Sample records for fluid management technologies

  1. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  2. Microgravity Fluid Management Symposium

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The NASA Microgravity Fluid Management Symposium, held at the NASA Lewis Research Center, September 9 to 10, 1986, focused on future research in the microgravity fluid management field. The symposium allowed researchers and managers to review space applications that require fluid management technology, to present the current status of technology development, and to identify the technology developments required for future missions. The 19 papers covered three major categories: (1) fluid storage, acquisition, and transfer; (2) fluid management applications, i.e., space power and thermal management systems, and environmental control and life support systems; (3) project activities and insights including two descriptions of previous flight experiments and a summary of typical activities required during development of a shuttle flight experiment.

  3. Cryogenic Fluid Management Technology Workshop. Volume 2: Roundtable Discussion of Technology Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Cryogenic Fluid Management Technology Workshop was held April 28 to 30, 1987, at the NASA Lewis Research Center in Cleveland, Ohio. The major objective of the workshop was to identify future NASA needs for technology concerning the management of subcritical cryogenic fluids in the low-gravity space environment. In addition, workshop participants were asked to identify those technologies which will require in-space experimentation and thus are candidates for inclusion in the flight experiment being defined at Lewis. The principal application for advanced fluid management technology is the Space-Based Orbit Transfer Vehicle (SBOTV) and its servicing facility, the On-Orbit Cryogenic Fuel Depot (OOCFD). Other potential applications include the replenishment of cryogenic coolants (with the exception of superfluid helium), reactants, and propellants on board a variety of spacecraft including the space station and space-based weapon systems. The last day was devoted to a roundtable discussion of cryogenic fluid management technology requirements by 30 representatives from NASA, industry, and academia. This volume contains a transcript of the discussion of the eight major technology categories.

  4. NASA Lewis Research Center low-gravity fluid management technology program

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Carney, M. J.; Hochstein, J. I.

    1985-01-01

    A history of the Lewis Research Center in space fluid management technology program is presented. Current programs which include numerical modeling of fluid systems, heat exchanger/radiator concept studies, and the design of the Cryogenic Fluid Management Facility are discussed. Recent analytical and experimental activities performed to support the Shuttle/Centaur development activity are highlighted.

  5. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, B. D.; Caffrey, J.; Hedayat, A.; Stephens, J.; Polsgrove, R.

    2015-01-01

    Cryogenic fluid management technology is critical to the success of future nuclear thermal propulsion powered vehicles and long duration missions. This paper discusses current capabilities in key technologies and their development path. The thermal environment, complicated from the radiation escaping a reactor of a nuclear thermal propulsion system, is examined and analysis presented. The technology development path required for maintaining cryogenic propellants in this environment is reviewed. This paper is intended to encourage and bring attention to the cryogenic fluid management technologies needed to enable nuclear thermal propulsion powered deep space missions.

  6. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  7. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  8. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  9. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  10. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  11. Orbital storage and supply of subcritical liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  12. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  13. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  14. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  15. Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.

    1984-01-01

    The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.

  16. The Role of Flight Experiments in the Development of Cryogenic Fluid Management Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper reviews the history of cryogenic fluid management technology development and infusion into both the Saturn and Centaur vehicles. Ground testing and analysis proved inadequate to demonstrate full scale performance. As a consequence flight demonstration with a full scale vehicle was required by both the Saturn and Centaur programs to build confidence that problems were addressed. However; the flight vehicles were highly limited on flight instrumentation and the flight demonstration locked-in the design without challenging the function of design elements. Projects reviewed include: the Aerobee Sounding Rocket Cryogenic Fluid Management (CFM) tests which served as a valuable stepping stone to flight demonstration and built confidence in the ability to handle hydrogen in low gravity; the Saturn IVB Fluid Management Qualification flight test; the Atlas Centaur demonstration flights to develop two burn capability; and finally the Titan Centaur two post mission flight tests.

  17. Flight Development for Cryogenic Fluid Management in Support of Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2006-01-01

    This paper describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. The purposes of this study were to identify cryogenic fluids management technologies requiring low gravity flight experiments to bring to technology readiness level (TRL) 5-6; to study many possible flight experiment options; and to develop near-term low-cost flight experiment concepts to mature core technologies of refueling. A total of twenty-five white papers were prepared in the course of this study. Each white paper is briefly summarized and relevant references cited. A total of 90 references are cited.

  18. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  19. Cryogenic Fluid Technologies for Long Duration In-Space Operations

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Tramel, Terri L.

    2008-01-01

    Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of storage, distribution, and low-gravity propellant management. The Vision for Space Exploration mission objectives will require the use of high performance cryogenic propellants (hydrogen, oxygen, and methane). Additionally, lunar missions will require success in storing and transferring liquid and gas commodities on the surface. The fundamental challenges associated with the in-space use of cryogens are their susceptibility to environmental heat, their complex thermodynamic and fluid dynamic behavior in low gravity and the uncertainty of the position of the liquid-vapor interface if the propellants are not settled. The Cryogenic Fluid Management (CFM) project is addressing these issues through ground testing and analytical model development, and has crosscutting applications and benefits to virtually all missions requiring in-space operations with cryogens. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and on-orbit margins, and simplify vehicle operations. The Cryogenic Fluid Management (CFM) Project is conducting testing and performing analytical evaluation of several areas to enable NASA s Exploration Vision. This paper discusses the content and progress of the technology focus areas within CFM.

  20. Beyond Our Boundaries: Research and Technology

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.

  1. Fluid management systems technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.

    1974-01-01

    A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  2. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  3. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil-Off (ZBO).

  4. Cryogenic Propellant Storage and Transfer (CPST) Technology Maturation: Establishing a Foundation for a Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Meyer, Michael L.; Motil, Susan M.; Ginty, Carol A.

    2013-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including asteroids, Lagrange points, the Moon and Mars. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages (CPS) and propellant depots. The TDM CPST project will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration which is relevant to enable long term human space exploration missions beyond low Earth orbit (LEO). Recognizing that key cryogenic fluid management technologies anticipated for on-orbit (flight) demonstration needed to be matured to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate authorized funding for a one-year (FY12) ground based technology maturation program. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, studies, and ground tests of the storage and fluid transfer Cryogenic Fluid Management (CFM) technology sub-elements and components that were not already at a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. This paper will present the testing, studies, and modeling that occurred in FY12 to mature cryogenic fluid management technologies for propellant storage, transfer, and supply, to examine extensibility to full scale, long duration missions, and to develop and validate analytical models. Finally, the paper will briefly describe an upcoming test to demonstrate Liquid Oxygen (LO2) Zero Boil- Off (ZBO).

  5. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  6. Low-G fluid behavior technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Bradshaw, R. D.; Blatt, M. H.

    1974-01-01

    This report presents a summarization and categorization of the pertinent literature associated with low-g fluid behavior technology. Initially a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance are summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer (GD/C). Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are; interface configuration, interface stability, natural frequency and damping, liquid reorientation, bubbles and droplets, fluid inflow, fluid outflow, convection, boiling and condensation heat transfer, venting effects, and fluid properties. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed. Cryogenic thermal control and fluid management systems technology are presented.

  7. Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2015-01-01

    The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.

  8. Cryogenic fluid management program at MSFC

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Hastings, L. J.

    1990-01-01

    Cryogenic fluid management (CFM) is an important aspect in the design and operation of spacecraft propellant systems. Consequently, it represents a key technology in the development of future vehicles for orbital transfer, lunar transit and manned interplanetary (i.e., Mars) missions. Because of Marshall Space Flight Center's (MSFC's) leading role in the definition of such vehicles, the center is currently managing and conducting a variety of tests to support development of this technology. The purpose of this paper is to summarize these activities and present their status within the context of CFM technology requirements. The first section reviews MSFC's role, identifies the major emphases and thrusts of its program, and presents the overall schedule. The final part comprises the bulk of the report, and describes at length the objectives, approach and status of each project.

  9. Technologies for ECLSS Evolution

    NASA Technical Reports Server (NTRS)

    Diamant, Bryce L.

    1990-01-01

    Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.

  10. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  11. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management technology as it applies to the current human Mars mission scenarios.

  12. NASA cryogenic fluid management space experiment efforts, 1960-1990

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1991-01-01

    A history of technological development for subcritical cryogenic fluid management (CFM) through space experiments is given for the period 1960 to 1990. Space experiments with liquid hydrogen were conducted in the early 1960's. Efforts since then have consisted of studies and designs of potential space experiments. A chronology of CFM space experiments and design efforts is included.

  13. NASA cryogenic fluid management space experiment efforts

    NASA Technical Reports Server (NTRS)

    Glover, Daniel

    1991-01-01

    A history of technological development for subcritical cryogenic fluid management (CFM) through space experiments is given for the period 1960 to 1990. Space experiments with liquid hydrogen were conducted in the early 1960s. Efforts since then have consisted of studies and designs of potential space experiments. A chronology of CFM space experiments and design efforts is included.

  14. Endoscopic management of peripancreatic fluid collections.

    PubMed

    Goyal, Jatinder; Ramesh, Jayapal

    2015-07-01

    Peripancreatic fluid collections are a well-known complication of pancreatitis and can vary from fluid-filled collections to entirely necrotic collections. Although most of the fluid-filled pseudocysts tend to resolve spontaneously with conservative management, intervention is necessary in symptomatic patients. Open surgery has been the traditional treatment modality of choice though endoscopic, laparoscopic and transcutaneous techniques offer alternative drainage approaches. During the last decade, improvement in endoscopic ultrasound technology has enabled real-time access and drainage of fluid collections that were previously not amenable to blind transmural drainage. This has initiated a trend towards use of this modality for treatment of pseudocysts. In this review, we have summarised the existing evidence for endoscopic drainage of peripancreatic fluid collections from published studies.

  15. Vehicle Thermal Management Facilities | Transportation Research | NREL

    Science.gov Websites

    Management Facilities Vehicle Thermal Management Facilities Image of a building with two semi truck evaluation facilities to develop advanced thermal management technologies for vehicles. Vehicle Testing and apparatus. Combined fluid loops bench research apparatus in the Vehicle Thermal Management Laboratory. Photo

  16. Experimentation for the Maturation of Deep Space Cryogenic Refueling Technologies

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This report describes the results of the "Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology" study. This study identifies cryogenic fluid management technologies that require low-gravity flight experiments bring technology readiness levels to 5 to 6; examines many possible flight experiment options; and develops near-term low-cost flight experiment concepts to mature the core technologies. A total of 25 white papers were prepared by members of the project team in the course of this study. The full text of each white paper is included and 89 relevant references are cited. The team reviewed the white papers that provided information on new or active concepts of experiments to pursue and assessed them on the basis of technical need, cost, return on investment, and flight platform. Based on on this assessment the "Centaur Test Bed for Cryogenic Fluid Management" was rated the highest. "Computational Opportunities for Cryogenics for Cryogenic and Low-g Fluid Systems" was ranked second, based on its high scores in state of the art and return on investment, even though scores in cost and time were second to last. "Flight Development Test Objective Approach for In-space Propulsion Elements" was ranked third.

  17. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  18. Cryogenic fluid management (base R/T): Cryogenic fluid systems, Cryogenic Orbital Nitrogen Experiment (CONE), Cryogenic Orbital Hydrogen Experiment (COHE). (Transportation focused technology)

    NASA Technical Reports Server (NTRS)

    Symons, Pat

    1991-01-01

    The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.

  19. An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  20. An Overview of In-Space Propulsion and Cryogenics Fluids Management Efforts for 2014 SBIR Phases I and II

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency programs. This report highlights 11 of the innovative SBIR 2014 Phase I and II projects from 2010 to 2012 that focus on one of NASA Glenn Research Center's six core competencies-In-Space Propulsion and Cryogenic Fluids Management. The technologies cover a wide spectrum of applications such as divergent field annular ion engines, miniature nontoxic nitrous oxide-propane propulsion, noncatalytic ignition systems for high-performance advanced monopropellant thrusters, nontoxic storable liquid propulsion, and superconducting electric boost pumps for nuclear thermal propulsion. Each article describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  1. | NREL

    Science.gov Websites

    Greg.Glatzmaier@nrel.gov | 303-384-7470 Greg originally joined NREL in 1987 and worked in the Solar Thermal work on systems analysis, novel heat-transfer fluids, and thermal-storage concepts for CSP technologies . He currently manages the advanced heat-transfer fluids and thermal-storage work at NREL. Education

  2. From Research to Flight: Thinking About Implementation While Performing Fundamental Research

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2010-01-01

    This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.

  3. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  4. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  5. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    EPA Science Inventory

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular Photoreactor

    E. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai1

    1U.S. EPA, National Risk Management Research Laboratory
    Sustainable Technology Division,...

  6. Shuttle filter study. Volume 1: Characterization and optimization of filtration devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A program to develop a new technology base for filtration equipment and comprehensive fluid particulate contamination management techniques was conducted. The study has application to the systems used in the space shuttle and space station projects. The scope of the program is as follows: (1) characterization and optimization of filtration devices, (2) characterization of contaminant generation and contaminant sensitivity at the component level, and (3) development of a comprehensive particulate contamination management plane for space shuttle fluid systems.

  7. Thermodynamic analysis and subscale modeling of space-based orbit transfer vehicle cryogenic propellant resupply

    NASA Technical Reports Server (NTRS)

    Defelice, David M.; Aydelott, John C.

    1987-01-01

    The resupply of the cryogenic propellants is an enabling technology for spacebased orbit transfer vehicles. As part of the NASA Lewis ongoing efforts in microgravity fluid management, thermodynamic analysis and subscale modeling techniques were developed to support an on-orbit test bed for cryogenic fluid management technologies. Analytical results have shown that subscale experimental modeling of liquid resupply can be used to validate analytical models when the appropriate target temperature is selected to relate the model to its prototype system. Further analyses were used to develop a thermodynamic model of the tank chilldown process which is required prior to the no-vent fill operation. These efforts were incorporated into two FORTRAN programs which were used to present preliminary analyticl results.

  8. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  9. Orbital transfer vehicle studies overview

    NASA Technical Reports Server (NTRS)

    Perkinson, Don

    1987-01-01

    An overview is given in viewgraph form of orbital transfer vehicle concept definition and systems analysis studies. Project development flow charts are shown for key milestones from 1985 until 1997. Diagrams of vehicles are given. Information is presented in outline form on technology requirements, cooling of propellant tanks, cryogenic fluid management, quick connect/disconnect fluid interfaces and propellant mass transfer.

  10. Ultrasound in the Diagnosis & Management of Pleural Effusions

    PubMed Central

    Soni, Nilam J.; Franco, Ricardo; Velez, Maria I.; Schnobrich, Daniel; Dancel, Ria; Restrepo, Marcos I.; Mayo, Paul H.

    2015-01-01

    We review the literature on the use of point-of-care ultrasound to evaluate and manage pleural effusions. Point-of-care ultrasound is more sensitive than physical exam and chest radiography to detect and characterize pleural fluid, and avoids many negative aspects of computerized tomography (CT). Additionally, point-of-care ultrasound can be used to assess pleural fluid volume and character, revealing possible underlying pathologies and guiding management. Thoracentesis performed with ultrasound guidance has lower risk of pneumothorax and bleeding complications. Future research should focus on the clinical-effectiveness of point-of-care ultrasound in the routine management of pleural effusions and how new technologies may expand its clinical utility. PMID:26218493

  11. Space Station Technology, 1983

    NASA Technical Reports Server (NTRS)

    Wright, R. L. (Editor); Mays, C. R. (Editor)

    1984-01-01

    This publication is a compilation of the panel summaries presented in the following areas: systems/operations technology; crew and life support; EVA; crew and life support: ECLSS; attitude, control, and stabilization; human capabilities; auxillary propulsion; fluid management; communications; structures and mechanisms; data management; power; and thermal control. The objective of the workshop was to aid the Space Station Technology Steering Committee in defining and implementing a technology development program to support the establishment of a permanent human presence in space. This compilation will provide the participants and their organizations with the information presented at this workshop in a referenceable format. This information will establish a stepping stone for users of space station technology to develop new technology and plan future tasks.

  12. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  13. In-space research, technology and engineering experiments and Space Station

    NASA Technical Reports Server (NTRS)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  14. Practical Fluid Therapy and Treatment Modalities for Field Conditions for Horses and Foals with Gastrointestinal Problems.

    PubMed

    Fielding, C Langdon

    2018-04-01

    With advances in technology and owner education, field management in equine veterinary medicine continues to evolve. Equine gastrointestinal disease is one of the most common types of emergencies evaluated by equine practitioners, and many of these patients can be effectively managed in the field. Although the equine veterinarian must make numerous decisions, fluid therapy, pain management, and antimicrobial use are 3 of the major choices that must be addressed when initiating field treatment of equine gastrointestinal disease. This article addresses the practical use of these 3 treatment categories that are essential to field practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Propulsion Technology Needs for Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2007-01-01

    The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.

  16. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens the use of fresh water and disposal needs thus is a major innovation for the industry. Proper water resource managment techniques from the begining of drilling through production are critical to ensure the energy necessary for society is produced while also protecting the environment.

  17. Study of fluid behaviour under gravity compensated by a magnetic field

    NASA Astrophysics Data System (ADS)

    Chatain, D.; Beysens, D.; Madet, K.; Nikolayev, V.; Mailfert, A.

    2006-09-01

    Fluids, and especially cryogenic fluids like hydrogen and oxygen, are widely used in space technology for propulsion and cooling. The knowledge of fluid behaviour during the acceleration variation and under reduced gravity is necessary for an efficient management of fluids in space. Such a management also rises fundamental questions about thermo-hydrodynamics and phase change once buoyancy forces are cancelled. For security reasons, it is nearly impossible to use the classical microgravity means to experiment with such cryofluids. However, it is possible to counterbalance gravity by using the paramagnetic (O2) or diamagnetic (H2) properties of fluids. By applying a magnetic field gradient on these materials, a volume force is created that is able to impose to the fluid a varying effective gravity, including microgravity. We have set up a magnetic levitation facility for H2 in which numerous experiments have been performed. A new facility for O2 is under construction. It will enable fast change in the effective gravity by quenching down the magnetic field. The facilities and some particularly representative experimental results are presented.

  18. Technology for the Future: In-Space Technology Experiments Program, part 2

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme.

  19. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  20. Study of thermal management for space platform applications

    NASA Technical Reports Server (NTRS)

    Oren, J. A.

    1980-01-01

    Techniques for the management of the thermal energy of large space platforms using many hundreds of kilowatts over a 10 year life span were evaluated. Concepts for heat rejection, heat transport within the vehicle, and interfacing were analyzed and compared. The heat rejection systems were parametrically weight optimized over conditions for heat pipe and pumped fluid approaches. Two approaches to achieve reliability were compared for: performance, weight, volume, projected area, reliability, cost, and operational characteristics. Technology needs are assessed and technology advancement recommendations are made.

  1. SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.

  2. Feasibility study for a Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) satellite

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.

    1990-01-01

    This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.

  3. Centaur Test Bed (CTB) for Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Sakla, Steven; Kutter, Bernard; Wall, John

    2006-01-01

    Future missions such as NASA s space exploration vision and DOD satellite servicing will require significant increases in the understanding and knowledge of space based cryogenic fluid management (CFM), including the transfer and storage of cryogenic fluids. Existing CFM capabilities are based on flight of upper stage cryogenic vehicles, scientific dewars, a few dedicated flight demonstrations and ground testing. This current capability is inadequate to support development of the CEV cryogenic propulsion system, other aspects of robust space exploration or the refueling of satellite cryo propulsion systems with reasonable risk. In addition, these technologies can provide significant performance increases for missions beyond low-earth orbit to enable manned missions to the Moon and beyond. The Centaur upper-stage vehicle can provide a low cost test platform for performing numerous flight demonstrations of the full breadth of required CFM technologies to support CEV development. These flight demonstrations can be performed as secondary mission objectives using excess LH2 and/or LO2 from the main vehicle propellant tanks following primary spacecraft separation at minimal cost and risk.

  4. Two Phase Technology Development Initiatives

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    1999-01-01

    Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.

  5. Liquid Acquisition Strategies for Exploration Missions: Current Status 2010

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2010-01-01

    NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.

  6. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  7. Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2009-01-01

    Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.

  8. Results of the Workshop on Two-Phase Flow, Fluid Stability and Dynamics: Issues in Power, Propulsion, and Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian

    2003-01-01

    The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.

  9. Cryogenic Fluid Management Technology Development Roadmaps

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  10. Wireless Fluid-Level Measurement System Equips Boat Owners

    NASA Technical Reports Server (NTRS)

    2008-01-01

    While developing a measurement acquisition system to be used to retrofit aging aircraft with vehicle health monitoring capabilities, Langley Research Center developed an innovative wireless fluid-level measurement system. The NASA technology was of interest to Tidewater Sensors LLC, of Newport News, Virginia, because of its many advantages over conventional fuel management systems, including its ability to provide an accurate measurement of volume while a boat is experiencing any rocking motion due to waves or people moving about on the boat. These advantages led the company to license this novel fluid-level measurement system from NASA for marine applications.

  11. Condenser design for AMTEC power conversion

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.

    1991-01-01

    The condenser and the electrodes are the two elements of an alkali metal thermal-to-electric conversion (AMTEC) cell which most greatly affect the energy conversion performance. A condenser is described which accomplishes two critical functions in an AMTEC cell: management of the fluid under microgravity conditions and optimization of conversion efficiency. The first function is achieved via the use of a controlled surface shape, along with drainage grooves and arteries to collect the fluid. Capillary forces manage the fluid in microgravity and dominate hydrostatic effects on the ground so the device is ground-testable. The second function is achieved via a smooth film of highly reflective liquid sodium on the condensing surface, resulting in minimization of parasitic heat losses due to radiation heat transfer. Power conversion efficiencies of 25 percent to 30 percent are estimated with this condenser using present technology for the electrodes.

  12. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  13. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  14. Mars transit vehicle thermal protection system: Issues, options, and trades

    NASA Technical Reports Server (NTRS)

    Brown, Norman

    1986-01-01

    A Mars mission is characterized by different mission phases. The thermal control of cryogenic propellant in a propulsive vehicle must withstand the different mission environments. Long term cryogenic storage may be achieved by passive or active systems. Passive cryo boiloff management features will include multilayer insulation, vapor cooled shield, and low conductance structural supports and penetrations. Active boiloff management incorporates the use of a refrigeration system. Key system trade areas include active verses passive system boiloff management (with respect to safety, reliability, and cost) and propellant tank insulation optimizations. Technology requirements include refrigeration technology advancements, insulation performance during long exposure, and cryogenic fluid transfer system for mission vehicle propellant tanking during vehicle buildip in LEO.

  15. Impact of reproductive technologies on dairy food production in the dairy industry.

    PubMed

    Stevenson, Jeffrey S

    2014-01-01

    Reproductive technologies drive the efficiency of managing dairy cows because the lactation cycle of the dairy cow depends on regular calving to renew lactation yields. Achieving timely pregnancies to allow calving every 12-14 months, therefore, is critical in modern dairy production. To meet the demands to produce sufficient milk for fluid and dairy products, various technologies are applied to enhance efficiencies on the dairy farm. Artificial insemination (AI), embryo transfer, ultrasonographic and chemical detection of pregnancy, various monitors that detect or predict estrus, and handheld communication and testing devices allow managers to retrieve information to make cow-side decisions about health and reproductive status. Genomic testing of young potential sires or young heifers is now possible and can provide information about their genetic merit years before any progeny tests can be completed. In many countries, the challenge faced by dairy producers is their ability to afford these technologies in the face of rising feed and labor costs and volatile milk prices received at the farm gate. Government policies often place obstacles, trade barriers, and unfunded mandates that preclude operations from making a modest profit. Unlike nearly all other manufacturing industries, agriculture producers have little control over the price received for their products. Therefore, dairy production is vulnerable to many uncontrolled factors including climate, government policy, economic conditions, and skilled labor shortages. It is clear that the impact of emerging and current reproductive technologies is critical to the management of dairy cattle to produce sufficient milk to meet consumer demands for quality fluid and dairy products.

  16. WindWizard: A New Tool for Fire Management Decision Support

    Treesearch

    Bret W. Butler; Mark Finney; Larry Bradshaw; Jason Forthofer; Chuck McHugh; Rick Stratton; Dan Jimenez

    2006-01-01

    A new software tool has been developed to simulate surface wind speed and direction at the 100m to 300 m scale. This tool is useful when trying to estimate fire behavior in mountainous terrain. It is based on widely used computational fluid dynamics technology and has been tested against measured wind flows. In recent years it has been used to support fire management...

  17. Technology for the Future: In-Space Technology Experiments Program, part 1

    NASA Technical Reports Server (NTRS)

    Breckenridge, Roger A. (Compiler); Clark, Lenwood G. (Compiler); Willshire, Kelli F. (Compiler); Beck, Sherwin M. (Compiler); Collier, Lisa D. (Compiler)

    1991-01-01

    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments.

  18. CARBON AND SULFUR ACCUMULATION AND IRON MINERAL TRANSFORMATION IN PERMEABLE REACTIVE BARRIERS CONTAINING ZERO-VALENT IRON

    EPA Science Inventory

    Permeable reactive barrier technology is an in-situ approach for remediating groundwater contamination that combines subsurface fluid flow management with passive chemical treatment. Factors such as the buildup of mineral precipitates, buildup of microbial biomass (bio-fouling...

