxacin (0.67 mg/kg) could be a safe and effective method for treatment of infections of the distal portion of the limb for susceptible organisms. © Copyright 2013 by The American College of Veterinary Surgeons.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleiner, J.B.; Amiel, D.; Harwood, F.L.

    A rabbit model for anterior cruciate ligament (ACL) reconstruction using autogenous patellar tendon was utilized to study the early events of autograft cellular dynamics. Biochemical, autoradiographic, histological, and vascular injection techniques demonstrated that the native autograft cell population rapidly necroses. This repopulation occurs without a vascular contribution; cells entering the autograft are reliant upon synovial fluid nutrition.

  8. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    NASA Astrophysics Data System (ADS)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  9. Real-time Microseismic Processing for Induced Seismicity Hazard Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzel, Eric M.

    Induced seismicity is inherently associated with underground fluid injections. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could both damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterizationmore » phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.« less

  10. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was injected. The most remarkable difference is that water injection induces mechanical instability and failure, whereas oil injection does not. This was confirmed by the analysis of acoustic emissions activity and post-mortem sample imaging using CT scan. Contrasting evolutions of the P wave velocity during the fluid front propagation were also observed in both experiments.

  11. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  12. Treatment of corns by injectable silicone.

    PubMed

    Balkin, S W

    1975-09-01

    Corns and calluses are the most frequently encountered foot complaints. The choices of care range from self trimming and application of over-the-counter remedies to professional treatment, which may include tendon, skin, and bone surgery. A technique using fluid silicone injected subdermally to cushion corns is described. Twenty-nine patients with 71 digital pressure keratoses were injected between 1965 and 1970. Results of treatment of 77% of the corns were rated good to excellent after an average follow-up period of six years, and no serious reactions have been observed. The procedure offers an effective, nondisabling method of treatment, as opposed to lifelong palliation or surgical intervention.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djabbarah, N.F.

    A miscible displacement process for recovering oil from a subterranean, oil-containing formation penetrated by at least one injection well and at least one spaced-apart production well and having fluid communication between the injection and the production wells is described comprising: (a) injecting a slug of til oil into the formation through the injection well; (b) injecting a slug of a displacing fluid into the formation through the injection well, the displacing fluid being selected from the group consisting of carbon monoxide, carbon dioxide, methane, nitrogen, air, flue gas, combustion gas and mixtures thereof, the injection of the tall oil loweringmore » the minimum miscibility pressure of the displacing fluid in the formation oil; and (c) recovering the oil through the production well.« less

  14. Re-injection feasibility study of fracturing flow-back fluid in shale gas mining

    NASA Astrophysics Data System (ADS)

    Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao

    2018-02-01

    Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.

  15. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  16. Creating fluid injectivity in tar sands formations

    DOEpatents

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  17. Preliminary Evidence Supports Modification of Retraction Technique to Prevent Needlestick Injuries

    PubMed Central

    Fa, Bernadette Alvear; Cuny, Eve

    2016-01-01

    A modified retraction technique was introduced into the DDS degree preclinical anesthesia course in 2011 with the goal of reducing needlestick exposure incidents. In numerous studies of dental exposures, injuries from dental anesthetic needles account for the highest proportion of all exposures. The purpose of this study was to assess the preliminary impact of a modified retraction technique on the incidence of blood and body fluids (BBF) exposure incidents associated with needles during injection. Data from evaluations of students from 2014 and 2015 were obtained and tracked to determine whether the modified retraction technique was “excellent,” “clinically acceptable,” or “clinically unacceptable.” Data were collected to determine if the patient perceived the modified retraction technique as “comfortable” or “correctable when addressed” to help improve student technique for future injections. Likewise, data from the blood-borne exposure database where all information related to BBF exposures is recorded were reviewed and the information separated by year and class. This study presents preliminary data only and because of the small sample size does not lend itself to validation by statistical analysis. However, the technique effectively removes the operator's hand from the field during injection, reducing the risk of accidental intraoral needlestick to the nondominant hand of the operator. PMID:27973940

  18. Liposuction: Anaesthesia challenges

    PubMed Central

    Sood, Jayashree; Jayaraman, Lakshmi; Sethi, Nitin

    2011-01-01

    Liposuction is one of the most popular treatment modalities in aesthetic surgery with certain unique anaesthetic considerations. Liposuction is often performed as an office procedure. There are four main types of liposuction techniques based on the volume of infiltration or wetting solution injected, viz dry, wet, superwet, and tumescent technique. The tumescent technique is one of the most common liposuction techniques in which large volumes of dilute local anaesthetic (wetting solution) are injected into the fat to facilitate anaesthesia and decrease blood loss. The amount of lignocaine injected may be very large, approximately 35-55 mg/kg, raising concerns regarding local anaesthetic toxicity. Liposuction can be of two types according to the volume of solution aspirated: High volume (>4,000 ml aspirated) or low volume (<4,000 ml aspirated). While small volume liposuction may be done under local/monitored anaesthesia care, large-volume liposuction requires general anaesthesia. As a large volume of wetting solution is injected into the subcutaneous tissue, the intraoperative fluid management has to be carefully titrated along with haemodynamic monitoring and temperature control. Assessment of blood loss is difficult, as it is mixed with the aspirated fat. Since most obese patients opt for liposuction as a quick method to lose weight, all concerns related to obesity need to be addressed in a preoperative evaluation. PMID:21808392

  19. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress

    PubMed Central

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-01-01

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142

  20. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress.

    PubMed

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-12-08

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.

  1. Portable device and method for determining permeability characteristics of earth formations

    DOEpatents

    Shuck, Lowell Z.

    1977-01-01

    The invention is directed to a device which is used for determining permeability characteristics of earth formations at the surface thereof. The determination of the maximum permeability direction and the magnitude of permeability are achieved by employing a device comprising a housing having a central fluid-injection port surrounded by a plurality of spaced-apart fluid flow and pressure monitoring ports radially extending from the central injection port. With the housing resting on the earth formation in a relatively fluid-tight manner as provided by an elastomeric pad disposed therebetween, fluid is injected through the central port into the earth formation and into registry with the fluid-monitoring ports disposed about the injection port. The fluid-monitoring ports are selectively opened and the flow of the fluid through the various fluid ports is measured so as to provide a measurement of flow rates and pressure distribution about the center hole which is indicative on the earth formation permeability direction and magnitude. For example, the azimuthal direction of the fluid-monitoring ports in the direction through which the greatest amount of injected fluid flows as determined by the lowest pressure distribution corresponds to the direction of maximum permeability in the earth formation.

  2. In vivo diffusion characteristics following perineural injection of the deep branch of the lateral plantar nerve with mepivacaine or iohexol in horses.

    PubMed

    Contino, E K; King, M R; Valdés-Martínez, A; McIlwraith, C W

    2015-03-01

    Hindlimb proximal suspensory desmopathy is a common injury of sport horses but diagnosis can be difficult because diagnostic analgesia of the region lacks specificity. Perineural analgesia of the deep branch of the lateral plantar nerve (DBLPN) has been proposed as a more specific method of isolating pain of the proximal aspect of the suspensory ligament but the technique has not been evaluated in vivo. To determine the extent of diffusion of contrast medium and mepivacaine following DBLPN analgesia using a single-needle injection technique and to determine if there is inadvertent involvement of the tarsal sheath and/or tarsometatarsal (TMT) joint using this technique. In vivo experimental study. Perineural injection of the DBLPN was performed in 16 limbs with 3 ml of either mepivacaine hydrochloride or positive contrast medium. Contrast medium-injected limbs were radiographed 5, 15, and 30 min post injection and diffusion characteristics were described. In mepivacaine-injected limbs, synovial fluid from the TMT joint was obtained 10 and 20 min post injection and mepivacaine concentrations were analysed. At 5, 15 and 30 min post injection, the contrast medium extended, on average, 19.6, 20.6 and 21.0 mm proximal and 38.0, 43.5 and 51.9 mm distal to the injection site, respectively. Three of 8 (37.5%) limbs had evidence of contrast medium in the tarsal sheath. Two of 8 (25%) limbs had mepivacaine concentrations within the TMT joint sufficient to produce analgesia (>300 mg/l) at 10 min post injection. Contrast medium diffused further in a distal direction than in a proximal direction. Analgesia of the DBLPN can result in inadvertent involvement of the tarsal sheath and/or TMT joint. © 2014 EVJ Ltd.

  3. Acoustic emission of rock mass under the constant-rate fluid injection

    NASA Astrophysics Data System (ADS)

    Shadrin Klishin, AV, VI

    2018-03-01

    The authors study acoustic emission in coal bed and difficult-to-cave roof under injection of fluid by pumps at a constant rate. The functional connection between the roof hydrofracture length and the total number of AE pulses is validated, it is also found that the coal bed hydroloosening time, injection rate and time behavior of acoustic emission activity depend on the fluid injection volume required until the fluid breakout in a roadway through growing fractures. In the formulas offered for the practical application, integral parameters that characterize permeability and porosity of rock mass and process parameters of the technology are found during test injection.

  4. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  5. Injection-induced moment release can also be aseismic

    USGS Publications Warehouse

    McGarr, Arthur; Barbour, Andrew J.

    2018-01-01

    The cumulative seismic moment is a robust measure of the earthquake response to fluid injection for injection volumes ranging from 3100 to about 12 million m3. Over this range, the moment release is limited to twice the product of the shear modulus and the volume of injected fluid. This relation also applies at the much smaller injection volumes of the field experiment in France reported by Guglielmi, et al. (2015) and laboratory experiments to simulate hydraulic fracturing described by Goodfellow, et al. (2015). In both of these studies, the relevant moment release for comparison with the fluid injection was aseismic and consistent with the scaling that applies to the much larger volumes associated with injection-induced earthquakes with magnitudes extending up to 5.8. Neither the micro-earthquakes, at the site in France, nor the acoustic emission in the laboratory samples contributed significantly to the deformation due to fluid injection.

  6. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  7. The detection of pleural effusion using a parametric EIT technique.

    PubMed

    Arad, M; Zlochiver, S; Davidson, T; Shoenfeld, Y; Adunsky, A; Abboud, S

    2009-04-01

    The bioimpedance technique provides a safe, low-cost and non-invasive alternative for routine monitoring of lung fluid levels in patients. In this study we have investigated the feasibility of bioimpedance measurements to monitor pleural effusion (PE) patients. The measurement system (eight-electrode thoracic belt, opposite sequential current injections, 3 mA, 20 kHz) employed a parametric reconstruction algorithm to assess the left and right lung resistivity values. Bioimpedance measurements were taken before and after the removal of pleural fluids, while the patient was sitting at rest during tidal respiration in order to minimize movements of the thoracic cavity. The mean resistivity difference between the lung on the side with PE and the lung on the other side was -48 Omega cm. A high correlation was found between the mean lung resistivity value before the removal of the fluids and the volume of pleural fluids removed, with a sensitivity of -0.17 Omega cm ml(-1) (linear regression, R=0.53). The present study further supports the feasibility and applicability of the bioimpedance technique, and specifically the approach of parametric left and right lung resistivity reconstruction, in monitoring lung patients.

  8. THE PASSAGE OF MARKED IONS INTO TISSUES AND FLUIDS OF THE REPRODUCTIVE TRACT OF PREGNANT RABBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J.P.; Boursnell, J.C.; Lutwak-Mann, C.

    1959-10-31

    Rapid changes were demonstrated in the uptake of labeled ions both in the developing embryo and in the endometrium, mesodermal placental folds, and other closely associated tissues and fluids following the intravenous injection of labeled ions in pregnant rabbits. Phosphorus-32, sulfur-85, sodium-24, iodine- 131, and potassium-42 were used as tracers. A number of new techniques were developed to obtain, weigh, and handle the extremely small samples. The influence of exogenous materials on the early development of fetuses is discussed briefly. (C.R.)

  9. Quantitative measurement of transverse injector and free stream interaction in a nonreacting SCRAMJET combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mcdaniel, J. C.

    1987-01-01

    A preliminary quantitative study of the compressible flowfield in a steady, nonreacting model SCRAMJET combustor using laser-induced iodine fluorescence (LIIF) is reported. Measurements of density, temperature, and velocity were conducted with the calibrated, nonintrusive, optical technique for two different combustor operating conditions. First, measurements were made in the supersonic flow over a rearward-facing step without transverse injection for comparison with calculated pressure profiles. The second configuration was staged injection behind the rearward-facing step at an injection dynamic pressure ratio of 1.06. These experimental results will be used to validate computational fluid dynamic (CFD) codes being developed to model supersonic combustor flowfields.

  10. Self-induced seismicity due to fluid circulation along faults

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Poisson, Blanche; Toussaint, Renaud; Rachez, Xavier; Schmittbuhl, Jean

    2014-03-01

    In this paper, we develop a system of equations describing fluid migration, fault rheology, fault thickness evolution and shear rupture during a seismic cycle, triggered either by tectonic loading or by fluid injection. Assuming that the phenomena predominantly take place on a single fault described as a finite permeable zone of variable width, we are able to project the equations within the volumetric fault core onto the 2-D fault interface. From the basis of this `fault lubrication approximation', we simulate the evolution of seismicity when fluid is injected at one point along the fault to model-induced seismicity during an injection test in a borehole that intercepts the fault. We perform several parametric studies to understand the basic behaviour of the system. Fluid transmissivity and fault rheology are key elements. The simulated seismicity generally tends to rapidly evolve after triggering, independently of the injection history and end when the stationary path of fluid flow is established at the outer boundary of the model. This self-induced seismicity takes place in the case where shear rupturing on a planar fault becomes dominant over the fluid migration process. On the contrary, if healing processes take place, so that the fluid mass is trapped along the fault, rupturing occurs continuously during the injection period. Seismicity and fluid migration are strongly influenced by the injection rate and the heterogeneity.

  11. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.

  12. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  13. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.

  14. A reliable technique for ultrasound-guided perineural injection in ulnar neuropathy at the elbow.

    PubMed

    Hamscha, Ulrike M; Tinhofer, Ines; Heber, Stefan; Grisold, Wolfgang; Weninger, Wolfgang J; Meng, Stefan

    2017-08-01

    Ulnar neuropathy at the elbow (UNE) is a common peripheral compression neuropathy and, in most cases, occurs at 2 sites, the retroepicondylar groove or the cubital tunnel. With regard to a potential therapeutic approach with perineural corticosteroid injection, the aim of this study was to evaluate the distribution of injection fluid applied at a standard site. We performed ultrasound-guided (US-guided) perineural injections to the ulnar nerve halfway between the olecranon and the medial epicondyle in 21 upper limbs from 11 non-embalmed cadavers. In anatomic dissection we investigated the spread of injected ink. Ink was successfully injected into the perineural sheath of the ulnar nerve in all 21 cases (cubital tunnel: 21 of 21; retroepicondylar groove: 19 of 21). US-guided injection between the olecranon and the medial epicondyle is a feasible and safe method to reach the most common sites of ulnar nerve entrapment. Muscle Nerve 56: 237-241, 2017. © 2016 Wiley Periodicals, Inc.

  15. Clinical applications of magnetic nanoparticles for hyperthermia.

    PubMed

    Thiesen, Burghard; Jordan, Andreas

    2008-09-01

    Magnetic fluids are increasingly used for clinical applications such as drug delivery, magnetic resonance imaging and magnetic fluid hyperthermia. The latter technique that has been developed as a cancer treatment for several decades comprises the injection of magnetic nanoparticles into tumors and their subsequent heating in an alternating magnetic field. Depending on the applied temperature and the duration of heating this treatment either results in direct tumor cell killing or makes the cells more susceptible to concomitant radio- or chemotherapy. Numerous groups are working in this field worldwide, but only one approach has been tested in clinical trials so far. Here, we summarize the clinical data gained in these studies on magnetic fluid induced hyperthermia.

  16. FREE 17-HYDROXYCORTICOSTERIOD CONCENTRATION OF PAROTID FLUID FOLLOWING INTRAVENOUS ADMINISTRATION OF CORTISOL,

    DTIC Science & Technology

    In an attempt to determine the time required for adrenocortical steroids to pass from the bloodstream to parotid fluid, twenty subjects were given...intravenous injections of cortisol and parotid fluid was collected continuously for 120 minutes after injection. Additional studies were carried out...with intramuscular injections and oral administration of cortisol. The parotid fluid free 17-OHCS mean rose from 3.51 (S.D. = 1.57) to 21.34 (S.D

  17. Evidence that Clouds of keV Hydrogen Ion Clusters Bounce Elastically from a Solid Surface

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.; Martin, James J.; Chakrabarti, Suman; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The behavior of hydrogen ion clusters is tested by an inject/hold/extract technique in a Penning-Malmberg trap. The timing pattern of the extraction signals is consistent with the clusters bouncing elastically from a detector several times. The ion clusters behave more like an elastic fluid than a beam of ions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. White; B. P. McGrail; S. K. Wurstner

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to poremore » clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.« less

  19. Radiocarbon as a Reactive Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matter, Juerg; Stute, Martin; Schlosser, Peter

    In view of concerns about the long-term integrity and containment of CO 2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO 2. Our project aimed to demonstrate that carbon-14 ( 14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO 2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO 2 is largely a function of host rock composition. Mineral carbonation involves combining CO 2 with divalent cations including Ca 2+,more » Mg 2+ and Fe 2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO 2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO 2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO 2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO 2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO 2-fluid-rock reactions and CO 2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO 2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO 2 at the CarbFix pilot injection site was mineralized to carbonate minerals in less than two years after injection. Our monitoring results confirm that CO 2 mineralization in basaltic rocks is far faster than previously postulated.« less

  20. Microseismic techniques for avoiding induced seismicity during fluid injection

    DOE PAGES

    Matzel, Eric; White, Joshua; Templeton, Dennise; ...

    2014-01-01

    The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. Our objective is to devise fast-running methodologies that will allow field operators to respond quickly to changing subsurface conditions.

  1. Ultrasonically-assisted Polymer Molding: An Evaluation

    NASA Astrophysics Data System (ADS)

    Moles, Matthew; Roy, Anish; Silberschmidt, Vadim

    Energy reduction in extrusion and injection molding processes can be achieved by the introduction of ultrasonic energy. Polymer flow can be enhanced on application of ultrasonic vibration, which can reduce the thermal and pressure input requirements to produce the same molding; higher productivity may also be achieved. In this paper, a design of an ultrasound-assisted injection mold machine is explored. An extrusion-die design was augmented with a commercial 1.5 kW ultrasonic transducer and sonotrode designed to resonate close to 20 kHz with up to 100 μm vibration amplitude. The design was evaluated with modal and thermal analysis using finite-element analysis software. The use of numerical techniques, including computational fluid dynamics, fluid-structure interaction and coupled Lagrangian-Eulerian method, to predict the effect of ultrasound on polymer flow was considered. A sonotrode design utilizing ceramic to enhance thermal isolation was also explored.

  2. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Rucci, A.; Ferretti, A.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model,more » the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.« less

  3. A New Method of Obtaining High-Resolution Paleoclimate Records from Speleothem Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Logan, A. J.; Horton, T. W.

    2010-12-01

    We present a new method for stable hydrogen and oxygen isotope analysis of ancient drip water trapped within cave speleothems. Our method improves on existing fluid inclusion isotopic analytical techniques in that it decreases the sample size by a factor of ten or more, dramatically improving the spatial and temporal precision of fluid inclusion-based paleoclimatology. Published thermal extraction methods require large samples (c. 150 mg) and temperatures high enough (c. 500-900°C) to cause calcite decomposition, which is also associated with isotopic fractionation of the trapped fluids. Extraction by crushing faces similar challenges, where the failure to extract all the trapped fluid can result in isotopic fractionation, and samples in excess of 500 mg are required. Our new method combines the strengths of these published thermal and crushing methods using continuous-flow isotope ratio analytical techniques. Our method combines relatively low-temperature (~250°C) thermal decrepitation with cryogenic trapping across a switching valve sample loop. In brief, ~20 mg carbonate samples are dried (75°C for >1 hour) and heated (250°C for >1 hour) in a quartz sample chamber under a continuously flowing stream of ultra-high purity helium. Heating of the sample chamber is achieved by use of a tube furnace. Fluids released during the heating step are trapped in a coiled stainless steel cold trap (~ -98°C) serving as the sample loop in a 6-way switching valve. Trapped fluids are subsequently injected into a high-temperature conversion elemental analyzer by switching the valve and rapidly thawing the trap. This approach yielded accurate and precise measurements of injected liquid water IAEA reference materials (GISP; SMOW2; SLAP2) for both hydrogen and oxygen isotopic compositions. Blanking tests performed on the extraction line demonstrate extremely low line-blank peak heights (<50mv). Our tests also demonstrate that complete recovery of liquid water is possible and that a minimum quantity of ~100nL water was required. In contrast to liquid water analyses, carbonate inclusion waters gave highly variable results. As plenty of signal was produced from relatively small sample sizes (~20 mg), the observed isotopic variation most likely reflects fractionation during fluid extraction, or natural isotopic variability. Additional tests and modifications to the extraction procedure are in progress, using a recently collected New Zealand stalagmite from a West Coast cave (DOC collection permit WC-27462-GEO). U-Th age data will accompany a paleoclimate record from this stalagmite obtained using standard carbonate analytical techniques, and compared to the results from our new fluid inclusion analyses.

  4. Stability of fault submitted to fluid injections

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes recently observed in Oklahoma (Mw 5.6, 2016).

  5. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  6. Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection

    NASA Astrophysics Data System (ADS)

    Chang, K. W.; Yoon, H.; Martinez, M. J.

    2017-12-01

    Subsurface energy activities such as geological CO2 storage and wastewater injection require injecting large amounts of fluid into the subsurface, which will alter the states of pore pressure and stress in the storage formation. One of the main issues for injection-induced seismicity is the post shut-in increases in the seismicity rate, often observed in the fluid-injection operation sites. The rate surge can be driven by the following mechanisms: (1) pore-pressure propagation into distant faults after shut-in and (2) poroelastic stressing caused by well operations, depending on fault geometry, hydraulic and mechanical properties of the formation, and injection history. We simulate the aerial view of the target reservoir intersected by strike-slip faults, in which injection-induced pressure buildup encounters the faults directly. We examine the poroelastic response of the faults to fluid injection and perform a series of sensitivity tests considering: (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injection point, and (3) well operations with varying the injection rate. Our analysis of the Coulomb stress change suggests that the sealing fault confines pressure diffusion which stabilizes or weakens the nearby conductive fault depending on the injection location. We perform the sensitivity test by changing injection scenarios (time-dependent rates), while keeping the total amount of injected fluids. Sensitivity analysis shows that gradual reduction of the injection rate minimizes the Coulomb stress change and the least seismicity rates are predicted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  7. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  8. Fluid injection device for high-pressure systems

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Ward, J. B.

    1970-01-01

    Screw activated device, consisting of a compressor, shielded replaceable ampules, a multiple-element rubber gland, and a specially constructed fluid line fitting, injects measured amounts of fluids into a pressurized system. It is sturdy and easily manipulated.

  9. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  10. The state of the art of conventional flow visualization techniques for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Settles, G. S.

    1982-01-01

    Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.

  11. Automated fluid analysis apparatus and techniques

    DOEpatents

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  12. Using a tracer technique to identify the extent of non-ideal flows in the continuous mixing of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.

    2013-05-01

    The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.

  13. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms.

    PubMed

    Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M

    2016-10-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. © 2016 Anatomical Society.

  14. Determining the Area of Review for Industrial Waste Disposal Wells.

    DTIC Science & Technology

    1981-12-01

    pressure increases sufficiently to force formation fluids and/or injected wastes up abandoned well bores to contaminate underground sources of drinking...Drilling Mud Circulating System . . 72 9. Increase in Gel Strength of Various Mud Types With Time . . . . . . . . . . . . . . . . . . 96 10. Gel... increased fluid pressure in a disposal zone which results from a waste injection operation may force injected and/or formation fluid to migrate up an

  15. Monitoring an EGS injection at Newberry Volcano using Magnetotelluric dimensionality analysis

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.; Rose, K.; Urquhart, S.

    2016-12-01

    The sensitivity of magnetotelluric (MT) data to the presence of electrically conductive subsurface features makes it applicable for determining the extent of injected fluids in enhanced geothermal systems (EGS). We use MT to monitor fluid injection during tests of a proposed EGS site at Newberry Volcano in Central Oregon, USA. Newberry is a large shield volcano located where fault systems of the northern Basin and Range meet the Cascade Arc and the high lava plains. Its strong potential for geothermal energy has made it a target for energy exploration for over 40 years. MT measurements were made before, during, and after an EGS stimulation in 2014 in an effort to detect subsurface pathways taken by fluids that are attributable to stimulation. We begin by creating a baseline model from inverting over 200 wideband MT stations located in the western half of the volcano. This model is constrained by well logs, as well as by high resolution gravity and seismic velocity modeling. Our model shows conductive regions associated with the caldera's ring fault, likely showing where hydrothermal fluids or their mineral alteration products are present. However, as this is an EGS study, we are interested in detecting fluid intrusion into hot, dry rock. Therefore, our primary target is a resistive zone on the western flank of Newberry volcano that is interpreted as a series of hot intrusive sequences. Well bottom temperatures in this area have been measured in excess of 300 °C. The stimulation's effect on resistivity is subtle, in part because the injected fluid is fresh groundwater, the injected volume is modest, and the target depth is 2,000-3,000 m below ground level. We found that it is advantageous to look at the impedance tensor data directly to detect injected fluids. Because fluids and their associated change in resistivity are expected to be concentrated around the injection well, the injection will exhibit a highly three-dimensional resistivity structure. Therefore, we examine the impedance tensor for changes in dimensionality to mark the arrival of injected fluids. We then present a method of inverting MT data for changes in impedance rather than for resistivity.

  16. Reactivation of a Propped Hydraulic Fracture

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2014-12-01

    The problem of massive fluid injection into a pre-existing fracture has many applications in petroleum industry including underground liquid waste disposal and waterflooding to increase recovery from a hydrocarbon reservoir. Understanding the conditions leading to the re-activation of pre-existing fractures and ensuing propagation is critical for a successful injection project design, and it may also help to mitigate potential environmental hazards, such as contamination of underground aquifers and induced seismicity. The problem of injection of a low viscosity fluid into a permeable formation can be distinguished from conventional hydraulic fracture by the mechanism of fluid leak-off. In conventional fracturing, high viscosity and cake building properties of injected fluid limit leak-off to a 1-D boundary layer incasing the crack. In the case of injection of low viscosity fluid into a fracture, leak-off and related pore fluid diffusion will take place over wider range of scales, from 1-D to 2 or 3-D. We consider a pre-existing stationary propped hydraulic fracture with constrained height into which a fluid is injected under constant flow rate. Although the net effective stress on the crack is initially compressive, the proppant keeps the crack open. It is worthwhile to note that during injection and related pressurization of a propped crack, the fracture breakdown is to be achieved prior to the fracture re-opening. Therefore, the effect of the change of the propped fracture storage on the pressurization dynamics can be neglected. The objective of this work is to study the transient pressurization and the onset of the propagation for a propped fracture. To the end, we formulate and solve a general problem of injection into a fracture accounting for viscous dissipation (i.e. non-uniform pressure distribution). We quantify how the fracture breakdown condition depends upon the rock and fluid properties, the in-situ stress and the fluid injection rate. We also establish a criterion when the assumption of negligible viscous dissipation is justified. The obtained solution is also transportable to the production well test analysis of a fractured well (Cinco et al., SPE 1978).

  17. Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop

    NASA Astrophysics Data System (ADS)

    Johann, L.; Dinske, C.; Shapiro, S. A.

    2016-11-01

    Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.

  18. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    PubMed

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10 5 , but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  19. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    NASA Astrophysics Data System (ADS)

    Rutter, Ernest; Hackston, Abigail

    2017-08-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  20. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection

    PubMed Central

    Hackston, Abigail

    2017-01-01

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 105, but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips. This article is part of the themed issue ‘Faulting, friction and weakening: from slow to fast motion’. PMID:28827423

  1. Quantification of CO2-FLUID-ROCK Reactions Using Reactive and Non-Reactive Tracers

    NASA Astrophysics Data System (ADS)

    Matter, J.; Stute, M.; Hall, J. L.; Mesfin, K. G.; Gislason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Alfredsson, H. A.; Gunnlaugsson, E.; Broecker, W. S.

    2013-12-01

    Carbon dioxide mineralization via fluid-rock reactions provides the most effective and long-term storage option for geologic carbon storage. Injection of CO2 in geologic formations induces CO2 -fluid-rock reactions that may enhance or decrease the storage permanence and thus the long-term safety of geologic carbon storage. Hence, quantitative characterization of critical CO2 -fluid-rock interactions is essential to assess the storage efficiency and safety of geologic carbon storage. In an attempt to quantify in-situ fluid-rock reactions and CO2 transport relevant for geologic carbon storage, we are testing reactive (14C, 13C) and non-reactive (sodium fluorescein, amidorhodamine G, SF5CF3, and SF6) tracers in an ongoing CO2 injection in a basaltic storage reservoir at the CARBFIX pilot injection site in Iceland. At the injection site, CO2 is dissolved in groundwater and injected into a permeable basalt formation located 500-800 m below the surface [1]. The injected CO2 is labeled with 14C by dynamically adding calibrated amounts of H14CO3-solution into the injection stream in addition to the non-reactive tracers. Chemical and isotopic analyses of fluid samples collected in a monitoring well, reveal fast fluid-rock reactions. Maximum SF6 concentration in the monitoring well indicates the bulk arrival of the injected CO2 solution but dissolved inorganic carbon (DIC) concentration and pH values close to background, and a potentially lower 14C to SF6 ratio than the injection ratio suggest that most of the injected CO2 has reacted with the basaltic rocks. This is supported by δ13CDIC, which shows a drop from values close to the δ 13C of the injected CO2 gas (-3‰ VPDB) during breakthrough of the CO2 plume to subsequent more depleted values (-11.25‰ VPDB), indicating precipitation of carbonate minerals. Preliminary mass balance calculations using mixing relationships between the background water in the storage formation and the injected solution, suggest that approximately 85% of the injected CO2 must have reacted along the flow path from the injection well to the monitoring well within less than one year. Monitoring is still going on and we will extend the time series and the mass balance accordingly. Our study demonstrates that by combining reactive and non-reactive tracers, we are able to quantify CO2-fluid-rock interactions on a reservoir scale. [1] Gislason et al. (2010), Int. J. Greenh. Gas Con. 4, 537-545.

  2. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to unit crack extension and the rock fracture toughness. It allows to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, which breadth is known a priori, the final breadth of a finger-like fracture is a result of the fracturing process in the fracture head. To resolve the breadth, we relax the local elasticity assumption in the fracture head by neglecting viscous pressure drop there. The resulting fracture head model is a 3D analog of the Weertman's hydrostatic pulse, and yields expressions for the terminal breadth, b = 0.34 (K / Delta rho g))^(2/3), and for the head volume, V = 10.4 K b^(5/2) / E'. We then combine the finger crack solution for the viscous tail with the 3-D pulse solution for the fracture head. The obtained closed-form solution is compared to numerical simulations. Based on this solution, we analyzed the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of the heavy waste injection technique and low viscosity magma diking.

  3. [Endonasal endoscopic surgery in the treatment of spontaneous or post-traumatic cerebrospinal fluid (csf) leaks].

    PubMed

    Nallet, E; Decq, P; Bezzo, A; Le Lievre, G; Peynegre, R; Coste, A

    1998-10-01

    The incidence and the risk of meningitidis justify treatment in all cases of cerebrospinal fluid rhinorrhea with spontaneous etiology or after traumatic injury. Endonasal surgery with endoscopic instruments provides many advantages compared with transcranial or transfacial approach used by neurosurgeons. We report our experience and our surgical technique in the treatment of CSF leaks in 5 patients. Intrathecal injection of fluoresceine was very useful in all cases for detecting the CSF leak. Total or selected ethmoidectomy depended on the localization of the leakage. Wide sphenoidotomy enables detection and repair of CSF leaks from the sphenoid cavity. A free graft of inferior turbinal mucosal was used to repair the breache. This rapid low morbidity surgery offered secure closure of rhinorrhea in 4 cases after one procedure and in 1 case after two procedures with an average follow up of 22 months. Cerebrospinal fluid rhinorrhea can be managed in first line therapy with endoscopic intranasal surgical techniques when they are localized in the anterior ethmoid or in the sphenoid cavity.

  4. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity and deformation; they may work as a template for modelling future events in the case the volcano was approaching eruption conditions.

  5. Characterization of the Tissue and Stromal Cell Components of Micro-Superficial Enhanced Fluid Fat Injection (Micro-SEFFI) for Facial Aging Treatment.

    PubMed

    Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro

    2018-06-14

    New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.

  6. Free Surface Flows and Extensional Rheology of Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Dinic, Jelena; Jimenez, Leidy Nallely; Biagioli, Madeleine; Estrada, Alexandro; Sharma, Vivek

    Free-surface flows - jetting, spraying, atomization during fuel injection, roller-coating, gravure printing, several microfluidic drop/particle formation techniques, and screen-printing - all involve the formation of axisymmetric fluid elements that spontaneously break into droplets by a surface-tension-driven instability. The growth of the capillary-driven instability and pinch-off dynamics are dictated by a complex interplay of inertial, viscous and capillary stresses for simple fluids. Additional contributions by elasticity, extensibility and extensional viscosity play a role for complex fluids. We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate (DoS) can be used for characterizing the extensional rheology of complex fluids. Using a wide variety of complex fluids, we show the measurement of the extensional relaxation time, extensional viscosity, power-law index and shear viscosity. Lastly, we elucidate how polymer composition, flexibility, and molecular weight determine the thinning and pinch-off dynamics of polymeric complex fluids.

  7. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    NASA Astrophysics Data System (ADS)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  8. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  9. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    PubMed

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can accurately measure the volume in pleural effusion patients, and a linear regression equation can be used to estimate the volume of the free pleural effusion.

  10. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  11. Geopressured -- Geothermal Drilling and Testing Plan: Volume 1 Drilling and Completion, Technadril/Fenix and Scisson -- Department of Energy T/F&S -- DOE Gladys McCall No. 1 Well, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-03-01

    The principal objectives of the geopressured-geothermal reservoir resource assessment program are to obtain data related to the following: 1.2.1--Reservoir parameters and characteristics, including permeability, porosity, areal extent, net thickness of productive sands, methane content, and formation compressibilities; 1.2.2--Ability of a geopressured well to flow at the high rates, i.e., 40,000 bbls/day, expected to achieve the resource recovery required for economic commercial operations; 1.2.3--Reservoir production drive mechanisms and physical and chemical changes that may occur with various production rates and conditions; 1.2.4--Aquifer fluid properties, including chemical composition, dissolved and suspended solids, hydrocarbon content, in situ temperature, and pressure; 1.2.5--Techniques and strategiesmore » for completion and production of geopressured wells for methane, thermal, and hydraulic energy production, including examination of producibility using computer simulators employing parameters determined by well testing; 1.2.6--Disposal well parameters, such as optimum injection rate and pressures (transient and pseudo steady state), chemical compatibility of fluids, temperature-solubility relationships, and the economic considerations of injection, including evaluation of filtering and inhibition techniques in the process steam; and 1.2.7--The long-term environmental effects of an extensive commercial application of geopressured-geothermal energy, i.e., subsidence, induced seismicity, and fluid disposal.« less

  12. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  13. Intraoperative Visualization of a Spinal Arachnoid Cyst Using Pyoktanin Blue.

    PubMed

    Takamiya, Soichiro; Seki, Toshitaka; Yamazaki, Kazuyoshi; Sasamori, Toru; Houkin, Kiyohiro

    2018-01-01

    Spinal arachnoid cysts (SACs) are filled with cerebrospinal fluid, and they include the arachnoid membrane, making it difficult to distinguish the walls of the cyst from the arachnoid membrane and excise the cyst as a lump. Here we report a technique for the intraoperative visualization of SACs, involving the use of pyoktanin blue. Four patients with spinal intradural arachnoid cysts underwent total excision of the cysts between October 2016 and April 2017. In 1 case, magnetic resonance imaging revealed the cyst clearly, but in the other cases, the cysts were unclear. All cysts were injected with 1% pyoktanin blue (Wako Pure Chemical Industries, Osaka, Japan) diluted 500 times with physiological saline before excision. When it was difficult to distinguish the cyst from the normal arachnoid membrane, 1% pyoktanin blue diluted 1000 times with physiological saline was injected into both the cyst and the subarachnoid space, and the spread of the stain was observed. The cysts were better visualized after pyoktanin blue injection than before injection. When it was difficult to distinguish the cyst from the normal arachnoid space, pyoktanin blue injection was useful for judging the cyst space. There were no perioperative complications, and the patients' symptoms improved partially or completely after treatment. Our technique of pyoktanin blue injection into SACs could make their excision easy and safe. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Linking the optically monitored channel evolution with tremor like seismic activity during aero-fracturing in a very fine granular medium

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume

    2014-05-01

    The characterization and comprehension of rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control,volcanic eruptions), or in the industry, as CO2 sequestration. Even though the fluids and rocks are relatively easier to understand individually, the coupled behaviour of porous media with a dynamic fluid flow makes the system difficult to comprehend. The dynamic interaction between flow and the porous media, rapid changes in the local porosity due to the compaction and migration of the porous material, fracturing due to the momentum exchange in fast flow, make understanding of such a complex system a challenge. In this study, analogue models are developed to predict and control the mechanical stability of rock and soil formations during the injection or extraction of fluids. The models are constructed and calibrated based on the experimental data acquired. This experimental data obtained from solid-fluid interaction are monitored using a combination of techniques, both from geophysics and from experimental fluid mechanics. The experimental setup consists of a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. Non expanding polystyrene beads around 80μm size are used as solid particles and air is used as the intruding fluid. During the experiments, the fluid is injected steadily (or injected and suddenly stopped to see the pushback in a setup with four impermeable boundaries) into the system from the point opposite to the semi-permeable boundary so that the fluid penetrates into the solid and makes a way via creating channels, fractures or directly using the pore network to the semi-permeable boundary. The acoustic signals emitted during the mentioned solid-fluid interactions are recorded by various sensors - i.e. Piezoelectric Shock Accelerometer (Freq. range: 1Hz - 26kHz) and Piezoelectrical Sensors (Freq. range: 100kHz - 1MHz) with a sampling rate of 1MHz - on the Hele-Shaw cell. After the experiment, those signals are compared and investigated further in both time and frequency domains. Moreover, by using different techniques localization of the acoustic emissions are done and compared. Furthermore, during the experiments pictures of the Hele-Shaw cell are taken using a high speed camera. Thus, it is possible to visualize the solid-fluid interaction and to process images to gather information about the mechanical properties of the solid partition. The link between the visual and the mechanical wave signals is investigated. The spectrum of the signal is observed to be strongly affected by the size and shape of deforming channels created during the process. The power of the recorded signal is related to the integrated deformation rate in the process. Fast avalanches and rearrangements of grains at small scales are related to high frequency (above 10 kHz) acoustic emissions.

  15. Useful adjuncts for vitreoretinal surgery.

    PubMed Central

    Gross, J. G.; Freeman, W. R.; Goldbaum, M. H.; Mendez, T. L.

    1989-01-01

    Many vitreoretinal procedures are performed in offices and hospitals where cost control is important. We describe three useful devices and techniques that facilitate these procedures at minimal expense and often greater convenience. These include an accurate method for localising the pars plana without the use of callipers, an inexpensive, reliable, pressure regulated air pump for fluid-air exchange, and an easy method for intraocular injection of silicone oil through 20 gauge instrumentation without the need for expensive pumps. These procedures and techniques should prove to be useful in the treatment of vitreoretinal disease. Images PMID:2751976

  16. Microcontroller-driven fluid-injection system for atomic force microscopy.

    PubMed

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  17. CO2 geosequestration at the laboratory scale: Combined geophysical and hydromechanical assessment of weakly-cemented shallow Sleipner-like reservoirs

    NASA Astrophysics Data System (ADS)

    Falcon-Suarez, I.; North, L. J.; Best, A. I.

    2017-12-01

    To date, the most promising mitigation strategy for reducing global carbon emissions is Carbon Capture and Storage (CCS). The storage technology (i.e., CO2 geosequestration, CGS) consists of injecting CO2 into deep geological formations, specifically selected for such massive-scale storage. To guarantee the mechanical stability of the reservoir during and after injection, it is crucial to improve existing monitoring techniques for controlling CGS activities. We developed a comprehensive experimental program to investigate the integrity of the Sleipner CO2 storage site in the North Sea - the first commercial CCS project in history where 1 Mtn/y of CO2 has been injected since 1996. We assessed hydro-mechanical effects and the related geophysical signatures of three synthetic sandstones and samples from the Utsira Sand formation (main reservoir at Sleipner), at realistic pressure-temperature (PT) conditions and fluid compositions. Our experimental approach consists of brine-CO2 flow-through tests simulating variable inflation/depletion scenarios, performed in the CGS-rig (Fig. 1; Falcon-Suarez et al., 2017) at the National Oceanography Centre (NOC) in Southampton. The rig is designed for simultaneous monitoring of ultrasonic P- and S-wave velocities and attenuations, electrical resistivity, axial and radial strains, pore pressure and flow, during the co-injection of up to two fluids under controlled PT conditions. Our results show velocity-resistivity and seismic-geomechanical relations of practical importance for the distinction between pore pressure and pore fluid distribution during CGS activities. By combining geophysical and thermo-hydro-mechano-chemical coupled information, we can provide laboratory datasets that complement in situ seismic, geomechanical and electrical survey information, useful for the CO2 plume monitoring in Sleipner site and other shallow weakly-cemented sand CCS reservoirs. Falcon-Suarez, I., Marín-Moreno, H., Browning, F., Lichtschlag, A., Robert, K., North, L.J., Best, A.I., 2017. Experimental assessment of pore fluid distribution and geomechanical changes in saline sandstone reservoirs during and after CO2 injection. International Journal of Greenhouse Gas Control 63, 356-369.

  18. Glacial uplift: fluid injection beneath an elastic sheet on a poroelastic substrate

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Hewitt, Duncan; Chini, Greg

    2016-11-01

    Supraglacial lakes can drain to the base of glaciers extremely rapidly, causing localised uplift of the surrounding glacier and affecting its sliding velocity. The means by which large volumes of drained water interact with and leak into the subglacial hydrological system is unclear, as is the role of the basal till. A theoretical study of the spread of fluid injected below an elastic sheet (the ice) is presented, where the ice lies above, and initially compresses, a deformable poroelastic layer. As pressurized fluid is injected, the deformable layer swells to accommodate more fluid. If sufficient fluid is injected, a 'blister' of fluid forms above the layer, causing the overburden to lift off the base. The flow is controlled by the local pressure drop across the tip of this blister, which depends subtly on both the flow of fluid through the porous layer below the tip, and on poroelastic deformation in the till ahead of the tip. The spreading behaviour and dependence on key parameters is analysed. Predictions of the model are compared to field measurements of uplift from draining glacial lakes in Greenland.

  19. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Uhm, Jong Ho; Johnson, Thomas Edward

    2015-03-24

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes a plurality of tube assemblies, wherein each of the tube assemblies includes an upstream portion and a downstream portion. Each tube assembly includes a plurality of tubes that extend from the upstream portion to the downstream portion or from the upstream portion through the downstream portion. At least one injection system is coupled to at least one tube assembly of the plurality of tube assemblies. The injection system includes a fluid supply member that extends from a fluid source to the downstream portion of the tube assembly. The fluid supply member includes a first end portion located in the downstream portion of the tube assembly, wherein the first end portion has at least one first opening for channeling fluid through the tube assembly to facilitate reducing a temperature therein.

  20. INDUCED SEISMICITY. Seismicity triggered by fluid injection-induced aseismic slip.

    PubMed

    Guglielmi, Yves; Cappa, Frédéric; Avouac, Jean-Philippe; Henry, Pierre; Elsworth, Derek

    2015-06-12

    Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (μm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 μm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law μ = 0.67 + 0.045ln(v/v₀) with v₀ = 0.1 μm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep. Copyright © 2015, American Association for the Advancement of Science.

  1. Successful Thrombolysis and Spasmolysis of Acute Leg Ischemia after Accidental Intra-arterial Injection of Dissolved Flunitrazepam Tablets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radeleff, B., E-mail: Boris_radeleff@med.uni-heidelberg.de; Stampfl, U.; Sommer, C.-M.

    2011-10-15

    A 37-year-old man with known intravenous drug abuse presented in the surgical ambulatory care unit with acute leg ischemia after accidental intra-arterial injection of dissolved flunitrazepam tablets into the right femoral artery. A combination of anticoagulation, vasodilatation, and local selective and superselective thrombolysis with urokinase was performed to salvage the leg. As a result of the severe ischemia-induced pain, the patient had to be monitored over the complete therapy period on the intensive care unit with permanent administration of intravenous fluid and analgetics. We describe the presenting symptoms and the interventional technique, and we discuss the recent literature regarding themore » management of accidental intra-arterial injection of dissolved flunitrazepam tablets.« less

  2. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    Planar measurements of injectant mole fraction and temperature have been conducted in a nonreacting supersonic combustor configured with underexpanded injection in the base of a swept ramp. The temperature measurements were conducted with a Mach 2 test section inlet in streamwise planes perpendicular to the test section wall on which the ramp was mounted. Injection concentration measurements, conducted in cross flow planes with both Mach 2 and Mach 2.9 free stream conditions, dramatically illustrate the domination of the mixing process by streamwise vorticity generated by the ramp. These measurements, conducted using a nonintrusive optical technique (laser-induced iodine fluorescence), provide an accurate and extensive experimental data base for the validation of computation fluid dynamic codes for the calculation of highly three-dimensional supersonic combustor flow fields.

  3. Supercritical-fluid extraction and chromatography-mass spectrometry for analysis of mycotoxins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.D.; Udseth, H.R.

    1982-07-01

    The use of direct supercritical-fluid injection-mass spectrometry for the rapid analysis of mycotoxins of the tricothecene group is demonstrated. A solution containing diacetoxyscirpenol or T-2 toxin is injected into a fluid consisting primarily of pentane or carbon dioxide and is rapidly brought to supercritical conditions. Direct injection of the fluid stream into a chemical ionization source allows thermally labile compounds to be analyzed. Under these conditions trichothecene mass spectra showing significant (M + 1)/sup +/ ions and distinctive fragmentation patterns are obtained. Detection limits are in the subnanogram range. Direct analysis from complex substrates using selective supercritical-fluid extraction is proposed.more » 4 figures.« less

  4. Synovial fluid bupivacaine concentrations following single intra-articular injection in normal and osteoarthritic canine stifles.

    PubMed

    Barry, S L; Martinez, S A; Davies, N M; Remsberg, C M; Sayre, C L; Bachelez, A

    2015-02-01

    Intra-articular bupivacaine helps alleviate pain in animals receiving joint surgery, but its use has become controversial as ex vivo studies have illuminated the potential for chondrotoxicity. Such studies typically involve cell cultures incubated in solutions containing high bupivacaine concentrations for long durations. The aim of this study was to measure the actual synovial fluid bupivacaine concentrations after intra-articular injection. Eight healthy beagles with normal stifles and 22 large and giant-breed dogs with stifle osteoarthritis (OA) were treated with a single intra-articular injection of bupivacaine (1 mg/kg) into a stifle. Joint fluid samples were taken from the treated stifle immediately after injection and 30 min after injection and analyzed for bupivacaine concentrations. Immediately after injection, the median bupivacaine concentrations in normal and OA stifles were 3.6 and 2.5 mg/mL, respectively. Thirty minutes after injection, bupivacaine concentrations in normal and OA stifles were 0.4 and 0.6 mg/mL, respectively. These results provide insight into the pharmacokinetics of bupivacaine after injection into a joint. Given its immediate dilution and rapid drop in synovial fluid concentration, bupivacaine is unlikely to damage chondrocytes when administered as a single intra-articular injection. © 2014 John Wiley & Sons Ltd.

  5. Properties of radio-frequency heated argon confined uranium plasmas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.

  6. Elastic cavitation and fracture via injection.

    PubMed

    Hutchens, Shelby B; Fakhouri, Sami; Crosby, Alfred J

    2016-03-07

    The cavitation rheology technique extracts soft materials mechanical properties through pressure-monitored fluid injection. Properties are calculated from the system's response at a critical pressure that is governed by either elasticity or fracture (or both); however previous elementary analysis has not been capable of accurately determining which mechanism is dominant. We combine analyses of both mechanisms in order to determine how the full system thermodynamics, including far-field compliance, dictate whether a bubble in an elastomeric solid will grow through either reversible or irreversible deformations. Applying these analyses to experimental data, we demonstrate the sensitivity of cavitation rheology to microstructural variation via a co-dependence between modulus and fracture energy.

  7. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  8. Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2014-05-01

    Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.

  9. Modelling induced seismicity due to fluid injection

    NASA Astrophysics Data System (ADS)

    Murphy, S.; O'Brien, G. S.; Bean, C. J.; McCloskey, J.; Nalbant, S. S.

    2011-12-01

    Injection of fluid into the subsurface alters the stress in the crust and can induce earthquakes. The science of assessing the risk of induced seismicity from such ventures is still in its infancy despite public concern. We plan to use a fault network model in which stress perturbations due to fluid injection induce earthquakes. We will use this model to investigate the role different operational and geological factors play in increasing seismicity in a fault system due to fluid injection. The model is based on a quasi-dynamic relationship between stress and slip coupled with a rate and state fiction law. This allows us to model slip on fault interfaces over long periods of time (i.e. years to 100's years). With the use of the rate and state friction law the nature of stress release during slipping can be altered through variation of the frictional parameters. Both seismic and aseismic slip can therefore be simulated. In order to add heterogeneity along the fault plane a fractal variation in the frictional parameters is used. Fluid injection is simulated using the lattice Boltzmann method whereby pore pressure diffuses throughout a permeable layer from the point of injection. The stress perturbation this causes on the surrounding fault system is calculated using a quasi-static solution for slip dislocation in an elastic half space. From this model we can generate slip histories and seismicity catalogues covering 100's of years for predefined fault networks near fluid injection sites. Given that rupture is a highly non-linear process, comparison between models with different input parameters (e.g. fault network statistics and injection rates) will be based on system wide features (such as the Gutenberg-Richter b-values), rather than specific seismic events. Our ultimate aim is that our model produces seismic catalogues similar to those observed over real injection sites. Such validation would pave the way to probabilistic estimation of reactivation risk for injection sites using such models. Preliminary results from this model will be presented.

  10. Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)

    USGS Publications Warehouse

    Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.

    2009-01-01

    Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the Bulli 4 coal did not show any significant variation with pressure, a phenomenon which we assign to the extremely small amount of porosity of this coal in the pore size range between 35 and 100,000????. ?? 2008 Elsevier B.V.

  11. A Study of Permeability Changes Due to Cold Fluid Circulation in Fractured Geothermal Reservoirs.

    PubMed

    Gholizadeh Doonechaly, Nima; Abdel Azim, Reda R; Rahman, Sheik S

    2016-05-01

    Reservoir behavior due to injection and circulation of cold fluid is studied with a shear displacement model based on the distributed dislocation technique, in a poro-thermoelastic environment. The approach is applied to a selected volume of Soultz geothermal reservoir at a depth range of 3600 to 3700 m. Permeability enhancement and geothermal potential of Soultz geothermal reservoir are assessed over a stimulation period of 3 months and a fluid circulation period of 14 years. This study-by shedding light onto another source of uncertainty-points toward a special role for the fracture surface asperities in predicting the shear dilation of fractures. It was also observed that thermal stress has a significant impact on changing the reservoir stress field. The effect of thermal stresses on reservoir behavior is more evident over longer circulation term as the rock matrix temperature is significantly lowered. Change in the fracture permeability due to the thermal stresses can also lead to the short circuiting between the injection and production wells which in turn decreases the produced fluid temperature significantly. The effect of thermal stress persists during the whole circulation period as it has significant impact on the continuous increase in the flow rate due to improved permeability over the circulation period. In the current study, taking into account the thermal stress resulted in a decrease of about 7 °C in predicted produced fluid temperature after 14 years of cold fluid circulation; a difference which notably influences the potential prediction of an enhanced geothermal system. © 2015, National Ground Water Association.

  12. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been rotated far from the ambient stress field; the ';structural keel' provided by the geology suppresses induction since the fluid induced stress levels are much smaller than the breaking strain of the host rocks. In addition, we observe a systematic increase in observed biggest magnitude event with time during any injection indicating that in none of our simulations is the maximum magnitude event observed; mmax is in fact not estimable from any of our simulations and is unlikely to be observed in any given injection scenario.

  13. Reducing or stopping the uncontrolled flow of fluid such as oil from a well

    DOEpatents

    Hermes, Robert E

    2014-02-18

    The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.

  14. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  15. Permeation absorption sampler with multiple detection

    DOEpatents

    Zaromb, Solomon

    1990-01-01

    A system for detecting analytes in air or aqueous systems includes a permeation absorption preconcentrator sampler for the analytes and analyte detectors. The preconcentrator has an inner fluid-permeable container into which a charge of analyte-sorbing liquid is intermittently injected, and a fluid-impermeable outer container. The sample is passed through the outer container and around the inner container for trapping and preconcentrating the analyte in the sorbing liquid. The analyte can be detected photometrically by injecting with the sorbing material a reagent which reacts with the analyte to produce a characteristic color or fluorescence which is detected by illuminating the contents of the inner container with a light source and measuring the absorbed or emitted light, or by producing a characteristic chemiluminescence which can be detected by a suitable light sensor. The analyte can also be detected amperometrically. Multiple inner containers may be provided into which a plurality of sorbing liquids are respectively introduced for simultaneously detecting different analytes. Baffles may be provided in the outer container. A calibration technique is disclosed.

  16. Cannula Implantation into the Cisterna Magna of Rodents.

    PubMed

    Xavier, Anna L R; Hauglund, Natalie Linea; von Holstein-Rathlou, Stephanie; Li, Qianliang; Sanggaard, Simon; Lou, Nanhong; Lundgaard, Iben; Nedergaard, Maiken

    2018-05-23

    Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB).

  17. Reverse-Tangent Injection in a Centrifugal Compressor

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  18. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    PubMed

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  19. Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.

    PubMed

    Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind

    2018-01-26

    Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. Basic setup and disinfection.

    PubMed

    Shimada, Hiroyuki

    2014-01-01

    Vitrectomy is one of the ophthalmic surgeries that require a large number of instruments. Despite a growing array of single-use disposable instruments, vitrectomies for refractory diseases still involve complicated procedures and many surgical devices. As to the arrangement of materials and instruments on the surgical table, fluids that must not be introduced intraocularly, infusion fluid for washing the ocular surface, fluids for intraocular injection, and fluids for periocular injection are classified and marked to avoid using the wrong fluid. Since bacteria are present in the fluid retained in the fluid catch bag, the accumulated infusion fluid should be removed by aspiration. © 2014 S. Karger AG, Basel

  1. Fluid injection and induced seismicity

    NASA Astrophysics Data System (ADS)

    Kendall, Michael; Verdon, James

    2016-04-01

    The link between fluid injection, or extraction, and induced seismicity has been observed in reservoirs for many decades. In fact spatial mapping of low magnitude events is routinely used to estimate a stimulated reservoir volume. However, the link between subsurface fluid injection and larger felt seismicity is less clear and has attracted recent interest with a dramatic increase in earthquakes associated with the disposal of oilfield waste fluids. In a few cases, hydraulic fracturing has also been linked to induced seismicity. Much can be learned from past case-studies of induced seismicity so that we can better understand the risks posed. Here we examine 12 case examples and consider in particular controls on maximum event size, lateral event distributions, and event depths. Our results suggest that injection volume is a better control on maximum magnitude than past, natural seismicity in a region. This might, however, simply reflect the lack of baseline monitoring and/or long-term seismic records in certain regions. To address this in the UK, the British Geological Survey is leading the deployment of monitoring arrays in prospective shale gas areas in Lancashire and Yorkshire. In most cases, seismicity is generally located in close vicinity to the injection site. However, in some cases, the nearest events are up to 5km from the injection point. This gives an indication of the minimum radius of influence of such fluid injection projects. The most distant events are never more than 20km from the injection point, perhaps implying a maximum radius of influence. Some events are located in the target reservoir, but most occur below the injection depth. In fact, most events lie in the crystalline basement underlying the sedimentary rocks. This suggests that induced seismicity may not pose a leakage risk for fluid migration back to the surface, as it does not impact caprock integrity. A useful application for microseismic data is to try and forecast induced seismicity during injection, with the aim of mitigating large induced events before they happen. Microseismic event population statistics can be used to make forecasts about the future maximum event magnitude as the injection program continues. By making such forecasts, mitigating actions may be possible if forecast maximum magnitudes exceed a predefined limit.

  2. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  3. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... means of controlling its engine. (d) For each fluid injection (other than fuel) system and its controls... injection fluid is adequately controlled. (e) If a power or thrust control incorporates a fuel shutoff...

  4. The Effects of Post-Mating Administration of Anti-IL-10 and Anti-TGFß on Conception Rates in Mice

    PubMed Central

    Risvanli, Ali; Godekmerdan, Ahmet

    2015-01-01

    Background In fertility studies, it has been shown that transforming growth factor β (TGFβ) and interlukin 10 (IL-10) play very important roles in implantation, maternal immune tolerance, placentation and fetal development, and the release beginning of release for fetal and postnatal death. The present study aims to determine the effects of the postmating administration of neutralizing antibodies against IL-10 and TGFβ, which significantly impact pregnancy in females and the conception rates in mice via assessments of blood serum and uterine fluid concentrations of IL-2, IL-4, IL-6, IL-10, IL-17, interferon γ (IFNγ), Tumor necrosis factor α (TNFα), and TGFβ. Materials and Methods In this experimental study, 21 BALB/c strain female mice were mated and randomly divided into three groups. The mice in the first group were selected as the control group. The second group of animals was injected with 0.5 mg of anti-IL-10 after mating, while those in the third group were intraperitoneally injected with 0.5 mg of anti-TGFβ. The animals in all groups were decapitated on the 13thday after mating and their blood samples were taken. The uteri were removed to determine pregnancy. The mice’s uterine irrigation fluids were also obtained. We used the multiplex immunoassay technique to determine the cytokine concentrations in uterine fluid and blood serum of the mice. Results We observed no intergroup difference with respect to conception rates. A comparison of the cytokine concentrations in the uterine fluids of pregnant mice revealed higher TGFβ concentrations (p<0.01) in the second group injected with the anti-IL-10 antibody compared with the other groups. There was no difference detected in pregnant animals with regards to both uterine fluid and blood serum concentrations of the other cytokines. Conclusion Post-mating administration of anti-IL-10 and anti-TGFβ antibodies in mice may not have any effect on conception rates. PMID:25918594

  5. Environmental risks associated with unconventional gas extraction: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill

    2015-04-01

    Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.

  6. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  7. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    NASA Astrophysics Data System (ADS)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.

  8. 40 CFR 146.69 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pursuant to § 146.67(f) and the response taken; (4) The total volume of fluid injected; (5) Any change in the annular fluid volume; (6) The physical, chemical and other relevant characteristics of injected...

  9. From hydrofracture to gaseofracture in porous rocks: influence of the nature of the injection fluid on the process

    NASA Astrophysics Data System (ADS)

    Johnsen, O.; Chevalier, C.; Toussaint, R.; Lindner, A.; Niebling, M.; Schmittbuhl, J.; Maloy, K. J.; Clement, E.; Flekkoy, E. G.

    2009-04-01

    We present experimental systems where we inject a fluid at high pressure in a poorly cohesive porous material saturated with the same fluid. This fluid is either a highly compressible gas (air), or an almost incompressible and viscous fluid (oil), in an otherwise identical porous matrix. We compare both situations. These porous materials are designed as analogs to real rocks in terms of processes, but their cohesion and geometry are tuned so that the hydrofracture process can be followed optically in the lab, in addition to the ability to follow the imposed pressure and fluxes. Namely, we work with lowly cohesive granular materials, confined in thin elongated Hele-Shaw cell, and follow it with high speed cameras. The fluid is injected on the side of the material, and the injection overpressure is maintained constant after the start. At sufficiently high overpressures, the mobilization of grains is observed, and the formation of hydrofracture fingering patterns is followed and analyzed quantitatively. The two situations where air is injected and where oil is injected are compared together. Many striking similarities are observed between both situations about the shape selections and dynamics, when time is rescaled according to the viscosity of the interstitial fluid. Some differences survive in the speed of the traveling hydrofracture, and their physical origin is discussed. In practice, this problem is relevant for important aspects in the formation and sustenance of increased permeability macroporous networks as demonstrated in nature and industry in many situations. E.g., in active hydrofracture in boreholes, piping/internal erosion in soils and dams, sand production in oil or water wells, and wormholes in oil sands. It is also important to understand the formation of macroporous channels, and the behavior of confined gouges when overpressured fluids are mobilized in seismic sources. Indeed, the formation of preferential paths in this situation can severely affect the fluid and heat transport properties in this situations, and thus affect the pore pressurization effects.

  10. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  11. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  12. Efficacy of Intravitreal Anti-vascular Endothelial Growth Factor or Steroid Injection in Diabetic Macular Edema According to Fluid Turbidity in Optical Coherence Tomography

    PubMed Central

    Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk

    2014-01-01

    Purpose To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. Methods A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initialintravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Results Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. Conclusions IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism. PMID:25120338

  13. Efficacy of intravitreal anti-vascular endothelial growth factor or steroid injection in diabetic macular edema according to fluid turbidity in optical coherence tomography.

    PubMed

    Lee, Kyungmin; Chung, Heeyoung; Park, Youngsuk; Sohn, Joonhong

    2014-08-01

    To determine if short term effects of intravitreal anti-vascular endothelial growth factor or steroid injection are correlated with fluid turbidity, as detected by spectral domain optical coherence tomography (SD-OCT) in diabetic macular edema (DME) patients. A total of 583 medical records were reviewed and 104 cases were enrolled. Sixty eyes received a single intravitreal bevacizumab injection (IVB) on the first attack of DME and 44 eyes received triamcinolone acetonide treatment (IVTA). Intraretinal fluid turbidity in DME patients was estimated with initial intravitreal SD-OCT and analyzed with color histograms from a Photoshop program. Central macular thickness and visual acuity using a logarithm from the minimum angle of resolution chart, were assessed at the initial period and 2 months after injections. Visual acuity and central macular thickness improved after injections in both groups. In the IVB group, visual acuity and central macular thickness changed less as the intraretinal fluid became more turbid. In the IVTA group, visual acuity underwent less change while central macular thickness had a greater reduction (r = -0.675, p = 0.001) as the intraretinal fluid was more turbid. IVB and IVTA injections were effective in reducing central macular thickness and improving visual acuity in DME patients. Further, fluid turbidity, which was detected by SD-OCT may be one of the indexes that highlight the influence of the steroid-dependent pathogenetic mechanism.

  14. Detection of pathogenic organisms in food, water, and body fluids

    NASA Astrophysics Data System (ADS)

    Wallace, William H.; Henley, Michael V.; Sayler, Gary S.

    2002-06-01

    The construction of specific bioluminescent bacteriophage for detection of pathogenic organism can be developed to overcome interferences in complex matrices such as food, water and body fluids. Detection and identification of bacteria often require several days and frequently weeks by standard methods of isolation, growth and biochemical test. Immunoassay detection often requires the expression of the bacterial toxin, which can lead to non-detection of cells that may express the toxin under conditions different from testing protocols. Immunoassays require production of a specific antibody to the agent for detection and interference by contaminants frequently affects results. PCR based detection may be inhibited by substances in complex matrices. Modified methods of the PCR technique, such as magnetic capture-hybridization PCR (MCH-PCR), appear to improve the technique by removing the DNA products away from the inhibitors. However, the techniques required for PCR-based detection are slow and the procedures require skilled personnel working with labile reagents. Our approach is based on transferring bioluminescence (lux) genes into a selected bacteriophage. Bacteriophages are bacterial viruses that are widespread in nature and often are genus and species specific. This specificity eliminates or reduces false positives in a bacteriophage assay. The phage recognizes a specific receptor molecule on the surface of a susceptible bacterium, attaches and then injects the viral nucleic acid into the cell. The injected viral genome is expressed and then replicated, generating numerous exact copies of the viral genetic material including the lux genes, often resulting in an increase in bioluminescence by several hundred fold.

  15. Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.

    2012-07-01

    Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injectedmore » CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO{sub 2} into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity.« less

  16. Unconventional Hydrocarbon Development Hazards Within the Central United States. Report 1: Overview and Potential Risk to Infrastructure

    DTIC Science & Technology

    2015-08-01

    of the injection purpose, i.e., secondary oil and gas recovery, disposal of waste fluids, geothermal energy, and/or UHP hydraulic fracturing...activities such as reservoir impoundment, mining, wastewater injection, geothermal systems and CO2 capture have been linked directly to induced...activities, e.g., deep fluid injection, geothermal injection, and/or UHP wells, that critically affect deep lithologies and alter the existing mechanical

  17. An experimental facility for the visual study of turbulent flows.

    NASA Technical Reports Server (NTRS)

    Brodkey, R. S.; Hershey, H. C.; Corino, E. R.

    1971-01-01

    An experimental technique which allows visual observations of the wall area in turbulent pipe flow is described in detail. It requires neither the introduction of any injection or measuring device into the flow nor the presence of a two-phase flow or of a non-Newtonian fluid. The technique involves suspending solid MgO particles of colloidal size in trichloroethylene and photographing their motions near the wall with a high speed movie camera moving with the flow. Trichloroethylene was chosen in order to eliminate the index of refraction problem in a curved wall. Evaluation of the technique including a discussion of limitations is included. Also the technique is compared with previous methods of visual observations of turbulent flow.

  18. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence

    USGS Publications Warehouse

    Keranen, Katie M.; Savage, Heather M.; Abers, Geoffrey A.; Cochran, Elizabeth S.

    2013-01-01

    Significant earthquakes are increasingly occurring within the continental interior of the United States, including five of moment magnitude (Mw) ≥ 5.0 in 2011 alone. Concurrently, the volume of fluid injected into the subsurface related to the production of unconventional resources continues to rise. Here we identify the largest earthquake potentially related to injection, an Mw 5.7 earthquake in November 2011 in Oklahoma. The earthquake was felt in at least 17 states and caused damage in the epicentral region. It occurred in a sequence, with 2 earthquakes of Mw 5.0 and a prolific sequence of aftershocks. We use the aftershocks to illuminate the faults that ruptured in the sequence, and show that the tip of the initial rupture plane is within ~200 m of active injection wells and within ~1 km of the surface; 30% of early aftershocks occur within the sedimentary section. Subsurface data indicate that fluid was injected into effectively sealed compartments, and we interpret that a net fluid volume increase after 18 yr of injection lowered effective stress on reservoir-bounding faults. Significantly, this case indicates that decades-long lags between the commencement of fluid injection and the onset of induced earthquakes are possible, and modifies our common criteria for fluid-induced events. The progressive rupture of three fault planes in this sequence suggests that stress changes from the initial rupture triggered the successive earthquakes, including one larger than the first.

  19. Investigating the relationship between seismicity and fluid injection in the Barnett Shale, Texas using coupled poroelastic model and surface deformation data

    NASA Astrophysics Data System (ADS)

    Zhai, G.; Shirzaei, M.

    2017-12-01

    Across the Barnett Shale, Texas a noticeable increase in seismic activity was observed during 2007 and 2015, which was accompanied by high volume injection at several nearby disposal wells. Many studies focused on the positive correlation between injection rate at individual wells and the adjacent seismicity, suggesting that seismicity is triggered or induced due to increased pore fluid pressure associated with fluid injection in hydraulically connected geological units. However, investigating temporal evolution of total volume of injected fluid and concurrent earthquakes in a larger area indicates more complex patterns, requiring a more comprehensive analysis of the spatiotemporal evolution of coupled poroelastic stress and pore fluid pressure. In this study, we created a coupled poroelastic model to simulate large scale spatiotemporal evolution of pore pressure, poroelastic stresses, and Coulomb failure stress in the Barnett Shale using injection time series of 96 high-volume injection wells spanning from 2007 to 2015. We additionally account for a layered poroelastic medium, where its parameters are set up using geological maps and seismic tomographic data sets. Fault orientations and relevant frictional properties are also extracted from published literatures. We further integrate observation of surface deformation obtained from interferometric processing of 16 ALOS L-Band SAR images to optimize rock hydraulic diffusivity and constrain the extent to which fluid may migrate. The preliminary modeling result shows that poroelastic stress is only 10% of pore pressure. However, the superimposition of these two effects is spatially and temporally responsible for the occurrence of earthquakes in the Barnett Shale. Also, not all area with increased Coulomb failure stress experiences elevated seismicity, suggesting possible heterogeneous background tectonic stresses, lacking pre-existing faults, and/or heterogeneous fault orientations.

  20. Oblique Intrathecal Injection in Lumbar Spine Surgery: A Technical Note.

    PubMed

    Jewett, Gordon A E; Yavin, Daniel; Dhaliwal, Perry; Whittaker, Tara; Krupa, JoyAnne; Du Plessis, Stephan

    2017-09-01

    Intrathecal morphine (ITM) is an efficacious method of providing postoperative analgesia and reducing pain associated complications. Despite adoption in many surgical fields, ITM has yet to become a standard of care in lumbar spine surgery. Spine surgeons' reticence to make use of the technique may in part be attributed to concerns of precipitating a cerebrospinal fluid (CSF) leak. Herein we describe a method for oblique intrathecal injection during lumbar spine surgery to minimize risk of CSF leak. The dural sac is penetrated obliquely at a 30° angle to offset dural and arachnoid puncture sites. Oblique injection in instances of limited dural exposure is made possible by introducing a 60° bend to a standard 30-gauge needle. The technique was applied for injection of ITM or placebo in 104 cases of lumbar surgery in the setting of a randomized controlled trial. Injection was not performed in two cases (2/104, 1.9%) following preinjection dural tear. In the remaining 102 cases no instances of postoperative CSF leakage attributable to oblique intrathecal injection occurred. Three cases (3/102, 2.9%) of transient CSF leakage were observed immediately following intrathecal injection with no associated sequelae or requirement for postsurgical intervention. In two cases, the observed leak was repaired by sealing with fibrin glue, whereas in a single case the leak was self-limited requiring no intervention. Oblique dural puncture was not associated with increased incidence of postoperative CSF leakage. This safe and reliable method of delivery of ITM should therefore be routinely considered in lumbar spine surgery.

  1. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  2. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  3. Transition duct with late injection in turbine system

    DOEpatents

    LeBegue, Jeffrey Scott; Pentecost, Ronnie Ray; Flanagan, James Scott; Kim, Won -Wook; McMahan, Kevin Weston

    2015-09-15

    A system for supplying an injection fluid to a combustor is disclosed. The system includes a transition duct comprising an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The passage defines a combustion chamber. The system further includes a tube providing fluid communication for the injection fluid to flow through the transition duct and into the combustion chamber.

  4. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  5. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  6. Unsteady Heat and Mass Transfer of Chemically Reacting Micropolar Fluid in a Porous Channel with Hall and Ion Slip Currents

    PubMed Central

    2014-01-01

    This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs. PMID:27419211

  7. Chemotherapy (For Parents)

    MedlinePlus

    ... can be: taken as a pill, capsule, or liquid that is swallowed given by injection into a muscle or the skin injected into spinal fluid through a needle inserted into a fluid-filled space in the lower spine (below the spinal cord) ...

  8. Controlled Source Electromagnetic Monitoring of Hydraulic Fracturing: Wellbore and Fluid Effects

    NASA Astrophysics Data System (ADS)

    Couchman, M. J.; Everett, M. E.

    2017-12-01

    As unconventional resources become increasingly important, we must tackle the issue of real-time monitoring of the efficiency of unconventional hydrocarbon extraction. Controlled Source Electromagnetics (CSEM) have been used primarily as a marine-based technique to monitor conventional oil bearing reservoirs with a strong resurgence the new millennium. Many of these studies revolving around detecting a thin resistive layer such as a reservoir at 1m - 3km depth. In these cases, the presence of the resistive layer is characterized by a jump in electric field amplitude recorded at the boundary between the layer and the host sediments. The lessons learned from these studies can be applied to terrestrial unconventional settings with appropriate modifications. The work shown here is a means develop methods which enable more reliable terrestrial CSEM monitoring of the flow of injected fluids associated with hydraulic fracturing of unconventional reservoirs and to detect subsurface fluids based on their CSEM signature and in turn, to infer the subsurface flow of electrically conductive injected fluids. The predictive model validated for various 1-D marine, and terrestrial cases focus on the mapping of fluid flow in from a horizontal wellbore in a uniform halfspace using an in-line Horizontal Electric Dipole (HED) with electric field amplitude recorded by an array of electric field sensors. The effect of the of the vertical and horizontal wellbores are documented taking into account the conductivity, size, and thickness of each wellbore. The fracturing fluids flow and conductivity are also taken into account throughout various stages of the fracturing process. In each case, the sensitivity at a location of the surface in-line electric field to a given resistive or conductive layer, due to a source is calculated.

  9. Real-time visualization of ultrasound-guided retrobulbar blockade: an imaging study.

    PubMed

    Luyet, C; Eichenberger, U; Moriggl, B; Remonda, L; Greif, R

    2008-12-01

    Retrobulbar anaesthesia allows eye surgery in awake patients. Severe complications of the blind techniques are reported. Ultrasound-guided needle introduction and direct visualization of the spread of local anaesthetic may improve quality and safety of retrobulbar anaesthesia. Therefore, we developed a new ultrasound-guided technique using human cadavers. In total, 20 blocks on both sides in 10 embalmed human cadavers were performed. Using a small curved array transducer and a long-axis approach, a 22 G short bevel needle was introduced under ultrasound guidance lateral and caudal of the eyeball until the needle tip was seen 2 mm away from the optic nerve. At this point, 2 ml of contrast dye as a substitute for local anaesthetic was injected. Immediately after the injection, the spread of the contrast dye was documented by means of CT scans performed in each cadaver. The CT scans showed the distribution of the contrast dye in the muscle cone and behind the posterior sclera in all but one case. No contrast dye was found inside the optic nerve or inside the eyeball. In one case, there could be an additional trace of contrast dye behind the orbita. Our new ultrasound-guided technique has the potential to improve safety and efficacy of the procedure by direct visualization of the needle placement and the distribution of the injected fluid. Furthermore, the precise injection near the optic nerve could lead to a reduction of the amount of the local anaesthetic needed with fewer related complications.

  10. Detachment of particulate iron sulfide during shale-water interaction

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Kreisserman, Y.

    2017-12-01

    Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.

  11. Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation

    NASA Astrophysics Data System (ADS)

    M. Salem, A.; Rania, Fathy

    2012-05-01

    The effect of variable viscosity and thermal conductivity on steady magnetohydrodynamic (MHD) heat and mass transfer flow of viscous and incompressible fluid near a stagnation point towards a permeable stretching sheet embedded in a porous medium are presented, taking into account thermal radiation and internal heat genberation/absorbtion. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing fundamental equations are first transformed into a system of ordinary differential equations using a scaling group of transformations and are solved numerically by using the fourth-order Rung—Kutta method with the shooting technique. A comparison with previously published work has been carried out and the results are found to be in good agreement. The results are analyzed for the effect of different physical parameters, such as the variable viscosity and thermal conductivity, the ratio of free stream velocity to stretching velocity, the magnetic field, the porosity, the radiation and suction/injection on the flow, and the heat and mass transfer characteristics. The results indicate that the inclusion of variable viscosity and thermal conductivity into the fluids of light and medium molecular weight is able to change the boundary-layer behavior for all values of the velocity ratio parameter λ except for λ = 1. In addition, the imposition of fluid suction increases both the rate of heat and mass transfer, whereas fluid injection shows the opposite effect.

  12. Botulinum neurotoxin for management of intractable central leakage through a voice prosthesis in surgical voice restoration.

    PubMed

    Mullan, G P J; Lee, M T; Clarke, P M

    2006-09-01

    Rehabilitation of voice and speech after total laryngectomy has become established practice in recent years. A voice prosthesis is placed within a surgically produced fistula between the trachea and upper oesophagus and acts as a one way valve, allowing passage of pulmonary air from the trachea into the oesophagus and preventing aspiration of food and fluid from the oesophagus into the trachea. Persistent leakage through or around these prostheses is a recognized complication, the aetiology of which can vary widely, from mechanical issues with the prostheses themselves to anatomical and physiological issues associated with the reconstructed pharynx. We report a new technique of using Dysport in the management of intractable central leakage due to premature and forceful closure of the upper oesophageal sphincter during swallowing. This resulted in the pooling of fluids around the posterior flange of the prosthesis. This, along with the increased pressure from the muscle contraction, led to central leakage, as identified on videofluoroscopy. An injection of Dysport paralysed the upper oesophageal sphincter, preventing pooling of fluids around the prosthesis and the forcing open of the valve. The effect was to eliminate the leakage, and the patient did not require further injections over the following 22 months.

  13. Rock-fluid chemical interactions at reservoir conditions: The influence of brine chemistry and extent of reaction

    NASA Astrophysics Data System (ADS)

    Anabaraonye, B. U.; Crawshaw, J.; Trusler, J. P. M.

    2016-12-01

    Following carbon dioxide injection in deep saline aquifers, CO2 dissolves in the formation brines forming acidic solutions that can subsequently react with host reservoir minerals, altering both porosity and permeability. The direction and rates of these reactions are influenced by several factors including properties that are associated with the brine system. Consequently, understanding and quantifying the impacts of the chemical and physical properties of the reacting fluids on overall reaction kinetics is fundamental to predicting the fate of the injected CO2. In this work, we present a comprehensive experimental study of the kinetics of carbonate-mineral dissolution in different brine systems including sodium chloride, sodium sulphate and sodium bicarbonate of varying ionic strengths. The impacts of the brine chemistry on rock-fluid chemical reactions at different extent of reactions are also investigated. Using a rotating disk technique, we have investigated the chemical interactions between the CO2-saturated brines and carbonate minerals at conditions of pressure (up to 10 MPa) and temperature (up to 373 K) pertinent to carbon storage. The changes in surface textures due to dissolution reaction were studied by means of optical microscopy and vertical scanning interferometry. Experimental results are compared to previously derived models.

  14. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.

    PubMed

    Kreisserman, Yevgeny; Emmanuel, Simon

    2018-01-16

    During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.

  15. Induced Seismicity Potential of Energy Technologies

    NASA Astrophysics Data System (ADS)

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  16. TARGET/CRYOCHIL - THERMODYNAMIC ANALYSIS AND SUBSCALE MODELING OF SPACE-BASED ORBIT TRANSFER VEHICLE CRYOGENIC PROPELLANT RESUPPLY

    NASA Technical Reports Server (NTRS)

    Defelice, D. M.

    1994-01-01

    The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will insure that the operations proceed quickly and efficiently. These programs are written in FORTRAN for batch execution on IBM 370 class mainframe computers. It requires 360K of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in EBCDIC format. TARGET/CRYOCHIL was developed in 1988.