  19. LTCC based bioreactors for cell cultivation

    NASA Astrophysics Data System (ADS)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  20. Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Marchetta, J. G.; Hochstein, J. I.

    2002-01-01

    Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of developing a correlation that was independent of fluid volume and tank geometry. Evidence is presented to support the hypothesis that the magnetic Bond number is an effective dimensionless parameter for modeling and understanding such systems. Further, this study supports the conclusion that magnetic storage appears to be a viable emerging technology for cryogenic propellant management systems that merits further computational investigation and space-based experimentation to establish the technology base required for future spacecraft design.

  1. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  2. Reference earth orbital research and applications investigations (blue book). Volume 7: Technology

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The candidate experiment program for manned space stations with specific application to technology disciplines is presented. The five functional program elements are devoted to the development of new technology for application to future generation spacecraft and experiments. The functional program elements are as follows: (1) monitor and trace movement of external contaminants to determine methods for controlling contamination, (2) analysis of fundamentals of fluid systems management, (3) extravehicular activity, (4) advanced spacecraft systems tests, and (5) development of teleoperator system for use with space activities.

  3. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0001: Energy, Power, and Thermal Technologies and Processes Experimental Research. Subtask: Thermal Management of Electromechanical Actuation System for Aircraft Primary Flight Control Surfaces

    DTIC Science & Technology

    2014-05-01

    utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can

  4. Advanced systems engineering and network planning support

    NASA Technical Reports Server (NTRS)

    Walters, David H.; Barrett, Larry K.; Boyd, Ronald; Bazaj, Suresh; Mitchell, Lionel; Brosi, Fred

    1990-01-01

    The objective of this task was to take a fresh look at the NASA Space Network Control (SNC) element for the Advanced Tracking and Data Relay Satellite System (ATDRSS) such that it can be made more efficient and responsive to the user by introducing new concepts and technologies appropriate for the 1997 timeframe. In particular, it was desired to investigate the technologies and concepts employed in similar systems that may be applicable to the SNC. The recommendations resulting from this study include resource partitioning, on-line access to subsets of the SN schedule, fluid scheduling, increased use of demand access on the MA service, automating Inter-System Control functions using monitor by exception, increase automation for distributed data management and distributed work management, viewing SN operational control in terms of the OSI Management framework, and the introduction of automated interface management.

  5. Cryogenic Fluid Management Technology and Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian D.; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert

    2016-01-01

    Cryogenic fluid management (CFM) is critical to the success of future nuclear thermal propulsion powered vehicles. While this is an issue for any propulsion system utilizing cryogenic propellants, this is made more challenging by the radiation flux produced by the reactor in a nuclear thermal rocket (NTR). Managing the cryogenic fuel to prevent propellant loss to boil off and leakage is needed to limit the required quantity of propellant to a reasonable level. Analysis shows deposition of energy into liquid hydrogen fuel tanks in the vicinity of the nuclear thermal engine. This is on top of ambient environment sources of heat. Investments in cryogenic/thermal management systems (some of which are ongoing at various organizations) are needed in parallel to nuclear thermal engine development in order to one day see the successful operation of an entire stage. High durability, low thermal conductivity insulation is one developmental need. Light weight cryocoolers capable of removing heat from large fluid volumes at temperatures as low as approx. 20 K are needed to remove heat leak from the propellant of an NTR. Valve leakage is an additional CFM issue of great importance. Leakage rates of state of the art, launch vehicle size valves (which is approximately the size valves needed for a Mars transfer vehicle) are quite high and would result in large quantities of lost propellant over a long duration mission. Additionally, the liquid acquisition system inside the propellant tank must deliver properly conditioned propellant to the feed line for successful engine operation and avoid intake of warm or gaseous propellant. Analysis of the thermal environment and the CFM technology development are discussed in the accompanying presentation.

  6. Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer satellite (COLD-SAT) feasibility study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.

    1990-01-01

    The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.

  7. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  8. Cryogenic Fluid Management: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes cooling technologies for precision astronomical sensors and advanced spacecraft, as well as propellant storage and transfer in space. This area of focus is one of the enabling technologies as defined by NASA's Report of the President's Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  9. Ultrasound Velocity Measurement in a Liquid Metal Electrode

    PubMed Central

    Perez, Adalberto; Kelley, Douglas H.

    2015-01-01

    A growing number of electrochemical technologies depend on fluid flow, and often that fluid is opaque. Measuring the flow of an opaque fluid is inherently more difficult than measuring the flow of a transparent fluid, since optical methods are not applicable. Ultrasound can be used to measure the velocity of an opaque fluid, not only at isolated points, but at hundreds or thousands of points arrayed along lines, with good temporal resolution. When applied to a liquid metal electrode, ultrasound velocimetry involves additional challenges: high temperature, chemical activity, and electrical conductivity. Here we describe the experimental apparatus and methods that overcome these challenges and allow the measurement of flow in a liquid metal electrode, as it conducts current, at operating temperature. Temperature is regulated within ±2 °C using a Proportional-Integral-Derivative (PID) controller that powers a custom-built furnace. Chemical activity is managed by choosing vessel materials carefully and enclosing the experimental setup in an argon-filled glovebox. Finally, unintended electrical paths are carefully prevented. An automated system logs control settings and experimental measurements, using hardware trigger signals to synchronize devices. This apparatus and these methods can produce measurements that are impossible with other techniques, and allow optimization and control of electrochemical technologies like liquid metal batteries. PMID:26273726

  10. THE FLUIDS AND COMBUSTION FACILITY: ENABLING THE EXPLORATION OF SPACE

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; OMalley, Terence; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President s vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  11. The Fluids and Combustion Facility: Enabling the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Gati, Frank G.; Hill, Myron E.; O'Malley Terence F.; Zurawski, Robert L.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is an International Space Station facility designed to support physical and biological research as well as technology experiments in space. The FCF consists of two racks called the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR). The capabilities of the CIR and the FIR and plans for their utilization will support the President's vision for space exploration. The CIR will accommodate physical research and technology experiments that address needs in the areas of spacecraft fire prevention, detection and suppression, incineration of solid wastes, and power generation. Initial experiments will provide data to support design decisions for exploration spacecraft. The CIR provides a large sealed chamber in a near-weightless environment. The chamber supports many simulated atmospheres including lunar or Martian environments. The FIR will accommodate experiments that address needs for advanced life support, power, propulsion, and spacecraft thermal control systems. The FIR can also serve as a platform for experiments that address human health and performance, medical technologies, and biological sciences. The FIR provides a large volume for payload hardware, reconfigurable diagnostics, customizable software, active rack-level vibration isolation, and data acquisition and management in a nearly uniform temperature environment.

  12. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    NASA Technical Reports Server (NTRS)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  13. Hemodiafiltration history, technology, and clinical results.

    PubMed

    Ronco, Claudio; Cruz, Dinna

    2007-07-01

    Hemodiafiltration (HDF) is an extracorporeal renal-replacement technique using a highly permeable membrane, in which diffusion and convection are conveniently combined to enhance solute removal in a wide spectrum of molecular weights. In this modality, ultrafiltration exceeds the desired fluid loss in the patient, and replacement fluid must be administered to achieve the target fluid balance. Over the years, various HDF variants have emerged, including acetate-free biofiltration, high-volume HDF, internal HDF, paired-filtration dialysis, middilution HDF, double high-flux HDF, push-pull HDF, and online HDF. Recent technology has allowed online production of large volumes of microbiologically ultrapure fluid for reinfusion, greatly simplifying the practice of HDF. Several advantages of HDF over purely diffusive hemodialysis techniques have been described in the literature, including a greater clearance of urea, phosphate, beta(2)-microglobulin and other larger solutes, reduction in dialysis hypotension, and improved anemia management. Although randomized controlled trials have failed to show a survival benefit of HDF, recent data from large observational studies suggest a positive effect of HDF on survival. This article provides a brief review of the history of HDF, the various HDF techniques, and summary of their clinical effects.

  14. Propulsion and fluid management - Station keeping will eat energy on a new scale

    NASA Technical Reports Server (NTRS)

    Petrash, D. A.

    1983-01-01

    An attempt is made to identify technologies that could be brought to a state of minimal development risk in the near term, yet offer the potential for evolutionary growth consistent with future space station propulsion requirements. Prospective auxiliary propulsion propellants will be usable by other systems, thereby offering resupply benefits and a benign rather than corrosive or toxic handling environment. NASA programs are currently underway to develop the storage and supply methods for cryogenic liquids in orbit. The recovery of unused propellants from the Space Shuttle Orbiter and External Tank are being evaluated in order to define Shuttle modifications and performance penalties. Fluid management subsystem requirements and characteristics cannot, however, be fully defined until a firm mission scenario has been established and other space station subsystems are more clearly defined.

  15. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  16. Liquid Rocket Lines, Bellows, Flexible Hoses, and Filters

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Fluid-flow components in a liquid propellant rocket engine and the rocket vehicle which it propels are interconnected by lines, bellows, and flexible hoses. Elements involved in the successful design of these components are identified and current technologies pertaining to these elements are reviewed, assessed, and summarized to provide a technology base for a checklist of rules to be followed by project managers in guiding a design or assessing its adequacy. Recommended procedures for satisfying each of the design criteria are included.

  17. Materials processing in space program tasks-supplement

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.

  18. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    NASA Technical Reports Server (NTRS)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  19. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  20. CryoTran user's manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Cowgill, Glenn R.; Chato, David J.; Saad, Ehab

    1989-01-01

    The development of cryogenic fluid management systems for space operation is a major portion of the efforts of the Cryogenic Fluids Technology Office (CFTO) at the NASA Lewis Research Center. Analytical models are a necessary part of experimental programs which are used to verify the results of experiments and are also used as a predictor for parametric studies. The CryoTran computer program is a bridge to obtain analytical results. The object of CryoTran is to coordinate these separate analyses into an integrated framework with a user-friendly interface and a common cryogenic property database. CryoTran is an integrated software system designed to help solve a diverse set of problems involving cryogenic fluid storage and transfer in both ground and low-g environments.

  1. Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.; Lee, C. C.

    1991-01-01

    The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.

  2. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  3. Neonatal fluid management.

    PubMed

    Murat, Isabelle; Humblot, Alexis; Girault, Laure; Piana, Federica

    2010-09-01

    Perioperative fluid management in paediatrics has been the subject of many controversies in recent years, but fluid management in the neonatal period has not been considered in most reviews and guidelines. The literature regarding neonatal fluid management mainly appears in the paediatric textbooks and few recent data are available, except for resuscitation and fluid loading during shock and major surgery. In the context of anaesthesia, many neonates requiring surgery within the first month of life have organ malformation and/or dysfunction. This article aims at reviewing basic physiological considerations important for neonatal fluid management and mainly focusses on fluid maintenance and replacement during surgery.

  4. Overview of the NASA/Marshall Space Flight Center (MSFC) CFD Consortium for Applications in Propulsion Technology

    NASA Astrophysics Data System (ADS)

    McConnaughey, P. K.; Schutzenhofer, L. A.

    1992-07-01

    This paper presents an overview of the NASA/Marshall Space Flight Center (MSFC) Computational Fluid Dynamics (CFD) Consortium for Applications in Propulsion Technology (CAPT). The objectives of this consortium are discussed, as is the approach of managing resources and technology to achieve these objectives. Significant results by the three CFD CAPT teams (Turbine, Pump, and Combustion) are briefly highlighted with respect to the advancement of CFD applications, the development and evaluation of advanced hardware concepts, and the integration of these results and CFD as a design tool to support Space Transportation Main Engine and National Launch System development.

  5. Fluid technology (selected components, devices, and systems): A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Developments in fluid technology and hydraulic equipment are presented. The subjects considered are: (1) the use of fluids in the operation of switches, amplifiers, and servo devices, (2) devices and data for laboratory use in the study of fluid dynamics, and (3) the use of fluids as controls and certain methods of controlling fluids.

  6. Precision Fluid Management in Continuous Renal Replacement Therapy.

    PubMed

    Murugan, Raghavan; Hoste, Eric; Mehta, Ravindra L; Samoni, Sara; Ding, Xiaoqiang; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-01-01

    Fluid management during continuous renal replacement therapy (CRRT) in critically ill patients is a dynamic process that encompasses 3 inter-related goals: maintenance of the patency of the CRRT circuit, maintenance of plasma electrolyte and acid-base homeostasis and regulation of patient fluid balance. In this article, we report the consensus recommendations of the 2016 Acute Disease Quality Initiative XVII conference on 'Precision Fluid Management in CRRT'. We discuss the principles of fluid management, describe various prescription methods to achieve circuit integrity and introduce the concept of integrated fluid balance for tailoring fluid balance to the needs of the individual patient. We suggest that these recommendations could serve to develop the best clinical practice and standards of care for fluid management in patients undergoing CRRT. Finally, we identify and highlight areas of uncertainty in fluid management and set an agenda for future research. © 2016 S. Karger AG, Basel.

  7. Vapor feed direct methanol fuel cells with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    The present paper describes a novel technology that can be used to manage methanol and water in miniature direct methanol fuel cells (DMFCs) without the need for a complex micro-fluidics subsystem. At the core of this new technology is a unique passive fuel delivery system that allows for fuel delivery at an adjustable rate from a reservoir to the anode. Furthermore, the fuel cell is designed for both passive water management and effective carbon dioxide removal. The innovative thermal management mechanism is the key for effective operation of the fuel cell system. The vapor feed DMFC reached a power density of 16.5 mW cm -2 at current density of 60 mA cm -2. A series of fuel cell prototypes in the 0.5 W range have been successfully developed. The prototypes have demonstrated long-term stable operation, easy fuel delivery control and are scalable to larger power systems. A two-cell stack has successfully operated for 6 months with negligible degradation.

  8. Technology needs for lunar and Mars space transfer systems

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon R.; Cothran, Bradley C.; Donahue, Benjamin; Mcghee, Jerry

    1991-01-01

    The determination of appropriate space transportation technologies and operating modes is discussed with respect to both lunar and Mars missions. Three levels of activity are set forth to examine the sensitivity of transportation preferences including 'minimum,' 'full science,' and 'industrialization and settlement' categories. High-thrust-profile missions for lunar and Mars transportation are considered in terms of their relative advantages, and transportation options are defined in terms of propulsion and braking technologies. Costs and life-cycle cost estimates are prepared for the transportation preferences by using a parametric cost model, and a return-on-investment summary is given. Major technological needs for the programs are listed and include storable propulsion systems; cryogenic engines and fluids management; aerobraking; and nuclear thermal, nuclear electric, electric, and solar electric propulsion technologies.

  9. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  10. Conceptual design and analysis of orbital cryogenic liquid storage and supply systems

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.

    1981-01-01

    A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.

  11. Detection of Neisseria meningitidis in cerebrospinal fluid using a multiplex PCR and the Luminex detection technology.

    PubMed

    Møller, Jens Kjølseth

    2012-01-01

    Rapid clinical and laboratory diagnoses are the foundation for a successful management of serious infections with Neisseria meningitidis. A species-specific multiplex polymerase chain reaction (PCR) coupled with fluidic microarrays using microbeads (the Luminex xMAP™ Technology) can detect pathogens most frequently found in the cerebrospinal fluid of patients. The Luminex suspension array system uniquely combines flow cytometry, microspheres, laser technology, digital signal processing, and traditional chemistry. In this method, the reaction is carried out in one vessel, in which distinctly color-coded bead sets, each conjugated with a different specific nucleic acid reactant, are hybridized with the PCR products, and a reporter molecule is used to quantify the interaction. The flow-based Luminex array reader identifies each reaction (bead set) after excitation by a red classification laser. Reporter signals from each reaction are simultaneously quantified by fluorescence generated by a green reporter laser. This nonculture, multiplex assay may prove to be an important tool for optimal laboratory diagnosis, not only of meningococcal meningitis, but also of meningitis caused by other bacterial or viral pathogens.

  12. Aeropropulsion 1987

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers from the Aeropropulsion '87 Conference, held at the NASA Lewis Research Center (LeRC), are presented. Unclassified presentations by LeRC and NASA Headquarters senior management and many LeRC technical authors covered the philosophy and major directions of the LeRC aeropropulsion program, and presented a broad spectrum of recent research results in materials, structures, internal fluid mechanics, instrumentation and controls, and both subsonic and high-speed propulsion technology.

  13. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  14. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  15. Liquid Rocket Propulsion Technology: An evaluation of NASA's program. [for space transportation systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.

  16. Cardio-Pulmonary Stethoscope: Clinical Validation With Heart Failure and Hemodialysis Patients.

    PubMed

    Iskander, Magdy F; Seto, Todd B; Perron, Ruthsenne Rg; Lim, Eunjung; Qazi, Farhan

    2018-05-01

    The purpose of this study is to evaluate the accuracy of a noninvasive radiofrequency-based device, the Cardio-Pulmonary Stethoscope (CPS), to monitor heart and respiration rates, and detect changes in lung water content in human experiments and clinical trials. Three human populations (healthy subjects ( ), heart failure (), and hemodialysis () patients) were enrolled in this study. The study was conducted at the University of Hawaii and the Queen's Medical Center in Honolulu, HI, USA. Measurement of heart and respiration rates for all patients was compared with standard FDA - approved monitoring methods. For lung water measurements, CPS data were compared with simultaneous pulmonary capillary wedge pressure (PCWP) measurements for heart failure patients, and with change in weight of extracted fluid for hemodialysis patients. Statistical correlation methods (Pearson, mixed, and intraclass) were used to compare the data and examine accuracy of CPS results. Results show that heart and respiration rates of all patients have excellent correlation factors, r≥0.9. Comparisons with fluid removed during hemodialysis treatment showed correlation factor of to 1, while PCWP measurements of heart failure patients had correlation factor of to 0.97. These results suggest that CPS technology accurately quantifies heart and respiration rates and measure fluid changes in the lungs. The CPS has the potential to accurately monitor lung fluid status noninvasively and continuously in a clinical and outpatient setting. Early and efficient management of lung fluid status is key in managing chronic conditions such heart failure, pulmonary hypertension, and acute respiration distress syndrome.

  17. Saliva-Based Biosensors: Noninvasive Monitoring Tool for Clinical Diagnostics

    PubMed Central

    Malon, Radha S. P.; Balakrishnan, Malarvili; Córcoles, Emma P.

    2014-01-01

    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers. PMID:25276835

  18. Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics.

    PubMed

    Malon, Radha S P; Sadir, Sahba; Balakrishnan, Malarvili; Córcoles, Emma P

    2014-01-01

    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers.

  19. A design and critical technology issues for on-orbit resupply of superfluid helium

    NASA Technical Reports Server (NTRS)

    Hopkins, Richard A.; Mord, Allan J.

    1990-01-01

    The issues of and the solutions to the critical design and technology areas of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment, presently under development at the NASA Goddard Spaceflight Center, are discussed. Special attention is given to the SHOOT design requirements for the 10,000-liter superfluid He resupply tanker system, the concept details of the system, and the resupply operations and their analysis. A block diagram of the SHOOT system is included along with fluid management schematic and configuration diagrams of the system and its subsystems. A summary of the dewar performance is also presented.

  20. Thermal management in inertial fusion energy slab amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, S.B.; Albrecht, G.F.

    As the technology associated with the development of solid-state drivers for inertial fusion energy (IFE) has evolved, increased emphasis has been placed on the development of an efficient approach for managing the waste heat generated in the laser media. This paper addresses the technical issues associated with the gas cooling of large aperture slabs, where the laser beam propagates through the cooling fluid. It is shown that the major consequence of proper thermal management is the introduction of simple wedge, or beam steering, into the system. Achieving proper thermal management requires careful consideration of the geometry, cooling fluid characteristics, coolingmore » flow characteristics, as well as the thermal/mechanical/optical characteristics of the laser media. Particularly important are the effects of cooling rate variation and turbulent scattering on the system optical performance. Helium is shown to have an overwhelming advantage with respect to turbulent scattering losses. To mitigate cooling rate variations, the authors introduce the concept of flow conditioning. Finally, optical path length variations across the aperture are calculated. A comparison of two laser materials (S-FAP and YAG) shows the benefit of a nearly a-thermal material on optical variations in the system.« less

  1. [Fluid management and cause of death during shock period in patients with severe burns or burns complicated by inhalation injury].

    PubMed

    Zhang, Ming-liang; Li, Chi; Ma, Chun-xu

    2003-11-01

    To explore fluid management and cause of death during shock period in severe burns or burns with inhalation injury. One hundred and twelve patients with severe burns or burn complicated by inhalation injury admitted to our hospital from 1991 to 2000 were analyzed. The fluid management and death conditions during shock period were discussed. The fluid volume for resuscitation could be described as follows: the total fluid volume was 2.2 ml/(%TBSA.kg) including colloid fluid 0.5 ml/(%TBSA.kg), crystalloid fluid 1 ml/(%TBSA.kg)and water 0.7 ml/(%TBSA.kg) during first 24 hours. The total fluid volume was 1.8 ml/(%TBSA.kg) including colloid fluid 0.4 ml/(%TBSA.kg), crystalloid fluid 0.7 ml/(%TBSA.kg) and water 0.7 ml/(%TBSA.kg) during second 24 hours. There were no difference in fluid management between burns and burns with inhalation injury. Seven patients died due to respiratory failure during shock period. Many fluid formula can provide guidance for resuscitation and it is very important that early fluid therapy should accord with concrete clinical conditions of patients in order to pass smoothly through shock period. Early fluid management is not different between burns and burns with inhalation injury.

  2. Intra-operative cardiac monitoring by trans-oesophageal Doppler is not risk free in surgical patients.

    PubMed

    Siddiqui, Muhammad Rafay Sameen; Sajid, Muhammad Shafiq; Baig, Mirza Khurram

    2009-04-01

    The advancement of medical technology and future improvements in public health will lead to surgeons operating on high risk patients. One of these advances is to use intra-operative trans-oesophageal Doppler (TOD) to optimise fluid management. TOD is known to be the most effective technique for intraoperative cardiac monitoring. We report a case of a potentially life threatening complication from intraoperative TOD monitoring.

  3. Thermal management system options for high power space platforms

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; Lehtinen, A.; Parish, R.

    1985-01-01

    Thermal Management System (TMS) design options for a high power (75kWe), low earth orbit, multimodule space platform were investigated. The approach taken was to establish a baseline TMS representative of current technology, and to make incremental improvements through successive subsystem trades that lead to a candidate TMS. The TMS trades included centralized and decentralized transport, single-phase and two-phase transport, alternate working fluids, liquid loop and heat pipe radiators, deployed fixed, body mounted and steerable radiators, and thermal storage. The subsystem options were evaluated against criteria such as weight, TMS power requirement, reliability, system isothermality penalty, and growth potential.

  4. Technology Transfer at Edgar Mine: Phase 1; October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less

  5. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  6. eCryo SHIIVER Customer/Stakeholder Checkpoint Briefing

    NASA Technical Reports Server (NTRS)

    Zoeckler, Joseph G.; Guzik, Monica; Van Dresar, Neil

    2015-01-01

    Given the wide diversity of cryogenic fluid management technology that had been developed at the research level, there was a need for eCryo to prioritize and focus on a limited subset of the possibilities in order to set a practical scope. As part of the effort to determine that focus, a survey was conducted in May of 2014 to solicit opinions of members of the aerospace industry as to what they considered the most important and beneficial cryogenic technologies to be developed in the near term. The project was also directed to consider the SLS exploration upper stage (EUS) as a potential infusion target, and to focus on technology that would provide the most immediate benefit to a cryogenic system of that type.

  7. An Investigation to Advance the Technology Readiness Level of the Centaur Derived On-orbit Propellant Storage and Transfer System

    NASA Astrophysics Data System (ADS)

    Silvernail, Nathan L.

    This research was carried out in collaboration with the United Launch Alliance (ULA), to advance an innovative Centaur-based on-orbit propellant storage and transfer system that takes advantage of rotational settling to simplify Fluid Management (FM), specifically enabling settled fluid transfer between two tanks and settled pressure control. This research consists of two specific objectives: (1) technique and process validation and (2) computational model development. In order to raise the Technology Readiness Level (TRL) of this technology, the corresponding FM techniques and processes must be validated in a series of experimental tests, including: laboratory/ground testing, microgravity flight testing, suborbital flight testing, and orbital testing. Researchers from Embry-Riddle Aeronautical University (ERAU) have joined with the Massachusetts Institute of Technology (MIT) Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) team to develop a prototype FM system for operations aboard the International Space Station (ISS). Testing of the integrated system in a representative environment will raise the FM system to TRL 6. The tests will demonstrate the FM system and provide unique data pertaining to the vehicle's rotational dynamics while undergoing fluid transfer operations. These data sets provide insight into the behavior and physical tendencies of the on-orbit refueling system. Furthermore, they provide a baseline for comparison against the data produced by various computational models; thus verifying the accuracy of the models output and validating the modeling approach. Once these preliminary models have been validated, the parameters defined by them will provide the basis of development for accurate simulations of full scale, on-orbit systems. The completion of this project and the models being developed will accelerate the commercialization of on-orbit propellant storage and transfer technologies as well as all in-space technologies that utilize or will utilize similar FM techniques and processes.

  8. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.

  9. Human body fluid proteome analysis

    PubMed Central

    Hu, Shen; Loo, Joseph A.; Wong, David T.

    2010-01-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future. PMID:17083142

  10. Human body fluid proteome analysis.

    PubMed

    Hu, Shen; Loo, Joseph A; Wong, David T

    2006-12-01

    The focus of this article is to review the recent advances in proteome analysis of human body fluids, including plasma/serum, urine, cerebrospinal fluid, saliva, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate fluid, tear fluid, and amniotic fluid, as well as its applications to human disease biomarker discovery. We aim to summarize the proteomics technologies currently used for global identification and quantification of body fluid proteins, and elaborate the putative biomarkers discovered for a variety of human diseases through human body fluid proteome (HBFP) analysis. Some critical concerns and perspectives in this emerging field are also discussed. With the advances made in proteomics technologies, the impact of HBFP analysis in the search for clinically relevant disease biomarkers would be realized in the future.

  11. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  12. Eclipse SteerTech liquid lenslet beam steering technology

    NASA Astrophysics Data System (ADS)

    Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III

    2007-09-01

    Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.

  13. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.

    PubMed

    Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier

    2018-05-22

    In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.

  14. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.

  15. Review of fluid and control technology of hydraulic wind turbines

    NASA Astrophysics Data System (ADS)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  16. Introducing bio- and micro-technology into undergraduate thermal-fluids courses: investigating pipe pressure loss via atomic force microscopy.

    PubMed

    Müller, Marcus; Traum, Matthew J

    2012-01-01

    To introduce bio- and micro-technologies into general undergraduate thermal-fluids classes, a hands-on interdisciplinary in-class demonstration is described that juxtaposes classical pressure loss pipe flow experiments against a modern micro-characterization technique, AFM profilometry. Both approaches measure surface roughness and can segue into classroom discussions related to material selection and design of bio-medical devices to handle biological fluids such as blood. Appealing to the range of engineering students populating a general thermal-fluids course, a variety of pipe/hose/tube materials representing a spectrum of disciplines can be tested using both techniques. This in-class demonstration relies on technical content already available in standard thermal-fluids textbooks, provides experimental juxtaposition between classical and micro-technology-enabled approaches to the same experiment, and can be taught by personnel with no specialized micro- or bio-technology expertise.

  17. Automated Fluid Management for Treatment of Rhabdomyolysis

    PubMed Central

    Beilstein, Christian M.; Prowle, John R.

    2016-01-01

    Purpose. Fluid therapy aimed at increasing urine output is a commonly employed strategy to prevent acute kidney injury (AKI) in critically ill patients with rhabdomyolysis. Automated fluid management has the potential to optimise urine output while avoiding fluid accumulation in rhabdomyolysis patients. Methods. In a single centre clinical service evaluation we compared a convenience sample of critically ill adults with rhabdomyolysis treated with automated fluid management using the RenalGuard® device to patients managed with manual fluid adjustment following our standard rhabdomyolysis protocol. Primary outcome was number of hours with urine output >2 mL/kg during first 48 h of therapy. Results. Eight patients treated with RenalGuard were compared to 28 patients treated with manual fluid management. Number of hours of target urine output was greater in the RenalGuard versus the Standard group (176/312 (56.4%) versus 534/1305 (40.9%); p < 0.01). Urine output was significantly higher in the first 24 h in the RenalGuard group (median (IQR) 4033 mL (3682–7363) versus 2913 mL (2263–4188 mL); p < 0.01). Fluid balance, electrolyte, diuretics, and bicarbonate use were comparable between groups. Conclusions. Automated fluid management resulted in a higher urine output more quickly in the treatment of rhabdomyolysis. Further research is needed to analyse the effect of diuresis-matched hydration for the prevention of AKI in rhabdomyolysis. PMID:28003911

  18. Automated Fluid Management for Treatment of Rhabdomyolysis.

    PubMed

    Beilstein, Christian M; Prowle, John R; Kirwan, Christopher J

    2016-01-01

    Purpose . Fluid therapy aimed at increasing urine output is a commonly employed strategy to prevent acute kidney injury (AKI) in critically ill patients with rhabdomyolysis. Automated fluid management has the potential to optimise urine output while avoiding fluid accumulation in rhabdomyolysis patients. Methods . In a single centre clinical service evaluation we compared a convenience sample of critically ill adults with rhabdomyolysis treated with automated fluid management using the RenalGuard® device to patients managed with manual fluid adjustment following our standard rhabdomyolysis protocol. Primary outcome was number of hours with urine output >2 mL/kg during first 48 h of therapy. Results . Eight patients treated with RenalGuard were compared to 28 patients treated with manual fluid management. Number of hours of target urine output was greater in the RenalGuard versus the Standard group (176/312 (56.4%) versus 534/1305 (40.9%); p < 0.01). Urine output was significantly higher in the first 24 h in the RenalGuard group (median (IQR) 4033 mL (3682-7363) versus 2913 mL (2263-4188 mL); p < 0.01). Fluid balance, electrolyte, diuretics, and bicarbonate use were comparable between groups. Conclusions . Automated fluid management resulted in a higher urine output more quickly in the treatment of rhabdomyolysis. Further research is needed to analyse the effect of diuresis-matched hydration for the prevention of AKI in rhabdomyolysis.

  19. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  20. Fluid overload in the ICU: evaluation and management.

    PubMed

    Claure-Del Granado, Rolando; Mehta, Ravindra L

    2016-08-02

    Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients. In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous renal replacement techniques are often required for fluid overload treatment. Successful fluid overload treatment depends on precise assessment of individual volume status, understanding the principles of fluid management with ultrafiltration, and clear treatment goals.

  1. Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing

    NASA Technical Reports Server (NTRS)

    Moore, J. D.; Otto, J. M.; Cody, J. C.; Hastings, L. J.; Bryant, C. B.; Gautney, T. T.

    2015-01-01

    High-energy cryogenic propellant is an essential element in future space exploration programs. Therefore, NASA and its industrial partners are committed to an advanced development/technology program that will broaden the experience base for the entire cryogenic fluid management community. Furthermore, the high cost of microgravity experiments has motivated NASA to establish government/aerospace industry teams to aggressively explore combinations of ground testing and analytical modeling to the greatest extent possible, thereby benefitting both industry and government entities. One such team consisting of ManTech SRS, Inc., Edwards Air Force Base, and Marshall Space Flight Center (MSFC) was formed to pursue a technology project designed to demonstrate technology readiness for an SRS liquid hydrogen (LH2) in-space propellant management concept. The subject testing was cooperatively performed June 21-30, 2000, through a partially reimbursable Space Act Agreement between SRS, MSFC, and the Air Force Research Laboratory. The joint statement of work used to guide the technical activity is presented in appendix A. The key elements of the SRS concept consisted of an LH2 storage and supply system that used all of the vented H2 for solar engine thrusting, accommodated pressure control without a thermodynamic vent system (TVS), and minimized or eliminated the need for a capillary liquid acquisition device (LAD). The strategy was to balance the LH2 storage tank pressure control requirements with the engine thrusting requirements to selectively provide either liquid or vapor H2 at a controlled rate to a solar thermal engine in the low-gravity environment of space operations. The overall test objective was to verify that the proposed concept could enable simultaneous control of LH2 tank pressure and feed system flow to the thruster without necessitating a TVS and a capillary LAD. The primary program objectives were designed to demonstrate technology readiness of the SRS concept at a system level as a first step toward actual flight vehicle demonstrations. More specific objectives included testing the pressure and feed control system concept hardware for functionality, operability, and performance. Valuable LH2 thermodynamic and fluid dynamics data were obtained for application to both the SRS concept and to future missions requiring space-based cryogen propellant management.

  2. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  3. CRYOTE (Cryogenic Orbital Testbed) Concept

    NASA Technical Reports Server (NTRS)

    Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie

    2009-01-01

    Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.

  4. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  5. Composite Overview and Composite Aerocover Overview

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Tate, LaNetra; Dokos, Adam; Taylor, Brian; Brown, Chad

    2014-01-01

    Materials Science Division within the Engineering Directorate tasked by the Ares Launch Vehicle Division (LX-V) and the Fluids Testing and Technology Development Branch (NE-F6) to design, fabricate and test an aerodynamic composite shield for potential Heavy Lift Launch Vehicle infusion and a composite strut that will serve as a pathfinder in evaluating calorimeter data for the CRYOSTAT (cryogenic on orbit storage and transfer) Project. ATP project is to carry the design and development of the aerodynamic composite cover or "bracket" from cradle to grave including materials research, purchasing, design, fabrication, testing, analysis and presentation of the final product. Effort consisted of support from the Materials Testing & Corrosion Control Branch (NE-L2) for mechanical testing, the Prototype Development Branch (NE-L3) for CAD drawing, design/analysis, and fabrication, Materials & Processes Engineering Branch (NE-L4) for project management and materials selection; the Applied Physics Branch (NE-LS) for NDE/NDI support; and the Chemical Analysis Branch (NE-L6) for developmental systems evaluation. Funded by the Ares Launch Vehicle Division and the Fluids Testing and Technology Development Branch will provide ODC

  6. Central online hemodiafiltration in Japan: management of water quality and practice.

    PubMed

    Yamashita, Akihiro C; Sato, Takashi

    2009-01-01

    Hemodiafiltration (HDF) includes a variety of technologies and preparation of ultrapure dialysis fluid has made it possible to perform online HDF and its extensive alternatives. According to current statistics, 5.8% of ESRD patients are treated with HDF in Japan. The majority of these HDF treatments are performed using the central dialysis fluid delivery system (CDDS), this is because most Japanese clinicians and researchers consider that with CDDS it is easier to prepare substitution fluid; moreover, CDDS has economical advantages against single-patient dialysis machine (SPDM)-based counterparts. The water quality at each patient station (dialysis console) is regularly validated by bacterial culture (colony-forming units) and by measuring endotoxin concentration (ET). Since ET measurement takes much less time than bacterial culture, ET is often used as an indicator to verify the water quality for online use. Dialysis fluid with ET below the detection level (usually <0.001 EU/ml) is used for online substitution. In CDDS online HDF, since dialysis clinics must prepare not only the dialysis fluid but also the substitution fluid, they need to satisfy almost the same requirements as pharmaceutical water treatment factories do. The Japanese Society for Dialysis Therapy (JSDT) together with the Japanese Society for Hemodiafiltration (JS-HDF) is now preparing guidelines to meet all these necessary requirements on a worldwide basis. (c) 2009 S. Karger AG, Basel.

  7. NASA Cryogenic Propellant Systems Technology Development and Potential Opportunities for Discussion

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    2015-01-01

    Members of the eCryo Team are traveling to France to meet with CNES (Centre National d'Etudes Spatiales) on the benchmarking of CFM (Cryogenic Fluids Management) analytical models the week of January 26th, 2015. Mike Meyer is representing the Agency and eCryo Project and will conduct a conversation to explore future work. This slide package (28 charts and 3 movies) requires approval via a 1676. ISS data in this chart set has been copied from public websites.

  8. Miniature DMFCs with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.

  9. Fluid Power Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…

  10. Fluid Extravasation in Hip Arthroscopy: A Systematic Review.

    PubMed

    Ekhtiari, Seper; Haldane, Chloe E; de Sa, Darren; Simunovic, Nicole; Ayeni, Olufemi R

    2017-04-01

    The purpose of this systematic review was to (1) characterize cases of fluid extravasation during hip arthroscopy and explore common factors among them and (2) describe management strategies and outcomes of this complication. The databases MEDLINE, EMBASE, and PubMed were searched and screened in duplicate. Data regarding patient demographics, fluid management, presentation, management, and outcomes were collected. Study quality was assessed in duplicate using the Methodological Index for Non-Randomized Studies Criteria. Fourteen studies (1,286 patients) were included. Twenty-two occurrences of symptomatic fluid extravasation were reported in 21 patients (1.6% of total patients; one patient had fluid extravasation during 2 separate hip arthroscopies). Two studies of normal fluid extravasation in asymptomatic patients reported 1.13 to 3.06 L of extravasated fluid observed on computed tomography. Nine case studies were included, which provided detailed patient and surgical information. Of these 9 patients (10 cases) with a mean age of 38.2 years old (range, 15 to 55 years), 6 were female. Signs of fluid extravasation included abdominal distension (89%), hypothermia (56%), hypotension. and metabolic acidosis (33% each). Four patients required surgical intervention, while 3 underwent paracentesis. Two patients were managed conservatively. All patients stabilized and were discharged, with one patient reporting abdominal complaints at latest follow-up (length of follow-up unspecified). Fluid extravasation is a rare but potentially life-threatening complication of hip arthroscopy. It is important for surgeons and anaesthesiologists to be aware of its existence in order to recognize and manage it promptly. Most patients require interventional management by surgery or paracentesis, but some stabilize with conservative management. Level IV, systematic review of Level IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. TARGET/CRYOCHIL - THERMODYNAMIC ANALYSIS AND SUBSCALE MODELING OF SPACE-BASED ORBIT TRANSFER VEHICLE CRYOGENIC PROPELLANT RESUPPLY

    NASA Technical Reports Server (NTRS)

    Defelice, D. M.

    1994-01-01

    The resupply of the cryogenic propellants is an enabling technology for space-based transfer vehicles. As part of NASA Lewis's ongoing efforts in micro-gravity fluid management, thermodynamic analysis and subscale modeling techniques have been developed to support an on-orbit test bed for cryogenic fluid management technologies. These efforts have been incorporated into two FORTRAN programs, TARGET and CRYOCHIL. The TARGET code is used to determine the maximum temperature at which the filling of a given tank can be initiated and subsequently filled to a specified pressure and fill level without venting. The main process is the transfer of the energy stored in the thermal mass of the tank walls into the inflowing liquid. This process is modeled by examining the end state of the no-vent fill process. This state is assumed to be at thermal equilibrium between the tank and the fluid which is well mixed and saturated at the tank pressure. No specific assumptions are made as to the processes or the intermediate thermodynamic states during the filling. It is only assumed that the maximum tank pressure occurs at the final state. This assumption implies that, during the initial phases of the filling, the injected liquid must pass through the bulk vapor in such a way that it absorbs a sufficient amount of its superheat so that moderate tank pressures can be maintained. It is believed that this is an achievable design goal for liquid injection systems. TARGET can be run with any fluid for which the user has a properties data base. Currently it will only run for hydrogen, oxygen, and nitrogen since pressure-enthalpy data sets have been included for these fluids only. CRYOCHIL's primary function is to predict the optimum liquid charge to be injected for each of a series of charge-hold-vent chilldown cycles. This information can then be used with specified mass flow rates and valve response times to control a liquid injection system for tank chilldown operations. This will insure that the operations proceed quickly and efficiently. These programs are written in FORTRAN for batch execution on IBM 370 class mainframe computers. It requires 360K of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in EBCDIC format. TARGET/CRYOCHIL was developed in 1988.

  12. Management of pericardial fluid in blunt trauma: variability in practice and predictors of operative outcome in patients with computed tomography evidence of pericardial fluid

    PubMed Central

    Witt, Cordelie E.; Linnau, Ken F.; Maier, Ronald V.; Rivara, Frederick P.; Vavilala, Monica S.; Bulger, Eileen M.; Arbabi, Saman

    2017-01-01

    Background The objectives of this study were to assess current variability in management preferences for blunt trauma patients with pericardial fluid, and to identify characteristics associated with operative intervention for patients with pericardial fluid on admission computed tomography (CT) scan. Methods This was a mixed-methods study of blunt trauma patients with pericardial fluid. The first portion was a research survey of members of the Eastern Association for the Surgery of Trauma conducted in 2016, in which surgeons were presented with four clinical scenarios of blunt trauma patients with pericardial fluid. The second portion of the study was a retrospective evaluation of all blunt trauma patients ≥14 years treated at our Level I trauma center between 1/1/2010 and 11/1/2015 with pericardial fluid on admission CT scan. Results For the survey portion of our study, 393 surgeons responded (27% response rate). There was significant variability in management preferences for scenarios depicting trace pericardial fluid on CT with concerning hemodynamics, and for scenarios depicting hemopericardium intraoperatively. For the separate retrospective portion of our study, we identified 75 blunt trauma patients with pericardial fluid on admission CT scan. Seven underwent operative management; six of these had hypotension and/or electrocardiogram changes. In multivariable analysis, pericardial fluid amount was a significant predictor of receiving pericardial window (relative risk for one category increase in pericardial fluid amount: 3.99, 95% CI 1.47-10.81) but not of mortality. Conclusions There is significant variability in management preferences for patients with pericardial fluid from blunt trauma, indicating a need for evidence-based research. Our institutional data suggest that patients with minimal to small amounts of pericardial fluid without concerning clinical findings may be observed. Patients with moderate to large amounts of pericardial fluid who are clinically stable with normal hemodynamics may also appear appropriate for observation, although confirmation in larger studies is needed. Patients with hemodynamic instability should undergo operative exploration. Level of Evidence Level IV, Therapeutic/Care Management PMID:28129264

  13. Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management

    USGS Publications Warehouse

    McAnally, W.H.; Teeter, A.; Schoellhamer, David H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.

    2007-01-01

    Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples—the Atchafalaya Bar Channel and Savannah Harbor—illustrate the use of measurements and management of fluid mud.

  14. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    NASA Technical Reports Server (NTRS)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  15. Fluid Flow Technology that Measures Up

    NASA Technical Reports Server (NTRS)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  16. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  17. Interstitial Glucose and Physical Exercise in Type 1 Diabetes: Integrative Physiology, Technology, and the Gap In-Between

    PubMed Central

    Moser, Othmar; Yardley, Jane E.; Bracken, Richard M.

    2018-01-01

    Continuous and flash glucose monitoring systems measure interstitial fluid glucose concentrations within a body compartment that is dramatically altered by posture and is responsive to the physiological and metabolic changes that enable exercise performance in individuals with type 1 diabetes. Body fluid redistribution within the interstitial compartment, alterations in interstitial fluid volume, changes in rate and direction of fluid flow between the vasculature, interstitium and lymphatics, as well as alterations in the rate of glucose production and uptake by exercising tissues, make for caution when interpreting device read-outs in a rapidly changing internal environment during acute exercise. We present an understanding of the physiological and metabolic changes taking place with acute exercise and detail the blood and interstitial glucose responses with different forms of exercise, namely sustained endurance, high-intensity, and strength exercises in individuals with type 1 diabetes. Further, we detail novel technical information on currently available patient devices. As more health services and insurance companies advocate their use, understanding continuous and flash glucose monitoring for its strengths and limitations may offer more confidence for patients aiming to manage glycemia around exercise. PMID:29342932

  18. Endosonography in the diagnosis and management of pancreatic cysts

    PubMed Central

    Kadiyala, Vivek; Lee, Linda S

    2015-01-01

    Rapid advances in radiologic technology and increased cross-sectional imaging have led to a sharp rise in incidental discoveries of pancreatic cystic lesions. These cystic lesions include non-neoplastic cysts with no risk of malignancy, neoplastic non-mucinous serous cystadenomas with little or no risk of malignancy, as well as neoplastic mucinous cysts and solid pseudopapillary neoplasms both with varying risk of malignancy. Accurate diagnosis is imperative as management is guided by symptoms and risk of malignancy. Endoscopic ultrasound (EUS) allows high resolution evaluation of cyst morphology and precise guidance for fine needle aspiration (FNA) of cyst fluid for cytological, chemical and molecular analysis. Initially, clinical evaluation and radiologic imaging, preferably with magnetic resonance imaging of the pancreas and magnetic resonance cholangiopancreatography, are performed. In asymptomatic patients where diagnosis is unclear and malignant risk is indeterminate, EUS-FNA should be used to confirm the presence or absence of high-risk features, differentiate mucinous from non-mucinous lesions, and diagnose malignancy. After analyzing the cyst fluid for viscosity, cyst fluid carcinoembryonic antigen, amylase, and cyst wall cytology should be obtained. DNA analysis may add useful information in diagnosing mucinous cysts when the previous studies are indeterminate. New molecular biomarkers are being investigated to improve diagnostic capabilities and management decisions in these challenging cystic lesions. Current guidelines recommend surgical pancreatic resection as the standard of care for symptomatic cysts and those with high-risk features associated with malignancy. EUS-guided cyst ablation is a promising minimally invasive, relatively low-risk alternative to both surgery and surveillance. PMID:25789091

  19. Electrical Conductivity Distributions in Discrete Fluid-Filled Fractures

    NASA Astrophysics Data System (ADS)

    James, S. C.; Ahmmed, B.; Knox, H. A.; Johnson, T.; Dunbar, J. A.

    2017-12-01

    It is commonly asserted that hydraulic fracturing enhances permeability by generating new fractures in the reservoir. Furthermore, it is assumed that in the fractured system predominant flow occurs in these newly formed and pre-existing fractures. Among the phenomenology that remains enigmatic are fluid distributions inside fractures. Therefore, determining fluid distribution and their associated temporal and spatial evolution in fractures is critical for safe and efficient hydraulic fracturing. Previous studies have used both forward modeling and inversion of electrical data to show that a geologic system consisting of fluid filled fractures has a conductivity distribution, where fractures act as electrically conductive bodies when the fluids are more conductive than the host material. We will use electrical inversion for estimating electrical conductivity distribution within multiple fractures from synthetic and measured data. Specifically, we will use data and well geometries from an experiment performed at Blue Canyon Dome in Socorro, NM, which was used as a study site for subsurface technology, engineering, and research (SubTER) funded by DOE. This project used a central borehole for energetically stimulating the system and four monitoring boreholes, emplaced in the cardinal directions. The electrical data taken during this project used 16 temporary electrodes deployed in the stimulation borehole and 64 permanent electrodes in the monitoring wells (16 each). We present results derived using E4D from scenarios with two discrete fractures, thereby discovering the electric potential response of both spatially and temporarily variant fluid distribution and the resolution of fluid and fracture boundaries. These two fractures have dimensions of 3m × 0.01m × 7m and are separated by 1m. These results can be used to develop stimulation and flow tests at the meso-scale that will be important for model validation. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  20. Standard on microbiological management of fluids for hemodialysis and related therapies by the Japanese Society for Dialysis Therapy 2008.

    PubMed

    Kawanishi, Hideki; Akiba, Takashi; Masakane, Ikuto; Tomo, Tadashi; Mineshima, Michio; Kawasaki, Tadayuki; Hirakata, Hideki; Akizawa, Tadao

    2009-04-01

    The Committee of Scientific Academy of the Japanese Society for Dialysis Therapy (JSDT) proposes a new standard on microbiological management of fluids for hemodialysis and related therapies. This standard is within the scope of the International Organization for Standardization (ISO), which is currently under revision. This standard is to be applied to the central dialysis fluid delivery systems (CDDS), which are widely used in Japan. In this standard, microbiological qualities for dialysis water and dialysis fluids are clearly defined by endotoxin level and bacterial count. The qualities of dialysis fluids were classified into three levels: standard, ultrapure, and online prepared substitution fluid. In addition, the therapeutic application of each dialysis fluid is clarified. Since high-performance dialyzers are frequently used in Japan, the standard recommends that ultrapure dialysis fluid be used for all dialysis modalities at all dialysis facilities. It also recommends that the dialysis equipment safety management committee at each facility should validate the microbiological qualities of online prepared substitution fluid.

  1. Roundtable debate: Controversies in the management of the septic patient – desperately seeking consensus

    PubMed Central

    Waxman, Aaron B; Ward, Nicholas; Thompson, Taylor; Lilly, Craig M; Lisbon, Alan; Hill, Nicholas; Nasraway, Stanley A; Heard, Stephen; Corwin, Howard; Levy, Mitchell

    2005-01-01

    Despite continuous advances in technologic and pharmacologic management, the mortality rate from septic shock remains high. Care of patients with sepsis includes measures to support the circulatory system and treat the underlying infection. There is a substantial body of knowledge indicating that fluid resuscitation, vasopressors, and antibiotics accomplish these goals. Recent clinical trials have provided new information on the addition of individual adjuvant therapies. Consensus on how current therapies should be prescribed is lacking. We present the reasoning and preferences of a group of intensivists who met to discuss the management of an actual case. The focus is on management, with emphasis on the criteria by which treatment decisions are made. It is clear from the discussion that there are areas where there is agreement and areas where opinions diverge. This presentation is intended to show how experienced intensivists apply clinical science to their practice of critical care medicine. PMID:15693960

  2. [Preoperative fluid management contributes to the prevention of intraoperative hypothermia].

    PubMed

    Yatabe, Tomoaki; Yokoyama, Masataka

    2011-07-01

    Intraoperative hypothermia causes several unfavorable events such as surgical site infection and cardiovascular events. Therefore, during anesthesia, temperature is routinely regulated, mainly by using external heating devices. Recently, oral amino acid intake and intravenous amino acid or fructose infusion have been reported to prevent intraoperative hypothermia during general and regional anesthesia. Diet (nutrient)-induced thermogenesis is considered to help prevent intraoperative hypothermia. Since the Enhanced Recovery After Surgery (ERAS) protocol has been introduced, it has been used in perioperative management in many hospitals. Prevention of intraoperative hypothermia is included in this protocol. According to the protocol, anesthesiologists play an important role in both intraoperative and perioperative management. Management of optimal body temperature by preoperative fluid management alone may be difficult. To this end, preoperative fluid management and nutrient management strategies such as preoperative oral fluid intake and carbohydrate loading have the potential to contribute to the prevention of intraoperative hypothermia.