  17. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  18. Novel joint cupping clinical maneuver for ultrasonographic detection of knee joint effusions.

    PubMed

    Uryasev, Oleg; Joseph, Oliver C; McNamara, John P; Dallas, Apostolos P

    2013-11-01

    Knee effusions occur due to traumatic and atraumatic causes. Clinical diagnosis currently relies on several provocative techniques to demonstrate knee joint effusions. Portable bedside ultrasonography (US) is becoming an adjunct to diagnosis of effusions. We hypothesized that a US approach with a clinical joint cupping maneuver increases sensitivity in identifying effusions as compared to US alone. Using unembalmed cadaver knees, we injected fluid to create effusions up to 10 mL. Each effusion volume was measured in a lateral transverse location with respect to the patella. For each effusion we applied a joint cupping maneuver from an inferior approach, and re-measured the effusion. With increased volume of saline infusion, the mean depth of effusion on ultrasound imaging increased as well. Using a 2-mm cutoff, we visualized an effusion without the joint cupping maneuver at 2.5 mL and with the joint cupping technique at 1 mL. Mean effusion diameter increased on average 0.26 cm for the joint cupping maneuver as compared to without the maneuver. The effusion depth was statistically different at 2.5 and 7.5 mL (P < .05). Utilizing a joint cupping technique in combination with US is a valuable tool in assessing knee effusions, especially those of subclinical levels. Effusion measurements are complicated by uneven distribution of effusion fluid. A clinical joint cupping maneuver concentrates the fluid in one recess of the joint, increasing the likelihood of fluid detection using US. © 2013 Elsevier Inc. All rights reserved.

  19. Combining microseismic and geomechanical observations to interpret storage integrity at the In Salah CCS site

    NASA Astrophysics Data System (ADS)

    Goertz-Allmann, Bettina P.; Kühn, Daniela; Oye, Volker; Bohloli, Bahman; Aker, Eyvind

    2014-07-01

    We present results from microseismic monitoring and geomechanical analysis obtained at the industrial-scale CO2 sequestration site at the In Salah gas development project in Algeria. More than 5000 microseismic events have been detected at a pilot monitoring well using a master event cross-correlation method. The microseismic activity occurs in four distinct clusters and thereof three clearly correlate with injection rates and wellhead pressures. These event clusters are consistent with a location within the reservoir interval. However, due to insufficient network geometry there are large uncertainties on event location. We estimate a fracture pressure of 155 bar (at the wellhead) from the comparison of injection pressure and injection rate and conclude that reservoir fracture pressure of the injection horizon has most likely been exceeded occasionally, accompanied by increased microseismic activity. Our analysis of 3-D ray tracing for direct and converted phases suggests that one of the event clusters is located at a shallower depth than the reservoir injection interval. However, this event cluster is most likely unrelated to changes in the injection activity at a single well, as the event times do not correlate with the wellhead pressures. Furthermore, this event cluster shows b-values close to one, indicating re-activated natural or tectonic seismicity on pre-existing weakness zones rather than injection induced seismicity. Analysis of event azimuths and significant shear wave splitting of up to 5 per cent provide further valuable insight into fluid migration and fracture orientation at the reservoir level. Although only one geophone was available during the critical injection period, the microseismic monitoring of CO2 injection at In Salah is capable of addressing some of the most relevant questions about fluid migration and reservoir integrity. An improved monitoring array with larger aperture and higher sensitivity is highly recommended, as it could greatly enhance the value of this technique. As such, real-time microseismic monitoring can be used to guide the injection pressure below fracture pressure, thus providing a tool to mitigate the risk of inducing felt seismicity and compromising seal integrity.

  20. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, John C.; Kaback, Dawn S.; Looney, Brian B.

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  1. In-situ remediation system for groundwater and soils

    DOEpatents

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  2. Salinity effects during immiscible displacement in porous media: electrokinetic stabilization of viscous fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin

    2017-11-01

    Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.

  3. Multi-fluid renewable geo-energy systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buscheck, Thomas A.

    A geo-energy production method for extracting thermal energy from a reservoir formation. A production well extracts brine from the reservoir formation. A plurality of working fluid injection ("WFI") wells may be arranged proximate to the production well to at least partially circumscribe the production well. A plurality of brine production ("BP") wells may be arranged in a vicinity of the WFI wells to at least partially circumscribe the WFI wells. A working fluid is injected into the WFI wells to help drive a flow of the brine up through the production and BP wells, together with at least a portionmore » of the injected working fluid. Parasitic-load time-shifting and to storing of excess solar thermal energy may also be performed.« less

  4. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  5. Systems and methods for multi-fluid geothermal energy systems

    DOEpatents

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  6. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.

  7. Data-driven fault mechanics: Inferring fault hydro-mechanical properties from in situ observations of injection-induced aseismic slip

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Viesca, R. C.

    2017-12-01

    In the absence of in situ field-scale observations of quantities such as fault slip, shear stress and pore pressure, observational constraints on models of fault slip have mostly been limited to laboratory and/or remote observations. Recent controlled fluid-injection experiments on well-instrumented faults fill this gap by simultaneously monitoring fault slip and pore pressure evolution in situ [Gugleilmi et al., 2015]. Such experiments can reveal interesting fault behavior, e.g., Gugleilmi et al. report fluid-activated aseismic slip followed only subsequently by the onset of micro-seismicity. We show that the Gugleilmi et al. dataset can be used to constrain the hydro-mechanical model parameters of a fluid-activated expanding shear rupture within a Bayesian framework. We assume that (1) pore-pressure diffuses radially outward (from the injection well) within a permeable pathway along the fault bounded by a narrow damage zone about the principal slip surface; (2) pore-pressure increase ativates slip on a pre-stressed planar fault due to reduction in frictional strength (expressed as a constant friction coefficient times the effective normal stress). Owing to efficient, parallel, numerical solutions to the axisymmetric fluid-diffusion and crack problems (under the imposed history of injection), we are able to jointly fit the observed history of pore-pressure and slip using an adaptive Monte Carlo technique. Our hydrological model provides an excellent fit to the pore-pressure data without requiring any statistically significant permeability enhancement due to the onset of slip. Further, for realistic elastic properties of the fault, the crack model fits both the onset of slip and its early time evolution reasonably well. However, our model requires unrealistic fault properties to fit the marked acceleration of slip observed later in the experiment (coinciding with the triggering of microseismicity). Therefore, besides producing meaningful and internally consistent bounds on in-situ fault properties like permeability, storage coefficient, resolved stresses, friction and the shear modulus, our results also show that fitting the complete observed time history of slip requires alternative model considerations, such as variations in fault mechanical properties or friction coefficient with slip.

  8. Conceptual design of intravenous fluids level monitoring system - a review

    NASA Astrophysics Data System (ADS)

    Verma, Prikshit; Padmani, Aniket; Boopathi, M.

    2017-11-01

    In today’s world of automation, there are advancements going on in all the fields. Each work is being automated day by day. However, if we see our current medical care system, some areas require manual caretaker and are loaded with heavy jobs, which consumes a lot of time. Nevertheless, since the work is related to human health, it should be properly done and that too with accuracy. An example of such a particular work is injecting saline or Intravenous (IV) fluids in a patient. The monitoring of such fluids needs utter attention as if the bottle of the fluid is not changed on time, it may lead to various problems for the patients like backflow of blood, blood loss etc. Various researches have been performed to overcome such critical situation. Different monitoring and alerting techniques are described in different researches. So, in our study, we will go through the researches done in this particular field and will see how different ideas are implemented.

  9. The Role of “Leakage” of Tubular Fluid in Anuria Due to Mercury Poisoning*

    PubMed Central

    Bank, Norman; Mutz, Bertrand F.; Aynedjian, Hagop S.

    1967-01-01

    The role of “leakage” of tubular fluid in anuria produced by mercury poisoning was studied in rats by micropuncture techniques. After an initial brisk diuresis, almost all animals were completely anuric 24 hours after HgCl2 injection. Lissamine green injected intravenously in the early stage of anuria appeared in the beginning of the proximal tubule, but the color became progressively lighter as the dye traversed the proximal convolutions. The dye was barely visible in the terminal segments of the proximal tubule; it did not appear at all in the distal tubules. These observations suggest that the proximal epithelium had become abnormally permeable to Lissamine green. Tubular fluid to plasma inulin (TF/PIn) ratios and inulin clearance were measured in individual nephrons at three sites: early proximal tubule, late proximal tubule, and distal tubule. It was found that TF/PIn ratios were abnormally low in the late proximal and distal tubules. Inulin clearance was normal at the beginning of the proximal tubule but fell by more than 60% by the late proximal convolutions. Thus, the proximal tubule had also become permeable to inulin. We conclude from these observations that anuria in mercury poisoning can occur in the presence of a normal glomerular filtration rate. The absence of urine flow appears to be due to complete absorption of the filtrate through an excessively permeable tubular epithelium. The driving force affecting this fluid absorption is probably the colloid oncotic pressure of the peritubular capillary blood. Images PMID:6025476

  10. Wastewater injection and slip triggering: Results from a 3D coupled reservoir/rate-and-state model

    NASA Astrophysics Data System (ADS)

    Babazadeh, M.; Olson, J. E.; Schultz, R.

    2017-12-01

    Seismicity induced by fluid injection is controlled by parameters related to injection conditions, reservoir properties, and fault frictional behavior. We present results from a combined model that brings together injection physics, reservoir dynamics, and fault physics to better explain the primary controls on induced seismicity. We created a 3D fluid flow simulator using the embedded discrete fracture technique and then coupled it with a 3D displacement discontinuity model that uses rate and state friction to model slip events. The model is composed of three layers, including the top-seal, the injection reservoir, and the basement. Permeability is anisotropic (vertical vs horizontal) and along with porosity varies by layer. Injection control can be either rate or pressure. Fault properties include size, 2D permeability, and frictional properties. Several suites of simulations were run to evaluate the relative importance of each of the factors from all three parameter groups. We find that the injection parameters interact with the reservoir parameters in the context of the fault physics and these relations change for different reservoir and fault characteristics, leading to the need to examine the injection parameters only within the context of a particular faulted reservoir. For a reservoir with no flow boundaries, low permeability (5 md), and a fault with high fault-parallel permeability and critical stress, injection rate exerts the strongest control on magnitude and frequency of earthquakes. However, for a higher permeability reservoir (80 md), injection volume becomes the more important factor. Fault permeability structure is a key factor in inducing earthquakes in basement rocks below the injection reservoir. The initial failure state of the fault, which is challenging to assess, can have a big effect on the size and timing of events. For a fault 2 MPa below critical state, we were able to induce a slip event, but it occurred late in the injection history and was limited to a subset of the fault extent. A case starting at critical stress resulted in a rupture that propagated throughout the entire physical extent of the fault generated a larger magnitude earthquake. This physics-based model can contribute to assessing the risk associated with injection activities and providing guidelines for hazard mitigation.

  11. Fuel injection assembly for use in turbine engines and method of assembling same

    DOEpatents

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  12. Insights gained from relating cumulative seismic moments to fluid injection activities

    NASA Astrophysics Data System (ADS)

    McGarr, A.; Barbour, A. J.

    2017-12-01

    The three earthquakes with magnitudes of 5 or greater that were induced in Oklahoma during 2016 motivated efforts to improve our understanding of how fluid injection operations are related to earthquake activity. In this study, we have addressed the question of whether the volume of fluid injected down wells within 10 km of the mainshock of an induced earthquake sequence can account for its total moment release. Specifically, is the total moment release equal to, or less than, twice the product of the shear modulus and the total volume injected (McGarr, JGR, 2014, equation 7)? In contrast to McGarr's (2014, equation 13) relationship for the maximum moment, M0(max), the relationship for the total moment release has the advantage of being independent of the magnitude distribution. We find that the three sequences in Oklahoma in 2016, M5.1 Fairview, M5.8 Pawnee, M5.0 Cushing, and the 2011 M5.7 Prague sequence all adhere to this relationship. We also found that eight additional sequences of earthquakes induced by various fluid injection activities, widely distributed worldwide, show the same relationship between total moment-release and injected volume. Thus, for injected volumes ranging from 103 up to 107 cubic m, the moment release of an induced earthquake sequence appears to be similarly limited. These results imply that M0(max) for a sequence induced by fluid injection could be as high as twice the product of the shear modulus and the injected volume if the mainshock in the sequence accounts for nearly all of the total moment, as was the case for the 2016 Pawnee M5.8 mainshock. This new upper bound for maximum moment is twice what was proposed by McGarr (2014, equation 13). Our new results also support the assumption in our analysis that the induced earthquake rupture is localized to the seismogenic region that is weakened owing to a pore pressure increase of the order of a seismic stress drop.

  13. Exploration of the role of permeability and effective stress transfer effects on Earthquakes Migration in a Fault Zone induced by a Fluid Injection in the nearby host rock: Experimental and Numerical Result.

    NASA Astrophysics Data System (ADS)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2016-12-01

    Although it has long been known that anthropogenic fluid injections can induce earthquakes, the mechanisms involved are still poorly understood and our ability to assess the seismic hazard associated to the production of geothermal energy or unconventional hydrocarbon remains limited. Here we present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). A dense network of sensors recorded fluid pressure, flow-rate, deformation and seismic activity. Injections followed an extended leak-off test protocol. Failure in the host rock was observed for a pressure of 4.4 MPa associated to a strike-slip-to-reverse reactivation of a pre-existing fracture. Magnitude -4.2 to -3.8 seismic events were located in the fault zone 3.5-to->10m away from the injection showing focal mechanisms in reasonable agreement with a strike-slip reactivation of the fault structures. We first used fully coupled hydro-mechanical numerical modeling to quantify the injection source parameters (state of stress, size of the rupture patch and size of the pressurized patch). We applied an injection loading protocol characterized by an imposed flow rate-vs-time history according to the volume of fluid injected in-situ, to match calculated and measured pressure and displacement variations at the injection source. We then used a larger model including the fault zone to discuss how predominant the effects of stress transfer mechanisms causing a purely mechanical fault activation can be compared to the effects of effective stress variations associated to fluid propagation in the fault structures. Preliminary results are that calculated slipping patches are much higher than the one estimated from seismicity, respectively 0.3m and <10-6m, and that the dimensions of the pressurized zone hardly matches with the distance of the earthquakes.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is usefulmore » when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.« less

  15. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Mangels, J. A.

    1986-01-01

    The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.

  16. Lipidomics by Supercritical Fluid Chromatography

    PubMed Central

    Laboureur, Laurent; Ollero, Mario; Touboul, David

    2015-01-01

    This review enlightens the role of supercritical fluid chromatography (SFC) in the field of lipid analysis. SFC has been popular in the late 1980s and 1990s before almost disappearing due to the commercial success of liquid chromatography (LC). It is only 20 years later that a regain of interest appeared when new commercial instruments were introduced. As SFC is fully compatible with the injection of extracts in pure organic solvent, this technique is perfectly suitable for lipid analysis and can be coupled with either highly universal (UV or evaporative light scattering) or highly specific (mass spectrometry) detection methods. A short history of the use of supercritical fluids as mobile phase for the separation oflipids will be introduced first. Then, the advantages and drawbacks of SFC are discussed for each class of lipids (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, prenols, polyketides) defined by the LIPID MAPS consortium. PMID:26090714

  17. TREATMENT OF MACULAR FOLDS COMPLICATING RETINAL DETACHMENT SURGERY USING AIR FOR RETINAL UNFOLDING.

    PubMed

    Barale, Pierre-Olivier; Mora, Paolo; Errera, Marie-Hélène; Ores, Raphaëlle; Pâques, Michel; Sahel, José-Alain

    2018-01-01

    We discuss a modified surgical procedure for the treatment of macular folds complicating retinal reattachment surgery. To facilitate the completion of the macular redetachment and the subsequent unrolling of the fold, we propose the subretinal injection, in addition to the conventional balanced salt solution, of filtered air as an original approach. In the presence of a subretinal air bubble, the action of gravity on the perfluorocarbon liquid in the vitreous cavity combined with an active globe manipulation proved to be very effective for flattening the central retina. Short-term tamponade with gas was successful at stabilizing the result. This technique has been used to treat symptomatic macular fold after surgery for rhegmatogenous retinal detachment in 3 consecutive eyes since 2014. Flattening of the macula with progressive visual recovery was achieved in all cases by the end of follow-up. Direct injection of air into the macular fold may represent an effective strategy to enhance the surgical management of such a vision-threatening complication. Air also minimizes the risks related to the forceful injection of fluid under the macula. An overview of recently reported surgical techniques is included, along with a brief discussion.

  18. Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.

    2009-04-01

    Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.

  19. Dispersion in Fractures with Ramified Dissolution Patterns

    NASA Astrophysics Data System (ADS)

    Xu, Le; Marks, Benjy; Toussaint, Renaud; Flekkøy, Eirik G.; Måløy, Knut J.

    2018-04-01

    The injection of a reactive fluid into an open fracture may modify the fracture surface locally and create a ramified structure around the injection point. This structure will have a significant impact on the dispersion of the injected fluid due to increased permeability, which will introduce large velocity fluctuations into the fluid. Here, we have injected a fluorescent tracer fluid into a transparent artificial fracture with such a ramified structure. The transparency of the model makes it possible to follow the detailed dispersion of the tracer concentration. The experiments have been compared to two dimensional (2D) computer simulations which include both convective motion and molecular diffusion. A comparison was also performed between the dispersion from an initially ramified dissolution structure and the dispersion from an initially circular region. A significant difference was seen both at small and large length scales. At large length scales, the persistence of the anisotropy of the concentration distribution far from the ramified structure is discussed with reference to some theoretical considerations and comparison with simulations.

  20. Induced and triggered earthquakes at The Geysers geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Johnson, Lane R.; Majer, Ernest L.

    2017-05-01

    The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.

  1. Evaluation of a 40 to 1 scale model of a low pressure engine

    NASA Technical Reports Server (NTRS)

    Cooper, C. E., Jr.; Thoenes, J.

    1972-01-01

    An evaluation of a scale model of a low pressure rocket engine which is used for secondary injection studies was conducted. Specific objectives of the evaluation were to: (1) assess the test conditions required for full scale simulations; (2) recommend fluids to be used for both primary and secondary flows; and (3) recommend possible modifications to be made to the scale model and its test facility to achieve the highest possible degree of simulation. A discussion of the theoretical and empirical scaling laws which must be observed to apply scale model test data to full scale systems is included. A technique by which the side forces due to secondary injection can be analytically estimated is presented.

  2. Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen

    NASA Technical Reports Server (NTRS)

    Lee, George

    1992-01-01

    Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.

  3. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  4. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE PAGES

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; ...

    2014-12-31

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  5. Benefits and Costs of Brine Extraction for Increasing Injection Efficiency In geologic CO2 Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additionalmore » wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).« less

  6. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  7. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Krüger, Martin

    2015-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperatures, with high pressure, etc.) were conducted using groundwater samples from three different locations. Series of microcosms (3 of each kind) containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides, frac fluids or flowback. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride could be used as substrates, while the effects of others like triethanolamine or light oil distillate hydrogenated depended on the groundwater and could either prevent or have no effect on microbial growth. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.

  8. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    NASA Astrophysics Data System (ADS)

    Krueger, Martin; Jimenez, Nuria

    2017-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in groundwaters. Ongoing work will provide information on potential transformations of frac or geogenic chemicals by groundwater microbiota and their lifetime.

  9. Nusinersen Injection

    MedlinePlus

    Nusinersen injection comes as a solution (liquid) to inject intrathecally (into the fluid-filled space of the spinal canal). Nusinersen injection is given by a doctor in a medical office or clinic. It is usually given as ...

  10. Skin Rejuvenation and Volume Enhancement with the Micro Superficial Enhanced Fluid Fat Injection (M-SEFFI) for Skin Aging of the Periocular and Perioral Regions.

    PubMed

    Gennai, Alessandro; Zambelli, Alessandra; Repaci, Erica; Quarto, Rodolfo; Baldelli, Ilaria; Fraternali, Giulio; Bernardini, Francesco P

    2017-01-01

    Adipose-derived stromal and stem cells (ADSC) in autologous fat promises regenerative advantages, and injected into the dermal and subdermal layers, enhances rejuvenation and volume. However, extremely superficial fat injection with current techniques is limited. Efficacy and viability evaluation of fat harvested with extremely small side port (0.3 mm) cannulae without further tissue manipulation for the correction of aging/thin skin in the periocular and perioral regions. Micro-superficial enhanced fluid fat injection (M-SEFFI) harvests adipose tissue with a multi-perforated cannula (0.3 mm), and autologous platelet rich plasma (PRP) is added. The tissue is injected into the dermal region of the periocular and perioral zones. Efficacy and viability were evaluated by histological and cell culture analysis. Clinical assessment included retrospective evaluation according to 1 = no effect, 2 = fair effect, 3 = good effect, 4 = excellent effect. Between June 2014 and July 2015, 65 patients (7 men; mean age 49.7 years) were treated with M-SEFFI. No intraoperative complications or visible lumpiness were recorded. Analysis demonstrated mature, viable adipocytes with a strong stromal component. Following PRP addition, there was a greater proliferation noted in the M-SEFFI compared to the SEFFI (0.5 mm). Mean follow-up was 4.1 months. Clinical assessment by surgeons and patients at 1 month was 3.52 and 3.74, and 6 months 3.06 and 2.6 respectively. M-SEFFI is effective and viable for lump free skin rejuvenation and volume enhancement, through the extraction of smoother ADSC rich, autologous fat tissue that does not require further tissue manipulation, to correct skin aging. 4 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  11. Population pharmacokinetics of enrofloxacin in purple sea stars (Pisaster ochraceus) following an intracoelomic injection or extended immersion.

    PubMed

    Rosenberg, Justin F; Haulena, Martin; Phillips, Brianne E; Harms, Craig A; Lewbart, Gregory A; Lahner, Lesanna L; Papich, Mark G

    2016-11-01

    OBJECTIVE To determine population pharmacokinetics of enrofloxacin in purple sea stars (Pisaster ochraceus) administered an intracoelomic injection of enrofloxacin (5 mg/kg) or immersed in an enrofloxacin solution (5 mg/L) for 6 hours. ANIMALS 28 sea stars of undetermined age and sex. PROCEDURES The study had 2 phases. Twelve sea stars received an intracoelomic injection of enrofloxacin (5 mg/kg) or were immersed in an enrofloxacin solution (5 mg/L) for 6 hours during the injection and immersion phases, respectively. Two untreated sea stars were housed with the treated animals following enrofloxacin administration during both phases. Water vascular system fluid samples were collected from 4 sea stars and all controls at predetermined times during and after enrofloxacin administration. The enrofloxacin concentration in those samples was determined by high-performance liquid chromatography. For each phase, noncompartmental analysis of naïve averaged pooled samples was used to obtain initial parameter estimates; then, population pharmacokinetic analysis was performed that accounted for the sparse sampling technique used. RESULTS Injection phase data were best fit with a 2-compartment model; elimination half-life, peak concentration, area under the curve, and volume of distribution were 42.8 hours, 18.9 μg/mL, 353.8 μg•h/mL, and 0.25 L/kg, respectively. Immersion phase data were best fit with a 1-compartment model; elimination half-life, peak concentration, and area under the curve were 56 hours, 36.3 μg•h/mL, and 0.39 μg/mL, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the described enrofloxacin administration resulted in water vascular system fluid drug concentrations expected to exceed the minimum inhibitory concentration for many bacterial pathogens.

  12. CIRF.B Reaction-Transport-Mechanical Simulator: Applications to CO2 Injection and Reservoir Integrity Prediction

    NASA Astrophysics Data System (ADS)

    Park, A. J.; Tuncay, K.; Ortoleva, P. J.

    2003-12-01

    An important component of CO2 sequestration in geologic formations is the reactions between the injected fluid and the resident geologic material. In particular, carbonate mineral reaction rates are several orders of magnitude faster than those of siliciclastic minerals. The reactions between resident and injected components can create complex flow regime modifications, and potentially undermine the reservoir integrity by changing their mineralogic and textural compositions on engineering time scale. This process can be further enhanced due to differences in pH and temperature of the injectant from the resident sediments and fluids. CIRF.B is a multi-process simulator originally developed for basin simulations. Implemented processes include kinetic and thermodynamic reactions between minerals and fluid, fluid flow, mass-transfer, composite-media approach to sediment textural description and dynamics, elasto-visco-plastic rheology, and fracturing dynamics. To test the feasibility of applying CIRF.B to CO2 sequestration, a number of engineering scale simulations are carried out to delineate the effects of changing injectant chemistry and injection rates on both carbonate and siliciclastic sediments. Initial findings indicate that even moderate amounts of CO2 introduced into sediments can create low pH environments, which affects feldspar-clay interactions. While the amount of feldspars reacting in engineering time scale may be small, its consequence to clay alteration and permeability modfication can be significant. Results also demonstrate that diffusion-imported H+ can affect sealing properties of both siliciclastic and carbonate formations. In carbonate systems significant mass transfer can occur due to dissolution and reprecipitation. The resulting shifts in in-situ stresses can be sufficient to initiate fracturing. These simulations allow characterization of injectant fluids, thus assisting in the implementation of effective sequestration procedures.

  13. Increased negatively of interstitial fluid pressure in rat skin contributes to the edema formation induced by Zymosan.

    PubMed

    Ostgaard, G; Reed, R K

    1993-11-01

    Increased negatively of interstitial fluid pressure (Pif) contributes to rapid edema formation in several acute inflammatory reactions attesting to an "active" role for the loose connective tissues in the transcapillary fluid exchange and edema formation under these circumstances. The present study reports the effect of the complement activator Zymosan on Pif, transcapillary fluid, and albumin flux. Micropipettes (tip diameter 5 to 7 microns) connected to a servo-controlled counterpressure system were used to measure Pif in rat dermis. When compared to saline injection, subdermal injection of 1 mg Zymosan in 10 microliters 0.15 M NaCl increased total tissue water by 1.6 ml/g dry weight in 5 min, corresponding to about 150% increase in interstitial fluid volume. Pif increased from +0.4 to +3.7 mm Hg. Increased negativity of Pif can be masked by the edema formation which will increase Pif. Measurements were therefore also performed after circulatory arrest, when transcapillary fluid flux and edema formation are abolished. Using this experimental protocol Pif fell from +0.3 mm Hg to -2.5 mm Hg 5 min after subdermal injection of Zymosan and remained at this level throughout the observation period of 90 min. Injection of saline alone after circulatory arrest increased Pif transiently by about 1 mm Hg. Thus, subdermal injection of Zymosan causes increased negativity of Pif by about 4 mm Hg. Although the lowering of Pif itself will explain a minor part of the increased fluid filtration, the results attest to the role of loose connective tissues being active in the edema-generating process also in the inflammatory reaction induced by Zymosan.

  14. Discrete Data Transfer Technique for Fluid-Structure Interaction

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2007-01-01

    This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.

  15. Inherently aligned microfluidic electrodes composed of liquid metal.

    PubMed

    So, Ju-Hee; Dickey, Michael D

    2011-03-07

    This paper describes the fabrication and characterization of microelectrodes that are inherently aligned with microfluidic channels and in direct contact with the fluid in the channels. Injecting low melting point alloys, such as eutectic gallium indium (EGaIn), into microchannels at room temperature (or just above room temperature) offers a simple way to fabricate microelectrodes. The channels that define the shape and position of the microelectrodes are fabricated simultaneously with other microfluidic channels (i.e., those used to manipulate fluids) in a single step; consequently, all of the components are inherently aligned. In contrast, conventional techniques require multiple fabrication steps and registration (i.e., alignment of the electrodes with the microfluidic channels), which are technically challenging. The distinguishing characteristic of this work is that the electrodes are in direct contact with the fluid in the microfluidic channel, which is useful for a number of applications such as electrophoresis. Periodic posts between the microelectrodes and the microfluidic channel prevent the liquid metal from entering the microfluidic channel during injection. A thin oxide skin that forms rapidly and spontaneously on the surface of the metal stabilizes mechanically the otherwise low viscosity, high surface tension fluid within the channel. Moreover, the injected electrodes vertically span the sidewalls of the channel, which allows for the application of uniform electric field lines throughout the height of the channel and perpendicular to the direction of flow. The electrodes are mechanically stable over operating conditions commonly used in microfluidic applications; the mechanical stability depends on the magnitude of the applied bias, the nature of the bias (DC vs. AC), and the conductivity of the solutions in the microfluidic channel. Electrodes formed using alloys with melting points above room temperature ensure mechanical stability over all of the conditions explored. As a demonstration of their utility, the fluidic electrodes are used for electrohydrodynamic mixing, which requires extremely high electric fields (~10(5) V m(-1)).

  16. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    PubMed

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system. Copyright © 2014. Published by Elsevier B.V.

  17. Optical Coherence Tomography and the Development of Antiangiogenic Therapies in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Rosenfeld, Philip J.

    2016-01-01

    Purpose To explain the pivotal role optical coherence tomography (OCT) imaging had in the development of antiangiogenic therapies for the treatment of neovascular age-related macular degeneration (nvAMD). Methods A historical literature review was combined with personal perspectives from the introduction of OCT imaging and the early clinical use of vascular endothelial growth factor (VEGF) inhibitors. Results At the time that OCT emerged, the gold standard for imaging of nvAMD was fluorescein angiography (FA), a time-consuming, dye-based, invasive technique that provided en face images of the retina and was used to characterize leakage, perfusion status, and the types of macular neovascularization (MNV). In comparison, OCT imaging was a fast, safe, noninvasive technique that complemented FA imaging by providing cross-sectional images of the macula. OCT was able to visualize and quantify the macular fluid that was associated with the presence of excess VEGF, which was identified by intraretinal fluid, subretinal fluid, and fluid under the retinal pigment epithelium (RPE). Clinicians quickly appreciated the benefits of OCT imaging for following macular fluid after anti-VEGF therapy. By observing the qualitative and quantitative changes in macular fluid depicted by OCT imaging, clinicians were empowered to compare anti-VEGF drugs and move from fixed-dosing regimens to patient-specific dosing strategies requiring fewer injections. Conclusions Optical coherence tomography imaging was adopted as a VEGF-meter, a method to detect excess VEGF, and evolved to become the gold standard imaging strategy for diagnosing nvAMD, assessing treatment responses to anti-VEGF drugs, deciding when to re-treat, and evaluating disease progression. PMID:27409464

  18. Coupling fluid dynamics and host-rock deformation associated with magma intrusion in the crust: Insights from analogue experiments

    NASA Astrophysics Data System (ADS)

    Kavanagh, J. L.; Dennis, D. J.

    2014-12-01

    Models of magma ascent in the crust tend to either consider the dynamics of fluid flow within intrusions or the associated host-rock deformation. However, these processes are coupled in nature, and so to develop a more complete understanding of magma ascent dynamics in the crust both need to be taken into account. We present a series of gelatine analogue experiments that use both Particle Image Velocimentry (PIV) and Digital Image Correlation (DIC) techniques to characterise the dynamics of fluid flow within intrusions and to quantify the associated deformation of the intruded media. Experiments are prepared by filling a 40x40x30 cm3 clear-Perspex tank with a low-concentration gelatine mixture (2-5 wt%) scaled to be of comparable stiffness to crustal strata. Fluorescent seeding particles are added to the gelatine mixture during its preparation and to the magma analogue prior to injection. Two Dantec CCD cameras are positioned outside the tank and a vertical high-power laser sheet positioned along the centre line is triggered to illuminate the seeding particles with short intense pulses. Dyed water (the magma analogue) injected into the solid gelatine from below causes a vertically propagating penny-shaped crack (dike) to form. Incremental and cumulative displacement vectors are calculated by cross-correlation between successive images at a defined time interval. Spatial derivatives map the fluid flow within the intrusion and associated strain and stress evolution of the host, both during dike propagation and on to eruption. As the gelatine deforms elastically at the experimental conditions, strain calculations correlate with stress. Models which couple fluid dynamics and host deformation make an important step towards improving our understanding of the dynamics of magma transport through the crust and to help constrain the tendency for eruption.

  19. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less

  20. Changes of synovial fluid protein concentrations in supra-patellar bursitis patients after the injection of different molecular weights of hyaluronic acid.

    PubMed

    Chen, Carl P C; Hsu, Chih Chin; Pei, Yu-Cheng; Chen, Ruo Li; Zhou, Shaobo; Shen, Hsuan-Chen; Lin, Shih-Cherng; Tsai, Wen Chung

    2014-04-01

    Knee pain is commonly seen in orthopedic and rehabilitation outpatient clinical settings, and in the aging population. Bursitis of the knee joint, especially when the volume of the synovial fluid is large enough, can compress and distend the nearby soft tissues, causing pain in the knee joint. Out of all the bursae surrounding the knee joint, supra-patellar bursitis is most often associated with knee pain. Treatment strategies in managing supra-patellar bursitis include the aspiration of joint synovial fluid and then followed by steroid injection into the bursa. When supra-patellar bursitis is caused by degenerative disorders, the concept of viscosupplementation treatment may be effective by injecting hyaluronic acid into the bursa. However, the rheology or the changes in the concentrations of proteins (biomarkers) that are related to the development of bursitis in the synovial fluid is virtually unexplored. Therefore, this study aimed to identify the concentration changes in the synovial fluid total protein amount and individual proteins associated with supra-patellar bursitis using the Bradford protein assay and western immunoglobulin methods. A total of 20 patients were divided into two groups with 10 patients in each group. One group received the high molecular weight hyaluronic acid product of Synvisc Hylan G-F 20 and the other group received the low molecular weight hyaluronic acid product of Hya-Joint Synovial Fluid Supplement once per week injection into the bursa for a total of 3 weeks. Significant decreases in the synovial fluid total protein concentrations were observed after the second dosage of high molecular weight hyaluronic acid injections. Apolipoprotein A-I, interleukin 1 beta, alpha 1 antitrypsin, and matrix metalloproteinase 1 proteins revealed a trend of decreasing western immunoblotting band densities after hyaluronic acid injections. The decreases in apolipoprotein A-I and interleukin 1 beta protein band densities were significant in the high molecular weight hyaluronic acid injection group. Transthyretin, complement 5, and matrilin 3 proteins revealed a trend of increasing western immunoblotting band densities after hyaluronic acid injections. Transthyretin revealed significant increases in protein band densities in both the high and low molecular weight hyaluronic acid injection groups. This study may provide the rationale for targeting several biomarkers associated with lipid transport, inflammation, and anti-aging as possible disease modifying therapies for the treatment of supra-patellar bursitis and even degenerative joint disorders. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  2. Temporal pore pressure induced stress changes during injection and depletion

    NASA Astrophysics Data System (ADS)

    Müller, Birgit; Heidbach, Oliver; Schilling, Frank; Fuchs, Karl; Röckel, Thomas

    2016-04-01

    Induced seismicity is observed during injection of fluids in oil, gas or geothermal wells as a rather immediate response close to the injection wells due to the often high-rate pressurization. It was recognized even earlier in connection with more moderate rate injection of fluid waste on a longer time frame but higher induced event magnitudes. Today, injection-related induced seismicity significantly increased the number of events with M>3 in the Mid U.S. However, induced seismicity is also observed during production of fluids and gas, even years after the onset of production. E.g. in the Groningen gas field production was required to be reduced due to the increase in felt and damaging seismicity after more than 50 years of exploitation of that field. Thus, injection and production induced seismicity can cause severe impact in terms of hazard but also on economic measures. In order to understand the different onset times of induced seismicity we built a generic model to quantify the role of poro-elasticity processes with special emphasis on the factors time, regional crustal stress conditions and fault parameters for three case studies (injection into a low permeable crystalline rock, hydrothermal circulation and production of fluids). With this approach we consider the spatial and temporal variation of reservoir stress paths, the "early" injection-related induced events during stimulation and the "late" production induced ones. Furthermore, in dependence of the undisturbed in situ stress field conditions the stress tensor can change significantly due to injection and long-term production with changes of the tectonic stress regime in which previously not critically stressed faults could turn to be optimally oriented for fault reactivation.

  3. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  4. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  5. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  6. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  7. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  8. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... independent of those for every other engine or supercharger. (e) For each fluid injection (other than fuel... flow of the injection fluid is adequately controlled. (f) If a power, thrust, or a fuel control (other than a mixture control) incorporates a fuel shutoff feature, the control must have a means to prevent...

  9. 40 CFR 146.6 - Area of review.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...

  10. 40 CFR 146.6 - Area of review.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...

  11. 40 CFR 146.6 - Area of review.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... injection zone may cause the migration of the injection and/or formation fluid into an underground source of...

  12. Field Test of Enhanced Remedial Amendment Delivery Using a Shear-Thinning Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Vermeul, Vincent R.; Adamson, David

    2015-03-01

    Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower-permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this effort is to examine use of a shear-thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications are lacking. A field-scale test was conducted that compares data from successive injection of a tracer in water followed by injection ofmore » a tracer in a STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth-discrete monitoring intervals and electrical resistivity tomography showed that inclusion of STF in the injection solution slowed movement in high-permeability pathways, improved delivery of amendment to low-permeability materials, and resulted in better uniformity in injected fluid distribution within the targeted treatment zone.« less

  13. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  14. Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.; Doughty, C.

    2010-01-15

    Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less

  15. Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob

    2018-02-01

    Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.

  16. Curved film cooling admission tube

    NASA Astrophysics Data System (ADS)

    Graham, R. W.; Papell, S. S.

    1980-10-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  17. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (Inventor)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  18. Capillary Imbibition of Hydraulic Fracturing Fluids into Partially Saturated Shale

    NASA Astrophysics Data System (ADS)

    Birdsell, D.; Rajaram, H.; Lackey, G.

    2015-12-01

    Understanding the migration of hydraulic fracturing fluids injected into unconventional reservoirs is important to assess the risk of aquifer contamination and to optimize oil and gas production. Capillary imbibition causes fracturing fluids to flow from fractures into the rock matrix where the fluids are sequestered for geologically long periods of time. Imbibition could explain the low amount of flowback water observed in the field (5-50% of the injected volume) and reduce the chance of fracturing fluid migrating out of formation towards overlying aquifers. We present calculations of spontaneous capillary imbibition in the form of an "imbibition rate parameter" (A) based on the only known exact analytical solution for spontaneous capillary imbibition. A depends on the hydraulic and capillary properties of the reservoir rock, the initial water saturation, and the viscosities of the wetting and nonwetting fluids. Imbibed volumes can be large for a high permeability shale gas reservoir (up to 95% of the injected volume) or quite small for a low permeability shale oil reservoir (as low as 3% of the injected volume). We also present a nondimensionalization of the imbibition rate parameter, which facilitates the calculation of A and clarifies the relation of A to initial saturation, porous medium properties, and fluid properties. Over the range of initial water saturations reported for the Marcellus shale (0.05-0.6), A varies by less than factors of ~1.8 and ~3.4 for gas and oil nonwetting phases respectively. However, A decreases significantly for larger initial water saturations. A is most sensitive to the intrinsic permeability of the reservoir rock and the viscosity of the fluids.