  3. Prospects of Supercritical Fluids in Realizing Graphene-Based Functional Materials.

    PubMed

    Padmajan Sasikala, Suchithra; Poulin, Philippe; Aymonier, Cyril

    2016-04-13

    Supercritical-fluids science and technology predate all the approaches that are currently established for graphene production by several decades in advanced materials design. However, it has only recently been proposed as a plausible approach for graphene processing. Since then, supercritical fluids have emerged into contention as an alternative to existing technologies because of their scalability and versatility in processing graphene materials, which include composites, aerogels, and foams. Here, an overview is presented of such materials prepared through supercritical fluids from an advanced materials science standpoint, with a discussion on their fundamental properties and technological applications. The benefits of supercritical-fluid processing over conventional liquid-phase processing are presented. The benefits include not only better performances for advanced applications but also environmental issues associated with the synthesis process. Nevertheless, the limitations of supercritical-fluid processing are also stressed, along with challenges that are still faced toward the achievement of the great expectations from graphene materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome*.

    PubMed

    Grissom, Colin K; Hirshberg, Eliotte L; Dickerson, Justin B; Brown, Samuel M; Lanspa, Michael J; Liu, Kathleen D; Schoenfeld, David; Tidswell, Mark; Hite, R Duncan; Rock, Peter; Miller, Russell R; Morris, Alan H

    2015-02-01

    In the Fluid and Catheter Treatment Trial (FACTT) of the National Institutes of Health Acute Respiratory Distress Syndrome Network, a conservative fluid protocol (FACTT Conservative) resulted in a lower cumulative fluid balance and better outcomes than a liberal fluid protocol (FACTT Liberal). Subsequent Acute Respiratory Distress Syndrome Network studies used a simplified conservative fluid protocol (FACTT Lite). The objective of this study was to compare the performance of FACTT Lite, FACTT Conservative, and FACTT Liberal protocols. Retrospective comparison of FACTT Lite, FACTT Conservative, and FACTT Liberal. Primary outcome was cumulative fluid balance over 7 days. Secondary outcomes were 60-day adjusted mortality and ventilator-free days through day 28. Safety outcomes were prevalence of acute kidney injury and new shock. ICUs of Acute Respiratory Distress Syndrome Network participating hospitals. Five hundred three subjects managed with FACTT Conservative, 497 subjects managed with FACTT Liberal, and 1,124 subjects managed with FACTT Lite. Fluid management by protocol. Cumulative fluid balance was 1,918 ± 323 mL in FACTT Lite, -136 ± 491 mL in FACTT Conservative, and 6,992 ± 502 mL in FACTT Liberal (p < 0.001). Mortality was not different between groups (24% in FACTT Lite, 25% in FACTT Conservative and Liberal, p = 0.84). Ventilator-free days in FACTT Lite (14.9 ± 0.3) were equivalent to FACTT Conservative (14.6 ± 0.5) (p = 0.61) and greater than in FACTT Liberal (12.1 ± 0.5, p < 0.001 vs Lite). Acute kidney injury prevalence was 58% in FACTT Lite and 57% in FACTT Conservative (p = 0.72). Prevalence of new shock in FACTT Lite (9%) was lower than in FACTT Conservative (13%) (p = 0.007 vs Lite) and similar to FACTT Liberal (11%) (p = 0.18 vs Lite). FACTT Lite had a greater cumulative fluid balance than FACTT Conservative but had equivalent clinical and safety outcomes. FACTT Lite is an alternative to FACTT Conservative for fluid management in Acute Respiratory Distress Syndrome.

  5. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  6. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration

  7. Conceptual Design and Analysis of Orbital Cryogenic Liquid Storage and Supply Systems.

    DTIC Science & Technology

    1981-05-01

    MCR -79-561, Martin Marietta Corporation, June 1979. 5. Tegart, J. R.: Hydrodynamic Analysis Report - Cryogenic Fluid Management...Experiment, MCR -79-563, Martin Marietta Corporation, June 1979, (Contract NAS3-2 1591). 6. Gille, J. P.: Thermal Analysis Report - Cryogenic Fluid Management...Analysis Report - Cryogenic Fluid Management Experiment, MCR -79-567, Martin Marietta Corporation, June 1979, (Contract NAS3-21591). 8. "Low

  8. Boiler and Pressure Balls Monopropellant Thermal Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D. (Inventor)

    2009-01-01

    The proposed technology is a rocket engine cycle utilizing as the propulsive fluid a low molecular weight, cryogenic fluid, typically liquid hydrogen, pressure driven, heated, and expelled through a nozzle to generate high velocity and high specific impulse discharge gas. The proposed technology feeds the propellant through the engine cycle without the use of a separate pressurization fluid and without the use of turbomachinery. Advantages of the proposed technology are found in those elements of state-of-the-art systems that it avoids. It does not require a separate pressurization fluid or a thick-walled primary propellant tank as is typically required for a classical pressure-fed system. Further, it does not require the acceptance of intrinsic reliability risks associated with the use of turbomachinery

  9. Perioperative goal-directed haemodynamic therapy based on flow parameters: a concept in evolution.

    PubMed

    Meng, L; Heerdt, P M

    2016-12-01

    Haemodynamic management incorporating direct or surrogate stroke volume monitoring has experienced a rapid evolution, because of emergence of the "goal-directed therapy" concept and technological developments aimed at providing a parameter leading to the goal. Nonetheless, consensus on both definitions of the ideal "goal" and strategies for achieving it remain elusive. For this review, we first consider basic physiological and patient monitoring factors relevant to the concept of "fluid responsiveness", and then focus upon randomized controlled trials and meta-analyses involving goal-directed haemodynamic therapy based on various flow parameters. Finally, we discuss the current status of noninvasive methods for monitoring fluid responsiveness. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications.

    PubMed

    Da Broi, M G; Giorgi, V S I; Wang, F; Keefe, D L; Albertini, D; Navarro, P A

    2018-03-02

    An equilibrium needs to be established by the cellular and acellular components of the ovarian follicle if developmental competence is to be acquired by the oocyte. Both cumulus cells (CCs) and follicular fluid (FF) are critical determinants for oocyte quality. Understanding how CCs and FF influence oocyte quality in the presence of deleterious systemic or pelvic conditions may impact clinical decisions in the course of managing infertility. Given that the functional integrities of FF and CCs are susceptible to concurrent pathological conditions, it is important to understand how pathophysiological factors influence natural fertility and the outcomes of pregnancy arising from the use of assisted reproduction technologies (ARTs). Accordingly, this review discusses the roles of CCs and FF in ensuring oocyte competence and present new insights on pathological conditions that may interfere with oocyte quality by altering the intrafollicular environment.

  11. Fluid management in acute kidney injury.

    PubMed

    Perner, Anders; Prowle, John; Joannidis, Michael; Young, Paul; Hjortrup, Peter B; Pettilä, Ville

    2017-06-01

    Acute kidney injury (AKI) and fluids are closely linked through oliguria, which is a marker of the former and a trigger for administration of the latter. Recent progress in this field has challenged the physiological and clinical rational of using oliguria as a trigger for the administration of fluid and brought attention to the delicate balance between benefits and harms of different aspects of fluid management in critically ill patients, in particular those with AKI. This narrative review addresses various aspects of fluid management in AKI outlining physiological aspects, the effects of crystalloids and colloids on kidney function and the effect of various resuscitation and de-resuscitation strategies on the course and outcome of AKI.

  12. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  13. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  14. Present Practice of Using Nautical Depth to Manage Navigation Channels in the Presence of Fluid Mud

    DTIC Science & Technology

    2017-05-01

    material surfaces cannot be interpreted reliably unless other correlating information is developed. Surveying of fluid mud properties. At some locations...depth to manage navigation channels and ports requires a mud property that determines a navigability criteria, a practical method for surveying that...for managing navigation channels, (3) issues related to conducting hydrographic surveying in waterways with fluid mud bottoms, (4) the newest

  15. Computational Fluid Dynamics: Past, Present, And Future

    NASA Technical Reports Server (NTRS)

    Kutler, Paul

    1988-01-01

    Paper reviews development of computational fluid dynamics and explores future prospects of technology. Report covers such topics as computer technology, turbulence, development of solution methodology, developemnt of algorithms, definition of flow geometries, generation of computational grids, and pre- and post-data processing.

  16. Optical Method For Monitoring Tool Control For Green Burnishing With Using Of Algorithms With Adaptive Settings

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. A.; Grigoriev, S. N.; Bobrovskij, I. N.; Melnikov, P. A.; Bobrovskij, N. M.

    2017-05-01

    With regard to the complexity of the new technology and increase its reliability requirements laboriousness of control operations in industrial quality control systems increases significantly. The importance of quality management control due to the fact that its promotes the correct use of production conditions, the relevant requirements are required. Digital image processing allows to reach a new technological level of production (new technological way). The most complicated automated interpretation of information is the basis for decision-making in the management of production processes. In the case of surface analysis of tools used for processing with the using of metalworking fluids (MWF) it is more complicated. The authors suggest new algorithm for optical inspection of the wear of the cylinder tool for burnishing, which used in surface plastic deformation without using of MWF. The main advantage of proposed algorithm is the possibility of automatic recognition of images of burnisher tool with the subsequent allocation of its boundaries, finding a working surface and automatically allocating the defects and wear area. Software that implements the algorithm was developed by the authors in Matlab programming environment, but can be implemented using other programming languages.

  17. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2008-02-14

    Solid-state, crystallographic purity and careful monitoring of the polymorphism of drugs and excipients are currently an integral part of the development of modern drug delivery systems. The reproducible preparation of organic crystals in a specific form and size is a major issue that must be addressed. A recent approach for obtaining pharmaceutical materials in pure physical form is represented by the technologies based on supercritical fluids. The present work aims to provide a critical review of the recent advances in the use of supercritical fluids for the preparation and control of the specific physical form of pharmaceutical substances with particular attention to those fluids used for drug delivery systems. These innovative technologies are highly promising for future application in particle design and engineering.

  18. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  19. Historical perspectives - The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many natural space nuclear power and propulsion programs.

  20. Historical perspectives: The role of the NASA Lewis Research Center in the national space nuclear power programs

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Sovie, R. J.

    1991-01-01

    The history of the NASA Lewis Research Center's role in space nuclear power programs is reviewed. Lewis has provided leadership in research, development, and the advancement of space power and propulsion systems. Lewis' pioneering efforts in nuclear reactor technology, shielding, high temperature materials, fluid dynamics, heat transfer, mechanical and direct energy conversion, high-energy propellants, electric propulsion and high performance rocket fuels and nozzles have led to significant technical and management roles in many national space nuclear power and propulsion programs.

  1. Gearing up to the factory of the future

    NASA Astrophysics Data System (ADS)

    Godfrey, D. E.

    1985-01-01

    The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.

  2. Emerging Technologies for Real-Time Continuous Monitoring of Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.

    2017-12-01

    Assessment of a well's integrity has traditionally been carried out through periodic wireline logging, often performed only when an operational problem was noted at the surface. There are several emerging technologies that can be installed permanently as part of the well completion and offer the ability to monitor operations while providing continuous indicators to evaluate the structural health of a well. Permanent behind casing instrumentation, such as pressure and temperature gauges can monitor for behind casing leakage. Similarly, fiber-optic distributed temperature and acoustic sensing provide additional information for assessing unwanted movement of fluid, which is indicative of problems either inside or outside of casing. Furthermore, these technologies offer the benefit of providing real-time continuous streams of information that serve as leading-indicators of wellbore problems to allow for early intervention. Additional research is still needed to develop best practices for the installation and operation of these technologies, as they increase cost and add additional risks that must be managed.

  3. RRM3 Fluid Management Device

    NASA Technical Reports Server (NTRS)

    Barfknecht, P.; Benson, D.; Boyle, R.; DeLee, C.; DiPirro, M.; Francis, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; hide

    2015-01-01

    The current development progress of the fluid management device (FMD) for the Robotic Resupply Mission 3 (RRM3) cryogen source Dewar is described. RRM3 is an on-orbit cryogenic transfer experiment payload for the International Space Station. The fluid management device is a key component of the source Dewar to ensure the ullage bubble is located away from the outlet during transfer. The FMD also facilitates demonstration of radio frequency mass gauging within the source Dewar. The preliminary design of the RRM3 FMD is a number of concentric cones of Mylar which maximizes the volume of liquid in contact with the FMD in the source Dewar. This paper describes the design of the fluid management device and progress of hardware development

  4. An approach to transfusion and hemorrhage in trauma: current perspectives on restrictive transfusion strategies

    PubMed Central

    Tien, Homer; Nascimento, Bartolomeu; Callum, Jeannie; Rizoli, Sandro

    2007-01-01

    Hemorrhagic shock is a leading cause of death in trauma patients. Surgical control of bleeding and fluid resuscitation with both crystalloid and blood products remain the mainstay of therapy for injured patients with bleeding. However, there has been a recent re-evaluation of transfusion practice. Both the fear of transmissible disease and the costs of transfusing blood products have led to increasingly restrictive transfusion practices. A small percentage of trauma patients require massive transfusion. These patients are complex and difficult to manage, and clinicians must act quickly to save them. There is little evidence to help guide clinical transfusion decisions in these patients. A rational approach to using blood products requires an understanding of the end points of resuscitation. Resuscitation with fluids and red cells is necessary to improve perfusion and oxygen delivery to tissues. Avoiding overtransfusion is key, however, because transfusion is also associated with significant risks. This trend toward reducing allogenic blood exposure will likely continue. New technologies that have the potential of reducing blood loss and transfusion requirements in trauma patients with massive bleeding are being developed, and similar old technologies are being reapplied. PMID:17568492

  5. Management of non-adherence to fluid intake restrictions in hemodialysis patients in a tertiary hospital: a best practice implementation project.

    PubMed

    Jia, Shoumei; Huang, Bihong; Chu, Yuanqian; Lu, Yuhua; McArthur, Alexa

    2016-08-01

    Non-adherence to fluid-intake restrictions is one of the most common problems for hemodialysis (HD) patients. A combined approach that involves patients, healthcare professionals and caregiver inputs based on best practice is important for enhancing adherence within a busy health system. The aim of this project was to promote evidence-based practice in the management of fluid-intake restrictions among HD patients in a HD center. Six evidence-based criteria developed by the Joanna Briggs Institute were used as a basis for audits undertaken in the Hemodialysis Center of Huashan Hospital, Shanghai, mainly focusing on nurse education, fluid-intake management by patients and the role of caregivers in assisting with fluid-intake management by patients. The project included three phases and was conducted over 5 months. The Joanna Briggs Institute Practical Application of Clinical Evidence System and Getting Research into Practice audit tools for promoting change in health practice were used to examine compliance with the criteria before and after the implementation of best practice. Results from pre- and post implementation audits indicated that the compliance rates of four criteria reached 100% after the implementation of various strategies. One criterion (patients' self-monitoring) resulted in a compliance rate of 73.33%. One other criterion (patients' medical documentation) was maintained at 100% compliance. Patients' adherence to fluid intake, knowledge and attitude to self-management also improved significantly in the post implementation audit. This project achieved a significant improvement in evidence-based practice for the management of non-adherence to fluid-intake restrictions in HD patients. An increase in the number of HD patients found to be adherent to fluid-intake restrictions was reported during this process.

  6. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    This conference publication includes various abstracts and presentations given at the 13th Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology held at the George C. Marshall Space Flight Center April 25-27 1995. The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  7. Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keicher, David M.; Cook, Adam W.

    The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capabilitymore » in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.« less

  8. Modern supercritical fluid technology for food applications.

    PubMed

    King, Jerry W

    2014-01-01

    This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.

  9. Computational fluid dynamics for propulsion technology: Geometric grid visualization in CFD-based propulsion technology research

    NASA Technical Reports Server (NTRS)

    Ziebarth, John P.; Meyer, Doug

    1992-01-01

    The coordination is examined of necessary resources, facilities, and special personnel to provide technical integration activities in the area of computational fluid dynamics applied to propulsion technology. Involved is the coordination of CFD activities between government, industry, and universities. Current geometry modeling, grid generation, and graphical methods are established to use in the analysis of CFD design methodologies.

  10. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  11. NASA Fluid Lensing & MiDAR - Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    Piti's Tepungan Bay and Tumon Bay, two of five marine preserves in Guam, have not been mapped to a level of detail sufficient to support proposed management strategies. This project addresses this gap by providing high resolution maps to promote sustainable, responsible use of the area while protecting natural resources. Dr. Chirayath, a research scientist at the NASA Ames Laboratory, developed a theoretical model and algorithm called 'Fluid Lensing'. Fluid lensing removes optical distortions caused by moving water, improving the clarity of the images taken of the corals below the surface. We will also be using MiDAR, a next-generation remote sensing instrument that provides real-time multispectral video using an array of LED emitters coupled with NASA's FluidCam Imaging System, which may assist Guam's coral reef response team in understanding the severity and magnitude of coral bleaching events. This project will produce a 3D orthorectified model of the shallow water coral reef ecosystems in Tumon Bay and Piti marine preserves. These 3D models may be printed, creating a tactile diorama and increasing understanding of coral reefs among various audiences, including key decision makers. More importantly, the final data products can enable accurate and quantitative health assessment capabilities for coral reef ecosystems.

  12. Endoscopic Management of Pancreatic Fluid Collections in Children.

    PubMed

    Nabi, Zaheer; Talukdar, Rupjyoti; Reddy, D Nageshwar

    2017-07-15

    The incidence of acute pancreatitis in children has increased over the last few decades. The development of pancreatic fluid collection is not uncommon after severe acute pancreatitis, although its natural course in children and adolescents is poorly understood. Asymptomatic fluid collections can be safely observed without any intervention. However, the presence of clinically significant symptoms warrants the drainage of these fluid collections. Endoscopic management of pancreatic fluid collection is safe and effective in adults. The use of endoscopic ultrasound (EUS)-guided procedure has improved the efficacy and safety of drainage of pancreatic fluid collections, which have not been well studied in pediatric populations, barring a scant volume of small case series. Excellent results of EUS-guided drainage in adult patients also need to be verified in children and adolescents. Endoprostheses used to drain pancreatic fluid collections include plastic and metal stents. Metal stents have wider lumens and become clogged less often than plastic stents. Fully covered metal stents specifically designed for pancreatic fluid collection are available, and initial studies have shown encouraging results in adult patients. The future of endoscopic management of pancreatic fluid collection in children appears promising. Prospective studies with larger sample sizes are required to establish their definitive role in the pediatric age group.

  13. Intravenous fluid temperature management by infrared thermometer.

    PubMed

    Lapostolle, Frédéric; Catineau, Jean; Le Toumelin, Philippe; Proust, Clément; Garrigue, Bruno; Galinski, Michel; Adnet, Frédéric

    2006-03-01

    The management of intravenous (IV) fluid temperature is a daily challenge in critical care, anesthesiology, and emergency medicine. Infusion of IV fluids at the right temperature partly influences clinical outcomes of critically ill patients. Nowadays, intravenous fluid temperature is poorly managed, as no suitable device is routinely available. Infrared (IR) thermometers have been recently developed for industrial, personal, or medical purposes. The aim of this study was to evaluate the accuracy of an IR thermometer in measuring temperature of warmed and cooled infusion fluids in fluid bags. This study compared temperatures simultaneously recorded by an infrared thermometer and a temperature sensor. Temperatures of warmed (41 degrees C) and cooled (4 degrees C) infusion fluids in fluid bags were recorded by 2 independent operators every minute until IV bags' temperature reached ambient temperature. The relation curve was established with 576 measures. Temperature measures performed with an IR thermometer were perfectly linear and perfectly correlated with the reference method (R(2) = 0.995, P < 10(-5)). Infrared thermometers are efficient to measure IV fluid bag temperature in the range of temperatures used in clinical practice. As these devices are easy to use and inexpensive, they could be largely used in critical care, anesthesiology, or emergency medicine.

  14. CFD analysis of hypersonic, chemically reacting flow fields

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1993-01-01

    Design studies are underway for a variety of hypersonic flight vehicles. The National Aero-Space Plane will provide a reusable, single-stage-to-orbit capability for routine access to low earth orbit. Flight-capable satellites will dip into the atmosphere to maneuver to new orbits, while planetary probes will decelerate at their destination by atmospheric aerobraking. To supplement limited experimental capabilities in the hypersonic regime, computational fluid dynamics (CFD) is being used to analyze the flow about these configurations. The governing equations include fluid dynamic as well as chemical species equations, which are being solved with new, robust numerical algorithms. Examples of CFD applications to hypersonic vehicles suggest an important role this technology will play in the development of future aerospace systems. The computational resources needed to obtain solutions are large, but solution adaptive grids, convergence acceleration, and parallel processing may make run times manageable.

  15. MOBILE ON-SITE RECYCLING OF METALWORKING FLUIDS

    EPA Science Inventory

    Product quality, waste reduction, and economic issues were evaluated for a technology designed to recycle metalworking fluids. mulsion-type fluids were tested at two sites and a synthetic fluid was tested at a third site. he specific recycling unit evaluated is based on the techn...

  16. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  17. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  18. Guiding principles of fluid and volume therapy.

    PubMed

    Aditianingsih, Dita; George, Yohanes W H

    2014-09-01

    Fluid therapy is a core concept in the management of perioperative and critically ill patients for maintenance of intravascular volume and organ perfusion. Recent evidence regarding the vascular barrier and its role in terms of vascular leakage has led to a new concept for fluid administration. The choice of fluid used should be based on the fluid composition and the underlying pathophysiology of the patient. Avoidance of both hypo- and hypervolaemia is essential when treating circulatory failure. In daily practice, the assessment of individual thresholds in order to optimize cardiac preload and avoid hypovolaemia or deleterious fluid overload remains a challenge. Liberal versus restrictive fluid management has been challenged by recent evidence, and the ideal approach appears to be goal-directed fluid therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application.

    PubMed

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced "gold-standard" for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system's measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures.

  20. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management.

    PubMed

    Dunn, Amber L; Heavner, James E; Racz, Gabor; Day, Miles

    2010-01-01

    Hyaluronidase for injection is an adjuvant that increases the absorption and dispersion of other injected drugs or fluids (hypodermoclysis); and improves absorption of radiopaque agents in subcutaneous urography. Ovine hyaluronidase is approved for the treatment of vitreous hemorrhages. We review approved indications for injectable hyaluronidase and off-label uses as well as safety, efficacy and dosing information. We compare formulations made using animal tissue extracts versus the novel human recombinant type. Emphasis is on the human recombinant form and off-label uses in patients with chronic pain. Hyaluronidase reduces the obstacle that the interstitial matrix presents to fluid and drug transfer. It is a mucolytic enzyme derived from mammalian tissue or synthesized in vitro in pure form (rHuPH20) using recombinant technology. Hyaluronidase is used off-label in chronic pain management to facilitate removal of epidural adhesions with mechanical and/or hydrostatic forces and to treat edema. The recently introduced rHuPH20 formulation obviates any risk of allergic reaction or prion-related illnesses. Reduction of edema by hyaluronidase and facilitation of epidural adhesioloysis may be beneficial in treating certain chronic painful conditions.

  1. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  2. Freeform Fluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J; Richardson, Bradley S; Lind, Randall F

    This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of thesemore » two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.« less

  3. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  4. Clinical solid waste management practices and its impact on human health and environment - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Santhanam, Amutha; Nik Norulaini, N.A.

    2011-04-15

    Research highlights: > Appropriate waste management technology for safe handling and disposal of clinical solid waste. > Infectious risk assessment on unsafe handling of clinical solid waste. > Recycling-reuse program of clinical solid waste materials. > Effective sterilization technology to reduce exposure of infectious risk. - Abstract: The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This articlemore » summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.« less

  5. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are beinglhave been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  6. Development and Deployment of the Mobile Arm Retrieval System (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Christopher A.; Landon, Matthew R.; Hanson, Carl E.

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan [1]. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012. (authors)« less

  7. DEVELOPMENT AND DEPLOYMENT OF THE MOBILE ARM RETRIEVAL SYSTEM (MARS) - 12187

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BURKE CA; LANDON MR; HANSON CE

    Washington River Protection Solutions (WRPS) is developing and deploying Mobile Arm Retrieval System (MARS) technologies solutions to support retrieval of radioactive and chemical waste from underground single shell storage tanks (SST) located at the Hanford Site, which is near Richland, Washington. WRPS has developed the MARS using a standardized platform that is capable of deploying multiple retrieval technologies. To date, WRPS, working with their mentor-protege company, Columbia Energy and Environmental Services (CEES), has developed two retrieval mechanisms, MARS-Sluicing (MARS-S) and MARS-Vacuum (MARS-V). MARS-S uses pressurized fluids routed through spray nozzles to mobilize waste materials to a centrally located slurry pumpmore » (deployed in 2011). MARS-V uses pressurized fluids routed through an eductor nozzle. The eductor nozzle allows a vacuum to be drawn on the waste materials. The vacuum allows the waste materials to be moved to an in-tank vessel, then extracted from the SST and subsequently pumped to newer and safer double shell tanks (DST) for storage until the waste is treated for disposal. The MARS-S system is targeted for sound SSTs (i.e., non leaking tanks). The MARS-V is targeted for assumed leaking tanks or those tanks that are of questionable integrity. Both versions of MARS are being/have been developed in compliance with WRPS's TFC-PLN-90, Technology Development Management Plan. TFC-PLN-90 includes a phased approach to design, testing, and ultimate deployment of new technologies. The MARS-V is scheduled to be deployed in tank 241-C-105 in late 2012.« less

  8. CURTIS TAYLOR, PRESIDENT OF LINC RESEARCH CORP.

    NASA Image and Video Library

    2016-04-27

    CURTIS O. TAYLOR, PRESIDENT OF LINC RESEARCH CORP, (L), AND JEFF LINDNER, CHIEF ENGINEER, POSE WITH HARDWARE FOR THEIR PATENTED TECHNOLOGY, FLUID STRUCTURE COUPLING, WHICH USES SIMPLE PHYSICS TO DAMPEN POTENTIALLY HARMFUL SHAKING IN STRUCTURES. INSTALLATION OF THE FLUID STRUCTURE COUPLING TECHNOLOGY IN A BUILDING WILL TAKE PLACE IN SUMMER OF 2016.