  19. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    NASA Astrophysics Data System (ADS)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  20. Modeling of fluid injection and withdrawal induced fault activation using discrete element based hydro-mechanical and dynamic coupled simulator

    NASA Astrophysics Data System (ADS)

    Yoon, Jeoung Seok; Zang, Arno; Zimmermann, Günter; Stephansson, Ove

    2016-04-01

    Operation of fluid injection into and withdrawal from the subsurface for various purposes has been known to induce earthquakes. Such operations include hydraulic fracturing for shale gas extraction, hydraulic stimulation for Enhanced Geothermal System development and waste water disposal. Among these, several damaging earthquakes have been reported in the USA in particular in the areas of high-rate massive amount of wastewater injection [1] mostly with natural fault systems. Oil and gas production have been known to induce earthquake where pore fluid pressure decreases in some cases by several tens of Mega Pascal. One recent seismic event occurred in November 2013 near Azle, Texas where a series of earthquakes began along a mapped ancient fault system [2]. It was studied that a combination of brine production and waste water injection near the fault generated subsurface pressures sufficient to induced earthquakes on near-critically stressed faults. This numerical study aims at investigating the occurrence mechanisms of such earthquakes induced by fluid injection [3] and withdrawal by using hydro-geomechanical coupled dynamic simulator (Itasca's Particle Flow Code 2D). Generic models are setup to investigate the sensitivity of several parameters which include fault orientation, frictional properties, distance from the injection well to the fault, amount of fluid withdrawal around the injection well, to the response of the fault systems and the activation magnitude. Fault slip movement over time in relation to the diffusion of pore pressure is analyzed in detail. Moreover, correlations between the spatial distribution of pore pressure change and the locations of induced seismic events and fault slip rate are investigated. References [1] Keranen KM, Weingarten M, Albers GA, Bekins BA, Ge S, 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science 345, 448, DOI: 10.1126/science.1255802. [2] Hornbach MJ, DeShon HR, Ellsworth WL, Stump BW, Hayward C, Frohlich C, Oldham HR, Olson JE, Magnani MB, Brokaw C, Luetgert JH, 2015, Causal factors for seismicity near Azle, Texas, nature communications 6:6728, DOI: 10.1038/ncomms7728 [3] Yoon JS, Zimmermann G, Zang A, Stephansson O, 2015, Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault, Can Geotech J 52: 1457-1465, DOI: 10.1139/cgj-2014-0435.

  1. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D columnmore » and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.« less

  2. Monitoring artificially stimulated fluid movement in the Cretaceous Dakota aquifer, western Kansas

    USGS Publications Warehouse

    Macfarlane, P.A.; Forster, A.; Merriam, D.F.; Schrotter, J.; Healey, J.M.

    2002-01-01

    Aquifer properties can be evaluated by monitoring artificially stimulated fluid movements between wells, if the fluid is heated. Changes in the temperature profile recorded in observation wells indicate the flow path of the heated fluid, which in effect acts as a tracer. A fluid-flow experiment in the Cretaceous Dakota Formation at the Hodgeman County site, west-central Kansas, demonstrated the advantage of using the distributed optical-fiber temperature sensing method for monitoring transient temperature conditions in his hydrological application. The fluid flow in the aquifer was increased by producing water from a pumping well and injecting heated water in an injection well 13 m (43 ft) distant from the pumping well. The time-temperature series data obtained and compared with results from previous pumping tests point to interwell heterogeneity of the aquifer and to a zone in the sandstone aquifer of high hydraulic conductivity. However, the experiment would have allowed further clarification of aquifer heterogeneity and thermal properties if at least one observation well had been present between the injection and production wells.

  3. Matching refractive indices of two fluids and finding interfacial tension for the purpose of fuel spray imaging

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.

    2017-06-01

    This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.

  4. Detecting subsurface fluid leaks in real-time using injection and production rates

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.

  5. A transition in the viscous fingering instability in miscible fluids

    NASA Astrophysics Data System (ADS)

    Videbaek, Thomas; Nagel, Sidney R.

    2017-11-01

    The viscous fingering instability in a quasi-two dimensional Hele-Shaw cell is an example of complex structure formation from benign initial conditions. When the invading fluid has the lesser viscosity, the interface between the two fluids is unstable to finger formation. Here, we study the instability between pairs of miscible fluids in a circular cell with fluid injected at its center. As the injection rate is decreased, diffusion will smooth out the discontinuity in the gap-averaged viscosity at the interface between the fluids. At high injection rates (i.e., high Péclet number, Pe), fingering is associated with three-dimensional structure within the gap between the confining plates. On lowering Pe, we find a sharp transition in the finger morphology at a critical value, Pec (ηi /ηo) 1 / 2 , with ηi (ηo) being the viscosity of the inner (outer) fluid; at this point, the width of the fingers jumps, the length of the fingers shrinks towards zero and the three-dimensional structure goes from half filling to fully filling the gap. Thus, by controlling the viscosity contrast at the interface, one can alter and even completely suppress the instability.

  6. Intracochlear drug injections through the round window membrane: Measures to improve drug retention

    PubMed Central

    Plontke, Stefan K.; Hartsock, Jared J.; Gill, Ruth M.; Salt, Alec N.

    2016-01-01

    The goal of this study was to develop appropriate methodology to apply drugs quantitatively to perilymph of the ear. Intratympanic applications of drugs to the inner ear often result in variable drug levels in perilymph and can only be used for molecules that readily permeate the round window (RW) membrane. Direct intracochlear and intralabyrinthine application procedures for drugs, genes or cell-based therapies by-pass the tight boundaries at the round window, oval window, otic capsule and the blood-labyrinth barrier. However, perforations can release inner ear pressure, allowing cerebrospinal fluid to enter through the cochlear aqueduct, displacing the injected drug solution into the middle ear. Two markers, fluorescein or fluorescein isothiocyanate (FITC)-labeled dextran, were used to quantify how much of an injected substance was retained in cochlear perilymph following an intracochlear injection. We evaluated whether procedures to mitigate fluid leaks improved marker retention in perilymph. Almost all procedures to reduce volume efflux, including the use of gel for internal sealing and glue for external sealing of the injection site, resulted in improved retention of the marker in perilymph. Adhesive on the RW membrane effectively prevented leaks but also influenced fluid exchange between CSF and perilymph. We conclude that drugs can be delivered to the ear in a consistent, quantitative manner using intracochlear injections if care is taken to control the fluid leaks that result from cochlear perforation. PMID:26905306

  7. Innovative real CSF leak simulation model for rhinology training: human cadaveric design.

    PubMed

    AlQahtani, Abdulaziz A; Albathi, Abeer A; Alhammad, Othman M; Alrabie, Abdulkarim S

    2018-04-01

    To study the feasibility of designing a human cadaveric simulation model of real CSF leak for rhinology training. The laboratory investigation took place at the surgical academic center of Prince Sultan Military Medical City between 2016 and 2017. Five heads of human cadaveric specimens were cannulated into the intradural space through two frontal bone holes. Fluorescein-dyed fluid was injected intracranialy, then endoscopic endonasal iatrogenic skull base defect was created with observation of fluid leak, followed by skull base reconstruction. The outcome measures included subjective assessment of integrity of the design, the ability of creating real CSF leak in multiple site of skull base and the possibility of watertight closure by various surgical techniques. The fluid filled the intradural space in all specimens without spontaneous leak from skull base or extra sinus areas. Successfully, we demonstrated fluid leak from all areas after iatrogenic defect in the cribriform plate, fovea ethmoidalis, planum sphenoidale sellar and clival regions. Watertight closure was achieved in all defects using different reconstruction techniques (overly, underlay and gasket seal closure). The design is simulating the real patient with CSF leak. It has potential in the learning process of acquiring and maintaining the surgical skills of skull base reconstruction before direct involvement of the patient. This model needs further evaluation and competence measurement as training tools in rhinology training.

  8. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  9. Characterization of Calcite Mineral Precipitation Process by EICP in Porous Media

    NASA Astrophysics Data System (ADS)

    Kim, D.; Mahabadi, N.; Hall, C.; Jang, J.; van Paassen, L. A.

    2017-12-01

    One of the most prevalent ground improvement techniques is injection of synthetic materials, such as cement grout or silicates into the pore space to create cementing bonds between soil particles. Besides these traditional ground improvement methods, several biological processes have been developed to improve soil properties. Enzyme induced carbonate precipitation (EICP) is a biological process in which urea hydrolyzes into ammonia and inorganic carbon, and promotes carbonate mineral precipitation. Different morphologies and patterns of calcite mineral precipitation, such as particle surface coating, pore filling, and soil particles bonding, have been observed in the previous studies. Most of the researches have detected precipitated minerals after the completion of the treatment using SEM (Scanning Electron Microscope) imaging and XRD (X-ray Diffractometer) structural analysis. In this research, an EICP reaction medium is injected into a microfluidic chip to observe the entire process of carbonate precipitation through several cycles of EICP treatment in the porous medium. Once the process of mineral precipitation is completed, water is injected into the microfluidic chip with different flow rates to evaluate the stability of carbonates during fluid flow injection.

  10. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less

  11. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot

    USGS Publications Warehouse

    Xu, T.; Kharaka, Y.K.; Doughty, C.; Freifeld, B.M.; Daley, T.M.

    2010-01-01

    To demonstrate the potential for geologic storage of CO2 in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO2 were injected into a high-permeability sandstone and the resulting subsurface plume of CO2 was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO2 injection for baseline geochemical characterization, during the CO2 injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO2 breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO3- and aqueous Fe, and significant shifts in the isotopic compositions of H2O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO2 plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO2 concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO2 could ultimately be sequestered as carbonate minerals. ?? 2010 Elsevier B.V.

  12. Effect of non-linear fluid pressure diffusion on modeling induced seismicity during reservoir stimulation

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Goertz-Allmann, B. P.; Bachmann, C. E.; Wiemer, S.

    2012-04-01

    Success of future enhanced geothermal systems relies on an appropriate pre-estimate of seismic risk associated with fluid injection at high pressure. A forward-model based on a semi-stochastic approach was created, which is able to compute synthetic earthquake catalogues. It proved to be able to reproduce characteristics of the seismic cloud detected during the geothermal project in Basel (Switzerland), such as radial dependence of stress drop and b-values as well as higher probability of large magnitude earthquakes (M>3) after shut-in. The modeling strategy relies on a simplistic fluid pressure model used to trigger failure points (so-called seeds) that are randomly distributed around an injection well. The seed points are assigned principal stress magnitudes drawn from Gaussian distributions representative of the ambient stress field. Once the effective stress state at a seed point meets a pre-defined Mohr-Coulomb failure criterion due to a fluid pressure increase a seismic event is induced. We assume a negative linear relationship between b-values and differential stress. Thus, for each event a magnitude can be drawn from a Gutenberg-Richter distribution with a b-value corresponding to differential stress at failure. The result is a seismic cloud evolving in time and space. Triggering of seismic events depends on appropriately calculating the transient fluid pressure field. Hence an effective continuum reservoir model able to reasonably reproduce the hydraulic behavior of the reservoir during stimulation is required. While analytical solutions for pressure diffusion are computationally efficient, they rely on linear pressure diffusion with constant hydraulic parameters, and only consider well head pressure while neglecting fluid injection rate. They cannot be considered appropriate in a stimulation experiment where permeability irreversibly increases by orders of magnitude during injection. We here suggest a numerical continuum model of non-linear pressure diffusion. Permeability increases both reversibly and, if a certain pressure threshold is reached, irreversibly in the form of a smoothed step-function. The models are able to reproduce realistic well head pressure magnitudes for injection rates common during reservoir stimulation. We connect this numerical model with the semi-stochastic seismicity model, and demonstrate the role of non-linear pressure diffusion on earthquakes probability estimates. We further use the model to explore various injection histories to assess the dependence of seismicity on injection strategy. It allows to qualitatively explore the probability of larger magnitude earthquakes (M>3) for different injection volumes, injection times, as well as injection build-up and shut-in strategies.

  13. 40 CFR 146.12 - Construction requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... water. The casing and cement used in the construction of each newly drilled well shall be designed for... intervals; and (7) Type or grade of cement. (c) All Class I injection wells, except those municipal wells... injection zone, or tubing with an approved fluid seal as an alternative. The tubing, packer, and fluid seal...

  14. An improved apparatus for pressure-injecting fluid into trees

    Treesearch

    Garold F. Gregory; Thomas W. Jones

    1975-01-01

    Our original tree-injection apparatus was modified to be more convenient and efficient. The fluid reservoir consists of high-pressure plastic plumbing components. Quick couplers are used for all hose connections. Most important, the injector heads were modified for a faster and more convenient and secure attachment with double-headed nails.

  15. Dexamethasone levels and base to apex concentration gradients in scala tympani perilymph following intracochlear delivery in the guinea pig

    PubMed Central

    Hahn, Hartmut; Salt, Alec N.; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared; Plontke, Stefan K.

    2012-01-01

    Hypothesis To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations and lower base-to apex concentration gradients in scala tympani (ST) of the guinea pig than after intratympanic (round window, RW) application. Background Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to apex concentration gradients in ST. Methods Two μL of dexamethasone-phosphate (10 mg/mL) were injected into ST either through the RW membrane which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by the means of an established computer model and compared with prior experiments performed by our group with the same experimental techniques but using intratympanic applications. Results Single intracochlear injections over 20 min resulted in approximately ten times higher peak concentrations (on average) than 2-3 hours of intratympanic application to the round window niche. Intracochlear drug levels were less variable and could be measured for at least up to 220 min. Concentration gradients along scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. Conclusion With significantly higher, less variable drug levels and smaller base-to apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks. PMID:22588238

  16. Dexamethasone levels and base-to-apex concentration gradients in the scala tympani perilymph after intracochlear delivery in the guinea pig.

    PubMed

    Hahn, Hartmut; Salt, Alec N; Biegner, Thorsten; Kammerer, Bernd; Delabar, Ursular; Hartsock, Jared J; Plontke, Stefan K

    2012-06-01

    To determine whether intracochlearly applied dexamethasone will lead to better control of drug levels, higher peak concentrations, and lower base-to-apex concentration gradients in the scala tympani (ST) of the guinea pig than after intratympanic (round window [RW]) application. Local application of drugs to the RW results in substantial variation of intracochlear drug levels and significant base-to-apex concentration gradients in ST. Two microliters of dexamethasone-phosphate (10 mg/ml) were injected into ST either through the RW membrane, which was covered with 1% sodium hyaluronate gel or through a cochleostomy with a fluid tight seal of the micropipette. Perilymph was sequentially sampled from the apex at a single time point for each animal, at 20, 80, or 200 min after the injection ended. Results were mathematically interpreted by means of an established computer model and compared with previous experiments performed by our group with the same experimental techniques but using intratympanic applications. Single intracochlear injections of 20 minutes resulted in approximately 10 times higher peak concentrations (on average) than 2 to 3 hours of intratympanic application to the RW niche. Intracochlear drug levels were less variable and could be measured for over 220 minutes. Concentration gradients along the scala tympani were less pronounced. The remaining variability in intracochlear drug levels was attributable to perilymph and drug leak from the injection site. With significantly higher, less variable drug levels and smaller base-to-apex concentration gradients, intracochlear applications have advantages to intratympanic injections. For further development of this technique, it is of importance to control leaks of perilymph and drug from the injection site and to evaluate its clinical feasibility and associated risks.

  17. Aspiration and methylprednisolone injection to the cavity with IV cannula needle in the treatment of volar wrist ganglia: New technique

    PubMed Central

    Korkmaz, Murat; Ozturk, Hayati; Amanvermez Senarslan, Dilsad; Erdogan, Yalcin

    2013-01-01

    Objective: There are several types of treatment modalities for wrist ganglions. The aim of the study was to assess the effectiveness of cyst aspiration and methyl prednisolone acetate injection with double IV cannula rather than sharp pointed needle, as a new technique in the treatment of volar ganglia. Methodology: The study involves total of 19 patients who received treatment by aspiration and methyl prednisolone injection into the cavity. Two IV cannulas are pricked to the cystic cavity. Cyst fluid is drained by the distally placed IV cannula meanwhile injecting methyl prednisolone by proximally placed IV cannula. The patient records and follow-up reports are retrospectively investigated. The patient age, sex, site of the cyst, the treatment that was applied, adjacency to the artery and the nerves and recurrence are recorded. Mean follow up time was 2.1±0.5 years. Results: The study involved 19 patients that received aspiration treatment for volar ganglion cysts between January 2004 and December 2009. There were 12 (63.2%) female and 7 (36.8%) male subject with volar wrist ganglion cyst. The mean age of patients was 27.63±6.6 years. Fourteen (73.7%) patients of total had cysts close to the artery. We didn’t observe any complication related to methyl prednisolone injection and arterial ischemia. Recurrence was observed in three (15.8%) patients. Conclusion: This method has lower recurrence rate than other aspiration therapy with sharp pointed needle. We prefer to use IV cannula needle for cyst aspiration and steroid injection in treatment of volar ganglia before any surgical intervention. PMID:24353517

  18. Analysis of the Thermal and Hydraulic Stimulation Program at Raft River, Idaho

    NASA Astrophysics Data System (ADS)

    Bradford, Jacob; McLennan, John; Moore, Joseph; Podgorney, Robert; Plummer, Mitchell; Nash, Greg

    2017-05-01

    The Raft River geothermal field, located in southern Idaho, roughly 100 miles northwest of Salt Lake City, is the site of a Department of Energy Enhanced Geothermal System project designed to develop new techniques for enhancing the permeability of geothermal wells. RRG-9 ST1, the target stimulation well, was drilled to a measured depth of 5962 ft. and cased to 5551 ft. The open-hole section of the well penetrates Precambrian quartzite and quartz monzonite. The well encountered a temperature of 282 °F at its base. Thermal and hydraulic stimulation was initiated in June 2013. Several injection strategies have been employed. These strategies have included the continuous injection of water at temperatures ranging from 53 to 115 °F at wellhead pressures of approximately 275 psi and three short-term hydraulic stimulations at pressures up to approximately 1150 psi. Flow rates, wellhead and line pressures and fluid temperatures are measured continuously. These data are being utilized to assess the effectiveness of the stimulation program. As of August 2014, nearly 90 million gallons have been injected. A modified Hall plot has been used to characterize the relationships between the bottom-hole flowing pressure and the cumulative injection fluid volume. The data indicate that the skin factor is decreased, and/or the permeability around the wellbore has increased since the stimulation program was initiated. The injectivity index also indicates a positive improvement with values ranging from 0.15 gal/min psi in July 2013 to 1.73 gal/min psi in February 2015. Absolute flow rates have increased from approximately 20 to 475 gpm by February 2 2015. Geologic, downhole temperature and seismic data suggest the injected fluid enters a fracture zone at 5650 ft and then travels upward to a permeable horizon at the contact between the Precambrian rocks and the overlying Tertiary sedimentary and volcanic deposits. The reservoir simulation program FALCON developed at the Idaho National Laboratory is being used to simulate and visualize the effects of the injection. The simulation model uses a discrete fracture network generated for RRG-9 using acoustic borehole imaging and analysis of microseismic activity. By adjusting the permeability of the fractures, a pressure history match for the first part of the stimulation program was obtained. The results of this model indicate that hydraulic fracturing is the dominant mechanism for permeability improvement for this part of the stimulation program.

  19. Automated Cell-Cutting for Cell Cloning

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  20. Heat transfer characteristics of a surface type direct contact boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeds, R.S.; Jacobs, H.R.; Boehm, R.F.

    1976-03-01

    Two direct contact heat exchangers were constructed and test results were obtained using water and refrigerant 113 as the working fluids. The heat exchangers were operated in a three-phase mode; the water remained liquid throughout the vessel and the liquid refrigerant 113 underwent vaporization following direct injection into the water. The effect of important operational parameters--operating heights, refrigerant 113 injection techniques, mass flow ratios, and temperatures--was studied to determine generalized trends important in the design and operation of a prototype three-phase direct contact heat exchanger. The primary system used in this study performed well overall. The initial favorable results ofmore » this study warrant further investigation of direct contact heat exchange as a means of utilizing geothermal energy.« less

  1. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1976-01-01

    Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.

  2. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  3. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  4. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOEpatents

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  5. Coalescence of Fluid-Driven Fractures

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Zheng, Zhong; Huppert, Herbert; Linden, Paul

    2017-11-01

    We present an experimental study on the coalescence of two in-plane fluid-driven penny-shaped fractures in a brittle elastic medium. Initially, two fluid-driven fractures propagate independently of each other in the same plane. Then when the radial extent of each fracture reaches a certain distance the fractures begin to interact and coalesce. This coalescence forms a bridge between the fractures and then, in an intermediate period following the contact of the two fractures, most growth is observed to focus along this bridge, perpendicular to the line connecting the injection sources. We analyse the growth and shape of this bridge at various stages after coalescence and the transitions between different stages of growth. We also investigate the influence of the injection rate, the distance between two injection points, the viscosity of the fluid and the Young's modulus of the elastic medium on the coalescence of the fractures.

  6. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    USGS Publications Warehouse

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  7. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  8. Time-resolved seismic tomography at the EGS geothermal reservoir of Soultz-Sous-Forêts (France) during hydraulic stimulations. A comparison between different injection tests

    NASA Astrophysics Data System (ADS)

    Dorbath, C.; Calo, M.; Cornet, F.; Frogneux, M.

    2011-12-01

    One major goal of monitoring seismicity accompanying hydraulic fracturing of a reservoir is to recover the seismic velocity field in and around the geothermal site. Several studies have shown that the 4D (time dependent) seismic tomographies are very useful to illustrate and study the temporal variation of the seismic velocities conditioned by injected fluids. However, only an appropriate separation of the data in subsets and a reliable tomographic method allow studying representative variations of the seismic velocities during and after the injection periods. We present here new 4D seismic tomographies performed using datasets regarding some stimulation tests performed at the Enhanced Geothermal System (EGS) site of Soultz-sous-Forêts (Alsace, France). The data used were recorded during the stimulation tests occurred in 2000, 2003 and 2004 that involved the wells GPK2, GPK3 and GPK4. For each set of events, the subsetting of the data was performed by taking into account the injection parameters of the stimulation tests (namely the injected flow rate and the wellhead pressure). The velocity models have been obtained using the Double-Difference tomographic method (Zhang and Thurber 2003) and further improved with the post-processing WAM technique (Calo' et al., 2009, 2011). This technique resulted very powerful because combines high resolution and reliablity of the seismic velocity fields calculated even with small datasets. In this work we show the complete sequence of the time-lapse tomographies and their variations in time and between different stimulation tests.

  9. Effectiveness of Needleless Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Bayuse, T.

    2010-01-01

    Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.

  10. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  11. Lattice Boltzmann modeling to explain volcano acoustic source.

    PubMed

    Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza

    2018-06-22

    Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.

  12. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.

    PubMed

    Yuan, Dan; Zhang, Jun; Yan, Sheng; Peng, Gangrou; Zhao, Qianbin; Alici, Gursel; Du, Hejun; Li, Weihua

    2016-08-01

    In this work, particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid was experimentally investigated. The 4.8-μm micro-particles were dispersed in a polyethylene oxide (PEO) viscoelastic solution, and then the solution was injected into a straight rectangular channel with a deionised (DI) water Newtonian sheath flow. Micro-particles suspended in PEO solution migrated laterally to a DI water stream, but migration in the opposite direction from a DI water stream to a PEO solution stream or from one DI water stream to another DI water stream could not be achieved. The lateral migration of particles depends on the viscoelastic properties of the sample fluids. Furthermore, the effects of channel length, flow rate, and PEO concentration were studied. By using viscoelastic sample flow and Newtonian sheath flow, a selective particle lateral migration can be achieved in a simple straight channel, without any external force fields. This particle lateral migration technique could be potentially used in solution exchange fields such as automated cell staining and washing in microfluidic platforms, and holds numerous biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Kelvin-Helmholtz instability for flow in porous media under the influence of oblique magnetic fields: A viscous potential flow analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.

    2013-10-15

    In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less

  14. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less

  15. Computational analysis of stall and separation control in centrifugal compressors

    NASA Astrophysics Data System (ADS)

    Stein, Alexander

    2000-10-01

    A numerical technique for simulating unsteady viscous fluid flow in turbomachinery components has been developed. In this technique, the three-dimensional form of the Reynolds averaged Navier-Stokes equations is solved in a time-accurate manner. The flow solver is used to study fluid dynamic phenomena that lead to instabilities in centrifugal compressors. The results indicate that large flow incidence angles, at reduced flow rates, can cause boundary layer separation near the blade leading edge. This mechanism is identified as the primary factor in the stall inception process. High-pressure jets upstream of the compressor face are studied as a means of controlling compressor instabilities. Steady jets are found to alter the leading edge flow pattern and effectively suppress compressor instabilities. Yawed jets are more effective than parallel jets and an optimum yaw angle exists for each compression system. Numerical simulations utilizing pulsed jets have also been done. Pulsed jets are found to yield additional performance enhancements and lead to a reduction in external air requirements for operating the jets. Jets pulsed at higher frequencies perform better than low-frequency jets. These findings suggest that air injection is a viable means of alleviating compressor instabilities and could impact gas turbine technology. Results concerning the optimization of practical air injection systems and implications for future research are discussed. The flow solver developed in this work, along with the postprocessing tools developed to interpret the results, provide a rational framework for analyzing and controlling current and next generation compression systems.

  16. Development of a floating drug delivery system with superior buoyancy in gastric fluid using hot-melt extrusion coupled with pressurized CO₂.

    PubMed

    Almutairy, B K; Alshetaili, A S; Ashour, E A; Patil, H; Tiwari, R V; Alshehri, S M; Repka, M A

    2016-03-01

    The present study aimed to develop a continuous single-step manufacturing platform to prepare a porous, low-density, and floating multi-particulate system (mini-tablet, 4 mm size). This process involves injecting inert, non-toxic pressurized CO₂gas (P-CO₂) in zone 4 of a 16-mm hot-melt extruder (HME) to continuously generate pores throughout the carrier matrix. Unlike conventional methods for preparing floating drug delivery systems, additional chemical excipients and additives are not needed in this approach to create minute openings on the surface of the matrices. The buoyancy efficiency of the prepared floating system (injection of P-CO₂) in terms of lag time (0 s) significantly improved (P < 0.05), compared to the formulation prepared by adding the excipient sodium bicarbonate (lag time 120 s). The main advantages of this novel manufacturing technique include: (i) no additional chemical excipients need to be incorporated in the formulation, (ii) few manufacturing steps are required, (iii) high buoyancy efficiency is attained, and (iv) the extrudate is free of toxic solvent residues. Floating mini-tablets containing acetaminophen (APAP) as a model drug within the matrix-forming carrier (Eudragit® RL PO) have been successfully processed via this combined technique (P-CO₂/HME). Desired controlled release profile of APAP from the polymer Eudragit® RL PO is attained in the optimized formulation, which remains buoyant on the surface of gastric fluids prior to gastric emptying time (average each 4 h).

  17. Mechanics of the injected pulsejet into gelatin gel and evaluation of the effect by puncture and crack generation and growth

    NASA Astrophysics Data System (ADS)

    Kato, T.; Arafune, T.; Washio, T.; Nakagawa, A.; Ogawa, Y.; Tominaga, T.; Sakuma, I.; Kobayashi, E.

    2014-08-01

    Recently, fluid jets have become widely used in medical devices and have been created and evaluated in clinical environments. Such devices are classified into two broad groups; those adopting continuous jets and those adopting discrete (or pulsed) jets. We developed a discrete jet device for brain cancer treatment, called a laser-induced liquid jet (LILJ) system. Although several studies have evaluated the availability and described the treatment mechanisms of fluid jet devices, the mechanisms of the fluid and injected material remain under-investigated. In this paper, we report the mechanism of frequent pulsejet injections into a viscoelastic biological material; namely, simulated gelatin brain tissue. The mechanism is evaluated by the injection depth, an easily measured parameter. To explain the injection mechanism, we propose that the pulsejet is pressured by forces introduced by resistance on the side surface of the hole and the reaction force proportionate to the injection depth. The pulsejet generated and propagated cracks in the gelatin, and the resistance eventually fractured the side surface of the hole. We evaluated the proposed model by measuring the behavior of pulsejets injected into gelatin by the LILJ. From the results, the following conclusions were obtained. First, the proposed model accurately describes the behavior of the injected pulsejet. Second, whether the hole or crack growth largely increases the final injection depth can be evaluated from differences in the decay constant. Finally, crack growth increases the final injection depth when the number of the injected pulsejets is greater than the inverse of the decay constant.

  18. Transformation of fault slip modes in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random stochastic (irregular mode). To investigate regularities of transformation and get statistically correct results we simulated only regular mode. During the experiments, after the establishment of a regular mode, we injected fluid into central part of interblock contact. Varying injecting fluid we were able both to decrease and increase amplitude of events. For example, after injection of 1 mPa x s fluid (water) in gouge, moisturized with 100 mPa x s fluid (ethylene glycol), peak velocity rose by almost an order. But after injection of an aqueous solution of starch (big viscosity and dilatant rheology) amplitude decreased 1.5 times and then slip almost completely stabilized. It's probably connected with the viscosity of solution, which increases with quick shift. Time of injection also has the significant impact on the possibility of transformation and its efficiency. Thus, it is well known that if the time of injection is in the vicinity of loss of strength moment, any external influence only initiates slip events. Preliminary results of our laboratory experiments show that the fluid injection can both reduce the part of deformation energy going seismic wave radiation, and to increase it. The most effective action observed in experinemts with injection of dilatant fluid. Findings demonstrate the prospectivity of further research in this direction. The work was supported by the Russian Science Foundation (Grant No. 16-17-00095) [1] Fagereng A., Sibson R.H. 2010. Melange rheology and seismic style. Geology. Vol.38, p.751-754. [2] Kocharyan G.G., et al. 2017. A study of different fault slip modes governed by the gouge material composition in laboratory experiments. Geophys. J. Int. Vol.208, p. 521-528. [3] Yamashita T. 2013. Generation of slow slip coupled with tremor due to fluid flow along a fault. Geophys. J. Int. Vol.193, p.375-393. [4] Guglielmi Y., et. al. 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science. Vol.348, p.1224-1226. [5] Wei S., et al. 2015. The 2012 Brawley swarm triggered by injection-induced aseismic slip. EPSL. Vol. 422, p.115-122.

  19. Comparison of the nonionic contrast agents, iopromide and iotrolan, for positive-contrast arthrography of the scapulohumeral joint in dogs.

    PubMed

    van Bree, H; Van Rijssen, B; Tshamala, M; Maenhout, T

    1992-09-01

    Arthrographic quality and synovial inflammatory response were examined to compare the use of iopromide with that of iotrolan for arthrography of the scapulohumeral joint in 6 dogs. Radiographs obtained 1 and 3 minutes after injection of either nonionic compound were of similar quality, but radiographs obtained 5 minutes after injection of iotrolan were significantly (P less than 0.05) better than those obtained after injection of iopromide. Results of analysis of synovial fluid samples obtained at 1, 3, 7, and 14 days after injection of contrast media were not significantly different between the 2 groups. Histologic examination of synovium and articular cartilage 2 weeks after injection of iopromide or iotrolan revealed minimal inflammatory response for both contrast agents. Injection of iopromide and iotrolan into the scapulohumeral joints of dogs had less effect on synovial fluid than that reported after injection of ionic compounds.

  20. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  1. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  3. A Numerical Study of Spray Injected in a Gas Turbine Lean Pre-Mixed Pre-Vaporized Combustor

    NASA Astrophysics Data System (ADS)

    Amoresano, Amedeo; Cameretti, Maria Cristina; Tuccillo, Raffaele

    2015-04-01

    The authors have performed a numerical study to investigate the spray evolution in a modern gas turbine combustor of the Lean Pre-Mixed Pre-vaporized type. The CFD tool is able to simulate the injection conditions, by isolating and studying some specific phenomena. The calculations have been performed by using a 3-D fluid dynamic code, the FLUENT flow solver, by choosing the injection models on the basis of a comparative analysis with some experimental data, in terms of droplet diameters, obtained by PDA technique. In a first phase of the investigation, the numerical simulation refers to non-evaporating flow conditions, in order to validate the estimation of the fundamental spray parameters. Next, the calculations employ boundary conditions close to those occurring in the actual combustor operation, in order to predict the fuel vapour distribution throughout the premixing chamber. The results obtained allow the authors to perform combustion simulation in the whole domain.

  4. Analysis of pulsed injection for microgravity receiver tank chilldown

    NASA Astrophysics Data System (ADS)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  5. Enhanced Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam for Metal, Radionuclide, and NAPL Remediation

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.

    2010-12-01

    In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.

  6. Elastic stress transfer as a diffusive process due to aseismic fault slip in response to fluid injection

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.

    2015-12-01

    Subsurface fluid injection is often followed by observations of an enlarging cloud of microseismicity. The cloud's diffusive growth is thought to be a direct response to the diffusion of elevated pore fluid pressure reaching pre-stressed faults, triggering small instabilities; the observed high rates of this growth are interpreted to reflect a relatively high permeability of a fractured subsurface [e.g., Shapiro, GJI 1997]. We investigate an alternative mechanism for growing a microseismic cloud: the elastic transfer of stress due to slow, aseismic slip on a subset of the pre-existing faults in this damaged subsurface. We show that the growth of the slipping region of the fault may be self-similar in a diffusive manner. While this slip is driven by fluid injection, we show that, for critically stressed faults, the apparent diffusion of this slow slip may quickly exceed the poroelastically driven diffusion of the elevated pore fluid pressure. Under these conditions, microseismicity can be first triggered by the off-fault stress perturbation due to the expanding region of slip on principal faults. This provides an alternative interpretation of diffusive growth rates in terms of the subsurface stress state rather than an enhanced hydraulic diffusivity. That such aseismic slip may occur, outpace fluid diffusion, and in turn trigger microseismic events, is also suggested by on- and near-fault observations in past and recently reported fluid injection experiments [e.g., Cornet et al., PAGEOPH 1997; Guglielmi et al., Science 2015]. The model of injection-induced slip assumes elastic off-fault behavior and a fault strength determined by the product of a constant friction coefficient and the local effective normal stress. The sliding region is enlarged by the pore pressure increase resolved on the fault plane. Remarkably, the rate of self-similar expansion may be determined by a single parameter reflecting both the initial stress state and the magnitude of the pore pressure increase.

  7. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake.

    PubMed

    Ryan, Philip J; Ross, Silvano I; Campos, Carlos A; Derkach, Victor A; Palmiter, Richard D

    2017-12-01

    Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (Oxtr PBN neurons) are key regulators of fluid satiation. Chemogenetic activation of Oxtr PBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, Oxtr PBN neurons were activated by fluid satiation and hypertonic saline injection. Oxtr PBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (Oxt PVH  neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated Oxtr PBN neurons. Our results suggest that Oxtr PBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia.

  8. New stable isotope results for reservoir and above zone monitoring in CCS from the Ketzin pilot site, Germany

    NASA Astrophysics Data System (ADS)

    Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes

    2013-04-01

    With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.

  9. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, B.C.; Turner, T.D.; Klingler, K.M.; Clark, M.L.

    1996-01-09

    A liquid sample filtration apparatus includes: (a) a module retaining filter elements; (b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to engage a filter element there between; (c) an inlet tube connected to an opposing engageable member; (d) an outlet tube connected to an opposing engageable member; (e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and (f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: (a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and (b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member. 8 figs.

  10. Analytical liquid test sample filtration apparatus

    DOEpatents

    Lohnes, Brent C.; Turner, Terry D.; Klingler, Kerry M.; Clark, Michael L.

    1996-01-01

    A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.

  11. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  12. Bioremediation of contaminated groundwater

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  13. Monte Carlo simulations of particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Jones, Frank C.

    1994-01-01

    The Fermi shock acceleration mechanism may be responsible for the production of high-energy cosmic rays in a wide variety of environments. Modeling of this phenomenon has largely focused on plane-parallel shocks, and one of the most promising techniques for its study is the Monte Carlo simulation of particle transport in shocked fluid flows. One of the principal problems in shock acceleration theory is the mechanism and efficiency of injection of particles from the thermal gas into the accelerated population. The Monte Carlo technique is ideally suited to addressing the injection problem directly, and previous applications of it to the quasi-parallel Earth bow shock led to very successful modeling of proton and heavy ion spectra, as well as other observed quantities. Recently this technique has been extended to oblique shock geometries, in which the upstream magnetic field makes a significant angle Theta(sub B1) to the shock normal. Spectral resutls from test particle Monte Carlo simulations of cosmic-ray acceleration at oblique, nonrelativistic shocks are presented. The results show that low Mach number shocks have injection efficiencies that are relatively insensitive to (though not independent of) the shock obliquity, but that there is a dramatic drop in efficiency for shocks of Mach number 30 or more as the obliquity increases above 15 deg. Cosmic-ray distributions just upstream of the shock reveal prominent bumps at energies below the thermal peak; these disappear far upstream but might be observable features close to astrophysical shocks.

  14. Microseismic monitoring: a tool for reservoir characterization.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2011-12-01

    Characterization of fluid-transport properties of rocks is one of the most important, yet one of most challenging goals of reservoir geophysics. There are some fundamental difficulties related to using active seismic methods for estimating fluid mobility. However, it would be very attractive to have a possibility of exploring hydraulic properties of rocks using seismic methods because of their large penetration range and their high resolution. Microseismic monitoring of borehole fluid injections is exactly the tool to provide us with such a possibility. Stimulation of rocks by fluid injections belong to a standard development practice of hydrocarbon and geothermal reservoirs. Production of shale gas and of heavy oil, CO2 sequestrations, enhanced recovery of oil and of geothermal energy are branches that require broad applications of this technology. The fact that fluid injection causes seismicity has been well-established for several decades. Observations and data analyzes show that seismicity is triggered by different processes ranging from linear pore pressure diffusion to non-linear fluid impact onto rocks leading to their hydraulic fracturing and strong changes of their structure and permeability. Understanding and monitoring of fluid-induced seismicity is necessary for hydraulic characterization of reservoirs, for assessments of reservoir stimulation and for controlling related seismic hazard. This presentation provides an overview of several theoretical, numerical, laboratory and field studies of fluid-induced microseismicity, and it gives an introduction into the principles of seismicity-based reservoir characterization.

  15. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas

    2012-07-01

    We analyzed 118 well-constrained focal mechanisms to estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland. This technique, termed focal mechanism tomography (FMT), uses the orientations of slip planes within the prevailing regional stress field as an indicator of the fluid pressure along the plane at the time of slip. The maximum value and temporal change of excess pore fluid pressures are consistent with the known history of the wellhead pressure applied at the borehole. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, which are consistent with the spatiotemporal evolution of the induced microseismicity. Our results demonstrate that FMT is a robust approach, being validated at the meso-scale of the Basel stimulation experiment. We found average earthquake triggering excess pore fluid pressures of about 10 MPa above hydrostatic. Overpressured fluids induced many small events (M < 3) along faults unfavorably oriented relative to the tectonic stress pattern, while the larger events tended to occur along optimally oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, and shows that the system is highly permeable along flow paths that allow fast pressure diffusion to the boundaries of the stimulated region.

  16. Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: Critical points

    NASA Astrophysics Data System (ADS)

    Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra

    2016-05-01

    The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.

  17. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  18. A technique to remove the tensile instability in weakly compressible SPH

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Yu, Peng

    2018-01-01

    When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.

  19. On the inclusion of mass source terms in a single-relaxation-time lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel

    2018-05-01

    We present a lattice Boltzmann algorithm for incorporating a mass source in a fluid flow system. The proposed mass source/sink term, included in the lattice Boltzmann equation, maintains the Galilean invariance and the accuracy of the overall method, while introducing a mass source/sink term in the fluid dynamical equations. The method can, for instance, be used to inject or withdraw fluid from any preferred lattice node in a system. This suggests that injection and withdrawal of fluid does not have to be introduced through cumbersome, and sometimes less accurate, boundary conditions. The method also suggests that, through a chosen equation of state relating mass density to pressure, the proposed mass source term will render it possible to set a preferred pressure at any lattice node in a system. We demonstrate how this model handles injection and withdrawal of a fluid. And we show how it can be used to incorporate pressure boundaries. The accuracy of the algorithm is identified through a Chapman-Enskog expansion of the model and supported by the numerical simulations.

  20. Predictive value of synovial fluid analysis in estimating the efficacy of intra-articular corticosteroid injections in patients with rheumatoid arthritis.

    PubMed Central

    Luukkainen, R; Hakala, M; Sajanti, E; Huhtala, H; Yli-Kerttula, U; Hämeenkorpi, R

    1992-01-01

    The predictive relevance of synovial fluid analysis and some other variables for the efficacy of intra-articular corticosteroid injections in 30 patients with rheumatoid arthritis and hydropsy in a knee joint was evaluated in a prospective study. At the onset of the study, the knee joints were aspirated and 30 mg triamcinolone hexacetonide injected intra-articularly. The circumferences and the tenderness scores of the knee joints were measured at onset, after two months, and at the end of the six months' follow up. Of the variables studied, synovial fluid C4, percentage of synovial fluid polymorphonuclear leucocytes, blood haemoglobin, and serum C3 correlated significantly with the decrease in knee joint circumference after two months, whereas only the percentage of synovial fluid polymorphonuclear leucocytes correlated significantly after six months. Between the patients with and without improvement in the tenderness scores of the knee joints, only serum IgM differed at the examination after two months; this was higher in patients whose scores showed no improvement. PMID:1632661

  1. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.

    PubMed

    Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L

    2011-04-01

    The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.

  2. Deterministic estimate of hypocentral pore fluid pressure of the M5.8 Pawnee, Oklahoma earthquake: Lower pre-injection pressure requires lower resultant pressure for slip

    NASA Astrophysics Data System (ADS)

    Levandowski, W. B.; Walsh, F. R. R.; Yeck, W.

    2016-12-01

    Quantifying the increase in pore-fluid pressure necessary to cause slip on specific fault planes can provide actionable information for stakeholders to potentially mitigate hazard. Although the M5.8 Pawnee earthquake occurred on a previously unmapped fault, we can retrospectively estimate the pore-pressure perturbation responsible for this event. We first estimate the normalized local stress tensor by inverting focal mechanisms surrounding the Pawnee Fault. Faults are generally well oriented for slip, with instabilities averaging 96% of maximum. Next, with an estimate of the weight of local overburden we solve for the pore pressure needed at the hypocenters. Specific to the Pawnee fault, we find that hypocentral pressure 43-104% of hydrostatic (accounting for uncertainties in all relevant parameters) would have been sufficient to cause slip. The dominant source of uncertainty is the pressure on the fault prior to fluid injection. Importantly, we find that lower pre-injection pressure requires lower resultant pressure to cause slip, decreasing from a regional average of 30% above hydrostatic pressure if the hypocenters begin at hydrostatic pressure to 6% above hydrostatic pressure with no pre-injection fluid. This finding suggests that underpressured regions such as northern Oklahoma are predisposed to injection-induced earthquakes. Although retrospective and forensic, similar analyses of other potentially induced events and comparisons to natural earthquakes will provide insight into the relative importance of fault orientation, the magnitude of the local stress field, and fluid-pressure migration in intraplate seismicity.

  3. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Miller, S. A.; Deichmann, N.

    2011-12-01

    We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.

  4. Percutaneous treatment of symptomatic non-parasitic hepatic cysts. Initial experience with single-session sclerotherapy with polidocanol.

    PubMed

    Spârchez, Zeno; Radu, Pompilia; Zaharie, Florin; Al Hajjar, Nadim; Sparchez, Mihaela

    2014-09-01

    Hepatic cysts have a prevalence of 2.5-7% and most of them are asymptomatic. However, large cysts may cause complaints; in such cases an appropriate treatment is necessary (open surgery, laparoscopic deroofing, removal of cystic fluid and injection of a sclerosing agent. The aim of this study was to assess the efficacy and safety of a single session technique with polidocanol in the therapy of symptomatic non parasitic hepatic cysts. MATERIAL AND METHODS. The study included 13 patients with symptomatic liver cysts (range 4-10 cm). All patients underwent percutaneous aspiration of the liver cyst under ultrasound guidance followed by instillation of polidocanol (3%, 4-10 ml). The patients were followed up at 1, 3 and 12 months. The disappearance of the cyst or reduction in volume more than 90% was considered successful. If the fluid was accumulated at 1month the procedure was repeated. If after the second injection the fluid accumulation was more than 50% of the initial volume the case was considered a failure and a laparoscopic deroofing was performed. The procedure was successful in 10 patients, 9 after the first instillation and one after the second (76.9%). The mean initial volume of cysts was 228 ml, and the mean reduction in volume at 1, 3 and 12 months was 80.2%, 91.9% and 96.7%. The cyst resolution was gradual with clinically significant cyst reduction achievement within 1 year after therapy. In 3 patients the fluid reaccumulated at the same volume despite 2 instillations. Those 3 cases the procedure was considered failure and the patients were sent to surgery. In 2 patients (one successfully treated and one with treatment failure) bleeding during the first puncture and aspiration appeared and the therapy was postponed for 1 month. There were no significant adverse effects, and all the patients had relief of symptoms after therapy. This initial experience with percutaneous aspiration and polidocanol sclerosis of hepatic cysts demonstrated that the technique is efficient and safe.

  5. Influence of hang time and location on bacterial contamination of intravenous bags in a veterinary emergency and critical care setting.

    PubMed

    Guillaumin, Julien; Olp, Nichole M; Magnusson, Karissa D; Butler, Amy L; Daniels, Joshua B

    2017-09-01

    To assess the rate of bacterial contamination of fluid and ports in intravenous bags in a veterinary emergency room (ER) and intensive care unit (ICU). Experimental model. Ninety intravenous fluid bags of lactated balanced-electrolytes solution (1 L) hung in a university hospital. Bags were hung in 2 different locations in the ER (sink and bins) and one location in the ICU (sink) for 11 days. Bags were punctured 3 times daily with a sterile needle to simulate clinical use. Injection ports were swabbed and 50 mL of fluid were collected in duplicates on days 0, 2, 4, 7, and 10. Aerobic bacterial cultures were performed on the fluid and injection port. Contamination was defined as bacterial growth of a similar phenotype across 2 consecutive times. Increase in the fluid contamination rate from day 0 was tested using an exact binomial test. Port contamination rate between locations was tested using Fisher's exact test. Combined bacterial growth on injection ports reached a mean (95% confidence interval) of 8.1 (0.005-16.2) cfu/port on day 10. The combined port contamination was 3.3%, 11.1%, 17.8%, and 31.1% on days 0, 2, 4, and 7, respectively. Port contamination was similar between ER and ICU. However, port contamination was higher in the sink versus the bins area (38.3% vs 16.7%, P = 0.032). No fluid bag was contaminated at days 0 and 2. The contamination rate of fluid bag was 1.1% and 4.4% on days 4 and 7, respectively. All bags with contaminated fluid were in the ER (6.7%, 95% exact binomial confidence interval 1.9-16.2%). Injection port contamination reached 31.1% on day 7. Contamination was more likely when the bags were hung next to a sink. In our model of bag puncture, fluid contamination occurred between days 2 and 4. © Veterinary Emergency and Critical Care Society 2017.

  6. The Analysis of a Vortex Type Magnetohydrodynamic Induction Generator

    NASA Technical Reports Server (NTRS)

    Lengyel, L. L.

    1962-01-01

    Consideration it is given to the performance to the characteristics of an AC magnetohydrodynamic power generator, A rotating magnetic field is imposed on the vortex flow of an electrically conducting fluid, which is injected tangentially into an annulus formed by two nonconducting concentric cylinders and two nonconducting end plates. A perturbation technique is used to determine the two dimensional velocity and three dimensional electromagnetic field and current distributions. Finally, the generated power, the ohmic losses, the effective power and the electrical efficiency of the converter system are calculated.

  7. Efficacy and safety of a novel submucosal lifting gel used for endoscopic submucosal dissection: a study in a porcine model.

    PubMed

    Schölvinck, D W; Alvarez Herrero, L; Goto, O; Meijer, S L; Neuhaus, H; Schumacher, B; Bergman, J J G H M; Weusten, B L A M

    2015-09-01

    Endoscopic submucosal dissection (ESD) is technically demanding. A viscous gel for submucosal lifting might induce mechanical submucosal dissection facilitating easier and safer ESD. In 12 female pigs (median 64 kg), ESDs of simulated lesions were performed at the posterior wall and greater curvature in the gastric body (one ESD per location) with randomly assigned injection fluids: gel or control fluid (0.9% saline with hydroxypropyl methylcellulose 3 mg/ml [7:1] and indigo carmine droplets). Additionally, 10 cc gel was injected into the submucosa at the anterior wall without ESD to assess effects of inappropriate injection. Pigs were euthanized at day 0, 3 or 28. In four additional pigs (euthanized day 3 or 28) 10 cc gel was injected into the muscularis propria (MP) after four endoscopic mucosal resections in the gastric body. Both fluid groups showed equal ESD-procedure times (28 [gel] vs. 26 min [control]) and complications. Gel-ESDs required less accessory interchanges (3.5 vs. 5.5; p = 0.01). Mechanical dissection after circumferential incision was achieved in 25% of gel-ESDs; none in control-ESDs. The severity of inflammation and fibrosis was equal in both fluid groups. Normal architecture and vital mucosa were found after inappropriate submucosal injection. MP-injections resulted in one transmural hematoma (day 3), and intramuscular encapsulation in 25% of the sites (day 28). A pig's stomach differs from the human stomach. The mechanical dissection properties of the gel may reduce the need for submucosal dissection during ESD. The gel is safe when advertently injected in the submucosa and MP. The porcine model appeared suboptimal to evaluate the true mechanical dissection properties of the gel.

  8. MR elastography of hydrocephalus

    NASA Astrophysics Data System (ADS)

    Pattison, Adam J.; Lollis, S. Scott; Perrinez, Phillip R.; Weaver, John B.; Paulsen, Keith D.

    2009-02-01

    Hydrocephalus occurs due to a blockage in the transmission of cerebrospinal fluid (CSF) in either the ventricles or subarachnoid space. Characteristics of this condition include increased intracranial pressure, which can result in neurologic deterioration [1]. Magnetic resonance elastography (MRE) is an imaging technique that estimates the mechanical properties of tissue in vivo. While some investigations of brain tissue have been performed using MRE [2,3,4,5], the effects due to changes in interstitial pressure and fluid content on the mechanical properties of the brain remain unknown. The purpose of this work is to assess the potential of MRE to differentiate between the reconstructed properties of normal and hydrocephalic brains. MRE data was acquired in 18 female feline subjects, 12 of which received kaolin injections resulting in an acute form of hydrocephalus. In each animal, four MRE scans were performed during the process including one pre-injection and three post-injection scans. The elastic parameters were obtained using a subzone-based reconstruction algorithm that solves Navier's equations for linearly elastic materials [6]. The remaining cats were used as controls, injected with saline instead of kaolin. To determine the state of hydrocephalus, ventricular volume was estimated from segmenting anatomical images. The mean ventricular volume of hydrocephalic cats significantly increased (P <~ 0.0001) between the first and second scans. The mean volume was not observed to increase (P >~ 0.5) for the control cats. Also, there was an observable increase in the recorded elastic shear modulus of brain tissue in the normal and hydrocephalic acquisitions. Results suggest that MRE is able to detect changes in the mechanical properties of brain tissue resulting from kaolin-induced hydrocephalus, indicating the need for further study.

  9. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae.

    PubMed

    Teng, Zi-Wen; Xu, Gang; Gan, Shi-Yu; Chen, Xuan; Fang, Qi; Ye, Gong-Yin

    2016-02-01

    The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  11. Surface Deformation Observed by InSAR due to Fluid Injection: a Test Study in the Central U.S.

    NASA Astrophysics Data System (ADS)

    Deng, F.; Dixon, T. H.

    2017-12-01

    The central and eastern U.S. has undergone a dramatic increase in seismicity over the past few years. Many of these recent earthquakes were likely induced by human activities, with underground fluid injection for oil and gas extraction being one of the main contributors. Surface deformation caused by fluid injection has been captured by GPS and InSAR observations in several areas. For example, surface uplift of up to 10 cm due to CO2 injection between 2007 and 2011 was measured by InSAR at an enhanced oil recovery site in west Texas. We are using Texas and Oklahoma as test areas to analyze the potential relationship between surface deformation, underground fluid injection and induced earthquakes. C-band SAR data from ENVISAT and Sentinel-1, and L-band SAR data from ALOS and ALOS-2 are used to form decade-long time series. Based on the surface deformation derived from the time series InSAR data, subsurface volume change and volumetric strain in an elastic half space are estimated. Seismic data provided by the USGS are used to analyze the spatial and temporal distribution pattern of earthquakes, and the potential link between surface deformation and induced earthquakes. The trigger mechanism will be combined with forward modeling to predict seismicity and assess related hazard for future study.

  12. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  13. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  14. Infusion pressure and pain during microneedle injection into skin of human subjects.

    PubMed

    Gupta, Jyoti; Park, Sohyun S; Bondy, Brian; Felner, Eric I; Prausnitz, Mark R

    2011-10-01

    Infusion into skin using hollow microneedles offers an attractive alternative to hypodermic needle injections. However, the fluid mechanics and pain associated with injection into skin using a microneedle have not been studied in detail before. Here, we report on the effect of microneedle insertion depth into skin, partial needle retraction, fluid infusion flow rate and the co-administration of hyaluronidase on infusion pressure during microneedle-based saline infusion, as well as on associated pain in human subjects. Infusion of up to a few hundred microliters of fluid required pressures of a few hundred mmHg, caused little to no pain, and showed weak dependence on infusion parameters. Infusion of larger volumes up to 1 mL required pressures up to a few thousand mmHg, but still usually caused little pain. In general, injection of larger volumes of fluid required larger pressures and application of larger pressures caused more pain, although other experimental parameters also played a significant role. Among the intradermal microneedle groups, microneedle length had little effect; microneedle retraction lowered infusion pressure but increased pain; lower flow rate reduced infusion pressure and kept pain low; and use of hyaluronidase also lowered infusion pressure and kept pain low. We conclude that microneedles offer a simple method to infuse fluid into the skin that can be carried out with little to no pain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fuel injector system

    DOEpatents

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  16. Magnetohydrodynamic peristaltic motion of a Newtonian fluid through porous walls through suction and injection

    NASA Astrophysics Data System (ADS)

    Sivaiah, R.; Hemadri Reddy, R.

    2017-11-01

    In this paper, we investigate the peristaltic transport of a conducting Newtonian fluid bounded by permeable walls with suction and injection moving with constant velocity of the wave in the wave frame of reference under the consideration of long wavelength and low Reynolds number. The analytical solution for the velocity field, pressure gradient and the frictional force are obtained. The effect of suction/injection parameter, amplitude ratio and the permeability parameter including slip on the flow quantities are discussed graphically. It is found that the greater the suction/injection parameter, the smaller the pressure rise against the pump works. Further, the pressure rise increases with increasing Magnetic parameter.

  17. Investigation on the accuracy and reliability of in-situ stress measurements using hydraulic fracturing in perforated cased holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    At present, the only viable technique for accurately measuring stresses at depth in a borehole is hydraulic fracturing. These have been termed microfracs because very small amounts of fluid are injected at low flow rates into the formation. When the well is shut in, the pressure immediately drops from the injection pressure to the instantaneous shut-in pressure (ISIP) which is approximately equal to sigma/sub min/. In general, the ISIP can be measured quite accurately in open holes. For most oil and gas applications, however, it is impossible or impractical to conduct these tests in an open-hole environment. The effects ofmore » the casing, cement annulus, explosive perforation damage, and random performation orientation are impossible to predict theoretically, and laboratory tests are usually conducted under nonrealistic conditions. A set of in situ experiments was conducted to evaluate the accuracy and reliability of this technique, to aid in the selection of an optimum perforation schedule, and to develop a diagnostic capability from the pressure response.« less

  18. The Use of Ferrofluids to Model Materials Processing (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Leslie, F.; Ramachandran, N.

    2000-01-01

    Many crystals grown in space have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. To study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received recent, growing interest. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Although any range of concentrations can be realized, photometric constraints impose some limitations on measurements. Results of the ground-based experiments indicate that the species distribution is within 3 percent of the predicted value.

  19. Fluid flow characteristics during polymer flooding

    NASA Astrophysics Data System (ADS)

    Yao, S. L.; Dou, H. E.; Wu, M.; Zhang, H. J.

    2018-05-01

    At present the main problems of polymer flooding is the high injection pressure which could not guarantee the later injection. In this paper the analyses of polymer’s physical properties and its solution’s variable movement characteristics in porous media reveal the inevitable trend of decrease in injection capacity and liquid production due to the increase of fluid viscosity and flow rate with more flow resistance. The injection rate makes the primary contribution to the active viscosity of the polymer solution in porous media. The higher injection rate, the greater shearing degradation and the more the viscosity loss. Besides the quantitative variation, the rate also changes qualitatively as that the injection rate demonstrates composite change of injection intensity and density. Due to the different adjustment function of the polymer solution on its injection profile, there should be different adjustment model of rates in such stages. Here in combination of the on-site recognitions, several conclusions and recommendations are made based on the study of the injection pattern adjustment during polymer flooding to improve the pressure distribution system, which would be a meaningful reference for extensive polymer flooding in the petroleum industry.

  20. Flow visualization study of the horseshoe vortex in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.; Russell, L. M.

    1982-01-01

    Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.

  1. Importance of synovial fluid aspiration when injecting intra-articular corticosteroids

    PubMed Central

    Weitoft, T.; Uddenfeldt, P.

    2000-01-01

    OBJECTIVE—The aim of this prospective study was to find if a complete synovial fluid aspiration before injecting intra-articular corticosteroids influences the treatment result.
METHODS—The study was performed in 147 patients with rheumatoid arthritis (RA). One hundred and ninety one knees with synovitis were randomised to arthrocentesis (n=95) or no arthrocentesis (n=96) before 20 mg triamcinolone hexacetonide was injected. The duration of effect was followed up for a period of six months. All patients were instructed to contact the rheumatology department if signs and symptoms from the treated knee recurred. If arthritis could be confirmed by a clinical examination a relapse was noted.
RESULTS—There was a significant reduction of relapse in the arthrocentesis group (p=0.001).
CONCLUSION—The study shows that aspiration of synovial fluid can reduce the risk for arthritis relapse when treating RA patients with intra-articular corticosteroids. It is concluded that arthrocentesis shall be included in the intra-articular corticosteroid injection procedure.

 PMID:10700435

  2. Temporal evolution of a seismic sequence induced by a gas injection in the Eastern coast of Spain.

    PubMed

    Ruiz-Barajas, S; Sharma, N; Convertito, V; Zollo, A; Benito, B

    2017-06-06

    Induced seismicity associated with energy production is becoming an increasingly important issue worldwide for the hazard it poses to the exposed population and structures. We analyze one of the rare cases of induced seismicity associated with the underwater gas storage operations observed in the Castor platform, located in the Valencia gulf, east Spain, near a complex and important geological structure. In September 2013, some gas injection operations started at Castor, producing a series of seismic events around the reservoir area. The larger magnitude events (up to 4.2) took place some days after the end of the injection, with EMS intensities in coastal towns up to degree III. In this work, the seismic sequence is analyzed with the aim of detecting changes in statistical parameters describing the earthquake occurrence before and after the injection and identifying possible proxies to be used for monitoring the sequence evolution. Moreover, we explore the potential predictability of these statistical parameters which can be used to control the field operations in injection/storage fluid reservoirs. We firstly perform a retrospective approach and next a perspective analysis. We use different techniques for estimating the value of the expected maximum magnitude that can occur due to antropogenic activities in Castor.

  3. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  4. 40 CFR 146.92 - Injection well plugging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Injection well plugging. 146.92... to Class VI Wells § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir...

  5. Initial instability of round liquid jet at subcritical and supercritical environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2016-07-15

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N{sub 2}) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature ofmore » the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N{sub 2} environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N{sub 2} and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N{sub 2} as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.« less

  6. Fluid Induced Earthquakes: From KTB Experiments to Natural Seismicity Swarms.

    NASA Astrophysics Data System (ADS)

    Shapiro, S. A.

    2006-12-01

    Experiments with borehole fluid injections are typical for exploration and development of hydrocarbon or geothermal reservoirs (e.g., fluid-injection experiments at Soultz, France and at Fenton-Hill, USA). Microseismicity occurring during such operations has a large potential for understanding physics of the seismogenic process as well as for obtaining detailed information about reservoirs at locations as far as several kilometers from boreholes. The phenomenon of microseismicity triggering by borehole fluid injections is related to the process of the Frenkel-Biot slow wave propagation. In the low-frequency range (hours or days of fluid injection duration) this process reduces to the pore pressure diffusion. Fluid induced seismicity typically shows several diffusion indicating features, which are directly related to the rate of spatial grow, to the geometry of clouds of micro earthquake hypocentres and to their spatial density. Several fluid injection experiments were conducted at the German Continental Deep Drilling Site (KTB) in 1994, 2000 and 2003-2005. Microseismicity occurred at different depth intervals. We analyze this microseismicity in terms of its diffusion-related features. Its relation to the 3-D distribution of the seismic reflectivity has important rock physical and tectonic implications. Starting from such diffusion-typical signatures of man-made earthquakes, we seek analogous patterns for the earthquakes in Vogtland/Bohemia at the German/Czech border region in central Europe. There is strong geophysical evidence that there seismic events are correlated to fluid-related processes in the crust. We test the hypothesis that ascending magmatic fluids trigger earthquakes by the mechanism of pore pressure diffusion. This triggering process is mainly controlled by two physical fields, the hydraulic diffusivity and the seismic criticality (i.e., critical pore pressure value leading to failure; stable locations are characterized by higher critical pressures), both heterogeneously distributed in rocks. The results of the analysis of the most significant and best studied (year 2000) earthquake swarm support this concept. Using a numerical model, where spatially correlated diffusivity and criticalit y patches (where patches with higher diffusivity are assumed to be less stable) are considered, we successfully simulate a general seismicity pattern of the swarms, including the spatio-temporal clustering of events and the migration of seismic activity. Therefore, in some cases spontaneously triggered natural seismicity, like earthquake swarms, also shows diffusion-typical signatures mentioned above. However, it seems that there are also some principle differences. They are emphasized in this presentation.

  7. Fluid-driven Fractures and Backflow in a Multilayered Elastic Matrix

    NASA Astrophysics Data System (ADS)

    Smiddy, Samuel; Lai, Ching-Yao; Stone, Howard

    2016-11-01

    We study the dynamics when pressurized fluid is injected at a constant flow rate into a multi-layered elastic matrix. In particular, we report experiments of such crack propagation as a function of orientation and distance from the contact of the layers. Subsequently we study the shape and propagation of the fluid along the contact of layers as well as volume of fluid remaining in the matrix once the injection pressure is released and "flowback" occurs. The experiments presented here may mimic the interaction between hydraulic fractures and pre-existing fractures and the dynamics of flowback in hydraulic fracturing. Study made possible by the Andlinger Center for Energy and the Environment and the Fred Fox Fund.

  8. Liquid rocket engine self-cooled combustion chambers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Self-cooled combustion chambers are chambers in which the chamber wall temperature is controlled by methods other than fluid flow within the chamber wall supplied from an external source. In such chambers, adiabatic wall temperature may be controlled by use of upstream fluid components such as the injector or a film-coolant ring, or by internal flow of self-contained materials; e.g. pyrolysis gas flow in charring ablators, and the flow of infiltrated liquid metals in porous matrices. Five types of self-cooled chambers are considered in this monograph. The name identifying the chamber is indicative of the method (mechanism) by which the chamber is cooled, as follows: ablative; radiation cooled; internally regenerative (Interegen); heat sink; adiabatic wall. Except for the Interegen and heat sink concepts, each chamber type is discussed separately. A separate and final section of the monograph deals with heat transfer to the chamber wall and treats Stanton number evaluation, film cooling, and film-coolant injection techniques, since these subjects are common to all chamber types. Techniques for analysis of gas film cooling and liquid film cooling are presented.

  9. Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events

    NASA Astrophysics Data System (ADS)

    Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.

    2015-12-01

    During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related processes.

  10. Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs

    PubMed Central

    Hartsock, Jared; Gill, Ruth; Smyth, Daniel; Kirk, Jonathon; Verhoeven, Kristien

    2017-01-01

    Patients undergoing cochlear implantation could benefit from a simultaneous application of drugs into the ear, helping preserve residual low-frequency hearing and afferent nerve fiber populations. One way to apply drugs is to incorporate a cannula into the implant, through which drug solution is driven. For such an approach, perilymph concentrations achieved and the distribution in the ear over time have not previously been documented. We used FITC-labeled dextran as a marker, delivering it into perilymph of guinea pigs at 10 or 100 nL/min though a cannula incorporated into a cochlear implant with the outlet in the mid basal turn. After injections of varying duration (2 hours, 1 day or 7 days) perilymph was collected from the cochlear apex using a sequential sampling technique, allowing dextran levels and gradients along scala tympani to be quantified. Data were interpreted quantitatively using computer simulations of the experiments. For injections of 2 hours duration, dextran levels were critically influenced by the presence or absence of fluid leakage at the cochleostomy site. When the cochleostomy was fluid-tight, substantially higher perilymph levels were achieved at the injection site, with concentration declining along scala tympani towards the apex. Contrary to expectations, large dextran gradients along scala tympani persisted after 24 hours of sustained injection and were still present in some animals after 7 days injection. Functional changes associated with implantation and dextran delivery, and the histological state of the implant and cannula were also documented. The persistent longitudinal gradients of dextan along the ear were not readily explained by computer simulations of the experiments based on prior pharmacokinetic data. One explanation is that inner ear pharmacokinetics are altered in the period after cochlear implantation, possibly by a permeabilization of the blood-labyrinth barrier as part of the immune response to the implant. PMID:28817653

  11. Failure of a gas well to respond to a foam hydraulic fracturing treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, B.D.

    1996-12-31

    Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughoutmore » the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.« less

  12. Flow produced by a free-moving floating magnet driven electromagnetically

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Román, Joel; Figueroa, Aldo; Cuevas, Sergio

    2018-04-01

    The flow generated by a free-moving magnet floating in a thin electrolyte layer is studied experimentally and numerically. The magnet is dragged by a traveling vortex dipole produced by a Lorentz force created when a uniform dc current injected in the electrolyte interacts with the magnetic field of the same magnet. The problem represents a typical case of fluid-solid interaction but with a localized electromagnetic force promoting the motion. Classical wake flow structures are observed when the applied current varies in the range of 0.2 to 10 A. Velocity fields at the surface of the electrolyte are obtained for different flow conditions through particle image velocimetry. Quasi-two-dimensional numerical simulations, based on the immersed boundary technique that incorporates the fluid-solid interaction, reproduce satisfactorily the dynamics observed in the experiments.

  13. Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Julio Enrique

    2003-01-01

    Injection of carbon dioxide (CO 2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO 2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO 2 and NaCl has beenmore » conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO 2-H 2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO 2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO 2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO 2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO 2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO 2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO 2) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO 2 displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.« less

  14. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  15. Formation of metallic and metallic-glass hollow spheres and their solidification characteristics

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    Various metals and metallic glass systems have bene processed into hollow spheres with sizes ranging from 3 mm to 440 microns in diameter. The technique for the formation of the large hollow spheres, in general, is based on the fluid-dynamic instability of a hollow annular jet. A refined technique has also been developed for microshell formation, in which discrete bubbles are injected into the stream of the molten material and individually 'flushed' out at a frequency related to the Rayleigh jet instability. The surfaces of those spheres of all sizes exhibit a range of contrasting solidification behaviors and characteristics. Metal shells of varying materials, sizes, aspect ratios, sphericity and concentricity have many useful and novel applications.

  16. [Treatment of temporo-mandibular joint closed-lock using intra-articular injection of mepivacaine with immediate resolution durable in time (six months follow-up)].

    PubMed

    Guarda Nardini, L; Tito, R; Beltrame, A

    2002-01-01

    The purpose of this study was to assess the value of intra-articular fluid injection under pressure, as a technique suggested for temporo-mandibular joint (TMJ) closed-lock treatment, and to determine if there is a persisting lock resolution in time. Twelve patients were studied at our centre, with a diagnosis of TMJ closed-lock, not amenable with conventional therapies. All patients underwent a MRI scan, confirming the presence of anteriorly displaced disk. This technique is based on intra-articular injection of anaesthetic (mepivacaine cloridrate) under pressure, using the so called pumping technique, that allows an inferior distraction of the condyle. The study has a six months follow-up. After closed-lock resolution all patients underwent physiotherapy with guided mouth opening, for one month. Mandibular function (maximal mouth opening) increased on average of 20.2 mm after treatment, and of 21.1 mm six months later (p=0.00000; with p<0.005). Pain decreased on average from VAS=6.75 to VAS=0.3 (p=0.00001; with p<0.005). The masticatory efficiency improved from VAS=5.25 to VAS=8.75 (p=0.002; p<0.005). Functional TMJ limitation level is significantly increased (p=0.002; p<0.005). Also, patient's efficacy judgement (mean value 3.58= good) and tolerability judgement (mean value 2.92=good) indicate that this therapy is well accepted. This technique is easy to perform, well tolerated and does not need specific instruments: it permits the resolution of TMJ closed-lock, decreases the pain and improves masticatory efficiency. All these effects persist in time. Subjects with recent closed-lock have an immediate and complete functional recovery while patients with chronic closed-lock do not.

  17. Fluid-Driven Deformation of a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2015-01-01

    Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.

  18. Scaling of postinjection-induced seismicity: An approach to assess hydraulic fracturing related processes

    NASA Astrophysics Data System (ADS)

    Johann, Lisa; Dinske, Carsten; Shapiro, Serge

    2017-04-01

    Fluid injections into unconventional reservoirs have become a standard for the enhancement of fluid-mobility parameters. Microseismic activity during and after the injection can be frequently directly associated with subsurface fluid injections. Previous studies demonstrate that postinjection-induced seismicity has two important characteristics: On the one hand, the triggering front, which corresponds to early and distant events and envelops farthest induced events. On the other hand, the back front, which describes the lower boundary of the seismic cloud and envelops the aseismic domain evolving around the source after the injection stop. A lot of research has been conducted in recent years to understand seismicity-related processes. For this work, we follow the assumption that the diffusion of pore-fluid pressure is the dominant triggering mechanism. Based on Terzaghi's concept of an effective normal stress, the injection of fluids leads to increasing pressures which in turn reduce the effective normal stress and lead to sliding along pre-existing critically stressed and favourably oriented fractures and cracks. However, in many situations, spatio-temporal signatures of induced events are captured by a rather non-linear process of pore-fluid pressure diffusion, where the hydraulic diffusivity becomes pressure-dependent. This is for example the case during hydraulic fracturing where hydraulic transport properties are significantly enhanced. For a better understanding of processes related to postinjection-induced seismicity, we analytically describe the temporal behaviour of triggering and back fronts. We introduce a scaling law which shows that postinjection-induced events are sensitive to the degree of non-linearity and to the Euclidean dimension of the seismic cloud (see Johann et al., 2016, JGR). To validate the theory, we implement comprehensive modelling of non-linear pore-fluid pressure diffusion in 3D. We solve numerically for the non-linear equation of diffusion with a power-law dependent hydraulic diffusivity on pressure and generate catalogues of synthetic seismicity. We study spatio-temporal features of the seismic clouds and compare the results to theoretical values predicted by the novel scaling law. Subsequently, we apply the scaling relation to real hydraulic fracturing and Enhanced Geothermal System data. Our results show that the derived scaling relations well describe synthetic and real data. Thus, the methodology can be used to obtain hydraulic reservoir properties and can contribute significantly to a general understanding of injection related processes as well as to hazard assessment.

  19. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  20. Revised Earthquake Catalog and Relocated Hypocenters Near Fluid Injection Wells and the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico

    NASA Astrophysics Data System (ADS)

    Edel, S.; Bilek, S. L.; Garcia, K.

    2014-12-01

    Induced seismicity is a class of crustal earthquakes resulting from human activities such as surface and underground mining, impoundment of reservoirs, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground cavities. Within the Permian basin in southeastern New Mexico lies an active area of oil and gas production, as well as the Waste Isolation Pilot Plant (WIPP), a geologic nuclear waste repository located just east of Carlsbad, NM. Small magnitude earthquakes have been recognized in the area for many years, recorded by a network of short period vertical component seismometers operated by New Mexico Tech. However, for robust comparisons between the seismicity patterns and the injection well locations and rates, improved locations and a more complete catalog over time are necessary. We present results of earthquake relocations for this area by using data from the 3-component broadband EarthScope Flexible Array SIEDCAR experiment that operated in the area between 2008-2011. Relocated event locations tighten into a small cluster of ~38 km2, approximately 10 km from the nearest injection wells. The majority of events occurred at 10-12 km depth, given depth residuals of 1.7-3.6 km. We also present a newly developed more complete catalog of events from this area by using a waveform cross-correlation algorithm and the relocated events as templates. This allows us to detect smaller magnitude events that were previously undetected with the short period network data. The updated earthquake catalog is compared with geologic maps and cross sections to identify possible fault locations. The catalog is also compared with available well data on fluid injection and production. Our preliminary results suggest no obvious connection between seismic moment release, fluid injection, or production given the available monthly industry data. We do see evidence in the geologic and well data of previously unidentified faults in the area.

  1. Effects of CO2 injection and Kerogen Maturation on Low-Field Nuclear Magnetic Resonance Response

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Livo, K.

    2017-12-01

    Low-field Nuclear Magnetic Resonance (NMR) is commonly used in petrophysical analysis of petroleum reservoir rocks. NMR experiments record the relaxation and polarization of in-situ hydrogen protons present in gaseous phases such as free-gas intervals and solution gas fluids, bulk fluid phases such as oil and aquifer intervals, and immovable fractions of kerogen and bitumen. Analysis of NMR relaxation spectra is performed to record how fluid composition, maturity, and viscosity change NMR experimental results. We present T1-T2 maps as thermal maturity of a water-saturated, sub-mature Woodford shale is increased at temperatures from 125 to 400 degrees Celsius. Experiments with applied fluid pressure in paraffinic mineral oil and DI water with varying fluid pH have been performed to mimic reservoir conditions in analysis of the relaxation of bulk fluid phases. We have recorded NMR spectra, T1-T2 maps, and fluid diffusion coefficients using a low-field (2 MHz) MagritekTM NMR. CO2 was injected at a pressure of 900 psi in an in house developed NMR pressure vessel made of torlon plastic. Observable 2D NMR shifts in immature kerogen formations as thermal maturity is increased show generation of lighter oils with increased maturity. CO2 injection leads to a decrease in bulk fluid relaxation time that is attributed to viscosity modification with gas presence. pH variation with increased CO2 presence were shown to not effect NMR spectra. From this, fluid properties have been shown to greatly affect NMR readings and must be taken into account for more accurate NMR reservoir characterization.

  2. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  3. Isotopic analysis of dissolved organic carbon in produced water brines by wet chemical oxidation and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, Randal; Conaway, Christopher; Saad, Nabil; Kharaka, Yousif

    2013-04-01

    Identification of fluid migration and escape from intentionally altered subsurface geologic systems, such as in hydraulic fracturing, enhanced oil recovery, and carbon sequestration activities, is an important issue for environmental regulators based on the traction that the "fracking" process is gathering across the United States. Given diverse injected fluid compositions and the potential for toxic or regulated compounds to be released, one of the most important steps in the process is accurately identifying evidence of injected fluid escape during and after injection processes. An important tool in identifying differences between the natural groundwater and injected fluid is the isotopic composition of dissolved constituents including inorganic components such as Sr and carbon isotopes of the dissolved organic compounds. Since biological processes in the mesothermal subsurface can rapidly alter the organic composition of a fluid, stable carbon isotopes of the dissolved organic compounds (DOC) are an effective means to identify differences in the origin of two fluids, especially when coupled with inorganic compound analyses. The burgeoning field of cavity ring-down spectroscopy (CRDS) for isotopic analysis presents an opportunity to obtain rapid, reliable and cost-effective isotopic measurements of DOC in potentially affected groundwater for the identification of leakage or the improvement of hydrogeochemical pathway models. Here we adapt the use of the novel hyphenated TOC-CRDS carbon isotope analyzer for the analysis of DOC in produced water by wet oxidation and describe the methods to evaluate performance and obtain useful information at higher salinities. Our methods are applied to a specific field example in a CO2-enhanced EOR field in Cranfield, Mississippi (USA) as a means to demonstrate the ability to distinguish natural and injected DOC using the stable isotopic composition of the dissolved organic carbon when employing the novel TOC-CRDS instrumentation set up.

  4. Injection of benomyl into elm, oak & maple

    Treesearch

    Garold F. Gregory; Thomas W. Jones; Percy McWain; Percy McWain

    1971-01-01

    A newly devised apparatus using pressure to inject fluids into trees was used to inject solubilized benomyl into elms, oaks, and maples. In October and November, injections were made into the outer two annual rings of sapwood at points 2 to 3 feet above ground line. One to 3 weeks after injection, the trees were sampled; and positive bioassays were obtained from branch...

  5. Angled injection: Hybrid fluid film bearings for cryogenic applications

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1995-01-01

    A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.

  6. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  7. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  8. Apparatus and method for mixing fuel in a gas turbine nozzle

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight

    2014-08-12

    A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.

  9. Catalytic converter with fluid injector for catalyst-free enclosure of catalyst bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, S.P.S.

    1984-09-25

    A fluid injection lozenge comprises two tubes supporting a perforate member forming a cage enclosing the space between the tubes. Each tube has a series of perforations along its length so that a fluid can be injected, through the tube, into the enclosed space. The lozenges are of use in catalytic converters of either the axial or radial flow design. In the case of a radial flow converter, a plurality of tubes are provided, preferably connected in pairs by the perforate members, to form a squirrel cage structure, disposed in the catalyst bed.

  10. Numerical Simulation Applications in the Design of EGS Collab Experiment 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Henry; White, Mark D.; Fu, Pengcheng

    The United States Department of Energy, Geothermal Technologies Office (GTO) is funding a collaborative investigation of enhanced geothermal systems (EGS) processes at the meso-scale. This study, referred to as the EGS Collab project, is a unique opportunity for scientists and engineers to investigate the creation of fracture networks and circulation of fluids across those networks under in-situ stress conditions. The EGS Collab project is envisioned to comprise three experiments and the site for the first experiment is on the 4850 Level (4,850 feet below ground surface) in phyllite of the Precambrian Poorman formation, at the Sanford Underground Research Facility, locatedmore » at the former Homestake Gold Mine, in Lead, South Dakota. Principal objectives of the project are to develop a number of intermediate-scale field sites and to conduct well-controlled in situ experiments focused on rock fracture behavior and permeability enhancement. Data generated during these experiments will be compared against predictions of a suite of computer codes specifically designed to solve problems involving coupled thermal, hydrological, geomechanical, and geochemical processes. Comparisons between experimental and numerical simulation results will provide code developers with direction for improvements and verification of process models, build confidence in the suite of available numerical tools, and ultimately identify critical future development needs for the geothermal modeling community. Moreover, conducting thorough comparisons of models, modelling approaches, measurement approaches and measured data, via the EGS Collab project, will serve to identify techniques that are most likely to succeed at the Frontier Observatory for Research in Geothermal Energy (FORGE), the GTO's flagship EGS research effort. As noted, outcomes from the EGS Collab project experiments will serve as benchmarks for computer code verification, but numerical simulation additionally plays an essential role in designing these meso-scale experiments. This paper describes specific numerical simulations supporting the design of Experiment 1, a field test involving hydraulic stimulation of two fractures from notched sections of the injection borehole and fluid circulation between sub-horizontal injection and production boreholes in each fracture individually and collectively, including the circulation of chilled water. Whereas the mine drift allows for accurate and close placement of monitoring instrumentation to the developed fractures, active ventilation in the drift cooled the rock mass within the experimental volume. Numerical simulations were executed to predict seismic events and magnitudes during stimulation, initial fracture orientations for smooth horizontal wellbores, pressure requirements for fracture initiation from notched wellbores, fracture propagation during stimulation between the injection and production boreholes, tracer travel times between the injection and production boreholes, produced fluid temperatures with chilled water injections, pressure limits on fluid circulation to avoid fracture growth, temperature environment surrounding the 4850 Level drift, and fracture propagation within a stress field altered by drift excavation, ventilation cooling, and dewatering.« less

  11. Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations

    USGS Publications Warehouse

    Hurwitz, S.; Christiansen, L.B.; Hsieh, P.A.