  9. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury.

    PubMed

    Vender, John; Waller, Jennifer; Dhandapani, Krishnan; McDonnell, Dennis

    2011-08-01

    Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.

  10. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  11. Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.

    2008-07-29

    Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less

  12. Managing Chemotherapy Side Effects: Swelling (Fluid Retention)

    MedlinePlus

    N ational C ancer I nstitute Managing Chemotherapy Side Effects Swelling (Fluid retention) “My hands and feet were swollen and puffy. My nurse helped me understand why I had to stop eating salty ...

  13. Supercritical Fluid Facilitated Growth of Copper and Aluminum Oxide Nanoparticles

    ERIC Educational Resources Information Center

    Williams, Geoffrey L.; Vohs, Jason K.; Brege, Jonathan J.; Fahlman, Bradley D.

    2005-01-01

    Supercritical fluids (SCFs) possess properties that are intermediate between liquids and gases. The combination of supercritical fluid technology with advanced characterization techniques such as electron microscopy provided a practical and rewarding undergraduate laboratory experiment.

  14. Study of helium transfer technology for STICCR: Fluid management

    NASA Technical Reports Server (NTRS)

    Frank, D. J.; Yuan, S. W. K.; Grove, R. K.; Lheureux, J. M.

    1987-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long life cryogenically cooled space based telescope for infrared astronomy from 2 to 700 microns currently under study and planned for launch in the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. Candidates are reviewed for a liquid management device to be used in the resupply of liquid helium, and for the selection of an appropriate candidate.

  15. Research and Technology 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.

  16. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  17. Multimodal Imaging in Diabetic Macular Edema.

    PubMed

    Acón, Dhariana; Wu, Lihteh

    2018-01-01

    Throughout ophthalmic history it has been shown that progress has gone hand in hand with technological breakthroughs. In the past, fluorescein angiography and fundus photographs were the most commonly used imaging modalities in the management of diabetic macular edema (DME). Today, despite the moderate correlation between macular thickness and functional outcomes, spectral domain optical coherence tomography (SD-OCT) has become the DME workhorse in clinical practice. Several SD-OCT biomarkers have been looked at including presence of epiretinal membrane, vitreomacular adhesion, disorganization of the inner retinal layers, central macular thickness, integrity of the ellipsoid layer, and subretinal fluid, among others. Emerging imaging modalities include fundus autofluorescence, macular pigment optical density, fluorescence lifetime imaging ophthalmoscopy, OCT angiography, and adaptive optics. Technological advances in imaging of the posterior segment of the eye have enabled ophthalmologists to develop hypotheses about pathological mechanisms of disease, monitor disease progression, and assess response to treatment. Spectral domain OCT is the most commonly performed imaging modality in the management of DME. However, reliable biomarkers have yet to be identified. Machine learning may provide treatment algorithms based on multimodal imaging. Copyright 2018 Asia-Pacific Academy of Ophthalmology.

  18. [Perioperative fluid therapy in perforated ulcers].

    PubMed

    Bjerre, Catherine Collin; Holte, Kathrine

    2009-04-27

    Surgery for perforated ulcers is one of the most common emergency surgical procedures. Approximately 400 procedures are performed each year in Denmark and mortality is high, reaching close to 30% at 30 days postoperatively. The importance of perioperative fluid administration during the perioperative course remains unclear. The purpose of this study is to describe the perioperative fluid management in these patients in order to identify problem areas (if any) and to create a basis on which future trials on fluid management in this patient group may be designed. Retrospective survey of 45 consecutive patients operated for perforated ulcers over a 3-year period between 1 January 2003 and 31 December 2005 in the surgical department of a university hospital. Data that would permit rational fluid therapy are not being collected on a regular basis. Fluid balance charts were kept for 42 patients on the day of operation (89%), for 29 patients on the first post-operative day (61%), for 17 patients on the second post-operative day (36%) and for 12 patients (25%) on the third post-operative day. No patients were weighed for assessment of fluid status. Perioperative fluid administration varied extensively, with fluid balance on the day of surgery ranging from -45 to 8,030 ml (median 2688 ml) and a cumulated fluid balance of 7,2 litres (1,875-14,565 ml) three days postoperatively. Generally, patients had no fluid administered prior to surgery (median 0 ml, applying to 41 patients (87%) range 0-4,500 ml). Both the preoperative fluid management and the postoperative monitoring of the fluid balance are suboptimal and should be optimized. Individualized (goal-directed) fluid administration aiming at optimizing the oxygen supply to the peripheral tissues is warranted and is recommended to high-risk emergency surgery patients.

  19. Freeform Fluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R; Love, Lonnie J; Lind, Randall F

    This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure, the primary application being fluid powered robotics. The fundamental challenge was part complexity. ORNL s new additive manufacturing technologies (e-beam, laser and ultrasonic deposition) enables freeform manufacturing using conventional metal alloys with excellent mechanical properties. Themore » combination of these two technologies, miniaturized fluid power and additive manufacturing, can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost. This paper focuses on the impact additive manufacturing can have on new forms of fluid power components and systems. We begin with a description of additive manufacturing processes, highlighting the strengths and weaknesses of each technology. Next we describe fundamental results of material characterization to understand the design and mechanical limits of parts made with the e-beam process. A novel design approach is introduced that enables integration of fluid powered actuation with mechanical structure. Finally, we describe a proof-of-principle demonstration: an anthropomorphic (human-like) hydraulically powered hand with integrated power supply and actuation.« less

  20. Liberal or restricted fluid administration: are we ready for a proposal of a restricted intraoperative approach?

    PubMed

    Della Rocca, Giorgio; Vetrugno, Luigi; Tripi, Gabriella; Deana, Cristian; Barbariol, Federico; Pompei, Livia

    2014-01-01

    Fluid management in the perioperative period has been extensively studied but, despite that, "the right amount" still remains uncertain. The purpose of this paper is to summarize the state of the art of intraoperative fluid approach today. In the current medical literature there are only heterogeneous viewpoints that gives the idea of how confusing the situation is. The approach to the intraoperative fluid management is complex and it should be based on human physiology and the current evidence. An intraoperative restrictive fluid approach in major surgery may be beneficial while Goal-directed Therapy should be superior to the liberal fluid strategy. Finally, we propose a rational approach currently used at our institution.

  1. Pelvic fracture in multiple trauma: are we still up-to-date with massive fluid resuscitation?

    PubMed

    Burkhardt, Markus; Kristen, Alexander; Culemann, Ulf; Koehler, Daniel; Histing, Tina; Holstein, Joerg H; Pizanis, Antonius; Pohlemann, Tim

    2014-10-01

    Until today the mortality of complex pelvic trauma remains unacceptably high. On the one hand this could be attributed to a biological limit of the survivable trauma load, on the other hand side an ongoing inadequate treatment might be conceivable too. For the management of multiple trauma patients with life-threatening pelvic fractures, there is ongoing international debate on the adequate therapeutic strategy, e.g. arterial embolization or pelvic packing, as well as aggressive or restrained volume therapy. Whereas traditional pelvis-specific trauma algorithms still recommend massive fluid resuscitation, there is upcoming evidence that a restrained volume therapy in the preclinical setting may improve trauma outcomes. Less intravenous fluid administration may also reduce haemodilution and concomitant trauma-associated coagulopathy. After linking the data of the TraumaRegister DGU(®) and the German Pelvic Injury Register, for the first time, the initial fluid management for complex pelvic traumas as well as for different Tile/OTA types of pelvic ring fractures could be addressed. Unfortunately, the results could not answer the question of the adequate fluid resuscitation but confirmed the actuality of massive fluid resuscitation in the prehospital and emergency room setting. Low-volume resuscitation seems not yet accepted in practice in managing multiple trauma patients with pelvic fractures at least in Germany. Nevertheless, prevention of exsanguination and of complications like multiple organ dysfunction syndrome still poses a major challenge in the management of complex pelvic ring injuries. Even nowadays, fluid management for trauma, not only for pelvic fractures, remains a controversial area and further research is mandatory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  3. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.

    PubMed

    Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando

    2006-03-01

    The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.

  4. Comparison of esophageal Doppler and plethysmographic variability index to guide intraoperative fluid therapy for low-risk patients undergoing colorectal surgery.

    PubMed

    Warnakulasuriya, Samantha R; Davies, Simon J; Wilson, R Jonathan T; Yates, David R A

    2016-11-01

    This study aims to investigate if there is equivalence in volumes of fluid administered when intravenous fluid therapy is guided by Pleth Variability Index (PVI) compared to the established technology of esophageal Doppler in low-risk patients undergoing major colorectal surgery. Randomized controlled trial. Operating room. Forty low-risk patients undergoing elective colorectal surgery. Patients were monitored by esophageal Doppler and PVI probes and were randomized to have fluid therapy directed by using one of these technologies, with 250 mL boluses of colloid to maintain a maximal stroke volume, or a PVI of less than 14%. Absolute volumes of fluid volumes given intraoperatively were measured as were 24 hours fluid volumes. Perioperative measurements of lactate and base excess were recorded as were postoperative complications. There was no significant difference between PVI and esophageal Doppler groups in mean total fluid administered (1286 vs 1520 mL, P=.300) or mean intraoperative fluid balance (+839 v+1145 mL, P=.150). PVI offers an entirely non-invasive alternative for goal-directed fluid therapy in this group of patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Supercritical fluid technology: a promising approach in pharmaceutical research.

    PubMed

    Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana

    2013-02-01

    Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.

  6. Manufacturing Solid Dosage Forms from Bulk Liquids Using the Fluid-bed Drying Technology.

    PubMed

    Qi, Jianping; Lu, Y I; Wu, Wei

    2015-01-01

    Solid dosage forms are better than liquid dosage forms in many ways, such as improved physical and chemical stability, ease of storage and transportation, improved handling properties, and patient compliance. Therefore, it is required to transform dosage forms of liquid origins into solid dosage forms. The functional approaches are to absorb the liquids by solid excipients or through drying. The conventional drying technologies for this purpose include drying by heating, vacuum-, freeze- and spray-drying, etc. Among these drying technologies, fluidbed drying emerges as a new technology that possesses unique advantages. Fluid-bed drying or coating is highly efficient in solvent removal, can be performed at relatively low temperatures, and is a one-step process to manufacture formulations in pellet forms. In this article, the status of the art of manufacturing solid dosage forms from bulk liquids by fluid-bed drying technology was reviewed emphasizing on its application in solid dispersion, inclusion complexes, self-microemulsifying systems, and various nanoscale drug delivery systems.

  7. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    DTIC Science & Technology

    2016-01-01

    3 2.1 Studies on the Effects of Centrifugal Force on the Performance of a High-G...characterize the performance of combustion systems. Fundamental flame studies provide insights into fluid mechanic and chemistry effects within...which capture fluid mechanic effects . Parametric studies are used to explore new design space and improve experiments. The third aspect of meeting the

  8. Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis P.; Joshi, Jitendra A.

    2004-01-01

    This workshop was designed to bring the experts from the Advanced Human Support Technologies communities together to identify the most pressing and fruitful areas of research where success hinges on collaborative research between the two communities. Thus an effort was made to bring together experts in both advanced human support technologies and microgravity fluids, transport and reaction processes. Expertise was drawn from academia, national laboratories, and the federal government. The intent was to bring about a thorough exchange of ideas and develop recommendations to address the significant open design and operation issues for human support systems that are affected by fluid physics, transport and reaction processes. This report provides a summary of key discussions, findings, and recommendations.

  9. Fluid manipulation among individuals with lower urinary tract symptoms: a mixed methods study.

    PubMed

    Elstad, Emily A; Maserejian, Nancy N; McKinlay, John B; Tennstedt, Sharon L

    2011-01-01

    To determine, qualitatively and quantitatively, how individuals use fluid manipulation to self-manage the urinary symptoms of daytime frequency, urgency and urine leakage and the underlying rationale for this behaviour. Lower urinary tract symptoms are prevalent and burdensome, and little is known about how individuals with lower urinary tract symptoms manipulate their fluid intake. A mixed methods design included statistical analysis of data from a population-based survey of urologic symptoms and qualitative analysis of in-depth interviews. Quantitative data came from 5503 participants of the baseline Boston Area Community Health Survey, a population-based, random sample epidemiologic survey of urologic symptoms. Qualitative data came from in-depth interviews with a random subsample from Boston Area Community Health of 152 black, white and Hispanic men and women with LUTS. Qualitative data showed that some respondents restricted fluid intake while others increased it, in both cases with the expectation of improved symptoms. Quantitative data showed that fluid intake was greater in men and women reporting frequency (p < 0·001). Women with frequency drank significantly more water (p < 0·001), while women with urgency drank significantly less water (p = 0·047). This study found divergent expectations of the role of fluids in alleviating symptoms, leading some individuals to restrict and others to increase fluid intake. Individuals with lower urinary tract symptoms may need guidance in fluid management. Nurses should be aware that patients may self-manage lower urinary tract symptoms by restricting fluid intake, putting them at risk for dehydration, constipation and urinary tract infection, but also that they may be increasing their fluid intake, which could worsen symptoms. This study pinpoints a specific area of need among patients with lower urinary tract symptoms and provides a practical opportunity for nurses to assist their patients with behavioural and fluid management by emphasising the clinical guidelines. © 2010 Blackwell Publishing Ltd.

  10. Thermal Control System Development to Support the Crew Exploration Vehicle and Lunar Surface Access Module

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Westheimer, David

    2006-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has recently evaluated all of the agency s technology development work and identified key areas that must be addressed to aid in the successful development of a Crew Exploration Vehicle (CEV) and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  11. Ultrasound characterization of middle ear effusion.

    PubMed

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2013-01-01

    To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) were at least 94%. Mucoid effusions had higher measured viscosity values (P=.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=.048). The device sensitivity and specificity for fluid detection were 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Ultrasound Characterization of Middle Ear Effusion

    PubMed Central

    Seth, Rahul; Discolo, Christopher M; Palczewska, Grazyna M; Lewandowski, Jan J; Krakovitz, Paul R

    2012-01-01

    Purpose To further enhance and assess the ability to characterize middle ear effusion (MEE) using non-invasive ultrasound technology. Materials and Methods This is a prospective unblinded comparison study. Fifty-six children between the ages of 6 months and 17 years scheduled to undergo bilateral myringotomy with pressure equalization tube placement were enrolled. With the child anesthetized, the probe was placed into the external ear canal after sterile water was inserted. Ultrasound recordings of middle ear contents were analyzed by computer algorithm. Middle ear fluid was collected during myringotomy and analyzed for bacterial culture and viscosity. Results Ultrasound waveforms yielded a computer algorithm interpretation of middle ear contents in 66% of ears tested. When a result was obtained, the sensitivity and specificity for successfully characterizing middle ear fluid content as either void of fluid, thick fluid (mucoid), or thin fluid (serous or purulent) was at least 94%. Mucoid effusions had higher measured viscosity values (P=0.002). Viscosity measures were compared to culture result, and those with low viscosity (thin consistency) had a higher likelihood of having a positive culture (P=0.048). Conclusion The device sensitivity and specificity for fluid detection was 94% or greater among interpretable waveforms (66% of those tested). Although this technology provides important information of the middle ear effusion presence and characteristic, further technological improvements are needed. PMID:23084430

  13. The development and application of CFD technology in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  14. Monte Carlo simulation of non-invasive glucose measurement based on FMCW LIDAR

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wei, Wenxiong; Liu, Nan; He, Jian-Jun

    2010-11-01

    Continuous non-invasive glucose monitoring is a powerful tool for the treatment and management of diabetes. A glucose measurement method, with the potential advantage of miniaturizability with no moving parts, based on the frequency modulated continuous wave (FMCW) LIDAR technology is proposed and investigated. The system mainly consists of an integrated near-infrared tunable semiconductor laser and a detector, using heterodyne technology to convert the signal from time-domain to frequency-domain. To investigate the feasibility of the method, Monte Carlo simulations have been performed on tissue phantoms with optical parameters similar to those of human interstitial fluid. The simulation showed that the sensitivity of the FMCW LIDAR system to glucose concentration can reach 0.2mM. Our analysis suggests that the FMCW LIDAR technique has good potential for noninvasive blood glucose monitoring.

  15. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Flores, Ginger N.

    2009-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG has been operating on the ISS since July 2002 and is currently located in the Columbus Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a workbench type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. In fact, the MSG has been used for over 5000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technologies. MSG is an ideal platform for science investigations and research required to advance the technology readiness levels (TRLs) applicable to the Constellation Program. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of future investigations currently planned for operation in the MSG, and potential applications of MSG investigations that can provide useful data to the Constellation Program. In addition, this paper will address the role of the MSG facility in the ISS National Lab.

  16. NASA SBIR product catalog, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This catalog is a partial list of products of NASA SBIR (Small Business Innovation Research) projects that have advanced to some degree into Phase 3. While most of the products evolved from work conducted during SBIR Phase 1 and 2, a few advanced to commercial status solely from Phase 1 activities. The catalog presents information provided to NASA by SBIR contractors who wished to have their products exhibited at Technology 2001, a NASA-sponsored technology transfer conference held in San Jose, California, on December 4, 5, and 6, 1991. The catalog presents the product information in the following technology areas: computer and communication systems; information processing and AI; robotics and automation; signal and image processing; microelectronics; electronic devices and equipment; microwave electronic devices; optical devices and lasers; advanced materials; materials processing; materials testing and NDE; materials instrumentation; aerodynamics and aircraft; fluid mechanics and measurement; heat transfer devices; refrigeration and cryogenics; energy conversion devices; oceanographic instruments; atmosphere monitoring devices; water management; life science instruments; and spacecraft electromechanical systems.

  17. NASA's Plans for Materials Science on ISS: Cooperative Utilization of the MSRR-MSL

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Francis; Szofran, Frank

    2008-01-01

    The ISS Research Project draws Life (non-human) and Physical Sciences investigations on the ISS, free flyer and ground-based into one coordinated project. The project has two categories: I. Exploration Research Program: a) Utilizes the ISS as a low Technology Readiness Level (TRL) test bed for technology development, demonstration and problem resolution in the areas of life support, fire safety, power, propulsion, thermal management, materials technology, habitat design, etc.; b) Will include endorsement letters from other ETDP projects to show relevancy. II. Non-Exploration Research Program; a) Not directly related to supporting the human exploration program. Research conducted in the life (non-human) and physical sciences; b) The program will sustain, to the maximum extent practicable, the United States scientific expertise and research capability in fundamental microgravity research. Physical Sciences has about 44 grants, and Life Sciences has approximately 32 grants, mostly with universities, to conduct low TRL research; this includes grants to be awarded from the 2008 Fluid Physics and Life Science NRA's.

  18. 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol quantification in human oral fluid by liquid chromatography–tandem mass spectrometry

    PubMed Central

    Scheidweiler, Karl B.; Himes, Sarah K.; Chen, Xiaohong; Liu, Hua-Fen

    2013-01-01

    Currently, Δ9-tetrahydrocannabinol (THC) is the analyte quantified for oral fluid cannabinoid monitoring. The potential for false-positive oral fluid cannabinoid results from passive exposure to THC-laden cannabis smoke raises concerns for this promising new monitoring technology. Oral fluid 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) is proposed as a marker of cannabis intake since it is not present in cannabis smoke and was not measureable in oral fluid collected from subjects passively exposed to cannabis. THCCOOH concentrations are in the picogram per milliliter range in oral fluid and pose considerable analytical challenges. A liquid chromatography–tandem mass spectrometry (LCMSMS) method was developed and validated for quantifying THCCOOH in 1 mL Quantisal-collected oral fluid. After solid phase extraction, chromatography was performed on a Kinetex C18 column with a gradient of 0.01 % acetic acid in water and 0.01 % acetic acid in methanol with a 0.5-mL/min flow rate. THCCOOH was monitored in negative mode electrospray ionization and multiple reaction monitoring mass spectrometry. The THCCOOH linear range was 12–1,020 pg/mL (R2>0.995). Mean extraction efficiencies and matrix effects evaluated at low and high quality control (QC) concentrations were 40.8–65.1 and −2.4–11.5 %, respectively (n=10). Analytical recoveries (bias) and total imprecision at low, mid, and high QCs were 85.0–113.3 and 6.6–8.4 % coefficient of variation, respectively (n=20). This is the first oral fluid THCCOOH LCMSMS triple quadrupole method not requiring derivatization to achieve a <15 pg/mL limit of quantification. The assay is applicable for the workplace, driving under the influence of drugs, drug treatment, and pain management testing. PMID:23681203

  19. Oral rehydration therapy for preoperative fluid and electrolyte management.

    PubMed

    Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae

    2011-01-01

    Preoperative fluid and electrolyte management is usually performed by intravenous therapy. We investigated the safety and effectiveness of oral rehydration therapy (ORT) for preoperative fluid and electrolyte management of surgical patients. The study consisted of two studies, designed as a prospective observational study. In a pilot study, 20 surgical patients consumed 1000 mL of an oral rehydration solution (ORS) until 2 h before induction of general anesthesia. Parameters such as serum electrolyte concentrations, fractional excretion of sodium (FENa) as an index of renal blood flow, volume of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with ORT were assessed. In a follow-up study to assess the safety of ORT, 1078 surgical patients, who consumed ORS until 2 h before induction of general anesthesia, were assessed. In the pilot study, water, electrolytes, and carbohydrate were effectively and safely supplied by ORT. The FENa value was increased at 2 h following ORT. The volume of EPGF collected following the induction of anesthesia was 5.3±5.6 mL. In the follow-up study, a small amount of vomiting occurred in one patient, and no aspiration occurred in the patients. These results suggest that ORT is a safe and effective therapy for the preoperative fluid and electrolyte management of selected surgical patients.

  20. Oral Rehydration Therapy for Preoperative Fluid and Electrolyte Management

    PubMed Central

    Taniguchi, Hideki; Sasaki, Toshio; Fujita, Hisae

    2011-01-01

    Aim: Preoperative fluid and electrolyte management is usually performed by intravenous therapy. We investigated the safety and effectiveness of oral rehydration therapy (ORT) for preoperative fluid and electrolyte management of surgical patients. Methods: The study consisted of two studies, designed as a prospective observational study. In a pilot study, 20 surgical patients consumed 1000 mL of an oral rehydration solution (ORS) until 2 h before induction of general anesthesia. Parameters such as serum electrolyte concentrations, fractional excretion of sodium (FENa) as an index of renal blood flow, volume of esophageal-pharyngeal fluid and gastric fluid (EPGF), and patient satisfaction with ORT were assessed. In a follow-up study to assess the safety of ORT, 1078 surgical patients, who consumed ORS until 2 h before induction of general anesthesia, were assessed. Results: In the pilot study, water, electrolytes, and carbohydrate were effectively and safely supplied by ORT. The FENa value was increased at 2 h following ORT. The volume of EPGF collected following the induction of anesthesia was 5.3±5.6 mL. In the follow-up study, a small amount of vomiting occurred in one patient, and no aspiration occurred in the patients. Conclusion: These results suggest that ORT is a safe and effective therapy for the preoperative fluid and electrolyte management of selected surgical patients. PMID:21897763

  1. Bioimpedance-Guided Fluid Management in Hemodialysis Patients

    PubMed Central

    Arias-Guillén, Marta; Wabel, Peter; Fontseré, Néstor; Carrera, Montserrat; Campistol, José Maria; Maduell, Francisco

    2013-01-01

    Summary Background and objectives Achieving and maintaining optimal fluid status remains a major challenge in hemodialysis therapy. The aim of this interventional study was to assess the feasibility and clinical consequences of active fluid management guided by bioimpedance spectroscopy in chronic hemodialysis patients. Design, setting, participants, & measurements Fluid status was optimized prospectively in 55 chronic hemodialysis patients over 3 months (November 2011 to February 2012). Predialysis fluid overload was measured weekly using the Fresenius Body Composition Monitor. Time-averaged fluid overload was calculated as the average between pre- and postdialysis fluid overload. The study aimed to bring the time-averaged fluid overload of all patients into a target range of 0.5±0.75 L within the first month and maintain optimal fluid status until study end. Postweight was adjusted weekly according to a predefined protocol. Results Time-averaged fluid overload in the complete study cohort was 0.9±1.6 L at baseline and 0.6±1.1 L at study end. Time-averaged fluid overload decreased by −1.20±1.32 L (P<0.01) in the fluid-overloaded group (n=17), remained unchanged in the normovolemic group (n=26, P=0.59), and increased by 0.59±0.76 L (P=0.02) in the dehydrated group (n=12). Every 1 L change in fluid overload was accompanied by a 9.9 mmHg/L change in predialysis systolic BP (r=0.55, P<0.001). At study end, 76% of all patients were either on time-averaged fluid overload target or at least closer to target than at study start. The number of intradialytic symptoms did not change significantly in any of the subgroups. Conclusions Active fluid management guided by bioimpedance spectroscopy was associated with an improvement in overall fluid status and BP. PMID:23949235

  2. Rotor-Bearing Dynamics Technology Design Guide. Part 8. A computerized Data Retrieval System for Fluid Film Bearings

    DTIC Science & Technology

    1980-10-01

    AFAPL-TR-78-6 ’: Part Vill (U ROTOR -BEARING DYNAMICS - TECHNOLOGY DESIGN GUIDE ¢ Part Vil A Comput eri eval Syteftor Fluid Film Bearings SHAKER...Protection," Task 304806, "Aerospace Lubrication," Work Unit 30480685, " Rotor -Bearing Dynamics Design." The work reported herein was performed during the...the previous issue of the Rotor -Bearing Dynamics Technology Design Guide, - one volume dealt with the calculation of performance parameters and pertur

  3. Pumping and Depressurizing of Insulation Materials

    NASA Technical Reports Server (NTRS)

    Porter, Amber

    2010-01-01

    The Fluids Testing and Technology Branch is a group that researches and tests efficient ways to use various Cryogenic Fluids, such as Liquid Nitrogen or Liquid Helium, in ground and space systems. Their main goal is to develop new technologies involving Cryogenic temperatures as well as making sure the existing technologies are understood. During my time here a lot of insulation testing has been done which is where insulation systems are tested for cryogenic systems that are in space for long durations.