    2007-01-01

    Inflation and deflation of large calderas is traditionally interpreted as being induced by volume change of a discrete source embedded in an elastic or viscoelastic half-space, though it has also been suggested that hydrothermal fluids may play a role. To test the latter hypothesis, we carry out numerical simulations of hydrothermal fluid flow and poroelastic deformation in calderas by coupling two numerical codes: (1) TOUGH2 [Pruess et al., 1999], which simulates flow in porous or fractured media, and (2) BIOT2 [Hsieh, 1996], which simulates fluid flow and deformation in a linearly elastic porous medium. In the simulations, high-temperature water (350??C) is injected at variable rates into a cylinder (radius 50 km, height 3-5 km). A sensitivity analysis indicates that small differences in the values of permeability and its anisotropy, the depth and rate of hydrothermal injection, and the values of the shear modulus may lead to significant variations in the magnitude, rate, and geometry of ground surface displacement, or uplift. Some of the simulated uplift rates are similar to observed uplift rates in large calderas, suggesting that the injection of aqueous fluids into the shallow crust may explain some of the deformation observed in calderas.

  12. A phase-field method to analyze the dynamics of immiscible fluids in porous media

    NASA Astrophysics Data System (ADS)

    de Paoli, Marco; Roccon, Alessio; Zonta, Francesco; Soldati, Alfredo

    2017-11-01

    Liquid carbon dioxide (CO2) injected into geological formations (filled with brine) is not completely soluble in the surrounding fluid. For this reason, complex transport phenomena may occur across the interface that separates the two phases (CO2+brine and brine). Inspired by this geophysical instance, we used a Phase-Field Method (PFM) to describe the dynamics of two immiscible fluids in satured porous media. The basic idea of the PFM is to introduce an order parameter (ϕ) that varies continuously across the interfacial layer between the phases and is uniform in the bulk. The equation that describes the distribution of ϕ is the Cahn-Hilliard (CH) equation, which is coupled with the Darcy equation (to evaluate fluid velocity) through the buoyancy and Korteweg stress terms. The governing equations are solved through a pseudo-spectral technique (Fourier-Chebyshev). Our results show that the value of the surface tension between the two phases strongly influences the initial and the long term dynamics of the system. We believe that the proposed numerical approach, which grants an accurate evaluation of the interfacial fluxes of momentum/energy/species, is attractive to describe the transfer mechanism and the overall dynamics of immiscible and partially miscible phases.

  13. Impact of mineral precipitation on flow and mixing in porous media determined by microcomputed tomography and MRI

    DOE PAGES

    Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.; ...

    2016-12-21

    Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less

  14. Impact of mineral precipitation on flow and mixing in porous media determined by microcomputed tomography and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.

    Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less

  15. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection

    PubMed Central

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-01-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O2 content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. PMID:21497566

  16. Laboratory Layered Latte

    NASA Astrophysics Data System (ADS)

    Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard

    2017-11-01

    Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.

  17. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes

    NASA Astrophysics Data System (ADS)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart

    2016-04-01

    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution. References: Györe, D., Stuart, F.M., Gilfillan, S.M.V., Waldron, S., 2015. Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Int. J. Greenh. Gas Con. 42, 554-561.

  18. Reservoir fluid and gas chemistry during CO2 injection at the Cranfield field, Mississippi, USA

    NASA Astrophysics Data System (ADS)

    Lu, J.; Kharaka, Y. K.; Cole, D. R.; Horita, J.; Hovorka, S.

    2009-12-01

    At Cranfield field, Mississippi, USA, a monitored CO2-EOR project provides a unique opportunity to understand geochemical interactions of injected CO2 within the reservoir. Cranfield field, discovered in 1943, is a simple anticlinal four-way closure and had a large gas cap surrounded by an oil ring (Mississippi Oil and Gas Board, 1966). The field was abandoned in 1966. The reservoir returned to original reservoir pressure (hydrostatic pressure) by a strong aquifer drive by 2008. The reservoir is in the lower Tuscaloosa Formation at depths of more than 3000 m. It is composed of stacked and incised channel fills and is highly heterogeneous vertically and horizontally. A variable thickness (5 to 15 m) of terrestrial mudstone directly overlies the basal sandstone providing the primary seal, isolating the injection interval from a series of fluvial sand bodies occurring in the overlying 30 m of section. Above these fluvial channels, the marine mudstone of the Middle Tuscaloosa forms a continuous secondary confining system of approximately 75 m. The sandstones of the injection interval are rich in iron, containing abundant diagenetic chamosite (ferroan chlorite), hematite and pyrite. Geochemical modeling suggests that the iron-bearing minerals will be dissolved in the face of high CO2 and provide iron for siderite precipitation. CO2 injection by Denbury Resources Inc. begun in mid-July 2008 on the north side of the field with rates at ~500,000 tones per year. Water and gas samples were taken from seven production wells after eight months of CO2 injection. Gas analyses from three wells show high CO2 concentrations (up to 90 %) and heavy carbon isotopic signatures similar to injected CO2, whereas the other wells show original gas composition and isotope. The mixing ratio between original and injected CO2 is calculated based on its concentration and carbon isotope. However, there is little variation in fluid samples between the wells which have seen various levels of CO2. Comparison between preinjection and postinjection fluid analyses also shows little difference. It suggests that CO2 injection has not induced significant mineral-water reactions to change water chemistry. In October 2009, CO2 will be injected into the down-dip, non-productive Tuscaloosa Formation on the east side of the same field. In-situ fluid and gas samples will be collected using downhole U-tube. Fluid chemistry data through time will reveal mineral reactions during and after injection and confine timescales of the interactions. This project was funded thought the National Energy Technology Laboratory Regional Carbon Sequestration Partnership Program as part of the Southeast Regional Carbon Sequestration Partnership.

  19. Limits, complementarity and improvement of Advanced SAR Interferometry monitoring of anthropogenic subsidence/uplift due to long term CO2 storage

    NASA Astrophysics Data System (ADS)

    de Michele, M.; Raucoules, D.; Rohmer, J.; Loschetter, A.; Raffard, D.; Le Gallo, Y.

    2013-12-01

    A prerequisite to the large scale industrial development of CO2 Capture and geological Storage is the demonstration that the storage is both efficient and safe. In this context, precise uplift/subsidence monitoring techniques constitute a key component of any CO2 storage risk management. Space-borne Differential SAR (Synthetic Aperture Radar) interferometry is a promising monitoring technique. It can provide valuable information on vertical positions of a set of scatterer undergoing surface deformation induced by volumetric changes through time and space caused by CO2 injection in deep aquifers. To what extent ? To date, InSAR techniques have been successfully used in a variety of case-studies involving the measure of surface deformation caused by subsurface fluid withdrawal / injection. For instance, groundwater flow characterization in complex aquifers systems, oil / gas field characterization, verification of enhanced oil recovery efficiency, monitoring of seasonal gas storage. The successful use of InSAR is strictly related to the favourable scattering conditions in terms of spatial distribution of targets and their temporal stability. In arid regions, natural radar scatterers density can be very high, exceeding 1,000 per square km. But future onshore industrial-scale CO2 storage sites are planned in more complex land-covers such as agricultural or vegetated terrains. Those terrains are characterized by poor to moderate radar scatterers density, which decrease the detection limits of the space-borne interferometric technique. The present study discusses the limits and constraints of advanced InSAR techniques applied to deformation measurements associated with CO2 injection/storage into deep aquifers in the presence of agricultural and vegetated land-covers. We explore different options to enhance the measurement performances of InSAR techniques. As a first option, we propose to optimize the deployment of a network of 'artificial' scatterers, i.e. corner reflectors (artificial devices installed on ground to provide high backscatter to the radar signal) to complement the existing 'natural' network. The methodology is iterative and adaptive to the spatial and temporal extent of the detectable deforming region. We take into account the need of a change in sensors characteristics (for a very long term monitoring 10-50 years) that could result in a need of re-organisation of the network. Our discussion is supported by the estimates of the expected spatio-temporal evolution of surface vertical displacements caused by CO2 injection at depth by combining the approximate analytical solutions for pressure build-up during CO2 injection in deep aquifers and the poro-elastic behaviour of the reservoir under injection. As second option, we then review different advanced InSAR algorithms that could improve the displacement measurements using natural scatterers over vegetated areas.

  20. Heat transfer to a full-coverage film-cooled surface with 30 degree slant-hole injection

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full coverage film cooling through an array of discrete holes and with injection 30 deg to the wall surface in the downstream direction. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.3, and a range of Reynolds number Re sub x of 150,000 to 5 million. Air was used as the working fluid, and the mainstream velocity varied from 9.8 to 34.2 m/sec (32 to 112 ft/sec). The data were taken for secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. The data may be used to obtain Stanton number as a continuous function of the injectant temperature by use of linear superposition theory. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling. A differential prediction method was developed to predict the film cooling data base. The method utilizes a two-dimensional boundary layer program with routines to model the injection process and turbulence augmentation. The program marches in the streamwise direction, and when a row of holes is encountered, it stops and injects fluid into the boundary layer. The turbulence level is modeled by algebraically augmenting the mixing length, with the augmentation keyed to a penetration distance for the injected fluid.

  1. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    EPA Science Inventory

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  2. Seismic rupture and ground accelerations induced by CO 2 injection in the shallow crust

    DOE PAGES

    Cappa, Frédéric; Rutqvist, Jonny

    2012-09-01

    We present that because of the critically stressed nature of the upper crust, the injection of large volumes of carbon dioxide (CO 2) into shallow geological reservoirs can trigger seismicity and induce ground deformations when the injection increases the fluid pressure in the vicinity of potentially seismic faults. The increased fluid pressure reduces the strength against fault slip, allowing the stored elastic energy to be released in seismic events that can produce felt ground accelerations. Here, we seek to explore the likelihood ground motions induced by a CO 2 injection using hydromechanical modelling with multiphase fluid flow and dynamic rupture,more » including fault-frictional weakening. We extend the previous work of Cappa and Rutqvist, in which activation of a normal fault at critical stress may be possible for fast rupture nucleating by localized increase in fluid pressure and large decrease in fault friction. In this paper, we include seismic wave propagation generated by the rupture. For our assumed system and injection rate, simulations show that after a few days of injection, a dynamic fault rupture of few centimetres nucleates at the base of the CO 2 reservoir and grows bilaterally, both toward the top of the reservoir and outside. The rupture is asymmetric and affects a larger zone below the reservoir where the rupture is self-propagating (without any further pressure increase) as a result of fault-strength weakening. The acceleration and deceleration of the rupture generate waves and result in ground accelerations (~0.1–0.6 g) consistent with observed ground motion records. Finally, the maximum ground acceleration is obtained near the fault, and horizontal accelerations are generally markedly higher than vertical accelerations.« less

  3. Forum for Injection Technique (FIT), India: The Indian recommendations 2.0, for best practice in Insulin Injection Technique, 2015

    PubMed Central

    Tandon, Nikhil; Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P.; Chadha, Manoj; Chandalia, Hemraj B.; Chowdhury, Subhankar; Jothydev, Kesavadev; Kumar, Prasanna K. M.; V., Madhu S.; Mithal, Ambrish; Modi, Sonal; Pitale, Shailesh; Sahay, Rakesh; Shukla, Rishi; Sundaram, Annamalai; Unnikrishnan, Ambika G.; Wangnoo, Subhash K.

    2015-01-01

    As injectable therapies such as human insulin, insulin analogs, and glucagon-like peptide-1 receptor agonists are used to manage diabetes, correct injection technique is vital for the achievement of glycemic control. The forum for injection technique India acknowledged this need for the first time in India and worked to develop evidence-based recommendations on insulin injection technique, to assist healthcare practitioners in their clinical practice. PMID:25932385

  4. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    NASA Astrophysics Data System (ADS)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  5. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.« less

  6. Evaluation of Impinging Stream Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Kopicz, Charles; Bullard, Brad; Michaels, Scott

    2003-01-01

    NASA Marshall Space Flight Center (MSFC) and the U. S. Army are jointly investigating vortex chamber concepts for cryogenic oxygen/hydrocarbon fuel rocket engine applications. One concept, the Impinging Stream Vortex Chamber Concept (ISVC), has been tested with gel propellants at AMCOM at Redstone Arsenal, Alabama. A version of this concept for the liquid oxygen (LOX)/hydrocarbon fuel (RP-1) propellant system is derived from the one for the gel propellant. An unlike impinging injector is employed to deliver the propellants to the chamber. MSFC has also designed two alternative injection schemes, called the chasing injectors, associated with this vortex chamber concept. In these injection techniques, both propellant jets and their impingement point are in the same chamber cross-sectional plane. One injector has a similar orifice size with the original unlike impinging injector. The second chasing injector has small injection orifices. The team has achieved their objectives of demonstrating the self-cooled chamber wall benefits of ISVC and of providing the test data for validating computational fluids dynamics (CFD) models. These models, in turn, will be used to design the optimum vortex chambers in the future.

  7. Coherent Anti-Stokes Raman Spectroscopy (CARS) Measurements in Supersonic Combustors at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; OByrne, Sean B.; Tedder, Sarah A.; Cutler, Andrew D.

    2005-01-01

    This paper describes the recent use of coherent anti-Stokes Raman spectroscopy (CARS) to study supersonic combustion at NASA Langley Research Center. CARS is a nonlinear optical measurement technique used to measure temperature and species mole fractions remotely in harsh environments. A CARS system has been applied to two different combustor geometries at NASA Langley. Both experiments used the same vitiated wind-tunnel facility to create an air flow that simulates flight at Mach numbers of 6 and 7 for the combustor inlet and both experiments used hydrogen fuel. In the first experiment, the hydrogen was injected supersonically at a 30-degree angle with respect to the incoming flow. In the second experiment, the hydrogen was injected sonically at normal incidence. While these injection schemes produced significantly different flow features, the CARS method provided mean temperature, N2, O2 and H2 maps at multiple downstream locations for both. The primary aim of these measurements was to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  8. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  9. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  10. Sequential Injection Analysis for Optimization of Molecular Biology Reactions

    PubMed Central

    Allen, Peter B.; Ellington, Andrew D.

    2011-01-01

    In order to automate the optimization of complex biochemical and molecular biology reactions, we developed a Sequential Injection Analysis (SIA) device and combined this with a Design of Experiment (DOE) algorithm. This combination of hardware and software automatically explores the parameter space of the reaction and provides continuous feedback for optimizing reaction conditions. As an example, we optimized the endonuclease digest of a fluorogenic substrate, and showed that the optimized reaction conditions also applied to the digest of the substrate outside of the device, and to the digest of a plasmid. The sequential technique quickly arrived at optimized reaction conditions with less reagent use than a batch process (such as a fluid handling robot exploring multiple reaction conditions in parallel) would have. The device and method should now be amenable to much more complex molecular biology reactions whose variable spaces are correspondingly larger. PMID:21338059

  11. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146.7 Corrective action. In...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  12. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  13. Coanda injection system for axially staged low emission combustors

    DOEpatents

    Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  14. Controlling Wavebreaking in a Viscous Fluid Conduit

    NASA Astrophysics Data System (ADS)

    Anderson, Dalton; Maiden, Michelle; Hoefer, Mark

    2015-11-01

    This poster will present a new technique in the experimental investigation of dispersive hydrodynamics. In shallow water flows, internal ocean waves, superfluids, and optical media, wave breaking can be resolved by a dispersive shock wave (DSW). In this work, an experimental method to control the location of DSW formation (gradient catastrophe) is explained. The central idea is to convert an initial value problem (Riemann problem) into an equivalent boundary value problem. The system to which this technique is applied is a fluid conduit resulting from high viscosity contrast between a buoyant interior and heavier exterior fluid. The conduit cross-sectional area is modeled by a nonlinear, conservative, dispersive, third order partial differential equation. Using this model, the aim is to predict the breaking location of a DSW by controlling one boundary condition. An analytical expression for this boundary condition is derived by solving the dispersionless equation backward in time from the desired step via the method of characteristics. This is used in experiment to generate an injection rate profile for a high precision piston pump. This translates to the desired conduit shape. Varying the jump height and desired breaking location indicates good control of DSW formation. This result can be improved by deriving a conduit profile by numerical simulation of the full model equation. Controlling the breaking location of a DSW allows for the investigation of dynamics independent of the boundary. Support provided by NSF CAREER DMS-1255422 , NSF EXTREEMS.

  15. A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Somogyi, Andy; Tagg, Randall

    2007-11-01

    We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.

  16. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOEpatents

    Rao, Dandina N [Baton Rouge, LA

    2012-07-10

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  17. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  18. Activated fibrinolytic enzymes in the synovial fluid during acute arthritis induced by urate crystal injection in dogs.

    PubMed

    Morimoto, N; Sumi, H; Tsushima, H; Etou, Y; Yoshida, E; Mihara, H

    1991-10-01

    To identify the relationship of the severity of inflammation and fibrinolytic activity in arthritis, the fibrinolytic activity of synovial fluid was studied in acute experimental arthritis induced by injecting monosodium urate crystals into dogs' knee joints. The maximum activity in the synovial fluid was observed 6 h after crystal injection. It was inferred that the fibrinolytic activity was mainly due to plasminogen activator based on fibrin plate assays, substrate specificity, inhibitor effects and zymography. On the other hand, the activity of lysosomal enzymes (beta-glucuronidase and cathepsin G) reached a peak in the synovia after 12 h. Histological examination of the synovial membrane after 12 h also showed greater inflammation than at 6 h. The peak in fibrinolytic activity preceded the peak of lysosomal enzymes and histological changes. These results suggest that an increase in fibrinolytic activity by plasminogen activator may contribute to the development of an acute inflammatory response.

  19. Evaluating the Gutenberg-Richter Relationship for Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Tymchak, M. P.; Flewelling, S. A.

    2013-12-01

    Large volumes of flowback and produced water generated from hydraulic fracturing and oil and gas production have led to increased wastewater disposal through underground injection wells. Several recent studies have linked recently felt seismic events to underground injection wells in Arkansas, Ohio, Texas and Oklahoma, among others. However, in some cases, such as in Oklahoma, there is a lack of consensus as to whether the earthquakes were the result of fluid injection (Keranan et al., 2013), natural tectonic processes (Oklahoma Geological Survey, 2013), or were related to remote events (van der Elst et al., 2013). Moreover, it is unclear why earthquakes have occurred near some injection wells but not others, with apparently similar geology, target reservoirs, and injection rates (e.g., Frohlich, 2012). In instances where injection occurred near a fault (e.g., Rangely, CO), the timing and distribution of seismic events was well correlated to fluid volumes, and the interaction between injection and induced seismicity was easily resolved. In other cases (e.g., Oklahoma, Texas), it appears more difficult to interpret whether a particular injection well was related to observed seismic events. Therefore, metrics are needed as diagnostic tools to help differentiate between natural and induced seismicity. It has been well established that the frequency-magnitude distribution of earthquakes follows the Gutenberg-Richter distribution log N(M) = a - bM, where the slope (b-value) is typically near one. However, in some instances of deep fluid injection, b-values may vary, depending on specific injection activities, such as enhanced geothermal or hydraulic fracturing (Dinske and Shapiro, 2013). In some cases, b-values may vary during successive fracture stages of a single horizontal well (e.g., Williams and Calvarez, 2013), and seismicity associated with hydraulic fracturing may deviate from the Gutenberg-Richter relationship altogether (Hurd and Zoback, 2012). We evaluate whether frequency magnitude distributions could be used as a method to distinguish between natural and induced seismicity, drawing from a number of datasets compiled from different types of injection activities.

  20. Diffusion of chemically reactive species in MHD oscillatory flow with thermal radiation in the presence of constant suction and injection

    NASA Astrophysics Data System (ADS)

    Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.

    2018-04-01

    In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.

  1. Gas driven displacement in a Hele-Shaw cell with chemical reaction

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2011-11-01

    Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.

  2. Anti-VEGF therapy in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula.

    PubMed

    Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M

    2016-04-01

    The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.

  3. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  4. Dexamethasone Injection

    MedlinePlus

    ... severe allergic reactions. It is used in the management of certain types of edema (fluid retention and ... needed for normal body functioning) and in the management of certain types of shock. Dexamethasone injection is ...

  5. Neutrophil alveolitis following endotoxemia. Enhancement by previous exposure to hyperoxia.

    PubMed

    Rinaldo, J E; Dauber, J H; Christman, J; Rogers, R M

    1984-12-01

    We injected Escherichia coli endotoxin, 2.5 mg/kg, intraperitoneally in rats, sequentially quantified alveolar inflammation during a 6-day period by several techniques, and observed the effect of previous exposure to hyperoxia on the intensity of alveolitis in this model. As noted in other models of endotoxemia, we found intravascular sequestration of leukocytes and an increase in the retention of 125I albumin in the lung 4 to 6 h after the injection of endotoxin. Bronchoalveolar lavage fluid (BALF) obtained at this time only slightly stimulated the migration of neutrophils in vitro, and the numbers and types of cells recovered by lavage were normal. Fifteen h after the injection of endotoxin, however, bronchoalveolar lavage fluid stimulated both random and directed migration of neutrophils in vitro, although recovery of neutrophils by lavage was increased only slightly. By 24 h, 125I albumin retention had returned to normal levels, but the chemotactic activity of BALF remained high, and the percentage and absolute number of neutrophils recovered by lung lavage were increased markedly. The recovery of neutrophils remained significantly elevated for 3 days but declined to control levels by 6 days, whereas the recovery of alveolar macrophages was increased at this time. Exposure to 100% O2 for 36 h prior to endotoxemia accelerated and intensified neutrophil influx into the lung and increased the stimulatory effect of BALF on neutrophil migration in vitro. We conclude that a single episode of endotoxemia in the rat causes a multi-phasic alveolar inflammatory response, and that this response is accelerated and intensified by prior, mild exposure to hyperoxia.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Radiological issues associated with the recent boom in oil and gas hydraulic fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Alejandro

    As the worldwide hydraulic fracturing 'fracking' market continued to grow to an estimated $37 Billion in 2012, the need to understand and manage radiological issues associated with fracking is becoming imperative. Fracking is a technique that injects pressurized fluid into rock layer to propagate fractures that allows natural gas and other petroleum products to be more easily extracted. Radioactivity is associated with fracking in two ways. Radioactive tracers are frequently a component of the injection fluid used to determine the injection profile and locations of fractures. Second, because there are naturally-occurring radioactive materials (NORM) in the media surrounding and containingmore » oil and gas deposits, the process of fracking can dislodge radioactive materials and transport them to the surface in the wastewater and gases. Treatment of the wastewater to remove heavy metals and other contaminates can concentrate the NORM into technologically-enhanced NORM (TENORM). Regulations to classify, transport, and dispose of the TENORM and other radioactive waste can be complicated and cumbersome and vary widely in the international community and even between states/provinces. In many cases, regulations on NORM and TENORM do not even exist. Public scrutiny and regulator pressure will only continue to increase as the world demands on oil and gas continue to rise and greater quantities of TENORM materials are produced. Industry experts, health physicists, regulators, and public communities must work together to understand and manage radiological issues to ensure reasonable and effective regulations protective of the public, environment, and worker safety and health are implemented. (authors)« less

  7. Ultra low injection angle fuel holes in a combustor fuel nozzle

    DOEpatents

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  8. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    NASA Technical Reports Server (NTRS)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  9. Intra-articular corticosteroid preparations: different characteristics and their effect during inflammation induced by monosodium urate crystals in the rat subcutaneous air pouch.

    PubMed

    Rull, M; Clayburne, G; Sieck, M; Schumacher, H R

    2003-09-01

    To examine the effects of three commonly used intra-articular depot corticosteroid preparations tested in a rat air pouch model and their effect against monosodium urate (MSU) crystal-induced inflammation. Rheumatologists use intra-articular corticosteroid preparations to relieve pain and inflammation of acute monoarthritis without really knowing their effects on the synovial fluid and membrane or the differences between distinct preparations. This work compares the effect of three commonly used corticosteroid preparations in vivo, showing that they behave differently. A subcutaneous air pouch was formed in male Sprague-Dawley rats. A first group of 6-day-old air pouches were injected with 10 ml of 6 mg/ml normal saline solution, 6 mg/ml betamethasone containing both depot betamethasone acetate and soluble betamethasone phosphate (Celestone) in 9 ml of normal saline solution, 20 mg/ml of prednisolone tebutate (Hydeltra) in 9 ml of normal saline solution or 20 mg/ml of triamcinolone hexacetonide (Aristospan) in 9 ml of normal saline solution. A second group (group 2) of air pouches were injected with 15 mg of synthetic MSU crystals and 24 h later they were reinjected with 1 ml of the same three corticosteroid suspensions. For each condition four rats were killed at 6, 24, 48 h and 7 days. Pouch fluid and tissue were analysed. In the first 6 h after normal saline solution or corticosteroid injection into the air pouch there were mildly increased leucocyte counts in the air pouch fluid. Betamethasone-injected pouches showed no cells in the fluid after 6 h and no crystals after 24 h, triamcinolone-injected pouches still showed rare cells at 7 days. Both triamcinolone and prednisolone crystals persisted in higher numbers and lasted longer in the fluid than did betamethasone (P<0.05). In group 2 MSU crystal phagocytosis in the fluid was decreased in the betamethasone- (P<0.01), prednisolone- (P<0.003) and triamcinolone- (P<0.006) injected pouches when compared with the MSU crystal-injected pouches alone. Pouches injected with MSU crystals alone showed the most intense tissue inflammation at all times. After MSU, betamethasone-injected pouches had a rapid but mild decrease in the number of lining cells and inflammation. In contrast, triamcinolone- and prednisolone-injected pouches showed a very thin tissue with few or no vessels and almost no inflammation at 7 days. The pouches injected with MSU crystals and any of the corticoid preparations had three times more tophus-like structures and persistent crystals identified than the ones injected with MSU crystals alone. Each of the corticosteroid preparations by themselves produced very mild transient inflammation. The betamethasone preparation with a soluble steroid component had a quicker but milder anti-inflammatory effect on MSU crystal-induced inflammation. In contrast to the doses used, prednisolone tebutate and triamcinolone hexacetonide preparations dramatically suppressed urate crystal-induced inflammation at 7 days, but both produced atrophy and necrosis of the membrane, yielding a very thin membrane with almost no vessels. When used for MSU crystal-induced inflammation these corticosteroid preparations suppressed some aspects of inflammation but may actually promote the persistence of MSU crystals and the formation of tophi.

  10. Simulation of the injection of colloidal suspensions for the remediation of contaminated aquifer systems

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Gastone, Francesca; Sethi, Rajandrea

    2014-05-01

    Concentrated suspensions of microscale and nanoscale zerovalent iron particles (MZVI and NZVI) have been studied in recent years for the remediation of contaminated aquifers. The suspensions are injected into the subsurface to generate a reactive zone, and consequently the prediction of the particles distribution during the injection is a key aspect in the design of a field-scale injection. Colloidal dispersions of MZVI and NZVI are not stable in pure water, and shear thinning, environmentally friendly fluids (guar gum and xanthan gum solutions) were found to be effective in improving colloidal stability, thus greatly improving handling and injectability (1 - 3). Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. Shear thinning fluids exhibit high viscosity in static conditions, improving the colloidal stability, and lower viscosity at high flow rates enabling the injection at limited pressures. In this work, co-funded by European Union project AQUAREHAB (FP7 - Grant Agreement Nr. 226565), laboratory and pilot field tests for MZVI injection in saturated porous media are reported. MZVI was dispersed in guar gum solutions, and the transport behaviour under several polymer concentrations and injection rates was assessed in column tests (4). Based on the experimental results, a modelling approach is proposed to simulate the transport in porous media of nanoscale iron slurries, implemented in E-MNM1D (www.polito.it/groundwater/software). Colloid transport mechanisms are controlled by particle-collector and particle-particle interactions, usually modelled by a non equilibrium kinetic model accounting for deposition and release processes. The key aspects included in the E-MNM1D are clogging phenomena (i.e. reduction of porosity and permeability due to particles deposition), and the rheological properties of the carrier fluid (in this project, guar gum solution). The influence of colloid transport on porosity, permeability, and fluid viscosity is explicitly lumped into the model and the shear-thinning nature of the iron slurries is described by a modified Darcy law generalized for non Newtonian fluids. Since during the injection in wells the velocity field is not constant over the distance, E-MNM1D was modified in order to account for variable colloidal transport coefficients on flow rate thus allowing the estimation of the radius of influence during a full scale intervention. The flow and transport of MZVI slurries is solved in a radial domain for the simulation of field-scale injection, incorporating the abovementioned relevant mechanisms. The governing equations and model implementation are presented and discussed, along with examples of injection simulations. References 1. Tiraferri, A.; Sethi, R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 2009, 11(3), 635-645. 2. Tiraferri, A.; Chen, K.L.; Sethi, R.; Elimelech, M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science 2008, 324(1-2), 71-79. 3. Dalla Vecchia, E.; Luna, M.; Sethi, R. Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum. Environmental Science & Technology 2009, 43(23), 8942-8947. 4. Tosco, T.; Gastone, F.; Sethi, R. Guar gum solutions for improved delivery of iron particles in porous media (Part 2): iron transport tests and modelling in radial geometry. Journal of Contaminant Hydrology (submitted).

  11. Combination of water-jet dissection and needle-knife as a hybrid knife simplifies endoscopic submucosal dissection.

    PubMed

    Lingenfelder, Tobias; Fischer, Klaus; Sold, Moritz G; Post, Stefan; Enderle, Markus D; Kaehler, Georg F B A

    2009-07-01

    The safety and efficacy of endoscopic submucosal dissection (ESD) is very dependent on an effective injection beneath the submucosal lamina and on a controlled cutting technique. After our study group demonstrated the efficacy of the HydroJet in needleless submucosal injections under various physical conditions to create a submucosal fluid cushion (Selective tissue elevation by pressure = STEP technique), the next step was to develop a new instrument to combine the capabilities of an IT-Knife with a high-pressure water-jet in a single instrument. In this experimental study, we compared this new instrument with a standard ESD technique. Twelve gastric ESD were performed in six pigs under endotracheal anesthesia. Square areas measuring 4-cm x 4-cm were marked out on the anterior and posterior wall in the corpus-antrum transition region. The HybridKnife was used as an standard needle knife with insulated tip (i.e., the submucosal injection was performed with an injection needle and only the radiofrequency (RF) part of the HybridKnife was used for cutting (conventional technique)) or the HybridKnife was used in all the individual stages of the ESD, making use of the HybridKnife's combined functions (HybridKnife technique). The size of the resected specimens, the operating time, the frequency with which instruments were changed, the number of bleeding episodes, and the number of injuries to the gastric wall together with the subjective overall assessment of the intervention by the operating physician were recorded. The resected specimens were the same size, with average sizes of 16.96 cm(2) and 15.85 cm(2) resp (p = 0.8125). Bleeding episodes have been less frequent in the HybridKnife group (2.83 vs. 3.5; p = 0.5625). The standard knife caused more injuries to the lamina muscularis propria (0.17 vs. 1.33; p = 0.0313). The operating times had a tendency to be shorter with the HybridKnife technique (47.18 vs. 58.32 minute; p = 0.0313). The combination of a needle-knife with high-pressure water-jet dissection improved the results of endoscopic submucosal dissection in this experimental setting. Because the frequency of complications is still high, further improvements to the instrument are necessary.

  12. METHODS FOR DETERMINING THE MECHANICAL INTEGRITY OF CLASS II INJECTION WELLS

    EPA Science Inventory

    The mechanical integrity of injection wells must be determined to insure that there is no significant leak in the casing, tubing or packer, and that there is no significant fluid movement through vertical channels adjacent to the injection well. Methods for mechanical integrity t...

  13. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First,more » water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.« less

  14. Experimental insights into the geochemistry and mineralogy of a granite-hosted geothermal system injected with supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lo Re, C.; Kaszuba, J. P.; Moore, J.; McPherson, B. J.

    2011-12-01

    Supercritical CO2 may be a viable working fluid in enhanced geothermal systems (EGS) due to its large expansivity, low viscosity, and reduced reactivity with rock as compared to water. Hydrothermal experiments are underway to evaluate the geochemical impact of using supercritical CO2 as a working fluid in granite-hosted geothermal systems. Synthetic aqueous fluid and a model granite are reacted at 250 °C and 250 bars in a rocking autoclave and Au-Ti reaction cell for a minimum of 28 days (water:rock ratio of approximately 20:1). Subsequent injection of supercritical CO2 increases pressure, which decays over time as the CO2 dissolves into the aqueous fluid. Initial experiments decreased to a steady state pressure of 450 bars approximately 14 hours after injection of supercritical CO2. Post-injection reaction is allowed to continue for at least an additional 28 days. Excess CO2 is injected to produce a separate supercritical fluid phase (between 1.7 and 3.1 molal), ensuring aqueous CO2 saturation for the duration of each experiment. The granite was created using mineral separates and consists of ground (75 wt%, <45 microns) and chipped (25 wt%, 0.5-1.0 cm), sub-equal portions of quartz, perthitic potassium feldspar (~ 25 wt% albite and 75 wt% potassium feldspar), oligoclase, and a minor (4 wt%) component of Fe-rich biotite. The synthetic saline water (I = 0.12 m) contains molal quantities of Na, Cl, and HCO3 and millimolal quantities of K, SiO2, SO4, Ca, Al, and Mg, in order of decreasing molality. Aqueous fluids are sampled approximately 10 times over the course of each experiment and analyzed for total dissolved carbon and sulfide by coulometric titration, anions by ion chromatography, and major, minor, and trace cations by ICP-OES and -MS. Bench pH measurements are paired with aqueous analyses to calculate in-situ pH. Solid reactants are evaluated by SEM-EDS, XRD, and/or bulk chemical analysis before and after each experiment. Analytical data are reviewed alongside geochemical models to evaluate fluid-rock interactions and the capacity of theoretical models to predict the observed outcome. Data derived from this study will inform our understanding of how a real world geothermal system may respond geochemically and mineralogically given 'spontaneous' injection of CO2, whether by an anthropogenic or natural source. Companion modeling work is also underway, which will use these experiments to calibrate EGS models for field application.

  15. The safety of peri-articular local anaesthetic injection for patients undergoing total knee replacement with autologous blood transfusion: a randomised trial.

    PubMed

    Wallace, D F; Emmett, S R; Kang, K K; Chahal, G S; Hiskens, R; Balasubramanian, S; McGuinness, K; Parsons, H; Achten, J; Costa, M L

    2012-12-01

    Intra-operative, peri-articular injection of local anaesthesia is an increasingly popular way of controlling pain following total knee replacement. At the same time, the problems associated with allogenic blood transfusion have led to interest in alternative methods for managing blood loss after total knee replacement, including the use of auto-transfusion of fluid from the patient's surgical drain. It is safe to combine peri-articular infiltration with auto-transfusion from the drain. We performed a randomised clinical trial to compare the concentration of local anaesthetic in the blood and in the fluid collected in the knee drain in patients having either a peri-articular injection or a femoral nerve block. Clinically relevant concentrations of local anaesthetic were found in the fluid from the drains of patients having peri-articular injections (4.92 μg/ml (sd 3.151)). However, none of the patients having femoral nerve blockade had detectable levels. None of the patients in either group had clinically relevant concentrations of local anaesthetic in their blood after re-transfusion. The evidence from this study suggests that it is safe to use peri-articular injection in combination with auto-transfusion of blood from peri-articular drains during knee replacement surgery.

  16. Significance for secure CO2 storage of earthquakes induced by fluid injection

    NASA Astrophysics Data System (ADS)

    Verdon, James P.

    2014-05-01

    The link between subsurface fluid injection and induced seismicity has gained recent significance with an increase in earthquakes associated with the disposal of oilfield waste fluids. There are obvious similarities between wastewater reinjection and proposed CO2 storage (CCS) operations. However, as well as the seismic hazard, induced seismicity during CCS operations poses additional risks, because an induced event located above the target reservoir could compromise the hydraulic integrity of the caprock. In this paper we re-examine case examples where earthquakes have been induced by wastewater injection into deep aquifers in the light of proposed future CCS operations. In particular we consider possible controls on event magnitudes, and look at the spatial distributions of events. We find that the majority of events are located below the target reservoirs. This is an encouraging observation from the perspective of caprock integrity, although it presents a challenge in terms of pre-injection characterization of deep-lying faults several kilometres below the target zone. We observe that 99% of events are found within 20 km of injection wells, suggesting a minimum radius for geomechanical characterization and monitoring. We conclude by making recommendations for modelling and monitoring strategies to be followed prior to and during commercial-scale deployment of CO2 storage projects.

  17. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    NASA Astrophysics Data System (ADS)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in this simulation reveals that, porosity and permeability near the wellbore are enhanced after injection. This is chiefly due to the dissolution of calcite near the injection well and less extent by dolomite The porosity is improved by more than 14% at the injection well, but then decreases away from the well.

  18. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field, El Salvador. Geothermics, 52, 98-111, doi: 10.1016/j.geothermics.2013.09.008. Acknowledgements: This work was supported under SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE-2014-1 and by the Ministry of Science and Higher Education of Poland under project no. 500-10-27.

  19. Phase Field Model of Hydraulic Fracturing in Poroelastic Media: Fracture Propagation, Arrest, and Branching Under Fluid Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Santillán, David; Juanes, Ruben; Cueto-Felgueroso, Luis

    2018-03-01

    The simulation of fluid-driven fracture propagation in a porous medium is a major computational challenge, with applications in geosciences and engineering. The two main families of modeling approaches are those models that represent fractures as explicit discontinuities and solve the moving boundary problem and those that represent fractures as thin damaged zones, solving a continuum problem throughout. The latter family includes the so-called phase field models. Continuum approaches to fracture face validation and verification challenges, in particular grid convergence, well posedness, and physical relevance in practical scenarios. Here we propose a new quasi-static phase field formulation. The approach fully couples fluid flow in the fracture with deformation and flow in the porous medium, discretizes flow in the fracture on a lower-dimension manifold, and employs the fluid flux between the fracture and the porous solid as coupling variable. We present a numerical assessment of the model by studying the propagation of a fracture in the quarter five-spot configuration. We study the interplay between injection flow rate and rock properties and elucidate fracture propagation patterns under the leak-off toughness dominated regime as a function of injection rate, initial fracture length, and poromechanical properties. For the considered injection scenario, we show that the final fracture length depends on the injection rate, and three distinct patterns are observed. We also rationalize the system response using dimensional analysis to collapse the model results. Finally, we propose some simplifications that alleviate the computational cost of the simulations without significant loss of accuracy.

  20. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  1. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence

    USGS Publications Warehouse

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.

    2014-01-01

    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  2. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  3. Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.

    PubMed

    Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A

    2016-04-29

    Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.

  4. Natura abhorret a vacuo--use of fibrin glue as a filler and sealant in neurosurgical "dead spaces". Technical note.

    PubMed

    Cappabianca, Paolo; Esposito, Felice; Magro, Francesco; Cavallo, Luigi Maria; Solari, Domenico; Stella, Lucio; de Divitiis, Oreste

    2010-05-01

    The objective of this study is to report our experience and illustrate our technique in the use of fibrin glue in the treatment of post-operatory cerebrospinal fluid (CSF) leaks and collections following different neurosurgical procedures. In a 3-year period, 40 subjects underwent endoscopic endonasal approach for different sellar and skull base lesions (three tuberculum sellae meningiomas, six craniopharyngiomas, three Rathke's cleft cysts and 28 pituitary macroadenomas), in which an intraoperative CSF leakage was evident. In such subjects, the fibrin glue was used as a first step of the final phase of the procedure-i.e. the reconstruction of the skull base defect-followed by the other materials employed. Furthermore, ten other patients, who had undergone transsphenoidal (four cases), spinal (two cases), posterior fossa (three cases) and transcortical intraventricular tumour removal (one case) neurosurgical procedures and developed CSF leaks or collections, were conservatively treated by single or repeated in situ injections of "modified" fibrin glue under local anaesthesia according to different described techniques. In total, 50 patients constitute the clinical material of the present study. In the cases where the fibrin glue was used during the reconstruction phase of the procedure (40 cases), the glue was injected inside the tumour cavity to fill the dead space left by the removal of the lesion. In case of post-operative CSF leak or CSF fluid collection (ten cases), after discarding 50-80% of the thrombin solution to obtain prevalence of the product's adhesive properties, fibrin glue was injected directly in the path of the CSF leak or into the collection cavity after aspiration of the collection's content. This was performed with the provided application system or through lumbar or Tuohy needles. Applications were repeated every 48 h until the disappearance of the leak. In all the treated cases, the disappearance of CSF leaks or collections was obtained with a number of applications ranging from one to five. Successful results are stable with a follow-up ranging from 6 months to 3 years. In our experience, the injection of fibrin glue has proved to be effective in filling or sealing post-operative "dead spaces" and treating minor or initial CSF leaks resulting from procedures of transsphenoidal, cranial and spinal surgery, adding another possibility in the management of many of these dreadful complications.

  5. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.

    2017-12-01

    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection should be stopped and how to avoid major events. Our work contributes to the assessment or mitigation of seismic hazard and risk, and our long-term target question is: How to not make an earthquake?

  6. Computational Fluid Dynamics Analysis of the Venturi Dustiness Tester

    PubMed Central

    Dubey, Prahit; Ghia, Urmila; Turkevich, Leonid A.

    2017-01-01

    Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling. PMID:28638167

  7. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  8. Characteristics of Seismicity at Ngatamariki and Rotokawa Geothermal Fields, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopp, C. J.; Mroczek, S.; Savage, M. K.; Sewell, S. M.; Townend, J.; Sherburn, S.

    2017-12-01

    Fluid-induced seismicity (FIS) is a useful indicator of thermal and pressure changes within a geothermal reservoir. Given the difficulty of making measurements in the space between wells, FIS provides one of the only direct observations of fluid-related reservoir processes. Understanding exactly why and how these microearthquakes occur helps us unravel the interaction between the movement of fluid and heat at depth and could allow for a better understanding of the creation and destruction of permeability in the reservoir. We begin with an earthquake catalog of roughly 6200 events which occurred between May 2012 and November 2015 at the Mercury geothermal fields at Rotokawa and Ngatamariki. We expand this catalog using matched filter detection to include 350,000 microearthquakes. Earthquakes at the fields are densely clustered in areas of active fluid injection and the rate of seismicity is highly correlated with injection rate. We present high-precision locations as well as frequency-magnitude distributions and source mechanisms for significant events and discuss their relation to injection and production rates at the fields. In particular, we focus on specific periods of interest including the stimulation of well NM08 in June 2012, the Ngatamariki plant startup in April 2013, the switch of injection at Rotokawa to well RK22 in 2013 and a prolonged period of permeability change at well RK24.

  9. Spatial and Temporal Distribution of Imidacloprid Within the Crown of Eastern Hemlock

    PubMed Central

    Turcotte, Richard M.; Lagalante, Anthony; Jones, Jonathan; Cook, Frank; Elliott, Thomas; Billings, Anthony A.

    2017-01-01

    Systemic imidacloprid is the most widely used insecticide to control the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carriére in the United States. This study was conducted to 1) determine the effect of treatment timing (spring vs. fall) and application method (trunk injection vs. soil injection) on the spatial and temporal distribution of imidacloprid within the crown of A. tsugae-free eastern hemlock using a competitive enzyme-linked immunosorbent assay (ELISA), 2) compare ELISA to gas chromatography-mass spectrometry (GC/MS) for the detection of imidacloprid in xylem fluid, and 3) determine the concentration of imidacloprid in leaf tissue using high performance liquid chromatography with tandem mass spectrometric (LC/MS/MS) detection methods. Xylem fluid concentrations of imidacloprid were found to be significantly higher for spring applications than for fall applications and for trunk injections than soil injections in the first year posttreatment. A total of 69% of samples analyzed by ELISA gave 1.8 times higher concentrations of imidacloprid than those found by GC/MS, leading to evidence of a matrix effect and overestimation of imidacloprid in xylem fluid by ELISA. A comparison of the presence of imidacloprid with xylem fluid and in leaf tissue on the same branch showed significant differences, suggesting that imidacloprid moved intermittently within the crown of eastern hemlock. PMID:28130463

  10. Effects of multiple-scale driving on turbulence statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyunju; Cho, Jungyeon, E-mail: hyunju527@gmail.com, E-mail: jcho@cnu.ac.kr

    2014-01-01

    Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and the intracluster medium. In turbulence studies, it is customary to assume that fluid is driven on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales. If there are multiple energy-injection scales, the process of energy cascade and turbulence dynamo will be different compared with the case of the single energy-injection scale. In this work, we perform three-dimensional incompressible/compressible magnetohydrodynamic turbulence simulations. We drive turbulence in Fourier space in two wavenumber ranges, 2≤k≤√12 (large scale) and 15 ≲ kmore » ≲ 26 (small scale). We inject different amount of energy in each range by changing the amplitude of forcing in the range. We present the time evolution of the kinetic and magnetic energy densities and discuss the turbulence dynamo in the presence of energy injections at two scales. We show how kinetic, magnetic, and density spectra are affected by the two-scale energy injections and we discuss the observational implications. In the case ε {sub L} < ε {sub S}, where ε {sub L} and ε {sub S} are energy-injection rates at the large and small scales, respectively, our results show that even a tiny amount of large-scale energy injection can significantly change the properties of turbulence. On the other hand, when ε {sub L} ≳ ε {sub S}, the small-scale driving does not influence the turbulence statistics much unless ε {sub L} ∼ ε {sub S}.« less

  11. Numerical simulation of water injection into vapor-dominated reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruess, K.

    1995-01-01

    Water injection into vapor-dominated reservoirs is a means of condensate disposal, as well as a reservoir management tool for enhancing energy recovery and reservoir life. We review different approaches to modeling the complex fluid and heat flow processes during injection into vapor-dominated systems. Vapor pressure lowering, grid orientation effects, and physical dispersion of injection plumes from reservoir heterogeneity are important considerations for a realistic modeling of injection effects. An example of detailed three-dimensional modeling of injection experiments at The Geysers is given.

  12. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    NASA Astrophysics Data System (ADS)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the lenses, TCE migrates down again and eventually accumulates at the bottom of the sandbox. The two models of quantification of fluid saturations for water/gas system and water/NAPL system developed in homogenous porous media give comparatively fit results to the observations and can be used to quantify fluid saturations in heterogeneous porous media.

  13. Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint.

    PubMed

    Kim, Sung Rae; Ho, Myoung Jin; Lee, Eugene; Lee, Joon Woo; Choi, Young Wook; Kang, Myung Joo

    2015-01-01

    Positively surface-charged poly(lactide-co-glycolide) (PLGA)/Eudragit RL nanoparticles (NPs) were designed to increase retention time and sustain release profile in joints after intra-articular injection, by forming micrometer-sized electrostatic aggregates with hyaluronic acid, an endogenous anionic polysaccharide found in high amounts in synovial fluid. The cationic NPs consisting of PLGA, Eudragit RL, and polyvinyl alcohol were fabricated by solvent evaporation technique. The NPs were 170.1 nm in size, with a zeta potential of 21.3 mV in phosphate-buffered saline. Hyperspectral imaging (CytoViva(®)) revealed the formation of the micrometer-sized filamentous aggregates upon admixing, due to electrostatic interaction between NPs and the polysaccharides. NPs loaded with a fluorescent probe (1,1'-dioctadecyl-3,3,3',3' tetramethylindotricarbocyanine iodide, DiR) displayed a significantly improved retention time in the knee joint, with over 50% preservation of the fluorescent signal 28 days after injection. When DiR solution was injected intra-articularly, the fluorescence levels rapidly decreased to 30% of the initial concentration within 3 days in mice. From these findings, we suggest that PLGA-based cationic NPs could be a promising tool for prolonged delivery of therapeutic agents in joints selectively.

  14. Analysis of the Distribution of Magnetic Fluid inside Tumors by a Giant Magnetoresistance Probe

    PubMed Central

    Gooneratne, Chinthaka P.; Kurnicki, Adam; Yamada, Sotoshi; Mukhopadhyay, Subhas C.; Kosel, Jürgen

    2013-01-01

    Magnetic fluid hyperthermia (MFH) therapy uses the magnetic component of electromagnetic fields in the radiofrequency spectrum to couple energy to magnetic nanoparticles inside tumors. In MFH therapy, magnetic fluid is injected into tumors and an alternating current (AC) magnetic flux is applied to heat the magnetic fluid- filled tumor. If the temperature can be maintained at the therapeutic threshold of 42°C for 30 minutes or more, the tumor cells can be destroyed. Analyzing the distribution of the magnetic fluid injected into tumors prior to the heating step in MFH therapy is an essential criterion for homogenous heating of tumors, since a decision can then be taken on the strength and localization of the applied external AC magnetic flux density needed to destroy the tumor without affecting healthy cells. This paper proposes a methodology for analyzing the distribution of magnetic fluid in a tumor by a specifically designed giant magnetoresistance (GMR) probe prior to MFH heat treatment. Experimental results analyzing the distribution of magnetic fluid suggest that different magnetic fluid weight densities could be estimated inside a single tumor by the GMR probe. PMID:24312280

  15. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion.

    PubMed

    Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine

    2017-08-10

    Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.

  16. 4D ERT-based calibration and prediction of biostimulant induced changes in fluid conductivity

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Versteeg, R. J.; Day-Lewis, F. D.; Major, W. R.; Wright, K. E.

    2008-12-01

    In-situ bioremediation is an emerging and cost-effective method of removing organic contaminants from groundwater. The performance of bioremedial systems depends on the adequate delivery and distribution of biostimulants to contaminated zones. Monitoring the distribution of biostimulants using monitoring wells is expensive, time consuming, and provides inadequate information between sampling wells. We discuss a Hydrogeophysical Performance Monitoring System (HPMS) deployed to monitor bioremediation efforts at a TCE-contaminated Superfund site in Brandywine MD. The HPMS enables autonomous electrical geophysical data acquisition, processing, quality-assurance/quality-control, and inversion. Our objective is to demonstrate the feasibility and cost effectiveness of the HPMS to provide near real-time information on the spatiotemporal behavior of injected biostimulants. As a first step, we use time-lapse electrical resistivity tomography (ERT) to estimate changes in bulk conductivity caused by the injectate. We demonstrate how ERT-based bulk conductivity estimates can be calibrated with a small number of fluid conductivity measurements to produce ERT-based estimates of fluid conductivity. The calibration procedure addresses the spatially variable resolution of the ERT tomograms. To test the validity of these estimates, we used the ERT results to predict the fluid conductivity at tens of points prior to field sampling of fluid conductivity at the same points. The comparison of ERT-predicted vs. observed fluid conductivity displays a high degree of correlation (correlation coefficient over 0.8), and demonstrates the ability of the HPMS to estimate the four-dimensional (4D) distribution of fluid conductivity caused by the biostimulant injection.

  17. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  18. Outcomes of cataract surgery in patients with exudative age-related macular degeneration and macular fluid.

    PubMed

    Starr, Matthew R; Mahr, Michael A; Barkmeier, Andrew J; Iezzi, Raymond; Smith, Wendy M; Bakri, Sophie J

    2018-05-23

    The purpose of this study was to investigate whether having macular fluid on the OCT prior to cataract surgery adversely affected vision or anatomic outcomes after cataract surgery in patients with exudative AMD. Retrospective, cohort study. We examined all patients who underwent cataract surgery and were receiving intravitreal anti-VEGF injections from January 1 st , 2012 through December 31 st , 2016. There were 81 eyes that underwent cataract surgery and had received at least one intravitreal anti-VEGF injection for a diagnosis of exudative AMD within 6 months prior to surgery. Data collected included the development of subretinal or intraretinal macular fluid, or subretinal hemorrhage in the 6 months following surgery, number of injections, best corrected visual acuity (BCVA), and central subfield thickness (CST). There was a significant improvement between pre- and post-operative BCVA when comparing all patients (p values <0.0001) and no significant difference in CST before and after surgery (p >0.05). There were 23 eyes with fluid on the pre-operative OCT. There were no differences in final BCVA or CST and no difference in the development of fluid post-operatively when compared to patients without fluid pre-operatively (all p values >0.05). These patients also saw a significant improvement in BCVA (p = 0.006). In a real world setting, patients with both cataracts and wet AMD may safely undergo cataract surgery. Patients with stable pre-operative fluid on OCT should be considered for cataract surgery as these patients did well post-operatively with no worsening of their neovascular process. Copyright © 2018. Published by Elsevier Inc.

  19. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less

  20. General Information About Injection Wells

    EPA Pesticide Factsheets

    This webpage provides general background information on injection wells used to place fluids in the subsurface. It also provides information on use, different categories, and how they are regulated. Information on the protection is also provided.

  1. Quantification of glomerular filtration rate by measurement of gadobutrol clearance from the extracellular fluid volume: comparison of a TurboFLASH and a TrueFISP approach

    NASA Astrophysics Data System (ADS)

    Boss, Andreas; Martirosian, Petros; Artunc, Ferruh; Risler, Teut; Claussen, Claus D.; Schlemmer, Heinz-Peter; Schick, Fritz

    2007-03-01

    Purpose: As the MR contrast-medium gadobutrol is completely eliminated via glomerular filtration, the glomerular filtration rate (GFR) can be quantified after bolus-injection of gadobutrol and complete mixing in the extracellular fluid volume (ECFV) by measuring the signal decrease within the liver parenchyma. Two different navigator-gated single-shot saturation-recovery sequences have been tested for suitability of GFR quantification: a TurboFLASH and a TrueFISP readout technique. Materials and Methods: Ten healthy volunteers (mean age 26.1+/-3.6) were equally devided in two subgroups. After bolus-injection of 0.05 mmol/kg gadobutrol, coronal single-slice images of the liver were recorded every 4-5 seconds during free breathing using either the TurboFLASH or the TrueFISP technique. Time-intensity curves were determined from manually drawn regions-of-interest over the liver parenchyma. Both sequences were subsequently evaluated regarding signal to noise ratio (SNR) and the behaviour of signal intensity curves. The calculated GFR values were compared to an iopromide clearance gold standard. Results: The TrueFISP sequence exhibited a 3.4-fold higher SNR as compared to the TurboFLASH sequence and markedly lower variability of the recorded time-intensity curves. The calculated mean GFR values were 107.0+/-16.1 ml/min/1.73m2 (iopromide: 92.1+/-14.5 ml/min/1.73m2) for the TrueFISP technique and 125.6+/-24.1 ml/min/1.73m2 (iopromide: 97.7+/-6.3 ml/min/1.73m2) for the TurboFLASH approach. The mean paired differences with TrueFISP was lower (15.0 ml/min/1.73m2) than in the TurboFLASH method (27.9 ml/min/1.73m2). Conclusion: The global GFR can be quantified via measurement of gadobutrol clearance from the ECFV. A saturation-recovery TrueFISP sequence allows for more reliable GFR quantification as a saturation recovery TurboFLASH technique.

  2. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  3. A Technique for Rapidly Deploying a Concentration Gradient with Applications to Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2000-01-01

    The latter half of the last century has seen rapid advancements in semiconductor crystal growth powered by the demand for high performance electronics in myriad applications. The reduced gravity environment of space has also been used for crystal growth tests, especially in instances where terrestrial growth has largely been unsuccessful. While reduced gravity crystal growth affords some control of the gravity parameter, many crystals grown in space, to date, have structural flaws believed to result from convective motions during the growth phase. The character of these instabilities is not well understood but is associated with thermal and solutal density variations near the solidification interface in the presence of residual gravity and g-jitter. In order to study these instabilities in a separate, controlled space experiment, a concentration gradient would first have to be artificially established in a timely manner as an initial condition. This is generally difficult to accomplish in a microgravity environment because the momentum of the fluid injected into a test cell tends to swirl around and mix in the absence of a restoring force. The use of magnetic fields to control the motion and position of liquids has received growing interest in recent times. The possibility of using the force exerted by a non-uniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for space applications. This paper describes a technique for quickly establishing a linear or exponential fluid concentration gradient using a magnetic field in place of gravity to stabilize the deployment. Also discussed is a photometric technique for measuring the concentration profile using light attenuation. Results of the ground-based experiments indicate that the concentration distribution is within 3% of the predicted value. Although any range of concentations can be realized, photometric constraints are discussed which impose some limitations on measurements.

  4. Portable Intravenous Fluid Production Device For Ground Use Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Several medical conditions require the administration of intravenous (IV) fluids,but limitations of mass, volume, shelf-life, transportation, and local resources can restrict the availability of these important fluids. Such limitations are expected in long-duration space exploration missions and in remote or austere places on Earth. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endo - toxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (˜25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters. The device contains one battery powered electric mini-pump. Alternatively, a manually powered pump can be attached and used. Drinking water enters the device from a source water bag, flows through two filters, and final sterile production water exits into a sealed, medical-grade collection bag. The collection bag contains pre-placed crystalline salts to mix with product water to form isotonic intravenous medical solutions. Alternatively, a hypertonic salt solution can be injected into a filled bag. The filled collection bag is detached from the device and is ready for use or storage. This device currently contains one collection bag, but a manifold of several pre-attached bags or replacement of single collection bags under sterile needle technique is possible for the production of multiple liters. The entire system will be flushed, sealed, and radiation-sterilized. Operation of the device is easy and requires minimal training. Drinking water is placed into the collection bag. Inline stopcock flow valves at the source and collection bags are opened, and the mini-pump is turned on by a switch to begin fluid flow. When the collection bag is completely filled with the medical- grade water, the pump can be turned off. The pump is designed so it cannot pump air, and overfilling of the collection bag with fluid is avoided by placing an equal amount of water in the source bag. Backflow is avoided by inline check valves. The filled collection bag is disconnected from its tubing and is ready for use. The source bag can be refilled for production of multiple liters, or the source bag can be replaced with an input tube that can be placed in a larger potable water source if the device is attended. The device functions in all orientations independent of any gravity fields. In addition to creating IV fluids, the device produces medical-grade water, which can be used for mixing with medications for injection, reconstituting freeze-dried blood products for injection, or for wound hydration or irrigation. Potential worldwide use is expected with medical activities in environments that have limited resources, storage, or resupply such as in military field operations, humanitarian relief efforts, submarines, commercial cruise ships, etc.

  5. Comparison of carpal tunnel injection techniques: a cadaver study.

    PubMed

    Ozturk, Kahraman; Esenyel, Cem Zeki; Sonmez, Mesut; Esenyel, Meltem; Kahraman, Sinan; Senel, Berna

    2008-01-01

    The purpose of the study was to evaluate the accuracy of injections into the carpal tunnel using three different portals in cadavers, and to define safe guidelines. In this study, 150 wrists of 75 cadavers (54 male, 21 female) were included. To compare three injection sites, 50 wrists of 25 cadavers were used for each technique; we used 23 gauge needles, and acrylic dye. The first injection technique: the needle was inserted 1cm proximal to the wrist crease and directed distally by roughly 45 in an ulnar direction through the flexor carpi radialis tendon. The second injection technique: the needle was inserted into the carpal tunnel from a point just ulnar to the palmaris longus tendon and 1cm proximal to the wrist crease. The third injection technique: the needle was inserted just distal to the distal skin crease of the wrist in line with the fourth ray. The first injection technique gave the highest accuracy rate, and this was also the safest injection site. Median nerve injuries caused by injection was seen mostly with the second technique. Although a steroid injection may provide symptomatic relief in patients with carpal tunnel syndrome, the median nerve and other structures in the carpal tunnel are at risk of injury. Because of that, the injection should be given using the correct technique by physicians skilled in carpal tunnel surgery.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen E.; Moses, William W.

    An embodiment of a liquid chromatography detection unit includes a fluid channel and a radiation detector. The radiation detector is operable to image a distribution of a radiolabeled compound as the distribution travels along the fluid channel. An embodiment of a liquid chromatography system includes an injector, a separation column, and a radiation detector. The injector is operable to inject a sample that includes a radiolabeled compound into a solvent stream. The position sensitive radiation detector is operable to image a distribution of the radiolabeled compound as the distribution travels along a fluid channel. An embodiment of a method ofmore » liquid chromatography includes injecting a sample that comprises radiolabeled compounds into a solvent. The radiolabeled compounds are then separated. A position sensitive radiation detector is employed to image distributions of the radiolabeled compounds as the radiolabeled compounds travel along a fluid channel.« less

  7. Quantitation of dissolved gas content in emulsions and in blood using mass spectrometric detection.

    PubMed

    Grimley, Everett; Turner, Nicole; Newell, Clayton; Simpkins, Cuthbert; Rodriguez, Juan

    2011-06-01

    Quantitation of dissolved gases in blood or in other biological media is essential for understanding the dynamics of metabolic processes. Current detection techniques, while enabling rapid and convenient assessment of dissolved gases, provide only direct information on the partial pressure of gases dissolved in the aqueous fraction of the fluid. The more relevant quantity known as gas content, which refers to the total amount of the gas in all fractions of the sample, can be inferred from those partial pressures, but only indirectly through mathematical modeling. Here we describe a simple mass spectrometric technique for rapid and direct quantitation of gas content for a wide range of gases. The technique is based on a mass spectrometer detector that continuously monitors gases that are rapidly extracted from samples injected into a purge vessel. The accuracy and sample processing speed of the system is demonstrated with experiments that reproduce within minutes literature values for the solubility of various gases in water. The capability of the technique is further demonstrated through accurate determination of O(2) content in a lipid emulsion and in whole blood, using as little as 20 μL of sample. The approach to gas content quantitation described here should greatly expand the range of animals and conditions that may be used in studies of metabolic gas exchange, and facilitate the development of artificial oxygen carriers and resuscitation fluids. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A prototype space flight intravenous injection system

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.

    1985-01-01

    Medical emergencies, especially those resulting from accidents, frequently require the administration of intravenous fluids to replace lost body liquids. The development of a prototype space flight intravenous injection system is presented. The definition of requirements, injectable concentrates development, water polisher, reconstitution hardware development, administration hardware development, and prototype fabrication and testing are discussed.

  9. Multipoint Fuel Injection Arrangements

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor)

    2017-01-01

    A multipoint fuel injection system includes a plurality of fuel manifolds. Each manifold is in fluid communication with a plurality of injectors arranged circumferentially about a longitudinal axis for multipoint fuel injection. The injectors of separate respective manifolds are spaced radially apart from one another for separate radial staging of fuel flow to each respective manifold.

  10. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  11. Injectable barriers for waste isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persoff, P.; Finsterle, S.; Moridis, G.J.

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture themore » formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification.« less

  12. Hydraulic fracturing in granite under geothermal conditions

    USGS Publications Warehouse

    Solberg, P.; Lockner, D.; Byerlee, J.D.

    1980-01-01

    The experimental hydraulic fracturing of granite under geothermal conditions produces tensile fracture at rapid fluid injection rates and shear fracture at slow injection rates and elevated differential stress levels. A sudden burst of acoustic emission activity accompanies tensile fracture formation whereas the acoustic emission rate increases exponentially prior to shear fracture. Temperature does not significantly affect the failure mechanism, and the experimental results have not demonstrated the occurrence of thermal fracturing. A critical result of these experiments is that fluid injection at intermediate rates and elevated differential stress levels increases permeability by more than an order of magnitude without producing macroscopic fractures, and low-level acoustic emission activity occurs simultaneously near the borehole and propagates outward into the specimen with time. Permeability measurements conducted at atmospheric pressure both before and after these experiments show that increased permeability is produced by permanent structural changes in the rock. Although results of this study have not demonstrated the occurrence of thermal fracturing, they suggest that fluid injection at certain rates in situ may markedly increase local permeability. This could prove critical to increasing the efficiency of heat exchange for geothermal energy extraction from hot dry rock. ?? 1980.

  13. Quantification of normal vaginal constituents using a new wet preparation technique.

    PubMed

    Fowler, R Stuart

    2012-10-01

    This study aimed to evaluate a new method for preparing vaginal wet preparations to enable quantification of cells and lactobacilli. The current nonstandardized technique allows for a variable amount of vaginal fluid collected, diluted by a variable amount of saline/KOH, and no quantification of constituents. The vaginal fluids from 100 randomly selected women without vulvovaginitis symptoms presenting to the author's practice at Mayo Clinic underwent analysis by the quantification technique. Women were excluded if they were younger than 18 years, had antibiotics within the past 2 months, currently on their period, had placed anything in the vagina for the past 24 hours, used Depo-Provera, or were lactating. All the wet preparations were made by mixing the natural vaginal fluids with 3 mL of sterile normal saline. Spinal diluting fluid was added to the saline preparation. The saline and KOH mixtures were injected into separate wells of KOVA Glasstic Grid Slide and analyzed with a phase-contrast microscope at 40× and 60×. The concentration of leukocytes, lactobacilli, and squamous cells and the degree of maturation of the majority (>50%) of squamous cells were assessed, and it was determined whether there was excessive non-lactobacilli bacteria (EB) as evident by clumps of bacteria in the background fluid and speckling on the squamous cells. The 3 most common patterns to occur were as follows: First, 51% (95% confidence interval [CI] = 41%-60%) of the total specimens had abundant lactobacilli, no leukocytes, more than 50% fully maturated squamous cells, and no EB. Second, 22% (95% CI = 14%-32%) of the total specimens had low lactobacilli counts, no leukocytes, more than 50% undermaturated squamous cells, and no EB. Third, 12% (95% CI = 6%-20%) of the total specimens had abundant lactobacilli, leukocytes, more than 50% fully maturated squamous cells, and no EB. It is imperative to be able to objectively quantify normal vaginal secretion constituents so that (1) the abnormal patterns can be demarcated and (2) treatment targets of what constitutes healthy vaginal conditions can be provided.

  14. Ground deformation monitoring using RADARSAT-2 DInSAR-MSBAS at the Aquistore CO2 storage site in Saskatchewan (Canada)

    NASA Astrophysics Data System (ADS)

    Czarnogorska, M.; Samsonov, S.; White, D.

    2014-11-01

    The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.

  15. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.

    PubMed

    Ghaffari, Siavash; Leask, Richard L; Jones, Elizabeth A V

    2015-12-01

    Normal vascular development requires blood flow. Time-lapse imaging techniques have revolutionised our understanding of developmental biology, but measuring changes in blood flow dynamics has met with limited success. Ultrasound biomicroscopy and optical coherence tomography can concurrently image vascular structure and blood flow velocity, but these techniques lack the resolution to accurately calculate fluid forces such as shear stress. This is important because hemodynamic forces are biologically active and induce changes in the expression of genes important for vascular development. Regional variations in shear stress, rather than the overall level, control processes such as vessel enlargement and regression during vascular remodelling. We present a technique to concurrently visualise vascular remodelling and blood flow dynamics. We use an avian embryonic model and inject an endothelial-specific dye and fluorescent microspheres. The motion of the microspheres is captured with a high-speed camera and the velocity of the blood flow in and out of the region of interest is quantified by micro-particle image velocitymetry (µPIV). The vessel geometry and flow are used to numerically solve the flow physics with computational fluid dynamics (CFD). Using this technique, we can analyse changes in shear stress, pressure drops and blood flow velocities over a period of 10 to 16 h. We apply this to study the relationship between shear stress and chronic changes in vessel diameter during embryonic development, both in normal development and after TGFβ stimulation. This technique allows us to study the interaction of biomolecular and biomechanical signals during vascular remodelling using an in vivo developmental model. © 2015. Published by The Company of Biologists Ltd.

  16. Periodontal ligament and intraosseous anesthetic injection techniques: alternatives to mandibular nerve blocks.

    PubMed

    Moore, Paul A; Cuddy, Michael A; Cooke, Matthew R; Sokolowski, Chester J

    2011-09-01

    and Overview. The provision of mandibular anesthesia traditionally has relied on nerve block anesthetic techniques such as the Halsted, the Gow-Gates and the Akinosi-Vazirani methods. The authors present two alternative techniques to provide local anesthesia in mandibular teeth: the periodontal ligament (PDL) injection and the intraosseous (IO) injection. The authors also present indications for and complications associated with these techniques. The PDL injection and the IO injection are effective anesthetic techniques for managing nerve block failures and for providing localized anesthesia in the mandible. Dentists may find these techniques to be useful alternatives to nerve block anesthesia.

  17. Matched Filter Detection of Microseismicity at Ngatamariki and Rotokawa Geothermal Fields, Central North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.

    2016-12-01

    Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the production zone and the southern injection zone.

  18. Cytarabine Lipid Complex Injection

    MedlinePlus

    Cytarabine lipid complex comes as a liquid to be injected intrathecally (into the fluid-filled space of the spinal canal) over 1 to 5 minutes by a doctor or nurse in a medical facility. At first, cytarabine lipid ...

  19. Marker retention in the cochlea following injections through the round window membrane

    PubMed Central

    Salt, Alec N.; Sirjani, Davud B.; Hartsock, Jared J.; Gill, Ruth M.; Plontke, Stefan K.

    2007-01-01

    Local delivery of drugs to the inner ear is increasingly being used in both clinical and experimental studies. Although direct injection of drugs into perilymph appears to be the most promising way of administering drugs quantitatively, no studies have yet demonstrated the pharmacokinetics in perilymph following direct injections. In this study, we have investigated the retention of substance in perilymph following a single injection into the basal turn of scala tympani (ST). The substance injected was a marker, trimethylphenylammonium (TMPA) that can be detected in low concentrations with ion-selective microelectrodes. Perilymph pharmacokinetics of TMPA was assessed using sequential apical sampling to obtain perilymph for analysis. The amount of TMPA retained in perilymph was compared for different injection and sampling protocols. TMPA concentrations measured in fluid samples were close to those predicted by simulations when the injection pipette was sealed into the bony wall of ST but were systematically lower when the injection pipette was inserted through the round window membrane (RWM). In the latter condition it was estimated that over 60% of the injected TMPA was lost due to leakage of perilymph around the injection pipette at a rate estimated to be 0.09 μL/min. The effects of leakage during and after injections through the RWM were dramatically reduced when the round window niche was filled with 1% sodium hyaluronate gel before penetrating the RWM with the injection pipette. The findings demonstrate that in order to perform quantitative drug injections into perilymph, even small rates of fluid leakage at the injection site must be controlled. PMID:17662546

  20. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  1. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGES

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  2. Comparison of the hanging-drop technique and running-drip method for identifying the epidural space in dogs.

    PubMed

    Martinez-Taboada, Fernando; Redondo, José I

    2017-03-01

    To compare the running-drip and hanging-drop techniques for locating the epidural space in dogs. Prospective, randomized, clinical trial. Forty-five healthy dogs requiring epidural anaesthesia. Dogs were randomized into four groups and administered epidural anaesthesia in sternal (S) or lateral (L) recumbency. All blocks were performed by the same person using Tuohy needles with either a fluid-prefilled hub (HDo) or connected to a drip set attached to a fluid bag elevated 60 cm (RDi). The number of attempts, 'pop' sensation, clear drop aspiration or fluid dripping, time to locate the epidural space (TTLES) and presence of cerebrospinal fluid (CSF) were recorded. A morphine-bupivacaine combination was injected after positive identification. The success of the block was assessed by experienced observers based on perioperative usage of rescue analgesia. Data were checked for normality. Binomial variables were analysed with the chi-squared or Fisher's exact test as appropriate. Non-parametric data were analysed using Kruskal-Wallis and Mann-Whitney tests. Normal data were studied with an anova followed by a Tukey's means comparison for groups of the same size. A p-value of < 0.05 was considered to indicate statistical significance. Lateral recumbency HDo required more attempts (six of 11 dogs required more than one attempt) than SRDi (none of 11 dogs) (p = 0.0062). Drop aspiration was observed more often in SHDo (nine of 11 dogs) than in LHDo (two of 11 dogs) (p = 0.045). Mean (range) TTLES was longer in LHDo [47 (18-82) seconds] than in SHDo [20 (14-79) seconds] (p = 0.006) and SRDi [(34 (17-53) seconds] (p = 0.038). There were no differences in 'pop' sensation, presence of CSF, rescue analgesia or pain scores between the groups. The running-drip method is a useful and fast alternative technique for identifying the epidural space in dogs. The hanging-drop technique in lateral recumbency was more difficult to perform than the other methods, requiring more time and attempts. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  3. Small Scale Field Test Demonstrating CO 2 Sequestration In Arbuckle Saline Aquifer And By CO 2-Eor At Wellington Field, Sumner County, Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holubnyak, Yevhen Eugene; Watney, Lynn; Hollenbach, Jennifer

    The objectives of this project are to understand the processes that occur when a maximum of 70,000 metric tonnes of CO2 are injected into two different formations to evaluate the response in different lithofacies and depositional environments. The evaluation will be accomplished through the use of both in situ and indirect MVA (monitoring, verification, and accounting) technologies. The project will optimize for carbon storage accounting for 99% of the CO2 using lab and field testing and comprehensive characterization and modeling techniques. Site characterization and CO2 injection should demonstrate state-of-the-art MVA tools and techniques to monitor and visualize the injected CO2more » plume and to refine geomodels developed using nearly continuous core, exhaustive wireline logs, and well tests and a multi-component 3-D seismic survey. Reservoir simulation studies will map the injected CO2 plume and estimate tonnage of CO2 stored in solution, as residual gas, and by mineralization and integrate MVA results and reservoir models shall be used to evaluate CO2 leakage. A rapid-response mitigation plan was developed to minimize CO2 leakage and provide a comprehensive risk management strategy. The CO2 was intended to be supplied from a reliable facility and have an adequate delivery and quality of CO2. However, several unforeseen circumstances complicated this plan: (1) the initially negotiated CO2 supply facility went offline and contracts associated with CO2 supply had to be renegotiated, (2) a UIC Class VI permit proved to be difficult to obtain due to the experimental nature of the project. Both subjects are detailed in separate deliverables attached to this report. The CO2 enhanced oil recovery (EOR) and geologic storage in Mississippian carbonate reservoir was sucessully deployed. Approximately 20,000 metric tons of CO2 was injected in the upper part of the Mississippian reservoir to verify CO2 EOR viability in carbonate reservoirs and evaluate a potential of transitioning to geologic CO2 storage through EOR. A total of 1,101 truckloads, 19,803 metric tons—an average of 120 tonnes per day—were delivered over the course of injection that lasted from January 9 to June 21, 2016. After cessation of CO2 injection, the KGS 2-32 well was converted to water injector and continues to operate. CO2 EOR progression in the field was monitored weekly with fluid level, temperature, and production recording and formation fluid composition sampling. It is important to note that normally, CO2 EOR pilots are less efficient than commercial operations due to lack of directional and precise well control, lack of surface facilities for CO2 recycling, and other factors. As a result of this pilot CO2 injection, the observed incremental average oil production increase was ~68% with only ~18% of injected CO2 produced back. Decline curve analysis forecasts of additional cumulative oil produced were 32.44M STB to the end of 2027. Wellington Mississippian pilot efficiency by the end of forecast calculations is 11 MCF per barrel of produced oil. Using 32M STB oil production and $1,964,063 cost of CO2, CO2 EOR cost per barrel of oil production is ~$60. Simple but robust monitoring technologies proved to be very efficient in detecting and locating CO2. High CO2 reservoir retentions with low yields within an actively producing field could help to estimate real-world risks of CO2 geological storage for future projects. The Wellington Field CO2 EOR was executed in a controlled environment with high efficiency. This case study proves that CO2 EOR could be successfully applied in Kansas carbonate reservoirs if CO2 sources and associated infrastructure are available. Recent developments in unconventional resources development in Mid-Continent USA and associated large volume disposal of backflow water and the resulting seismic activity have brought more focus and attention to the Arbuckle Group in southern Kansas. Despite the commercial interest, limited essential information about reservoir properties and structural elements has impeded the management and regulation of disposal, an issue brought to the forefront by recent seismicity in and near areas of large volumes and rates of brine disposal. The Kansas Geological Survey (KGS) collected, compiled, and analyzed available data, including well logs, core data, step rate tests, drill stem tests, 2-D and 3-D seismic data, water level measurements, and others types of data. Several exploratory wells were drilled and core was collected and modern suites of logs were analyzed. Reservoir properties were populated into several site-specific geological models. The geological models illustrate the highly heterogeneous nature of the Arbuckle Group. Vertical and horizontal variability results in several distinct hydro-stratigraphic units that are the result of both depositional and diagenetic processes. During the course of this project, it has been demonstrated that advanced seismic interpretation methods can be used successfully for characterization of the Mississippian reservoir and Arbuckle saline aquifer. Analysis of post-stack 3-D seismic data at the Mississippian reservoir showed the response of a gradational velocity transition. Pre-stack gather analysis showed that porosity zones of the Mississippian and Arbuckle reservoirs exhibit characteristic amplitude versus offset (AVO) response. Simultaneous AVO inversion estimated P- and S-impedances. The 3-D survey gather azimuthal anisotropy analysis (AVAZ) provided information about the fault and fracture network and showed good agreement to the regional stress field and well data. Mississippian reservoir porosity and fracture predictions agreed well with the observed mobility of injected CO2 in KGS well 2-32. Fluid substitution modeling predicted acoustic impedance reduction in the Mississippian carbonate reservoir introduced by the presence of CO2. Seismicity in the United States midcontinent has increased by orders of magnitude over the past decade. Spatiotemporal correlations of seismicity to wastewater injection operations have suggested that injection-related pore fluid pressure increases are inducing the earthquakes. In this investigation, we examine earthquake occurrence in southern Kansas and northern Oklahoma and its relation to the change in pore pressure. The main source of data comes from the Wellington Array in the Wellington oil field, in Sumner County, Kansas, which has monitored for earthquakes in central Sumner County, Kansas, since early 2015. The seismometer array was established to monitor CO2 injection operations at Wellington Field. Although no seismicity was detected in association with the spring 2016 Mississippian CO2 injection, the array has recorded more than 2,500 earthquakes in the region and is providing valuable understanding to induced seismicity. A catalog of earthquakes was built from this data and was analyzed for spatial and temporal changes, stress information, and anisotropy information. The region of seismic concern has been shown to be expanding through use of the Wellington earthquake catalog, which has revealed a northward progression of earthquake activity reaching the metropolitan area of Wichita. The stress orientation was also calculated from this earthquake catalog through focal mechanism inversion. The calculated stress orientation was confirmed through comparison to other stress measurements from well data and previous earthquake studies in the region. With this knowledge of the stress orientation, the anisotropy in the basement could be understood. This allowed for the anisotropy measurements to be correlated to pore pressure increases. The increase in pore pressure was monitored through time-lapse shear-wave anisotropy analysis. Since the onset of the observation period in 2010, the orientation of the fast shear wave has rotated 90°, indicating a change associated with critical pore pressure build up. The time delay between fast and slow shear wave arrivals has increased, indicating a corresponding increase in anisotropy induced by pore pressure rise. In-situ near-basement fluid pressure measurements corroborate the continuous pore pressure increase revealed by the shear-wave anisotropy analysis over the earthquake monitoring period. This research is the first to identify a change in pore fluid pressure in the basement using seismological data and it was recently published in the AAAS journal Science Advances (Nolte et al., 2017). The shear-wave splitting analysis is a novel application of the technique, which can be used in other regions to identify an increase in pore pressure. This increasing pore fluid pressure has become more regionally extensive as earthquakes are occurring in southern Kansas, where they previously were absent. These monitoring techniques and analyses provide new insight into mitigating induced seismicity’s impact on society.« less

  4. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.