  4. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  5. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  6. Intravenous fluid prescription practices among pediatric residents in Korea.

    PubMed

    Lee, Jiwon M; Jung, Younghwa; Lee, Se Eun; Lee, Jun Ho; Kim, Kee Hyuck; Koo, Ja Wook; Park, Young Seo; Cheong, Hae Il; Ha, Il-Soo; Choi, Yong; Kang, Hee Gyung

    2013-07-01

    Recent studies have established the association between hypotonic fluids administration and hospital-acquired hyponatremia in children. The present paper investigated the pattern of current practice in intravenous fluid prescription among Korean pediatric residents, to underscore the need for updated education. A survey-based analysis was carried out. Pediatric residents at six university hospitals in Korea completed a survey consisting of four questions. Each question proposed a unique scenario in which the respondents had to prescribe either a hypotonic or an isotonic fluid for the patient. Ninety-one responses were collected and analyzed. In three of the four scenarios, a significant majority prescribed the hypotonic fluids (98.9%, 85.7%, and 69.2%, respectively). Notably, 69.2% of the respondents selected the hypotonic fluids for postoperative management. Almost all (96.7%) selected the isotonic fluids for hydration therapy. In the given scenarios, the majority of Korean pediatric residents would prescribe a hypotonic fluid, except for initial hydration. The current state of pediatric fluid management, notably, heightens the risk of hospital-acquired hyponatremia. Updated clinical practice education on intravenous fluid prescription, therefore, is urgently required.

  7. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between the liquid and the tank wall) which could effectively lower heat transfer to the liquid (enabling increased storage time).

  8. [Volume assessment in the acute heart and renal failure].

    PubMed

    Vujicić, Bozidar; Ruzić, Alen; Zaputović, Luka; Racki, Sanjin

    2012-10-01

    Acute kidney injury (AKI) is an important clinical issue, especially in the setting of critical care. It has been shown in multiple studies to be a key independent risk factor for mortality, even after adjustment for demographics and severity of illness. There is wide agreement that a generally applicable classification system is required for AKI which helps to standardize estimation of severity of renal disfunction and to predict outcome associated with this condition. That's how RIFLE (Risk-Injury-Failure-Loss-End-stage renal disease), and AKIN (Acute Kidney Injury Network) classifications for AKI were found in 2004 and 2007, respectively. In the clinical setting of heart failure, a positive fluid balance (often expressed in the literature as weight gain) is used by disease management programs as a marker of heart failure decompensation. Oliguria is defined as urine output less than 0,3 ml/kg/h for at least 24 h. Since any delay in treatment can lead to a dangerous progression of the AKI, early recognition of oliguria appears to be crucial. Critically ill patients with oliguric AKI are at increased risk for fluid imbalance due to widespread systemic inflammation, reduced plasma oncotic pressure and increased capillary leak. These patients are particulary at risk of fluid overload and therefore restrictive strategy of fluid administration should be used. Objective, rapid and accurate volume assessment is important in undiagnosed patients presenting with critical illness, as errors may result in interventions with fatal outcomes. The historical tools such as physical exam, and chest radiography suffer from significant limitations. As gold standard, radioisolopic measurement of volume is impractical in the acute care enviroment. Newer technologies offer the promise of both rapid and accurate bedside estimation of volume status with the potential to improve clinical outcomes. Blood assessment with bioimpendance vector analysis, and bedside ultrasound seem to be promising technologies for this need.

  9. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo

    2018-02-01

    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  10. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades.

  11. Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.

    PubMed

    Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde

    2018-05-18

    Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c *  = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Findlay, Rick

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, southmore » of Highway 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less

  13. Fluid Management Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 1 with ROTC 1 and Errata Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Echelard

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, south of Highwaymore » 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less

  14. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  15. Fluids and sepsis: changing the paradigm of fluid therapy: a case report.

    PubMed

    Hariyanto, Hori; Yahya, Corry Quando; Widiastuti, Monika; Wibowo, Primartanto; Tampubolon, Oloan Eduard

    2017-02-04

    Over the past 16 years, sepsis management has been guided by large-volume fluid administration to achieve certain hemodynamic optimization as advocated in the Rivers protocol. However, the safety of such practice has been questioned because large-volume fluid administration is associated with fluid overload and carries the worst outcome in patients with sepsis. Researchers in multiple studies have declared that using less fluid leads to increased survival, but they did not describe how to administer fluids in a timely and appropriate manner. An 86-year-old previously healthy Sundanese man was admitted to the intensive care unit at our institution with septic shock, acute kidney injury, and respiratory distress. Standard care was implemented during his initial care in the high-care unit; nevertheless, his condition worsened, and he was transferred to the intensive care unit. We describe the timing of fluid administration and elaborate on the amount of fluids needed using a conservative fluid regimen in a continuum of resuscitated sepsis. Because fluid depletion in septic shock is caused by capillary leak and pathologic vasoplegia, continuation of fluid administration will drive intravascular fluid into the interstitial space, thereby producing marked tissue edema and disrupting vital oxygenation. Thus, fluids have the power to heal or kill. Therefore, management of patients with sepsis should entail early vasopressors with adequate fluid resuscitation followed by a conservative fluid regimen.

  16. Real Time Intraoperative Monitoring of Blood Loss with a Novel Tablet Application

    PubMed Central

    Sharareh, Behnam; Woolwine, Spencer; Satish, Siddarth; Abraham, Peter; Schwarzkopf, Ran

    2015-01-01

    Introduction : Real-time monitoring of blood loss is critical in fluid management. Visual estimation remains the standard of care in estimating blood loss, yet is demonstrably inaccurate. Photometric analysis, which is the referenced “gold-standard” for measuring blood loss, is both time-consuming and costly. The purpose of this study was to evaluate the efficacy of a novel tablet-monitoring device for measurement of Hb loss during orthopaedic procedures. Methods : This is a prospective study of 50 patients in a consecutive series of joint arthroplasty cases. The novel System with Feature Extraction Technology was used to measure the amount of Hb contained within surgical sponges intra-operatively. The system’s measures were then compared with those obtained via gravimetric method and photometric analysis. Accuracy was evaluated using linear regression and Bland-Altman analysis. Results : Our results showed a significant positive correlation between Triton tablet system and photometric analysis with respect to intra-operative hemoglobin and blood loss at 0.92 and 0.91, respectively. Discussion : This novel system can accurately determine Hb loss contained within surgical sponges. We believe that this user-friendly software can be used for measurement of total intraoperative blood loss and thus aid in a more accurate fluid management protocols during orthopaedic surgical procedures. PMID:26401167

  17. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  18. NASA Exhibits

    NASA Technical Reports Server (NTRS)

    Deardorff, Glenn; Djomehri, M. Jahed; Freeman, Ken; Gambrel, Dave; Green, Bryan; Henze, Chris; Hinke, Thomas; Hood, Robert; Kiris, Cetin; Moran, Patrick; hide

    2001-01-01

    A series of NASA presentations for the Supercomputing 2001 conference are summarized. The topics include: (1) Mars Surveyor Landing Sites "Collaboratory"; (2) Parallel and Distributed CFD for Unsteady Flows with Moving Overset Grids; (3) IP Multicast for Seamless Support of Remote Science; (4) Consolidated Supercomputing Management Office; (5) Growler: A Component-Based Framework for Distributed/Collaborative Scientific Visualization and Computational Steering; (6) Data Mining on the Information Power Grid (IPG); (7) Debugging on the IPG; (8) Debakey Heart Assist Device: (9) Unsteady Turbopump for Reusable Launch Vehicle; (10) Exploratory Computing Environments Component Framework; (11) OVERSET Computational Fluid Dynamics Tools; (12) Control and Observation in Distributed Environments; (13) Multi-Level Parallelism Scaling on NASA's Origin 1024 CPU System; (14) Computing, Information, & Communications Technology; (15) NAS Grid Benchmarks; (16) IPG: A Large-Scale Distributed Computing and Data Management System; and (17) ILab: Parameter Study Creation and Submission on the IPG.

  19. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  20. Ultrasonic-generated fluid velocity with Sovereign WhiteStar micropulse and continuous phacoemulsification.

    PubMed

    Steinert, Roger F; Schafer, Mark E

    2006-02-01

    To evaluate and compare ultrasonic turbulence created by conventional and micropulse ultrasound technology. Sonora Medical Systems, Longmont, Colorado, USA. A high-resolution digital ultrasound probe imaged the zone around a phacoemulsification tip. Doppler analysis allowed determination of flow. The fluid velocity was measured at 4 levels of ultrasound power at a constant flow, comparing the ultrasonic conditions of continuous energy to WhiteStar micropulses. In addition to the normal baseline irrigation and aspiration, fluid movement was detected directly below the phaco tip, produced by a nonlinear effect known as acoustic streaming. Acoustic streaming increased with increased phacoemulsification power for both conditions. At each of the 4 levels of power, fluid velocity away from the tip was less with micropulse technology than with continuous phacoemulsification. The demonstrated decrease in acoustic streaming flow away from the phaco tip with Sovereign WhiteStar micropulse technology compared to conventional ultrasound provides an objective explanation for clinical observations of increased stability of nuclear fragments at the tip and less turbulence in the anterior chamber during phacoemulsification. This methodology can be used to examine and compare fluid flow and turbulence under a variety of clinically relevant conditions.

  1. Metalworking fluids: oil mist and beyond.

    PubMed

    Gauthier, Stephen L

    2003-11-01

    This article is based upon my own experiences with metalworking fluids and the adverse health effects and medical conditions associated with exposure to metalworking fluids. I have researched and witnessed the benefits that can be achieved when metalworking fluids are properly maintained and managed. My experiences have provided insight into how a shop operates, including comprehension of the equipment used, processes, mist generating points, engineering controls currently being adopted, and procedures that are used to maintain metalworking fluids. I have been able to share my personal experiences with the country's leading experts in the field of metalworking fluids. I have presented my insights on the topic in Washington, D.C., to the Standard Advisory Committee of OSHA, as well as at many other conferences nationwide. I have provided awareness training for a number of union and nonunion workers. Being a part of developing successful metal removal fluid programs, I realize the importance of transferring and sharing information. Many times an organization is not fully aware of certain conditions and how to combat them. My mission and intent is to properly educate those who are exposed to the harm that metalworking fluids can invoke and to inform those involved of the possible methods of reducing long- and short-term risk. One thing that must be kept in mind is the way we view these fluids. Many shops categorize the fluids as a type of "operating expense" when they should actually be seen as a sort of investment. Just as performing a scheduled maintenance on a machine promises the best possible longevity of that machine, the upkeep of metalworking fluid also provides longer "tool life." Monitoring and maintaining the fluids also provides for more effective and efficient productivity. If we fail to consider that proper management of the fluids can cut cost dramatically, then we will miss out on the financial impact they can have on a company. Try looking at the fluids as a liquid tool. Doing so I believe will bring a better understanding of the value of a successful metalworking fluids program. With this new understanding, it can be seen just who must play a role in the management of metalworking fluids. The employees who deal with the daily tasks involving the coolant play a major part. They are on the floor where these metalworking fluids are being used. In many shops, it is assumed that the environmental health & safety departments are responsible for standard operating procedures and management of fluids. The EH&S department should only be responsible for the protection from exposure and the transfer of information regarding policy and procedure to their employees. Not all shops have the resources required to develop and implement the proper standard operating procedure. Therefore, we must understand that what is feasible for one may not be for another. Companies that lack the sufficient resources should not be neglected. It is crucial that awareness of proper standard operating procedure is shared with everyone involved with the fluids in order to provide proper metalworking fluids management. Fluids are as dynamic as the formulations themselves (complex & dynamic). These fluids can quickly become contaminated with foreign materials and chemicals, thereby become aerosolized into mist. With proper education and training, one will be able to control what gets aerosolized.

  2. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I.; Israelsson, U.; Lee, M.

    2001-01-01

    This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less

  4. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    NASA Technical Reports Server (NTRS)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  5. Fluid Vessel Quantity Using Non-invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    NASA Technical Reports Server (NTRS)

    Garofalo, Anthony A

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  6. A perspective of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1986-01-01

    Computational fluid dynamics (CFD) is maturing, and is at a stage in its technological life cycle in which it is now routinely applied to some rather complicated problems; it is starting to create an impact on the design cycle of aerospace flight vehicles and their components. CFD is also being used to better understand the fluid physics of flows heretofore not understood, such as three-dimensional separation. CFD is also being used to complement and is being complemented by experiments. In this paper, the primary and secondary pacing items that govern CFD in the past are reviewed and updated. The future prospects of CFD are explored which will offer people working in the discipline challenges that should extend the technological life cycle to further increase the capabilities of a proven demonstrated technology.

  7. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    PubMed

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  8. Around Marshall

    NASA Image and Video Library

    2003-12-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  9. Systems and operations - Living with complexity and growth

    NASA Astrophysics Data System (ADS)

    Hook, W. R.

    1983-03-01

    Since the space station concept currently being developed by NASA calls for system updates and additions over a period of at least ten years following launch, attention must be given to the interfaces between station elements. Efforts have begun to develop generic fault detection, isolation, and correction techniques that could simplify on-orbit operations, maintenance and repair. An integrated hydrogen-oxygen system has been identified as the feature promising the greatest reduction in resupply costs. Scavenging excess fuel from the Space Shuttle's internal and external tanks, and using leftover Shuttle payload for fluid tankage, could supply hydrogen and oxygen for consumption in the form of propellants, fuel cell electricity, and life support gases. Advancements in cryogenic fluid management and storage technology are the keys to the design of this integrated system. Attention is given to the Interactive Design and Evaluation of Advanced Spacecraft computer-aided design and analysis system, which allows system engineers to study the integration problems presented by 40 technical modules.

  10. Circulating Tumor Cells (CTCs): Emerging Technologies for Detection, Diagnosis and Treatment

    NASA Astrophysics Data System (ADS)

    McCarty, Owen

    2010-03-01

    Circulating tumor cell enumeration and characterization have the potential of providing real-time access to epithelial cancers in patients. This fluid phase biopsy of solid phase tumors is crucial to the development of quantitative diagnostic aiding personalized medicine. Cancer is a highly heterogeneous disease over space and time. Our goal is to generate a mechanistic, yet comprehensive view of both the `FORCE-journey' of a cancer cell during the metastatic phase, and a `TIME-journey' of the disease as it progresses. The approach will correlate the `FORCE' and `TIME' journey with both the bio-clinical aspects and the genomics of this complex problem. Presented will be results from a case study in lung cancer patients for which CTC analysis is compared with clinical progression. Morphologic and molecular characterization at the single cell level will be discussed in the context of the data set and in the context of individual patient management. Preliminary data will be shown to guide a future research agenda to investigate the fluid phase of solid tumors.

  11. Integrated fountain effect pump device for fluid management at low gravity

    NASA Astrophysics Data System (ADS)

    Yuan, S. W. K.; Frank, D. J.

    1988-02-01

    To transfer He II in space, the supply tank must be drained at low gravity. Conventional capillary devices such as the gallery system make use of the capillary retention capability of the screens for fluid management. Liquid helium is collected into gallery channels and then conveyed to the downstream fountain effect pump (FEP) or mechanical pump. In this Paper, a new fluid management device is proposed. The screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping (by mechanical effect) of He II. No downstream pump is needed. The plugs in contact with liquid helium on both sides act as FEPs, and plugs exposed to vapour on one side behave as vapour-liquid phase separators (VLPSs). The total net transfer rate of He II into the receiving tank is the mass flow rate through the FEP minus the liquid loss from the VLPS plugs. The performance of the integrated FEP device (IFD) was analysed. The possibility of liquid breakthrough in the IFD was studied. The IFD is a very promising system for the fluid management of He II at low gravity.

  12. Using graph approach for managing connectivity in integrative landscape modelling

    NASA Astrophysics Data System (ADS)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). OpenFLUID-landr library has been developed in order i) to be used with no GIS expert skills needed (common gis formats can be read and simplified spatial management is provided), ii) to easily develop adapted rules of landscape discretization and graph creation to follow spatialized model requirements and iii) to allow model developers to manage dynamic and complex spatial topology. Graph management in OpenFLUID are shown with i) examples of hydrological modelizations on complex farmed landscapes and ii) the new implementation of Geo-MHYDAS tool based on the OpenFLUID-landr library, which allows to discretize a landscape and create graph structure for the MHYDAS model requirements.

  13. Evaluation of a Smartphone Decision-Support Tool for Diarrheal Disease Management in a Resource-Limited Setting

    PubMed Central

    Khatun, Selina; Ahmed, Mujaddeed; Kache, Saraswati; Chisti, Mohammod Jobayer; Sarker, Shafiqul Alam; Maples, Stace D.; Pieri, Dane; Vardhan Korrapati, Teja; Sarnquist, Clea; Federspiel, Nancy; Rahman, Muhammad Waliur; Andrews, Jason R.; Rahman, Mahmudur; Nelson, Eric Jorge

    2017-01-01

    The emergence of mobile technology offers new opportunities to improve clinical guideline adherence in resource-limited settings. We conducted a clinical pilot study in rural Bangladesh to evaluate the impact of a smartphone adaptation of the World Health Organization (WHO) diarrheal disease management guidelines, including a modality for age-based weight estimation. Software development was guided by end-user input and evaluated in a resource-limited district and sub-district hospital during the fall 2015 cholera season; both hospitals lacked scales which necessitated weight estimation. The study consisted of a 6 week pre-intervention and 6 week intervention period with a 10-day post-discharge follow-up. Standard of care was maintained throughout the study with the exception that admitting clinicians used the tool during the intervention. Inclusion criteria were patients two months of age and older with uncomplicated diarrheal disease. The primary outcome was adherence to guidelines for prescriptions of intravenous (IV) fluids, antibiotics and zinc. A total of 841 patients were enrolled (325 pre-intervention; 516 intervention). During the intervention, the proportion of prescriptions for IV fluids decreased at the district and sub-district hospitals (both p < 0.001) with risk ratios (RRs) of 0.5 and 0.2, respectively. However, when IV fluids were prescribed, the volume better adhered to recommendations. The proportion of prescriptions for the recommended antibiotic azithromycin increased (p < 0.001 district; p = 0.035 sub-district) with RRs of 6.9 (district) and 1.6 (sub-district) while prescriptions for other antibiotics decreased; zinc adherence increased. Limitations included an absence of a concurrent control group and no independent dehydration assessment during the pre-intervention. Despite limitations, opportunities were identified to improve clinical care, including better assessment, weight estimation, and fluid/ antibiotic selection. These findings demonstrate that a smartphone-based tool can improve guideline adherence. This study should serve as a catalyst for a randomized controlled trial to expand on the findings and address limitations. PMID:28103233

  14. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.

  15. Evaluation of a Smartphone Decision-Support Tool for Diarrheal Disease Management in a Resource-Limited Setting.

    PubMed

    Haque, Farhana; Ball, Robyn L; Khatun, Selina; Ahmed, Mujaddeed; Kache, Saraswati; Chisti, Mohammod Jobayer; Sarker, Shafiqul Alam; Maples, Stace D; Pieri, Dane; Vardhan Korrapati, Teja; Sarnquist, Clea; Federspiel, Nancy; Rahman, Muhammad Waliur; Andrews, Jason R; Rahman, Mahmudur; Nelson, Eric Jorge

    2017-01-01

    The emergence of mobile technology offers new opportunities to improve clinical guideline adherence in resource-limited settings. We conducted a clinical pilot study in rural Bangladesh to evaluate the impact of a smartphone adaptation of the World Health Organization (WHO) diarrheal disease management guidelines, including a modality for age-based weight estimation. Software development was guided by end-user input and evaluated in a resource-limited district and sub-district hospital during the fall 2015 cholera season; both hospitals lacked scales which necessitated weight estimation. The study consisted of a 6 week pre-intervention and 6 week intervention period with a 10-day post-discharge follow-up. Standard of care was maintained throughout the study with the exception that admitting clinicians used the tool during the intervention. Inclusion criteria were patients two months of age and older with uncomplicated diarrheal disease. The primary outcome was adherence to guidelines for prescriptions of intravenous (IV) fluids, antibiotics and zinc. A total of 841 patients were enrolled (325 pre-intervention; 516 intervention). During the intervention, the proportion of prescriptions for IV fluids decreased at the district and sub-district hospitals (both p < 0.001) with risk ratios (RRs) of 0.5 and 0.2, respectively. However, when IV fluids were prescribed, the volume better adhered to recommendations. The proportion of prescriptions for the recommended antibiotic azithromycin increased (p < 0.001 district; p = 0.035 sub-district) with RRs of 6.9 (district) and 1.6 (sub-district) while prescriptions for other antibiotics decreased; zinc adherence increased. Limitations included an absence of a concurrent control group and no independent dehydration assessment during the pre-intervention. Despite limitations, opportunities were identified to improve clinical care, including better assessment, weight estimation, and fluid/ antibiotic selection. These findings demonstrate that a smartphone-based tool can improve guideline adherence. This study should serve as a catalyst for a randomized controlled trial to expand on the findings and address limitations.

  16. Fluid Lensing and Applications to Remote Sensing of Aquatic Environments

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2017-01-01

    The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of fluid lensing methods, these technologies present a solution for large-scale 3D surveys of shallow aquatic habitats with centimetre-scale spatial resolution and hourly temporal sampling.

  17. [Study on new extraction technology of astragaloside IV].

    PubMed

    Sun, Haiyan; Guan, Su; Huang, Min

    2005-08-01

    To explore the possibility and the optimal extraction technology of astragaloside IV by SFE-CO2. According the content of astragaloside IV, the optimum extraction technology parameters such as extraction temperature, pressure, extraction time, velocity of fluid and co-solvent were investigated and the result was compared with that of water extraction. The optimum technical parameters were as follows: Extracting pressure 40 Mpa, temperature 45 degrees C, extracting time 2h, co-solvent was 95% ethanol and its dosage was 4ml/g, the ratio of CO2 fluid was 10 kg/kg x h. Extraction technology of astragaloside IV by SFE-CO2 is reliable, stable.

  18. Energy management system for a rotary machine and method therefor

    DOEpatents

    Bowman, Michael John; Sinha, Gautam; Sheldon, Karl Edward

    2004-11-09

    In energy management system is provided for a power generating device having a working fluid intake in which the energy management system comprises an electrical dissipation device coupled to the power generating device and a dissipation device cooling system configured to direct a portion of a working fluid to the electrical dissipation device so as to provide thermal control to the electrical dissipation device.

  19. A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration.

    PubMed

    Schmidt-Erfurth, Ursula; Waldstein, Sebastian M

    2016-01-01

    Neovascular age-related macular degeneration (AMD) has undergone substantial break-throughs in diagnostic as well as therapeutic respect, with optical coherence tomography (OCT) allowing to identify disease morphology in great detail, and intravitreal anti-vascular endothelial growth factor therapy providing unprecedented benefit. However, these two paths have yet not been combined in an optimal way, real-world outcomes are inferior to expectations, and disease management is largely inefficient in the real-world setting. This dilemma can be solved by identification of valid biomarkers relevant for visual function, disease activity and prognosis, which can provide solid guidance for therapeutic management on an individual level as well as on the population base. Qualitative and quantitative morphological features obtained by advanced OCT provide novel insight into exudative and degenerative stages of neovascular AMD. However, conclusions from structure/function correlations evolve differently from previous paradigms. While central retinal thickness was used as biomarker for guiding retreatment management in clinical trials and practice, fluid localization in different compartments offers superior prognostic value: Intraretinal cystoid fluid has a negative impact on visual acuity and is considered as degenerative when persisting through the initial therapeutic interval. Subretinal fluid is associated with superior visual benefit and a lower rate of progression towards geographic atrophy. Detachment of the retinal pigment epithelium was identified as most pathognomonic biomarker, often irresponsive to therapy and responsible for visual decline during a pro-re-nata regimen. Alterations of neurosensory tissue are usually associated with irreversible loss of functional elements and a negative prognosis. Novel OCT technologies offer crucial insight into corresponding changes at the level of the photoreceptor--retinal pigment epithelial--choriocapillary unit, identifying the biological limits of therapeutic interventions. To optimally benefit from high-resolution multi-modal imaging, an integrated analysis of all functional and structural features is required involving reliable automated algorithms and computational data analyses. Using innovative analysis methods, retinal biomarkers can be used to provide efficient personalized therapy for the individual patient, predictive disease- and population-based models for large-scale management and identifying promising targets for the development of novel therapeutic strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Selected technology for the gas industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).

  1. Four phases of intravenous fluid therapy: a conceptual model.

    PubMed

    Hoste, E A; Maitland, K; Brudney, C S; Mehta, R; Vincent, J-L; Yates, D; Kellum, J A; Mythen, M G; Shaw, A D

    2014-11-01

    I.V. fluid therapy plays a fundamental role in the management of hospitalized patients. While the correct use of i.v. fluids can be lifesaving, recent literature demonstrates that fluid therapy is not without risks. Indeed, the use of certain types and volumes of fluid can increase the risk of harm, and even death, in some patient groups. Data from a recent audit show us that the inappropriate use of fluids may occur in up to 20% of patients receiving fluid therapy. The delegates of the 12th Acute Dialysis Quality Initiative (ADQI) Conference sought to obtain consensus on the use of i.v. fluids with the aim of producing guidance for their use. In this article, we review a recently proposed model for fluid therapy in severe sepsis and propose a framework by which it could be adopted for use in most situations where fluid management is required. Considering the dose-effect relationship and side-effects of fluids, fluid therapy should be regarded similar to other drug therapy with specific indications and tailored recommendations for the type and dose of fluid. By emphasizing the necessity to individualize fluid therapy, we hope to reduce the risk to our patients and improve their outcome. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Amniotic fluid embolism: an Australian-New Zealand population-based study.

    PubMed

    McDonnell, Nolan; Knight, Marian; Peek, Michael J; Ellwood, David; Homer, Caroline S E; McLintock, Claire; Vaughan, Geraldine; Pollock, Wendy; Li, Zhuoyang; Javid, Nasrin; Sullivan, Elizabeth

    2015-12-24

    Amniotic fluid embolism (AFE) is a major cause of direct maternal mortality in Australia and New Zealand. There has been no national population study of AFE in either country. The aim of this study was to estimate the incidence of amniotic fluid embolism in Australia and New Zealand and to describe risk factors, management, and perinatal outcomes. A population-based descriptive study using the Australasian Maternity Outcomes Surveillance System (AMOSS) carried out in 263 eligible sites (>50 births per year) covering an estimated 96% of women giving birth in Australia and all 24 New Zealand maternity units (100% of women giving birth in hospitals) between January 1 2010-December 31 2011. A case of AFE was defined either as a clinical diagnosis (acute hypotension or cardiac arrest, acute hypoxia and coagulopathy in the absence of any other potential explanation for the symptoms and signs observed) or as a post mortem diagnosis (presence of fetal squames/debris in the pulmonary circulation). Thirty-three cases of AFE were reported from an estimated cohort of 613,731women giving birth, with an estimated incidence of 5.4 cases per 100,000 women giving birth (95% CI 3.5 to 7.2 per 100,000). Two (6%) events occurred at home whilst 46% (n = 15) occurred in the birth suite and 46% (n = 15) in the operating theatre (location not reported in one case). Fourteen women (42%) underwent either an induction or augmentation of labour and 22 (67%) underwent a caesarean section. Eight women (24%) conceived using assisted reproduction technology. Thirteen (42%) women required cardiopulmonary resuscitation, 18% (n = 6) had a hysterectomy and 85% (n = 28) received a transfusion of blood or blood products. Twenty (61%) were admitted to an Intensive Care Unit (ICU), eight (24%) were admitted to a High Dependency Unit (HDU) and seven (21%) were transferred to another hospital for further management. Five woman died (case fatality rate 15%) giving an estimated maternal mortality rate due to AFE of 0.8 per 100,000 women giving birth (95% CI 0.1% to 1.5%). There were two deaths among 36 infants. A coordinated emergency response requiring resource intense multi-disciplinary input is required in the management of women with AFE. Although the case fatality rate is lower than in previously published studies, high rates of hysterectomy, resuscitation, and admission to higher care settings reflect the significant morbidity associated with AFE. Active, ongoing surveillance to document the risk factors and short and long-term outcomes of women and their babies following AFE may be helpful to guide best practice, management, counselling and service planning. A potential link between AFE and assisted reproductive technology warrants further investigation.

  3. Potential Follow on Experiments for the Zero Boil Off Tank Experiment

    NASA Technical Reports Server (NTRS)

    Chato, David; Kassemi, Mohammad

    2014-01-01

    Cryogenic Storage &Transfer are enabling propulsion technologies in the direct path of nearly all future human or robotic missions; It is identified by NASA as an area with greatest potential for cost saving; This proposal aims at resolving fundamental scientific issues behind the engineering development of the storage tanks; We propose to use the ISS lab to generate & collect archival scientific data:, raise our current state-of-the-art understanding of transport and phase change issues affecting the storage tank cryogenic fluid management (CFM), develop and validate state-of-the-art CFD models to innovate, optimize, and advance the future engineering designs

  4. Preliminary thermal design of the COLD-SAT spacecraft

    NASA Technical Reports Server (NTRS)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  5. Deformation and Breakup of Two Fluid Jets

    NASA Astrophysics Data System (ADS)

    Doshi, Pankaj; Ramkrishna, Doraiswamy; Basaran, Osman

    2001-11-01

    Two fluid jets consists of an inner liquid core surrounded by an annulus of outer immiscible liquid. The perturbation in the inner and outer interphase could cause capillary instability resulting in large deformation and breakup of the jet into drops. The jet breakup and drop size distribution is largely influenced by the properties of inner and outer fluid phases. Out of the various jet breakup phenomena one with most technological importance is the one in which inner interphase ruptures followed by the outer interphase resulting in the formation of compound drops. The compound drop formation is very useful for the microencapsulation technology, which find use in diverse pharmaceutical and chemical industry applications. In this paper we present a computational analysis of non-linear deformation and breakup of two fluid jets of Newtonian fluids. The analysis involves study of capillary instability driven deformation of a free jet with periodic boundary conditions. Although small amplitude deformation of two fluid jets have previously been studied, large amplitude deformation exhibiting interesting nonlinear dynamics and eventual breakup of the two fluid jets have been beyond the reach of previously used analytical and computational techniques. The computational difficulties result from the facts that (1) the inner and outer interphase can overturn during the motion and (2) pressure and normal stress are discontinuous at the inner interphase. We overcome both of these difficulties by using a new Galerkin/finite element algorithm that relies on a powerful elliptic mesh generation technique. The results to be presented includes jet deformation and breakup time as a function of inner and outer fluid phase properties. The highlight of the results will be prediction of drop size distribution which is of critical importance for microencapsulation technology.

  6. Induced Seismicity Potential of Energy Technologies

    NASA Astrophysics Data System (ADS)

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  7. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  8. Salivary diagnostics and its impact in dentistry, research, education, and the professional community.

    PubMed

    Slavkin, H C; Fox, C H; Meyer, D M

    2011-10-01

    Oral fluid-based (salivary) tests have the potential to create practical, point-of-care clinical instruments that are convenient, practical, and comfortable to use in dentistry and medicine. Currently, there are no simple, accurate, and inexpensive sampling, screening, or detection methods to support definitive diagnostic platforms across dental and medical disciplines. Though the benefits from advancing screening and detection technologies seem eminent, analytical, chemical, molecular, genetic, and protein markers are still under development. Clinical applications in patient care must be validated independently to ensure that they are clinically accurate, reliable, precise, and uniformly consistent for screening and detecting specific diseases or conditions. As technology designed to improve patient care through risk assessment, prevention, and disease management is transferred into clinical practice, dentistry may need to reassess its role in general health care. © International & American Associations for Dental Research

  9. KSC-07pd3599

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Doug Lyons, STS-122 launch director, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd3598

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- LeRoy Cain, the Mission Management Team chairman, participates in a news briefing following the conclusion of a team meeting. The meeting followed the morning's launch scrub caused by problems experienced with the space shuttle Atlantis STS-122 external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd3597

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, associate administrator for Space Operations, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  12. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  13. Latest developments in peri-operative monitoring of the high-risk major surgery patient.

    PubMed

    Green, David; Paklet, Lise

    2010-01-01

    Peri-operative monitoring technology has made great strides in the last 20 years with the introduction of minimally invasive devices to measure inter alia stroke volume, cardiac output, depth of anaesthesia and cerebral and tissue oxygen monitoring. Despite these technological advances, peri-operative management of the high risk major surgery patient has remained virtually unchanged. The vast majority of patients undergo a pre-operative assessment which is neither designed to quantify functional capacity nor predict outcome. Anaesthetists then usually monitor these patients using the same technology (e.g. pulse oximetry (SpO2), invasive systemic BP and CVP, end tidal carbon dioxide (etCO2) and anaesthetic agent monitoring) that was available in the early 1980s. Conventional intra-operative management can result in occult low levels of blood flow and oxygen delivery that lead to complications that only occur days or weeks following surgery and give false re-assurance to the anaesthetist that he or she is doing a "good job". Post-operative management then often takes place in an environment with reduced levels of both monitoring equipment and staff expertise. It is perhaps not surprising that outcome still remains poor in high-risk patients.(1) In this review, we will briefly describe the role of peri-operative optimization, some of the available monitors and indicate how their combined use might be beneficial in managing the high-risk surgical patient. We believe that although there is now evidence to suggest that the use of individual new monitors (such as assessment of fluid status, depth of anaesthesia, tissue oxygenation and blood flow) can influence outcome, it will only be their combination that will radically improve the peri-operative management and outcome of high-risk surgical patients. It is a matter of some urgency that large scale, prospective and collaborative studies be designed, funded and executed to prove or disprove this hypothesis. Copyright 2009 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Separation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  15. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturingmore » fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.« less

  16. Slit-lamp technique of draining interface fluid following Descemet's stripping endothelial keratoplasty.

    PubMed

    Srinivasan, Sathish; Rootman, David S

    2007-09-01

    To describe a new slit-lamp technique for draining interface fluid to manage complete donor disc detachments following Descemet's stripping (automated) endothelial keratoplasty (DSEK/DSAEK). Interventional case series. Five DSEK/DSAEK patients presented on the first postoperative day with complete detachment of the donor lenticule. Slit-lamp biomicroscopy showed interface fluid preventing attachment of the donor disc to the host stromal bed. A new slit-lamp technique is described to drain the interface fluid. This technique involved completely filling the anterior chamber with an air bubble using a 30-gauge needle on a 3 ml syringe. Following this, a 0.12 forceps was used to open the inferior mid-peripheral corneal drainage slit to drain the interface fluid. This technique was successful in draining the interface fluid in all five patients, leading to immediate complete reattachment of the donor disc. Donor disc detachments following DSEK/DSAEK can be successfully managed by this slit-lamp technique of draining the interface fluid.

  17. Magnetic Fluids Deliver Better Speaker Sound Quality

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1960s, Glenn Research Center developed a magnetized fluid to draw rocket fuel into spacecraft engines while in space. Sony has incorporated the technology into its line of slim speakers by using the fluid as a liquid stand-in for the speaker's dampers, which prevent the speaker from blowing out while adding stability. The fluid helps to deliver more volume and hi-fidelity sound while reducing distortion.

  18. Fluid machines: Expanding the limits, past and future

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.; Sandercock, D. M.

    1985-01-01

    During the 40 yr period from 1940 to 1980, the capabilities and operating limits of fluid machines were greatly extended. This was due to a research program, carried out to meet the needs of aerospace programs. Some of the events are reviewed. Overall advancements of all machinery components are discussed followed by a detailed examination of technology advancements in axial compressors and pumps. Future technology needs are suggested.

  19. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  20. Thermophysical properties and rheological behavior of electro-rheological fluids at different temperatures

    NASA Astrophysics Data System (ADS)

    Korobko, Evguenia V.; Korobko, Yulia O.

    2000-04-01

    Fluid disperse systems, sensitive to the external electric field-electrorheological fluids, are finding increasing use in various areas of industry and technology. Their physicomechanical, electrophysical characteristics determine the valuable specific properties of the materials with assigned structure, obtainable with everwide use of electric fields, which makes it possible to substantially enhance efficiency and productiveness of technological processes and to improve the control of operational regimes of the equipment which employ fluid disperse media. The present investigations has been undertaken with the aim of studying thermophysical properties and rheophysical behavior of low-concentration ER- fluid (diatomite in transformer oil) at different temperatures. It was shown that the electric field, which changes considerably the structure of electrorheological fluid, influences effective thermal conductivity and diffusivity coefficients. Their increase with electric field intensity and the increase of the effective viscosity with temperature are connected with the increase of the conductive component of the overall heat transfer through the contact spots between the solid particles, and with intensification of electric convection in the spaces between the dispersed particles.

  1. Micro Linear Pump with Electromagnetic Actuator

    NASA Astrophysics Data System (ADS)

    Suzumori, Koichi; Furusawa, Hiroaki; Kanda, Takefumi; Yamada, Yoshiaki; Nagata, Takashi

    In recent years, research and development of the micro-fluid systems have been activated in the field of chemical technology and biotechnology. Micro-fluid systems are realized by micromachine technology and MEMS technology. Micro pump is an essential element for miniaturization of chemical analysis reaction systems. The aim of this research is development of a micro linear pump which will be built into micro-fluid systems. This pump aims to take a sample of very-small-quantity of liquids. Taking a sample of very-small-quantity of liquids reduce the amount used and waste fluid of a reagent. Full length and diameter of this pump are 32.5mm and 6mm respectively. The features of this pump are (1) the pump is built with actuator, (2) the gap of 7μm between piston and cylinder is achieved through fine machining process, and (3) micro check-valves of 2mm diameter made of stainless-steel film are fabricated and integrated. In this paper, the structure and the characteristics of this pump were shown. And the characteristics after improvement of micro check-valves were shown.

  2. Advances in pleural disease management including updated procedural coding.

    PubMed

    Haas, Andrew R; Sterman, Daniel H

    2014-08-01

    Over 1.5 million pleural effusions occur in the United States every year as a consequence of a variety of inflammatory, infectious, and malignant conditions. Although rarely fatal in isolation, pleural effusions are often a marker of a serious underlying medical condition and contribute to significant patient morbidity, quality-of-life reduction, and mortality. Pleural effusion management centers on pleural fluid drainage to relieve symptoms and to investigate pleural fluid accumulation etiology. Many recent studies have demonstrated important advances in pleural disease management approaches for a variety of pleural fluid etiologies, including malignant pleural effusion, complicated parapneumonic effusion and empyema, and chest tube size. The last decade has seen greater implementation of real-time imaging assistance for pleural effusion management and increasing use of smaller bore percutaneous chest tubes. This article will briefly review recent pleural effusion management literature and update the latest changes in common procedural terminology billing codes as reflected in the changing landscape of imaging use and percutaneous approaches to pleural disease management.

  3. Technologies That Enable Accurate and Precise Nano- to Milliliter-Scale Liquid Dispensing of Aqueous Reagents Using Acoustic Droplet Ejection.

    PubMed

    Sackmann, Eric K; Majlof, Lars; Hahn-Windgassen, Annett; Eaton, Brent; Bandzava, Temo; Daulton, Jay; Vandenbroucke, Arne; Mock, Matthew; Stearns, Richard G; Hinkson, Stephen; Datwani, Sammy S

    2016-02-01

    Acoustic liquid handling uses high-frequency acoustic signals that are focused on the surface of a fluid to eject droplets with high accuracy and precision for various life science applications. Here we present a multiwell source plate, the Echo Qualified Reservoir (ER), which can acoustically transfer over 2.5 mL of fluid per well in 25-nL increments using an Echo 525 liquid handler. We demonstrate two Labcyte technologies-Dynamic Fluid Analysis (DFA) methods and a high-voltage (HV) grid-that are required to maintain accurate and precise fluid transfers from the ER at this volume scale. DFA methods were employed to dynamically assess the energy requirements of the fluid and adjust the acoustic ejection parameters to maintain a constant velocity droplet. Furthermore, we demonstrate that the HV grid enhances droplet velocity and coalescence at the destination plate. These technologies enabled 5-µL per destination well transfers to a 384-well plate, with accuracy and precision values better than 4%. Last, we used the ER and Echo 525 liquid handler to perform a quantitative polymerase chain reaction (qPCR) assay to demonstrate an application that benefits from the flexibility and larger volume capabilities of the ER. © 2015 Society for Laboratory Automation and Screening.

  4. Opportunities for Intervention Strategies for Weight Management: Global Actions on Fluid Intake Patterns

    PubMed Central

    Lafontan, Max; Visscher, Tommy L.S.; Farpour-Lambert, Nathalie; Yumuk, Volkan

    2015-01-01

    Water is an essential nutrient for all physiological functions and particularly important for thermoregulation. About 60% of our body weight is made of water. Under standard conditions (18-20 °C and moderate activity), water balance is regulated within 0.2 % of body weight over a 24-hour period. Water requirement varies between individuals and according to environmental conditions. Concerning considerations related to obesity, the health impact of fluid intake is commonly overlooked. Fluid intake advices are missing in most of food pyramids offered to the public, and water requirements and hydration challenges remain often neglected. The purpose of this paper is to emphasize and discuss the role of water consumption in the context of other important public health measures for weight management. Attention will be focused on fluid intake patterns and hydration-related questions in the context of global interventions and/or physical activity programs settled in weight management protocols. PMID:25765164

  5. Light Material Ripped Up Older Dark Vein Material

    NASA Image and Video Library

    2015-11-11

    This view from the Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars rover shows a combination of dark and light material within a mineral vein at a site called "Garden City" on lower Mount Sharp. The image was taken on April 4, 2015, during the 946th Martian day, or sol, of Curiosity's work on Mars. The area shown is roughly 1 inch (2.5 centimeters) wide. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This example shows where a later addition of light-toned material into a vein ripped up prior dark material, suggesting both high fluid pressure and potentially explosive release of high pressures. Different examples are at PIA19925 and PIA19926. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19927

  6. Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary

    2006-01-01

    Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.

  7. New tools for optimizing fluid resuscitation in acute pancreatitis

    PubMed Central

    Bortolotti, Perrine; Saulnier, Fabienne; Colling, Delphine; Redheuil, Alban; Preau, Sebastien

    2014-01-01

    Acute pancreatitis (AP) is a frequent disease with degrees of increasing severity responsible for high morbidity. Despite continuous improvement in care, mortality remains significant. Because hypovolemia, together with microcirculatory dysfunction lead to poor outcome, fluid therapy remains a cornerstone of the supportive treatment. However, poor clinical evidence actually support the aggressive fluid therapy recommended in recent guidelines since available data are controversial. Fluid management remains unclear and leads to current heterogeneous practice. Different strategies may help to improve fluid resuscitation in AP. On one hand, integration of fluid therapy in a global hemodynamic resuscitation has been demonstrated to improve outcome in surgical or septic patients. Tailored fluid administration after early identification of patients with high-risk of poor outcome presenting inadequate tissue oxygenation is a major part of this strategy. On the other hand, new decision parameters have been developed recently to improve safety and efficiency of fluid therapy in critically ill patients. In this review, we propose a personalized strategy integrating these new concepts in the early fluid management of AP. This new approach paves the way to a wide range of clinical studies in the field of AP. PMID:25473163

  8. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less

  9. Prehospital burn management in a combat zone.

    PubMed

    Lairet, Kimberly F; Lairet, Julio R; King, Booker T; Renz, Evan M; Blackbourne, Lorne H

    2012-01-01

    The purpose of this article is to provide a descriptive study of the management of burns in the prehospital setting of a combat zone. A retrospective chart review was performed of U.S. casualties with >20% total-body-surface-area thermal burns, transported from the site of injury to Ibn Sina Combat Support Hospital (CSH) between January 1, 2006, and August 30, 2009. Ibn Sina CSH received 225 burn casualties between January 2006 and August 2009. Of these, 48 met the inclusion criteria. The mean Injury Severity Score was 31.7 (range 4 to 75). Prehospital vascular access was obtained in 24 casualties (50%), and 20 of the casualties received fluid resuscitation. Out of the 48 casualties enrolled, 28 (58.3%) did not receive prehospital fluid resuscitation. Of the casualties who received fluid resuscitation, nearly all received volumes in excess of the guidelines established by the American Burn Association and those recommended by the Committee for Tactical Combat Casualty Care. With regard to pain management in the prehospital setting, 13 casualties (27.1%) received pain medication. With regard to the prehospital fluid resuscitation of primary thermal injury in the combat zone, two extremes were noted. The first group did not receive any fluid resuscitation; the second group was resuscitated with fluid volumes higher than those expected if established guidelines were utilized. Pain management was not uniformly provided to major burn casualties, even in several with vascular access. These observations support improved education of prehospital personnel serving in a combat zone.

  10. The Burn Wound Exudate – an under-utilized resource

    PubMed Central

    Widgerow, Alan D; King, Kassandra; Tussardi, Ilaria Tocco; Banyard, Derek A.; Chiang, Ryan; Awad, Antony; Afzel, Hassan; Bhatnager, Shweta; Melkumyan, Satenik; Wirth, Garrett; Evans, Gregory R.D

    2014-01-01

    Introduction The burn wound exudate represents the burn tissue microenvironment. Extracting information from the exudate relating to cellular components, signaling mediators and protein content can provide much needed data relating to the local tissue damage, depth of the wound and probable systemic complications. This review examines the scientific data extracted from burn wound exudates over the years and proposes new investigations that will provide useful information from this underutilized resource. Method A literature review was conducted using the electronic database PubMed to search for literature pertaining to burn wound or blister fluid analysis. Key words included burn exudate, blister fluid, wound exudate, cytokine burn fluid, subeschar fluid, cytokine burns, serum cytokines. 32 relevant article were examined and 29 selected as relevant to the review. 3 papers were discarded due to questionable methodology or conclusions. The reports were assessed for their affect on management decisions and diagnostics. Furthermore, traditional blood level analysis of these mediators was made to compare the accuracy of blood versus exudate in burn wound management. Extrapolations are made for new possibilities of burn wound exudate analysis. Results Studies pertaining to burn wound exudate, subeschar fluid and blister fluid analyses may have contributed to burn wound management decisions particularly related to escharectomies and early burn wound excision. In addition, information from these studies have the potential to impact on areas such as healing, scarring, burn wound conversion and burn wound depth analysis. Conclusion Burn wound exudate analysis has proven useful in burn wound management decisions. It appears to offer a far more accurate reflection of the burn wound pathophysiology than the traditional blood/serum investigations undertaken in the past. New approaches to diagnostics and treatment efficacy assessment are possible utilizing data from this fluid. Burn wound exudate is a useful, currently under-utilized resource that is likely to take a more prominent role in burn wound management. PMID:24986597

  11. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  12. Fluid management in the optimization of space construction

    NASA Technical Reports Server (NTRS)

    Snyder, Howard

    1990-01-01

    Fluid management impacts strongly on the optimization of space construction. Large quantities of liquids are needed for propellants and life support. The mass of propellant liquids is comparable to that required for the structures. There may be a strong dynamic interaction between the stored liquids and the space structure unless the design minimizes the interaction. The constraints of cost and time required optimization of the supply/resupply strategy. The proper selection and design of the fluid management methods for: slosh control; stratification control; acquisition; transfer; gauging; venting; dumping; contamination control; selection of tank configuration and size; the storage state and the control system can improve the entire system performance substantially. Our effort consists of building mathematical/computer models of the various fluid management methods and testing them against the available experimental data. The results of the models are used as inputs to the system operations studies. During the past year, the emphasis has been on modeling: the transfer of cryogens; sloshing and the storage configuration. The work has been intermeshed with ongoing NASA design and development studies to leverage the funds provided by the Center.

  13. Study of toluene rotary fluid management device and shear flow condenser performance for a space-based organic Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.

  14. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  15. Impact of late fluid balance on clinical outcomes in the critically ill surgical and trauma population.

    PubMed

    Elofson, Kathryn A; Eiferman, Daniel S; Porter, Kyle; Murphy, Claire V

    2015-12-01

    Management of fluid status in critically ill patients poses a significant challenge due to limited literature. This study aimed to determine the impact of late fluid balance management after initial adequate fluid resuscitation on in-hospital mortality for critically ill surgical and trauma patients. This single-center retrospective cohort study included 197 patients who underwent surgical procedure within 24 hours of surgical intensive care unit admission. Patients with high fluid balance on postoperative day 7 (>5 L) were compared with those with a low fluid balance (≤5 L) with a primary end point of in-hospital mortality. Subgroup analyses were performed based on diuretic administration, diuretic response, and type of surgery. High fluid balance was associated with significantly higher in-hospital mortality (30.2 vs 3%, P<.001) compared with low fluid balance; this relationship remained after multivariable regression analysis. High fluid balance was associated with increased mortality, independent of diuretic administration, diuretic response, and type of surgery. Consistent with previous literature, high fluid balance on postoperative day 7 was associated with increased in-hospital mortality. Patients who received and responded to diuretic therapy did not demonstrate improved clinical outcomes, which questions their use in the postoperative period. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Injection of Light Material into an Older Dark Vein

    NASA Image and Video Library

    2015-11-11

    Light material emplaced within darker vein material is seen in this view of a mineral vein at the "Garden City" site on lower Mount Sharp, Mars. The Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars Rover took the image on April 4, 2015, during the 946th Martian day, or sol, of Curiosity's work on Mars. The area shown is roughly 0.4 inch (1 centimeter) wide. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This example shows where injection of light material into a prior dark vein suggests high fluid pressure. Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This vein's texture shows indications of crystal growth, suggesting that crystallization may have exerted a force for opening the fracture filled by the vein. Different examples are at PIA19925 and PIA19927. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19926

  17. Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection

    NASA Astrophysics Data System (ADS)

    Chang, K. W.; Yoon, H.; Martinez, M. J.