  5. Acute effects of polychlorinated biphenyl-containing and -free transformer fluids on rat testicular steroidogenesis.

    PubMed Central

    Andric, S A; Kostic, T S; Dragisic, S M; Andric, N L; Stojilkovic, S S; Kovacevic, R Z

    2000-01-01

    Polychlorinated biphenyl (PCB)-based transformer fluids belong to a class of environmentally persistent mixtures with known toxic effects. Here, we studied the acute effects of Askarel (which contains Aroclor 1260) and two substitute transformer fluids (the silicone oil-based DC561 and the mineral oil-based ENOL C) on rat testicular steroidogenesis. Single intraperitoneal (ip; 10 mg/kg body weight) or bilateral intratesticular (itt; 25 microg/testis) injections of Askarel markedly decreased serum androgen levels 24 hr after administration. In acute testicular cultures from these animals, chorionic gonadotropin-stimulated progesterone and androgen productions were severely attenuated. When itt was injected or added in vitro, Askarel inhibited 3ss-hydroxysteroid dehydrogenase (3ssHSD), stimulated 17[alpha]-hydroxylase/lyase (P450c17), and did not affect 17ss-hydroxysteroid dehydrogenase in testicular postmitochondrial fractions. The ip-injected Askarel did not affect 3ssHSD, but inhibited P450c17, suggesting that a more intensive metabolism of peripherally injected Askarel reduces the circulating levels of active ingredients below the threshold needed for inhibition of 3ssHSD and generates a derivative that inhibits P450c17. In contrast to Askarel, itt-injection (25 microg/testis) of DC561 and ENOL C did not affect in vivo and in vitro steroidogenesis. These findings show the acute effects of Askarel, but not silicone and mineral oils, on testicular steroidogenesis. PMID:11049815

  6. Using well casing as an electrical source to monitor hydraulic fracture fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris

    2016-03-09

    The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less

  7. Pattern palette for complex fluid flows

    NASA Astrophysics Data System (ADS)

    Sandnes, B.

    2012-04-01

    From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.

  8. 21 CFR 880.5430 - Nonelectrically powered fluid injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonelectrically powered fluid injector. 880.5430 Section 880.5430 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... hypodermic injection by means of a narrow, high velocity jet of fluid which can penetrate the surface of the...

  9. 33 CFR 154.2203 - Facility requirements for barge vapor overpressure and vacuum protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... displacement system must provide a pressure-sensing device that activates an alarm that satisfies the... located in the fluid displacement system's piping downstream of any devices that could potentially isolate... to inject the fluid. (d) A fluid displacement system must provide a pressure-sensing device that is...

  10. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  11. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte

    2004-03-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less

  12. Optimization of buffer injection for the effective bioremediation of chlorinated solvents in aquifers

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Robinson, C.; Barry, A.; Kouznetsova, I.; Gerhard, J.

    2008-12-01

    Various techniques have been proposed to enhance biologically-mediated reductive dechlorination of chlorinated solvents in the subsurface, including the addition of fermentable organic substrate for the generation of H2 as an electron donor. One rate-limiting factor for enhanced dechlorination is the pore fluid pH. Organic acids and H+ ions accumulate in dechlorination zones, generating unfavorable conditions for microbial activity (pH < 6.5). The pH variation is a nonlinear function of the amount of reduced chlorinated solvents, and is affected by the organic material fermented, the chemical composition of the pore fluid and the soil's buffering capacity. Consequently, in some cases enhanced remediation schemes rely on buffer injection (e.g., bicarbonate) to alleviate this problem, particularly in the presence of solvent nonaqueous phase liquid (NAPL) source zones. However, the amount of buffer required - particularly in complex, evolving biogeochemical environments - is not well understood. To investigate this question, this work builds upon a geochemical numerical model (Robinson et al., Science of the Total Environment, submitted), which computes the amount of additional buffer required to maintain the pH at a level suitable for bacterial activity for batch systems. The batch model was coupled to a groundwater flow/solute transport/chemical reaction simulator to permit buffer optimization computations within the context of flowing systems exhibiting heterogeneous hydraulic, physical and chemical properties. A suite of simulations was conducted in which buffer optimization was examined within the bounds of the minimum concentration necessary to sustain a pH favorable to microbial activity and the maximum concentration to avoid excessively high pH values (also not suitable to bacterial activity) and mineral precipitation (e.g., calcite, which may lead to pore-clogging). These simulations include an examination of the sensitivity of this buffer concentration range to aquifer heterogeneity and groundwater velocity. This work is part of SABRE (Source Area BioREmediation), a collaborative international research project that aims to evaluate and improve enhanced bioremediation of chlorinated solvent source zones. In this context, numerical simulations are supporting the upscaling of the technique, including identifying the most appropriate buffer injection strategies for field applications

  13. Modeling thermal stress propagation during hydraulic stimulation of geothermal wells

    NASA Astrophysics Data System (ADS)

    Jansen, Gunnar; Miller, Stephen A.

    2017-04-01

    A large fraction of the world's water and energy resources are located in naturally fractured reservoirs within the earth's crust. Depending on the lithology and tectonic history of a formation, fracture networks can range from dense and homogeneous highly fractured networks to single large scale fractures dominating the flow behavior. Understanding the dynamics of such reservoirs in terms of flow and transport is crucial to successful application of engineered geothermal systems (also known as enhanced geothermal systems or EGS) for geothermal energy production in the future. Fractured reservoirs are considered to consist of two distinct separate media, namely the fracture and matrix space respectively. Fractures are generally thin, highly conductive containing only small amounts of fluid, whereas the matrix rock provides high fluid storage but typically has much smaller permeability. Simulation of flow and transport through fractured porous media is challenging due to the high permeability contrast between the fractures and the surrounding rock matrix. However, accurate and efficient simulation of flow through a fracture network is crucial in order to understand, optimize and engineer reservoirs. It has been a research topic for several decades and is still under active research. Accurate fluid flow simulations through field-scale fractured reservoirs are still limited by the power of current computer processing units (CPU). We present an efficient implementation of the embedded discrete fracture model, which is a promising new technique in modeling the behavior of enhanced geothermal systems. An efficient coupling strategy is determined for numerical performance of the model. We provide new insight into the coupled modeling of fluid flow, heat transport of engineered geothermal reservoirs with focus on the thermal stress changes during the stimulation process. We further investigate the interplay of thermal and poro-elastic stress changes in the reservoir. Combined with a analytical formulation for the injection temperatures in the open hole section of a geothermal well, the stress changes induced during the injection period of reservoir development can be studied.

  14. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  15. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  16. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    USGS Publications Warehouse

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.

  17. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  18. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Dempsey, David; Viswanathan, Hari S.

    2015-09-01

    Understanding the transport of hydraulic fracturing (HF) fluid that is injected into the deep subsurface for shale gas extraction is important to ensure that shallow drinking water aquifers are not contaminated. Topographically driven flow, overpressured shale reservoirs, permeable pathways such as faults or leaky wellbores, the increased formation pressure due to HF fluid injection, and the density contrast of the HF fluid to the surrounding brine can encourage upward HF fluid migration. In contrast, the very low shale permeability and capillary imbibition of water into partially saturated shale may sequester much of the HF fluid, and well production will remove HF fluid from the subsurface. We review the literature on important aspects of HF fluid migration. Single-phase flow and transport simulations are performed to quantify how much HF fluid is removed via the wellbore with flowback and produced water, how much reaches overlying aquifers, and how much is permanently sequestered by capillary imbibition, which is treated as a sink term based on a semianalytical, one-dimensional solution for two-phase flow. These simulations include all of the important aspects of HF fluid migration identified in the literature review and are performed in five stages to faithfully represent the typical operation of a hydraulically fractured well. No fracturing fluid reaches the aquifer without a permeable pathway. In the presence of a permeable pathway, 10 times more fracturing fluid reaches the aquifer if well production and capillary imbibition are not included in the model.

  19. Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection

    NASA Astrophysics Data System (ADS)

    Seto, C. J.; Haidari, A. S.; McRae, G. J.

    2009-12-01

    Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.

  20. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    USGS Publications Warehouse

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  1. Grid laser with modified pro re nata injection of bevacizumab and ranibizumab in macular edema due to branch retinal vein occlusion: MARVEL report no 2

    PubMed Central

    Narayanan, Raja; Panchal, Bhavik; Stewart, Michael W; Das, Taraprasad; Chhablani, Jay; Jalali, Subhadra; Hasnat Ali, Mohd

    2016-01-01

    Purpose The purpose of this study was to prospectively study the efficacy of grid laser combined with intravitreal bevacizumab or ranibizumab in eyes with macular edema due to branch retinal vein occlusion. Patients and methods Treatment-naïve eyes were enrolled to receive injections of ranibizumab or bevacizumab. During the first 6 months, patients were evaluated monthly and injected if the best-corrected visual acuity changed by five or more letters or fluid was noted on spectral domain optical coherence tomography (OCT); during the next 6 months, patients were evaluated bimonthly and injected only if the best-corrected visual acuity decreased by five or more letters with the associated fluid. Grid laser photocoagulation was performed if there was fluid on OCT and was repeated if patients were eligible after a minimum interval of 3 months. Results The mean numbers of ranibizumab and bevacizumab injections were, respectively, 3.2±1.5 and 3.0±1.4 in the first 6 months and 0.3±0.6 and 0.3±0.6 in the last 6 months. Moreover, 55/75 (73.33%) participants did not receive any injections in the last 6 months. The mean reductions in central retinal thickness at 12 months were 165.67 μm (P<0.001; 95% confidence interval −221.50 to −135.0) in the ranibizumab group and 184.78 μm (P<0.001; 95% confidence interval −246.49 to −140.0) in the bevacizumab group (P=0.079). More patients in the bevacizumab group compared to those in the ranibizumab group required rescue laser at 12 months (20 vs eleven; P=0.06). Conclusion Bimonthly evaluations after month 6 with very few pro re nata injections were effective in maintaining visual gains achieved during the first 6 months. Grid laser photocoagulation is effective in maintaining the vision even in the presence of fluid on OCT, although it’s required more often in patients treated with bevacizumab. PMID:27330272

  2. Grid laser with modified pro re nata injection of bevacizumab and ranibizumab in macular edema due to branch retinal vein occlusion: MARVEL report no 2.

    PubMed

    Narayanan, Raja; Panchal, Bhavik; Stewart, Michael W; Das, Taraprasad; Chhablani, Jay; Jalali, Subhadra; Hasnat Ali, Mohd

    2016-01-01

    The purpose of this study was to prospectively study the efficacy of grid laser combined with intravitreal bevacizumab or ranibizumab in eyes with macular edema due to branch retinal vein occlusion. Treatment-naïve eyes were enrolled to receive injections of ranibizumab or bevacizumab. During the first 6 months, patients were evaluated monthly and injected if the best-corrected visual acuity changed by five or more letters or fluid was noted on spectral domain optical coherence tomography (OCT); during the next 6 months, patients were evaluated bimonthly and injected only if the best-corrected visual acuity decreased by five or more letters with the associated fluid. Grid laser photocoagulation was performed if there was fluid on OCT and was repeated if patients were eligible after a minimum interval of 3 months. The mean numbers of ranibizumab and bevacizumab injections were, respectively, 3.2±1.5 and 3.0±1.4 in the first 6 months and 0.3±0.6 and 0.3±0.6 in the last 6 months. Moreover, 55/75 (73.33%) participants did not receive any injections in the last 6 months. The mean reductions in central retinal thickness at 12 months were 165.67 μm (P<0.001; 95% confidence interval -221.50 to -135.0) in the ranibizumab group and 184.78 μm (P<0.001; 95% confidence interval -246.49 to -140.0) in the bevacizumab group (P=0.079). More patients in the bevacizumab group compared to those in the ranibizumab group required rescue laser at 12 months (20 vs eleven; P=0.06). Bimonthly evaluations after month 6 with very few pro re nata injections were effective in maintaining visual gains achieved during the first 6 months. Grid laser photocoagulation is effective in maintaining the vision even in the presence of fluid on OCT, although it's required more often in patients treated with bevacizumab.

  3. Estimating fluid-induced stress change from observed deformation

    DOE PAGES

    Vasco, D. W.; Harness, Paul; Pride, Steve; ...

    2016-12-19

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  4. Estimating fluid-induced stress change from observed deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D. W.; Harness, Paul; Pride, Steve

    Observed deformation is sensitive to a changing stress field within the Earth. There are, however, several impediments to a direct inversion of geodetic measurements for changes in stress. Estimating six independent components of stress change from a smaller number of displacement or strain components is inherently non-unique. The reliance upon surface measurements leads to a loss of resolution, due to the attenuation of higher spatial frequencies in the displacement field with distance from a source. Here, we adopt a technique suited to the estimation of stress changes due to the injection and/or withdrawal of fluids at depth. In this approachmore » the surface displacement data provides an estimate of the volume change responsible for the deformation, rather than stress changes themselves. The inversion for volume change is constrained by the fluid fluxes into and out of the reservoir. The distribution of volume change is used to calculate the displacements in the region above the reservoir. Estimates of stress change follow from differentiating the displacement field in conjunction with a geomechanical model of the o verburden. We also apply the technique to Interferometric Synthetic Aperture Radar (InSAR) observations gathered over a petroleum reservoir in the San Joaquin Valley of California. An analysis of the InSAR range changes reveals that the stress field in the overburden varies rapidly both in space and in time. The inferred stress variations are found to be compatible with the documented failure of a well in the field.« less

  5. Overview and First Results of an In-situ Stimulation Experiment in Switzerland

    NASA Astrophysics Data System (ADS)

    Amann, F.; Gischig, V.; Doetsch, J.; Jalali, M.; Valley, B.; Evans, K. F.; Krietsch, H.; Dutler, N.; Villiger, L.

    2017-12-01

    A decameter-scale in-situ stimulation and circulation (ISC) experiment is currently being conducted at the Grimsel Test Site in Switzerland with the objective of improving our understanding of key seismo-hydro-mechanical coupled processes associated with high pressure fluid injections in a moderately fractured crystalline rock mass. The ISC experiment activities aim to support the development of EGS technology by 1) advancing the understanding of fundamental processes that occur within the rock mass in response to relatively large-volume fluid injections at high pressures, 2) improving the ability to estimate and model induced seismic hazard and risks, 3) assessing the potential of different injection protocols to keep seismic event magnitudes below an acceptable threshold, 4) developing novel monitoring and imaging techniques for pressure, temperature, stress, strain and displacement as well as geophysical methods such as ground penetration radar, passive and active seismic and 5) generating a high-quality benchmark datasets that facilitates the development and validation of numerical modelling tools. The ISC experiment includes six fault slip and five hydraulic fracturing experiments at an intermediate scale (i.e. 20*20*20m) at 480m depth, which allows high resolution monitoring of the evolution of pore pressure in the stimulated fault zone and the surrounding rock matrix, fault dislocations including shear and dilation, and micro-seismicity in an exceptionally well characterized structural setting. In February 2017 we performed the fault-slip experiments on interconnected faults. Subsequently an intense phase of post-stimulation hydraulic characterization was performed. In Mai 2017 we performed hydraulic fracturing tests within test intervals that were free of natural fractures. In this contribution we give an overview and show first results of the above mentioned stimulation tests.

  6. 4-D High-Resolution Seismic Reflection Monitoring of Miscible CO2 Injected into a Carbonate Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard D. Miller; Abdelmoneam E. Raef; Alan P. Byrnes

    2007-06-30

    The objective of this research project was to acquire, process, and interpret multiple high-resolution 3-D compressional wave and 2-D, 2-C shear wave seismic data in the hopes of observing changes in fluid characteristics in an oil field before, during, and after the miscible carbon dioxide (CO{sub 2}) flood that began around December 1, 2003, as part of the DOE-sponsored Class Revisit Project (DOE No.DE-AC26-00BC15124). Unique and key to this imaging activity is the high-resolution nature of the seismic data, minimal deployment design, and the temporal sampling throughout the flood. The 900-m-deep test reservoir is located in central Kansas oomoldic limestonesmore » of the Lansing-Kansas City Group, deposited on a shallow marine shelf in Pennsylvanian time. After 30 months of seismic monitoring, one baseline and eight monitor surveys clearly detected changes that appear consistent with movement of CO{sub 2} as modeled with fluid simulators and observed in production data. Attribute analysis was a very useful tool in enhancing changes in seismic character present, but difficult to interpret on time amplitude slices. Lessons learned from and tools/techniques developed during this project will allow high-resolution seismic imaging to be routinely applied to many CO{sub 2} injection programs in a large percentage of shallow carbonate oil fields in the midcontinent.« less

  7. A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Bin-Mohsin, Bandar; Ahmed, Naveed; Adnan; Khan, Umar; Tauseef Mohyud-Din, Syed

    2017-04-01

    This article deals with the bioconvection flow in a parallel-plate channel. The plates are parallel and the flowing fluid is saturated with nanoparticles, and water is considered as a base fluid because microorganisms can survive only in water. A highly nonlinear and coupled system of partial differential equations presenting the model of bioconvection flow between parallel plates is reduced to a nonlinear and coupled system (nondimensional bioconvection flow model) of ordinary differential equations with the help of feasible nondimensional variables. In order to find the convergent solution of the system, a semi-analytical technique is utilized called variation of parameters method (VPM). Numerical solution is also computed and the Runge-Kutta scheme of fourth order is employed for this purpose. Comparison between these solutions has been made on the domain of interest and found to be in excellent agreement. Also, influence of various parameters has been discussed for the nondimensional velocity, temperature, concentration and density of the motile microorganisms both for suction and injection cases. Almost inconsequential influence of thermophoretic and Brownian motion parameters on the temperature field is observed. An interesting variation are inspected for the density of the motile microorganisms due to the varying bioconvection parameter in suction and injection cases. At the end, we make some concluding remarks in the light of this article.

  8. A numerical investigation of the scale-up effects on flow, heat transfer, and kinetics processes of FCC units.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S. L.

    1998-08-25

    Fluid Catalytic Cracking (FCC) technology is the most important process used by the refinery industry to convert crude oil to valuable lighter products such as gasoline. Process development is generally very time consuming especially when a small pilot unit is being scaled-up to a large commercial unit because of the lack of information to aide in the design of scaled-up units. Such information can now be obtained by analysis based on the pilot scale measurements and computer simulation that includes controlling physics of the FCC system. A Computational fluid dynamic (CFD) code, ICRKFLO, has been developed at Argonne National Laboratorymore » (ANL) and has been successfully applied to the simulation of catalytic petroleum cracking risers. It employs hybrid hydrodynamic-chemical kinetic coupling techniques, enabling the analysis of an FCC unit with complex chemical reaction sets containing tens or hundreds of subspecies. The code has been continuously validated based on pilot-scale experimental data. It is now being used to investigate the effects of scaled-up FCC units. Among FCC operating conditions, the feed injection conditions are found to have a strong impact on the product yields of scaled-up FCC units. The feed injection conditions appear to affect flow and heat transfer patterns and the interaction of hydrodynamics and cracking kinetics causes the product yields to change accordingly.« less

  9. Radiation receiver

    DOEpatents

    Hunt, A.J.

    1983-09-13

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  10. Radiation receiver

    DOEpatents

    Hunt, Arlon J.

    1983-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  11. Radiant energy collection and conversion apparatus and method

    DOEpatents

    Hunt, Arlon J.

    1982-01-01

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  12. Radiant energy collection and conversion apparatus and method

    DOEpatents

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  13. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  14. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  15. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  16. 40 CFR 144.80 - What is a Class V injection well?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...

  17. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth.

    PubMed

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-03-01

    Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma-optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients.

  18. Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth

    PubMed Central

    Buch, Franziska; Rott, Matthias; Rottloff, Sandy; Paetz, Christian; Hilke, Ines; Raessler, Michael; Mithöfer, Axel

    2013-01-01

    Background and Aims Carnivorous plants of the genus Nepenthes possess modified leaves that form pitfall traps in order to capture prey, mainly arthropods, to make additional nutrients available for the plant. These pitchers contain a digestive fluid due to the presence of hydrolytic enzymes. In this study, the composition of the digestive fluid was further analysed with regard to mineral nutrients and low molecular-weight compounds. A potential contribution of microbes to the composition of pitcher fluid was investigated. Methods Fluids from closed pitchers were harvested and analysed for mineral nutrients using analytical techniques based on ion-chromatography and inductively coupled plasma–optical emission spectroscopy. Secondary metabolites were identified by a combination of LC-MS and NMR. The presence of bacteria in the pitcher fluid was investigated by PCR of 16S-rRNA genes. Growth analyses of bacteria and yeast were performed in vitro with harvested pitcher fluid and in vivo within pitchers with injected microbes. Key Results The pitcher fluid from closed pitchers was found to be primarily an approx. 25-mm KCl solution, which is free of bacteria and unsuitable for microbial growth probably due to the lack of essential mineral nutrients such as phosphate and inorganic nitrogen. The fluid also contained antimicrobial naphthoquinones, plumbagin and 7-methyl-juglone, and defensive proteins such as the thaumatin-like protein. Challenging with bacteria or yeast caused bactericide as well as fungistatic properties in the fluid. Our results reveal that Nepenthes pitcher fluids represent a dynamic system that is able to react to the presence of microbes. Conclusions The secreted liquid of closed and freshly opened Nepenthes pitchers is exclusively plant-derived. It is unsuitable to serve as an environment for microbial growth. Thus, Nepenthes plants can avoid and control, at least to some extent, the microbial colonization of their pitfall traps and, thereby, reduce the need to vie with microbes for the prey-derived nutrients. PMID:23264234

  19. Experiments and Simulations of Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.

    2018-02-01

    In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.

  20. Moving hydrocarbons through portions of tar sands formations with a fluid

    DOEpatents

    Stegemeier, George Leo; Mudunuri, Ramesh Raju; Vinegar, Harold J.; Karanikas, John Michael; Jaiswal, Namit; Mo, Weijian

    2010-05-18

    A method for treating a tar sands formation is disclosed. The method includes heating a first portion of a hydrocarbon layer in the formation from one or more heaters located in the first portion. The heat is controlled to increase a fluid injectivity of the first portion. A drive fluid and/or an oxidizing fluid is injected and/or created in the first portion to cause at least some hydrocarbons to move from a second portion of the hydrocarbon layer to a third portion of the hydrocarbon layer. The second portion is between the first portion and the third portion. The first, second, and third portions are horizontally displaced from each other. The third portion is heated from one or more heaters located in the third portion. Hydrocarbons are produced from the third portion of the formation. The hydrocarbons include at least some hydrocarbons from the second portion of the formation.

  1. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, John C.; Looney, Brian B.; Kaback, Dawn S.

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  2. In-situ remediation system and method for contaminated groundwater

    DOEpatents

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  3. Analytical Analyses of Spatial and Temporal Characteristics of Infiltrated Water for Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Zlotnik, V. A.; Ledder, G.; Kacimov, A. R.

    2014-12-01

    Disposal of excessive runoff or treated sewage into wadis and ephemeral streams is a common practice and an important hydrological problem in many Middle Eastern countries. While chemical and biological properties of the injected treated wastewater may be different from those of the receiving aquifer, the density contrast between the two fluids can be small. Therefore, studies of the fluid interface for variable density fluids or water intrusion are not directly relevant in many Managed Aquifer Recharge (MAR) problems. Other factors, such as the transient nature of injection and lack of detailed aquifer information must be considered. The disposed water reaching the water table through the vadose zone creates groundwater mounds, deforms the original water table, and develops finite-size convex-concave lenses of treated water over receiving water. After cessation of infiltration, these mounds flatten, water levels become horizontal, and infiltrated water becomes fully embedded in the receiving aquifer. The shape of the treated water body is controlled by the aquifer parameters, the magnitude of ambient flow, and the duration, rate, and cyclicity of infiltration. In case of limited aquifer data, advective transport modeling offers the most appropriate tools for predicting plume shapes over time, but surprisingly little work has been done on this important 3D flow problem. We investigate the lateral and vertical spreading of infiltrated water combining techniques of spatial velocity analyses by Zlotnik and Ledder (1992, 1993) with particle tracking. This approach allows for evaluating the geometry of the plume and the protection zone, the flow development phases, and other temporal and spatial effects and results can be used in conditions of limited data availability and quality. (Funding was provided by the USAID, DAI Subcontract 1001624-12S-19745)

  4. An integrated methodology for sub-surface fracture characterization using microseismic data: A case study at the NW Geysers

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Fred; Tafti, Tayeb A.; Maity, Debotyam

    2013-04-01

    Geothermal and unconventional hydrocarbon reservoirs are often characterized by low permeability and porosity. So, they are difficult to produce and require stimulation techniques, such as thermal shear deactivation and hydraulic fracturing. Fractures provide porosity for fluid storage and permeability for fluid movement and play an important role in production from this kind of reservoirs. Hence, characterization of fractures has become a vitally important consideration in every aspect of exploration, development and production so as to provide additional energy resources for the world. During the injection or production of fluid, induced seismicity (micro-seismic events) can be caused by reactivated shears created fractures or the natural fractures in shear zones and faults. Monitoring these events can help visualize fracture growth during injection stimulation. Although the locations of microseismic events can be a useful characterization tool and have been used by many authors, we go beyond these locations to characterize fractures more reliably. Tomographic inversion, fuzzy clustering, and shear wave splitting are three methods that can be applied to microseismic data to obtain reliable characteristics about fractured areas. In this article, we show how each method can help us in the characterization process. In addition, we demonstrate how they can be integrated with each other or with other data for a more holistic approach. The knowledge gained might be used to optimize drilling targets or stimulation jobs to reduce costs and maximize production. Some of the concepts discussed in this paper are general in nature, and may be more applicable to unconventional hydrocarbon reservoirs than the metamorphic and igneous reservoir rocks at The Geysers geothermal field.

  5. Angiotensinogen concentration in the cerebrospinal fluid in different experimental conditions in the rat.

    PubMed

    Ruiz, P; Basso, N; Grinspon, D; Mangiarua, E; Cannata, M A

    1983-01-01

    Angiotensinogen is the most important component of the renin-angiotensin system present in the cerebrospinal fluid (CSF) of the rat. Its physiological significance as well as its origin have not been clearly elucidated. In this experiment we have examined plasma renin activity (PRA) and plasma and CSF angiotensinogen concentration under the following experimental conditions in male rats of the Wistar strain: 1) adrenalectomy (Adx) 4 days prior to sample collection; controls were sham Adx animals; 2) nephrectomy (Nx) 48 hours before blood and CSF collection; controls were sham Nx rats; 3) DOC-salt treatment (Cortexon depot, 50 mg/kg.s.c. twice a week) plus saline to drink was given during 4 weeks; controls were intact rats; 4) DOC-salt plus captopril: captopril (100 mg/kg/day) in the drinking fluid was added to the treatment of experimental and control animals of Group 3; 5) two-kidney, two clip hypertension: silver clips placed in both renal arteries 8 weeks before samples collection; control: sham-operated rats; 6) water deprivation: rats deprived of water for 5 days; controls: intact rats; 7) peripheral sympathectomy: 6-hydroxydopamine (6-HODA) injected s.c. from birth until 16 weeks of age, adrenodemedullectomy and adrenal denervation performed at 8 weeks; controls were vehicle-injected animals. Determination of angiotensinogen concentration in plasma and CSF was accomplished by incubation of the samples with excess hog renin. The angiotensin I released as well as PRA were evaluated using an specific radioimmunoassay technique. PRA was significantly increased by Adx, captopril treatment, and water deprivation, and was almost suppressed by Nx, DOC-salt, and DOC-salt plus captopril treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Constraints on temporal velocity variations associated with an underground gas storage in the Gulf of Valencia using earthquake and seismic ambient noise data

    NASA Astrophysics Data System (ADS)

    Ugalde, Arantza; Gaite, Beatriz; Villaseñor, Antonio

    2016-04-01

    During September 2013, the injection of the base gas in a depleted oil reservoir used as an underground natural gas storage (CASTOR) caused a sudden seismic activity increase in the eastern coast of Spain. As a result, a compact cluster of more than 550 earthquakes with magnitudes mbLg > 0.7 were located in the shallow offshore area of the Gulf of Valencia during two months. The strongest event, having a magnitude of Mw=4.2, was followed by two Mw=4.1 events the day after and took place once the gas injection activities had finished. Using the seismic data recorded by permanent stations at more than 25 km from the injection well, we applied coda wave interferometry to monitor changes in seismic velocity structure between similar earthquakes. Then we solved for a continuous function of velocity changes with time by combining observations from all the closely located earthquake sources. The rate of repeating events allowed measurements of relative velocity variations for about 30 days on a daily scale. To extend the analysis in time, we also processed the continuous data using the autocorrelation of band-pass filtered ambient seismic noise. A 10-day average was required to achieve a sufficient signal-to-noise ratio in the 0.2-0.5 Hz and 0.5-1 Hz frequency bands. We quantified the time lags between two traces in the frequency and time domains by means of the Moving Window Cross Spectral Analysis and a Dynamic Time Warping technique, respectively. Injection of fluids in geologic formations causes variations in seismic velocities associated to changes in fluid saturation, increase in pore pressure or opening or enlargement of cracks due to the injection process. Time delays associated with stress changes caused by moderate to large earthquakes have also been established. In this work, we found no velocity changes during the gas injection period nor on the occasion of the Mw 4.2 earthquake. The sensitivity of the method is dependent on the seismic network geometry and the lateral extent of the velocity anomaly. With the given network configuration we conclude that any temporal changes in seismic velocities in the CASTOR gas storage area must be smaller than 0.05%.

  7. Nitrous Oxide Explosive Hazards

    DTIC Science & Technology

    2008-05-01

    Supercritical Fluid Extraction- Capillary Gas Chromatography (SFE-GC) With a Conventional Split/Splitless Injection Port”, Journal of Chromatographic...Aromatic Hydrocarbons from Environmental Solids Using Supercritical Fluids ”, Steven B. Hawthorne and David J. Miller, Anal. Chem. 59, pp 1705-1708, 1987...Katayama, T., J. Supercrit . Fluids , 1990, 3, 78-84. 30. “ Supercritical Fluid Extraction of Fungal Oil Using CO2, N2O, CHF3, and SF6”, Keiji Sakaki

  8. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    NASA Astrophysics Data System (ADS)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    2017-12-01

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enables the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Lastly, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.

  9. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enablesmore » the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Finally, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.« less

  10. Development of a Cadaveric Model for Arthrocentesis.

    PubMed

    MacIver, Melissa A; Johnson, Matthew

    2015-01-01

    This article reports the development of a novel cadaveric model for future use in teaching arthrocentesis. In the clinical setting, animal safety is essential and practice is thus limited. Objectives of the study were to develop and compare a model to an unmodified cadaver by injecting one of two types of fluids to increase yield. The two fluids injected, mineral oil (MO) and hypertonic saline (HS), were compared to determine any difference on yield. Lastly, aspiration immediately after (T1) or three hours after (T2) injection were compared to determine any effect on diagnostic yield. Joints used included the stifle, elbow, and carpus in eight medium dog cadavers. Arthrocentesis was performed before injection (control) and yield measured. Test joints were injected with MO or HS and yield measured after range of motion (T1) and three hours post injection to simulate lab preparation (T2). Both models had statistically significantly higher yield compared with the unmodified cadaver in all joints at T1 and T2 (p<.05) with the exception of HST2 carpus. T2 aspiration had a statistically significant lower yield when compared to T1HS carpus, T1HS elbow, and T1MO carpus. Overall, irrespective of fluid volume or type, percent yield was lower in T2 compared to T1. No statistically significant difference was seen between HS and MO in most joints with the exception of MOT1 stifle and HST2 elbow. Within the time frame assessed, both models were acceptable. However, HS arthrocentesis models proved appropriate for student trial due to the difficult aspirations with MO.

  11. Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa

    2017-01-01

    Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.

  12. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    DOE PAGES

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    2017-11-09

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enablesmore » the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Finally, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.« less

  13. Intraocular cysts of toxoplasma gondii in patients with necrotizing retinitis following periocular/intraocular triamcinolone injection.

    PubMed

    Nijhawan, Raje; Bansal, Reema; Gupta, Nalini; Beke, Nikhil; Kulkarni, Pandurang; Gupta, Amod

    2013-10-01

    To report the detection of Toxoplasma gondii cysts in intraocular aspirates of patients with necrotizing retinitis following periocular/intraocular corticosteroid injection. Case report. Two patients (2 eyes) with widespread necrotizing retinitis in a steroid-exposed eye posed a diagnostic challenge and underwent pars plana vitrectomy (PPV). Intraocular samples (vitreous fluid, retinal tissue, and subretinal aspirate in case 1, and vitreous fluid in case 2) were subjected to cytological examination. The subretinal aspirate (case 1) revealed encysted bradyzoites of Toxoplasma gondii. Vitreous fluid (case 2) tested positive for anti-toxoplasma antibodies and the smear showed encysted forms of Toxoplasma gondii on cytology. CONCLUSION. Toxoplasma gondii cysts were detected in eyes with necrotizing retinitis that developed secondary to injudicious use of corticosteroids.

  14. MECHANICAL INTEGRITY TESTING AND TRAINING FACILITY

    EPA Science Inventory

    Underground injection control regulations of the U.S. Environmental Protection Agency require that all injection wells demonstrate mechanical integrity, which is defined as no significant leak in the casing, tubing or packer, and no significant fluid movement into an underground ...

  15. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  16. Biological CO2 conversion to acetate in subsurface coal-sand formation using a high-pressure reactor system

    NASA Astrophysics Data System (ADS)

    Ohtomo, Y.; Ijiri, A.; Ikegawa, Y.; Tsutsumi, M.; Imachi, H.; Uramoto, G.; Hoshino, T.; Morono, Y.; Tanikawa, W.; Hirose, T.; Inagaki, F.

    2013-12-01

    The geological CO2 sequestration into subsurface unmineable oil/gas fields and coal formations has been considered as one of the possible ways to reduce dispersal of anthropogenic greenhouse gasses into the atmosphere. However, feasibility of CO2 injection largely depends on a variety of geological and economical settings, and its ecological consequences have remained largely unpredictable. To address these issues, we developed a new flow-through-type CO2 injection system designated as the 'geobio-reactor system' to examine possible geophysical, geochemical and microbiological impact caused by CO2 injection under in-situ pressure (0-100 MPa) and temperature (0-70°C) conditions. In this study, we investigated Eocene bituminous coal-sandstones in the northwestern Pacific coast, Hokkaido, Japan, using the geobio-reactor system. Anaerobic artificial fluid and CO2 (flow rate: 0.002 and 0.00001 mL/min, respectively) were continuously supplemented into the coal-sand column under the pore pressure of 40 MPa (confined pressure: 41 MPa) at 40°C for 56 days. Molecular analysis of bacterial 16S rRNA genes showed that predominant bacterial components were physically dispersed from coal to sand as the intact form during experiment. Cultivation experiments from sub-sampling fluids indicated that some terrestrial microbes could preserve their survival in subsurface condition. Molecular analysis of archaeal 16S rRNA genes also showed that no methanogens were activated during experiment. We also anaerobically incubated the coal sample using conventional batch-type cultivation technique with a medium for methanogens. After one year of the batch incubation at 20°C, methane could be detected from the cultures except for the acetate-fed culture. The sequence of archaeal 16S rRNA genes via PCR amplification obtained from the H2 plus formate-fed culture was affiliated with a hydrogenotrophic methanogen within the genus Methanobacterium, whereas the methanol plus trimethylamine culture belonged to a methylotrophic methanogen within the genus Methanosarcina. For the acetate-fed culture, no cell proliferation and methane-production were observed after two-years incubation. During the injection of CO2 and fluid, increase of dissolved CH4 concentration was observed, of which δ13CCH4 were constantly similar to those of the absorbed coal-bed methane (δ13CCBM, ~70‰), suggesting the enhanced gas recovery with fluid flow. The output volume of CO2 (ΣCO2out, 22.1 to 125.6 mM) was smaller than initial concentration (ΣCO2in, 138.38 mM), which can be explained by either adsorption on coal, formation of carbonate minerals, or microbial consumption. Increase of acetate concentration in the fluids was also observed, whereas δ13Cacetate depleted during experiment. Considering with the decrease of additive H2, it is most likely that homo-acetogenesis would occur during experiments, which is consistent with detection of Sporomusa-related 16S rRNA genes, homo-acetogenic bacterium, in cloning analysis of sandstone after experiment. Decrease of formate concentrations and increase of δ13Cformate indicate bacterial consumption of formate and isotopic fractionation. Our results suggest that CO2 injection to natural coal-sand formation stimulates homo-acetogenesis rather than methanogenesis, accompanied by biogenic CO2 conversion to acetate.

  17. Breakdown of doublet recirculation and direct line drives by far-field flow in reservoirs: implications for geothermal and hydrocarbon well placement

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2016-07-01

    An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.

  18. Numerical modeling of materials processes with fluid-fluid interfaces

    NASA Astrophysics Data System (ADS)

    Yanke, Jeffrey Michael

    A numerical model has been developed to study material processes that depend on the interaction between fluids with a large discontinuity in thermophysical properties. A base model capable of solving equations of mass, momentum, energy conservation, and solidification has been altered to enable tracking of the interface between two immiscible fluids and correctly predict the interface deformation using a volume of fluid (VOF) method. Two materials processes investigated using this technique are Electroslag Remelting (ESR) and plasma spray deposition. ESR is a secondary melting technique that passes an AC current through an electrically resistive slag to provide the heat necessary to melt the alloy. The simulation tracks the interface between the slag and metal. The model was validated against industrial scale ESR ingots and was able to predict trends in melt rate, sump depth, macrosegregation, and liquid sump depth. In order to better understand the underlying physics of the process, several constant current ESR runs simulated the effects of freezing slag in the model. Including the solidifying slag in the imulations was found to have an effect on the melt rate and sump shape but there is too much uncertainty in ESR slag property data at this time for quantitative predictions. The second process investigated in this work is the deposition of ceramic coatings via plasma spray deposition. In plasma spray deposition, powderized coating material is injected into a plasma that melts and carries the powder towards the substrate were it impacts, flattening out and freezing. The impacting droplets pile up to form a porous coating. The model is used to simulate this rain of liquid ceramic particles impacting the substrate and forming a coating. Trends in local solidification time and porosity are calculated for various particle sizes and velocities. The predictions of decreasing porosity with increasing particle velocity matches previous experimental results. Also, a preliminary study was conducted to investigate the effects of substrate surface defects and droplet impact angle on the propensity to form columnar porosity.

  19. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

  20. 40 CFR 146.7 - Corrective action.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) UNDERGROUND... the additional steps needed to prevent fluid movement into underground sources of drinking water, the...; (b) Nature of native fluids or by-products of injection; (c) Potentially affected population; (d...

Top