    2017-12-01

    Subsurface energy activities such as geological CO2 storage and wastewater injection require injecting large amounts of fluid into the subsurface, which will alter the states of pore pressure and stress in the storage formation. One of the main issues for injection-induced seismicity is the post shut-in increases in the seismicity rate, often observed in the fluid-injection operation sites. The rate surge can be driven by the following mechanisms: (1) pore-pressure propagation into distant faults after shut-in and (2) poroelastic stressing caused by well operations, depending on fault geometry, hydraulic and mechanical properties of the formation, and injection history. We simulate the aerial view of the target reservoir intersected by strike-slip faults, in which injection-induced pressure buildup encounters the faults directly. We examine the poroelastic response of the faults to fluid injection and perform a series of sensitivity tests considering: (1) permeability of the fault zone, (2) locations and the number of faults with respect to the injection point, and (3) well operations with varying the injection rate. Our analysis of the Coulomb stress change suggests that the sealing fault confines pressure diffusion which stabilizes or weakens the nearby conductive fault depending on the injection location. We perform the sensitivity test by changing injection scenarios (time-dependent rates), while keeping the total amount of injected fluids. Sensitivity analysis shows that gradual reduction of the injection rate minimizes the Coulomb stress change and the least seismicity rates are predicted. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  18. Continuous ambulatory peritoneal dialysis: perspectives on patient selection in low- to middle-income countries

    PubMed Central

    Wearne, Nicola; Kilonzo, Kajiru; Effa, Emmanuel; Davidson, Bianca; Nourse, Peter; Ekrikpo, Udeme; Okpechi, Ikechi G

    2017-01-01

    Chronic kidney disease is a major public health problem that continues to show an unrelenting global increase in prevalence. The prevalence of chronic kidney disease has been predicted to grow the fastest in low- to middle-income countries (LMICs). There is evidence that people living in LMICs have the highest need for renal replacement therapy (RRT) despite the lowest access to various modalities of treatment. As continuous ambulatory peritoneal dialysis (CAPD) does not require advanced technologies, much infrastructure, or need for dialysis staff support, it should be an ideal form of RRT in LMICs, particularly for those living in remote areas. However, CAPD is scarcely available in many LMICs, and even where available, there are several hurdles to be confronted regarding patient selection for this modality. High cost of CAPD due to unavailability of fluids, low patient education and motivation, low remuneration for nephrologists, lack of expertise/experience for catheter insertion and management of complications, presence of associated comorbid diseases, and various socio-demographic factors contribute significantly toward reduced patient selection for CAPD. Cost of CAPD fluids seems to be a major constraint given that many countries do not have the capacity to manufacture fluids but instead rely heavily on fluids imported from developed countries. There is need to invest in fluid manufacturing (either nationally or regionally) in LMICs to improve uptake of patients treated with CAPD. Workforce training and retraining will be necessary to ensure that there is coordination of CAPD programs and increase the use of protocols designed to improve CAPD outcomes such as insertion of catheters, treatment of peritonitis, and treatment of complications associated with CAPD. Training of nephrology workforce in CAPD will increase workforce experience and make CAPD a more acceptable RRT modality with improved outcomes. PMID:28115864

  19. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2008-01-01

    technology, in particular. The last one gave birth to the magnetic fluid hyperthermia (MFH) - an important tool for cancer treatment . Hyperthermia is...MODELING WORK In order to theoretically demonstrate the advantage of the novel magnetic nanoparticles for hyperthermia , we have developed a...AD_________________ Award Number: DAMD17-03-1-0176 TITLE: Novel Magnetic Fluids for Breast Cancer

  20. One of possible variants of the organization for recycling lubricate cooling of technological means for small businesses

    NASA Astrophysics Data System (ADS)

    Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.

    2016-11-01

    In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.

  1. An Overview of NASA's In-Space Cryogenic Propellant Management Technologies

    NASA Technical Reports Server (NTRS)

    Tucker, Stephen; Hastings, Leon; Haynes, Davy (Technical Monitor)

    2001-01-01

    Future mission planning within NASA continues to include cryogenic propellants for in space transportation, with mission durations ranging from days to years. Between 1995 and the present, NASA has pursued a diversified program of ground-based testing to prepare the various technologies associated with in-space cryogenic fluid management (CFM) for implementation. CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. NASA CFM technologies are planned, coordinated, and implemented through the Cryogenic Technology Working Group which is comprised of representatives from the various NASA Centers as well as the National Institute of Standards and Technologies (NIST) and, on selected occasions, the Air Force. An overview of the NASA program and Marshall Space Flight Center (MSFC) roles, accomplishments, and near-term activities are presented herein. Basic CFM technology areas being addressed include passive insulation, zero gravity pressure control, zero gravity mass gauging, capillary liquid acquisition devices, and zero boiloff storage. Recent MSFC accomplishments include: the large scale demonstration of a high performance variable density multilayer insulation (MLI) that reduced the boiloff by about half that of standard MLI; utilization of a foam substrate under MLI to eliminate the need for a helium purge bag system; demonstrations of both spray-bar and axial-jet mixer concepts for zero gravity pressure control; and sub-scale testing that verified an optical sensor concept for measuring liquid hydrogen mass in zero gravity. In response to missions requiring cryogenic propellant storage durations on the order of years, a cooperative effort by NASA's Ames Research Center, Glenn Research Center, and MSFC has been implemented to develop and demonstrate zero boiloff concepts for in-space storage of cryogenic propellants. An MSFC contribution to this cooperative effort is a large-scale demonstration of the integrated operation of passive insulation, destratification/pressure control, and cryocooler (commercial unit) subsystems to achieve zero boiloff storage of liquid hydrogen. Testing is expected during the Summer of 2001.

  2. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring.

    PubMed

    Sharma, Sanjiv; Saeed, Anwer; Johnson, Christopher; Gadegaard, Nikolaj; Cass, Anthony Eg

    2017-04-01

    The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective. We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases.

  3. An Overview of Recent Cryogenic Fluid Management Developments

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Johnson, W. L.; Stephens, J. R.

    2017-01-01

    Long-term storage, supply, and transfer of cryogenic fluids are critical capabilities needed to advance the human exploration of space. Technologies and advanced development programs have been pursued to address issues likely to confront the designers and developers of future cryogenic fluid management (CFM) subsystems and propulsion systems. NASA and aerospace industries have continued to conduct research and development for the propulsion applications of cryogenic fluids. From the well known in-space applications, to new applications involving superconducting motors within multiple different aircraft, and a renewed interest in production of oxygen on Mars, NASA continues to probe cryogenic applications within propulsion. This article presents brief reviews of several of the current CFM efforts to support future space missions. NASA GRC is currently focusing on understanding some of the finer points in the application of multilayer insulation. GRC recently finished the activation of a new calorimeter that operates at 20 K with a warm boundary that can operate either around 90 K or at 300 K. Current testing is focused on investigating multiple different seam concepts, initially between temperatures of 300 K and 20 K, and between 20 K and 90 K. One of the larger recent NASA investments has been on the Structural Heat Intercept, Insulation, and Vibration Experiment Rig (SHIIVER). SHIIVER is a 4 m diameter tank that is approximately 1/2 scale of the planned upper stage of the new Space Launch System (SLS) rocket. SHIIVER is focused on demonstrating the thermal benefits of multilayer insulation on the tank domes and boil-off vapor cooling on structural cylinders that hold the tank in-line on the rocket. It will also quantify any damage that may incur during the acoustic environment of over 160 decibels that SLS will experience on its trip to Earth orbit. In support of the possible production of oxygen out of the Mars' atmosphere, a team comprised of four NASA centers (GRC, MSFC, JSC, and KSC) collaborated to investigate multiple different hardware combinations, refrigeration cycles, and integration techniques to minimize power and mass of the storage and liquefaction system. Moreover, high efficiency, high capacity cryocoolers are an element of CFM which is essential for achieving NASA's future long duration missions. Currently in development is a 20W at 20K unit for use with liquid hydrogen. It is scheduled for delivery to NASA in the summer of 2017. Two Phase I SBIRS have recently concluded resulting in the preliminary design of two different 90K units, each having a refrigeration capacity of approximately 150W. Once the development efforts are complete, these high capacity 90K units will be integrated into the design of NASA's Liquid Oxygen (LOX)/Methane applications such as the Lander and Ascent Vehicles, or possibly an in-space stage. CFM technology is critical to the success of missions to Mars, Planetary Exploration, and In-Situ Resource Utilization (ISRU) for cryogenic propellant production. NASA is focusing on the development of CFM technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of design of cryogenic systems for long term space missions. Lessons learned from the described CFM developments would lead to enhanced safety and reliability and enabling technologies which could allow NASA to meet future space exploration goals.

  4. Selected OAST/OSSA space experiment activities in support of Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Delombard, Richard

    The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.

  5. Selected OAST/OSSA space experiment activities in support of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Delombard, Richard

    1992-01-01

    The Space Experiments Division at NASA Lewis Research Center is developing technology and science space experiments for the Office of Aeronautics and Space Technology (OAST) and the Office of Space Sciences and Applications (OSSA). Selected precursor experiments and technology development activities supporting the Space Station Freedom (SSF) are presented. The Tank Pressure Control Experiment (TPCE) is an OAST-funded cryogenic fluid dynamics experiment, the objective of which is to determine the effectiveness of jet mixing as a means of equilibrating fluid temperatures and controlling tank pressures, thereby permitting the design of lighter cryogenic tanks. The information from experiments such as this will be utilized in the design and operation of on board cryogenic storage for programs such as SSF. The Thermal Energy Storage Flight Project (TES) is an OAST-funded thermal management experiment involving phase change materials for thermal energy storage. The objective of this project is to develop and fly in-space experiments to characterize void shape and location in phase change materials used in a thermal energy storage configuration representative of an advanced solar dynamic system design. The information from experiments such as this will be utilized in the design of future solar dynamic power systems. The Solar Array Module Plasma Interaction Experiment (SAMPIE) is an OAST-funded experiment to determine the environmental effects of the low earth orbit (LEO) space plasma environment on state-of-the-art solar cell modules biased to high potentials relative to the plasma. Future spacecraft designs and structures will push the operating limits of solar cell arrays and other high voltage systems. SAMPIE will provide key information necessary for optimum module design and construction. The Vibration Isolation Technology (VIT) Advanced Technology Development effort is funded by OSSA to provide technology necessary to maintain a stable microgravity environment for sensitive payloads on board spacecraft. The proof of concept will be demonstrated by laboratory tests and in low-gravity aircraft flights. VIT is expected to be utilized by many SSF microgravity science payloads. The Space Acceleration Measurement System (SAMS) is an OSSA-funded instrument to measure the microgravity acceleration environment for OSSA payloads on the shuttle and SSF.

  6. Cryogenic Thermal Management Advances during the CRYOTOOL Program

    NASA Astrophysics Data System (ADS)

    Bugby, D.; Stouffer, C.; Garzon, J.; Beres, M.; Gilchrist, A.; Roberts, T.; Davis, T.

    2006-04-01

    This paper describes the cryogenic thermal management advances made during the AFRL-sponsored CRYOTOOL program. Advances occurred as a result of conducting four technology development tasks: (1) development of a differential thermal expansion cryogenic thermal switch (DTE-CTSW) made with high purity Al end-pieces and an Ultem support rod; (2) carrying out of a dual DTE-CTSW/dual cryocooler performance test to quantify CTSW benefits in a redundant cryocooler system; (3) development of a miniaturized cryogenic loop heat pipe (mini-CLHP) that combines flex link, conduction bar, and CTSW functionalities; and (4) development of an across-gimbal cryogenic thermal transport system (GCTTS) with large diameter transport line coils for optics cooling. The results are as follows. The DTE-CTSW achieved an ON conductance of 2-3.6 W/K (from 35-90 K) and an OFF resistance of 1100-2300 K/W (300-230 K warm end). The redundant cryocooler test showed modest parasitic heat leak savings when dual DTE-CTSWs were used versus when they were not used. The mini-CLHP, using neon as the working fluid, transported 2.5 W at 35 K, achieved an OFF resistance of 1555 K/W, and had cross/axial flexibilities of 100-450 N/m. Lastly, GCTTS, using nitrogen as the working fluid, transported 20 W at 100 K in a flat configuration. Additional work is needed to verify GCTTS operation in an elevated orientation.

  7. Producing fluid flow using 3D carbon electrodes

    NASA Astrophysics Data System (ADS)

    Rouabah, H. A.; Park, B. Y.; Zaouk, R. B.; Madou, M. J.; Green, Nicolas G.

    2008-12-01

    Moving and manipulating bio-particles and fluids on the microscale is central to many lab-on-a-chip applications. Techniques for pumping fluids which use electric fields have shown promise using both DC and AC voltages. AC techniques, however, require the use of integrated metal electrodes which have a low resistance but can suffer from unwanted chemical reactions even at low potentials. In this paper we introduce the use of carbon MEMS technology (C-MEMS), a fabrication method which produces 3D conductive polymeric structures. Results are presented of the fabrication of an innovative design of 3D AC-electroosmotic micropump and preliminary experimental measurements which demonstrate the potential of both the technology and the design.

  8. Development and Evaluation of New Products for the Far-Forward Care of Combat Casualities With Acute Lung Injury

    DTIC Science & Technology

    2007-02-01

    ventilator was modified to administer chlorine. Lastly, we returned to the “ dry ” fluid management algorithm from our phase one studies, as volume loading...indicated, additional buprenorphine (Buprenex) 0.3 mg/kg IM was given for pain. The animals were transported to the ICU and mechanically ventilated (see...Ventilator Management below). General ICU care was similar to that reported previously, with the following exceptions. Fluid management followed

  9. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  10. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Beach, Duane E. (Technical Monitor); Devarakonda, Angirasa; Anderson, William G.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic, and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development is necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500 to 550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  11. Thermo-Physical Properties of Intermediate Temperature Heat Pipe Fluids

    NASA Technical Reports Server (NTRS)

    Devarakonda, Angirasa; Anderson, William G.

    2004-01-01

    Heat pipes are among the most promising technologies for space radiator systems. The paper reports further evaluation of potential heat pipe fluids in the intermediate temperature range of 400 to 700 K in continuation of two recent reports. More thermo-physical property data are examined. Organic, inorganic and elemental substances are considered. The evaluation of surface tension and other fluid properties are examined. Halides are evaluated as potential heat pipe fluids. Reliable data are not available for all fluids and further database development in necessary. Many of the fluids considered are promising candidates as heat pipe fluids. Water is promising as a heat pipe fluid up to 500-550 K. Life test data for thermo-chemical compatibility are almost non-existent.

  12. Subdural Fluid Collection and Hydrocephalus After Foramen Magnum Decompression for Chiari Malformation Type I: Management Algorithm of a Rare Complication.

    PubMed

    Rossini, Zefferino; Milani, Davide; Costa, Francesco; Castellani, Carlotta; Lasio, Giovanni; Fornari, Maurizio

    2017-10-01

    Chiari malformation type I is a hindbrain abnormality characterized by descent of the cerebellar tonsils beneath the foramen magnum, frequently associated with symptoms or brainstem compression, impaired cerebrospinal fluid circulation, and syringomyelia. Foramen magnum decompression represents the most common way of treatment. Rarely, subdural fluid collection and hydrocephalus represent postoperative adverse events. The treatment of this complication is still debated, and physicians are sometimes uncertain when to perform diversion surgery and when to perform more conservative management. We report an unusual occurrence of subdural fluid collection and hydrocephalus that developed in a 23-year-old patient after foramen magnum decompression for Chiari malformation type I. Following a management protocol, based on a step-by-step approach, from conservative therapy to diversion surgery, the patient was managed with urgent external ventricular drainage, and then with conservative management and wound revision. Because of the rarity of this adverse event, previous case reports differ about the form of treatment. In future cases, finding clinical and radiologic features to identify risk factors that are useful in predicting if the patient will benefit from conservative management or will need to undergo diversion surgery is only possible if a uniform form of treatment is used. Therefore, we believe that a management algorithm based on a step-by-step approach will reduce the use of invasive therapies and help to create a standard of care. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. [Present status and trend of heart fluid mechanics research based on medical image analysis].

    PubMed

    Gan, Jianhong; Yin, Lixue; Xie, Shenghua; Li, Wenhua; Lu, Jing; Luo, Anguo

    2014-06-01

    With introduction of current main methods for heart fluid mechanics researches, we studied the characteristics and weakness for three primary analysis methods based on magnetic resonance imaging, color Doppler ultrasound and grayscale ultrasound image, respectively. It is pointed out that particle image velocity (PIV), speckle tracking and block match have the same nature, and three algorithms all adopt block correlation. The further analysis shows that, with the development of information technology and sensor, the research for cardiac function and fluid mechanics will focus on energy transfer process of heart fluid, characteristics of Chamber wall related to blood fluid and Fluid-structure interaction in the future heart fluid mechanics fields.

  14. Integrated Project Management: A Case Study in Integrating Cost, Schedule, Technical, and Risk Areas

    NASA Technical Reports Server (NTRS)

    Smith, Greg

    2004-01-01

    This viewgraph presentation describes a case study as a model for integrated project management. The ISS Program Office (ISSPO) developed replacement fluid filtration cartridges in house for the International Space Station (ISS). The presentation includes a step-by-step procedure and organizational charts for how the fluid filtration problem was approached.

  15. FRACTURING FLUID CHARACTERIZATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids andmore » slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.« less

  16. Patient management following uncomplicated elective gastrointestinal operations.

    PubMed

    D'Costa, H; Taylor, E W

    1990-12-01

    The management of patients after uncomplicated elective gastrointestinal operations is frequently left to junior members of the surgical team once they have learnt their seniors' regimens. The use of nasogastric (N/G) tubes, the volume of intravenous (IV) fluid replacement and the reintroduction of oral fluids and solids are topics not generally covered in the surgical textbooks and so are learnt in hospital. A postal survey of all consultant general surgeons in Scotland was conducted to assess the variations in management of patients after cholecystectomy, right haemicolectomy and sigmoid colectomy. A completed questionnaire was received from 111 (81%) of the surgeons circulated. As might be expected, patient management varied widely from surgeon to surgeon, and from unit to unit. There would appear to be a need for prospective studies in this area of patient management. This may indicate that the use of N/G tubes could be further reduced and that oral fluids and solids could be reintroduced sooner after operation with improved patient comfort and reduced hospital stay, yet without detriment to patient care.

  17. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively.

    PubMed

    Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H

    2009-09-01

    Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to <350 ms. Patients were connected to a monitoring device, obtaining SVV by APCO. Haemodynamic variables were recorded before and after fluid bolus application. Fluid responsiveness was defined as an increase in stroke volume index >10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.

  18. Vascular leakage in dengue--clinical spectrum and influence of parenteral fluid therapy.

    PubMed

    Rosenberger, Kerstin D; Lum, Lucy; Alexander, Neal; Junghanss, Thomas; Wills, Bridget; Jaenisch, Thomas

    2016-03-01

    Clinical management of dengue relies on careful monitoring of fluid balance combined with judicious intravenous (IV) fluid therapy. However, in patients with significant vascular leakage, IV fluids may aggravate serosal fluid accumulation and result in respiratory distress. Trained physicians followed suspected dengue cases prospectively at seven hospitals across Asia and Latin America, using a comprehensive case report form that included daily clinical assessment and detailed documentation of parenteral fluid therapy. Applying Cox regression, we evaluated risk factors for the development of shock or respiratory distress with fluid accumulation. Most confirmed dengue patients (1524/1734, 88%) never experienced dengue shock syndrome (DSS). Among those with DSS, 176/210 (84%) had fluid accumulation, and in the majority (83%), this was detectable clinically. Among all cases with clinically detectable fluid accumulation, 179/447 (40%) were diagnosed with shock or respiratory distress. The risk for respiratory distress with fluid accumulation increased significantly as the infused volume over the preceding 24 h increased (hazard ratio 1.18 per 10 ml/kg increase; P < 0.001). Longer duration of IV therapy, use of a fluid bolus in the preceding 24 h, female gender and poor nutrition also constituted independent risk factors. Shock and respiratory distress are relatively rare manifestations of dengue, but some evidence of fluid accumulation is seen in around 50% of cases. IV fluids play a crucial role in management, but they must be administered with caution. Clinically and/or radiologically detectable fluid accumulations have potential as intermediate severity endpoints for therapeutic intervention trials and/or pathogenesis studies. © 2016 John Wiley & Sons Ltd.

  19. MOBILE ON-SITE RECYCLING OF METALWORKING FLUIDS

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling metalworking fluids through a mobile recycling unit. The specific recycling unit evaluated is based on the technology of filtration, pasteurization, and centrifugation. Metal...

  20. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  1. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  2. Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) Experiment Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Kramer, Edward (Editor)

    1998-01-01

    The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.

  3. Three-dimensional visualization and display technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    NASA Technical Reports Server (NTRS)

    Robbins, Woodrow E. (Editor); Fisher, Scott S. (Editor)

    1989-01-01

    Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems.

  4. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  5. Geo-Engineering through Internet Informatics (GEMINI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watney, W. Lynn; Doveton, John H.; Victorine, John R.

    GEMINI will resolve reservoir parameters that control well performance; characterize subtle reservoir properties important in understanding and modeling hydrocarbon pore volume and fluid flow; expedite recognition of bypassed, subtle, and complex oil and gas reservoirs at regional and local scale; differentiate commingled reservoirs; build integrated geologic and engineering model based on real-time, iterate solutions to evaluate reservoir management options for improved recovery; provide practical tools to assist the geoscientist, engineer, and petroleum operator in making their tasks more efficient and effective; enable evaluations to be made at different scales, ranging from individual well, through lease, field, to play and regionmore » (scalable information infrastructure); and provide training and technology transfer to evaluate capabilities of the client.« less

  6. Perioperative fluid management: From physiology to improving clinical outcomes.

    PubMed

    Bennett, Victoria A; Cecconi, Maurizio

    2017-08-01

    Perioperative fluid management is a key component in the care of the surgical patient. It is an area that has seen significant changes and developments, however there remains a wide disparity in practice between clinicians. Historically, patients received large volumes of intravenous fluids perioperatively. The concept of goal directed therapy was then introduced, with the early studies showing significant improvements in morbidity and mortality. The current focus is on fluid therapy guided by an individual patient's physiology. A fluid challenge is commonly performed as part of an assessment of a patient's fluid responsiveness. There remains wide variation in how clinicians perform a fluid challenge and this review explores the evidence for how to administer an effective challenge that is both reliable and reproducible. The methods for monitoring cardiac output have evolved from the pulmonary artery catheter to a range of less invasive techniques. The different options that are available for perioperative use are considered. Fluid status can also be assessed by examining the microcirculation and the importance of recognising the possibility of a lack of coherence between the macro and microcirculation is discussed. Fluid therapy needs to be targeted to specific end points and individualised. Not all patients who respond to a fluid challenge will necessarily require additional fluid administration and care should be aimed at identifying those who do. This review aims to explain the underlying physiology and describe the evidence base and the changes that have been seen in the approach to perioperative fluid therapy.

  7. Thirteenth Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion and Launch Vehicle Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1996-01-01

    The purpose of the workshop was to discuss experimental and computational fluid dynamic activities in rocket propulsion and launch vehicles. The workshop was an open meeting for government, industry, and academia. A broad number of topics were discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  8. Testing a Model of Self-Management of Fluid Intake in Community-Residing Long-Term Indwelling Urinary Catheter Users

    PubMed Central

    Wilde, Mary H.; Crean, Hugh F.; McMahon, James M.; McDonald, Margaret V.; Tang, Wan; Brasch, Judith; Fairbanks, Eileen; Shah, Shivani; Zhang, Feng

    2015-01-01

    Background Urinary tract infection and blockage are serious and recurrent challenges for people with long-term indwelling catheters, and these catheter problems cause worry and anxiety when they disrupt normal daily activities. Objectives The goal was to determine whether urinary catheter-related self-management behaviors focusing on fluid intake would mediate fluid intake related self-efficacy toward decreasing catheter-associated urinary tract infection (CAUTI) and/or catheter blockage. Method The sample involved data collected from 180 adult community-living, long-term indwelling urinary catheter users. The authors tested a model of fluid intake self-management (F-SMG) related to fluid intake self-efficacy (F-SE) for key outcomes of CAUTI and blockage. To account for the large number of zeros in both outcomes, a zero inflated negative binomial (ZINB) structural equation model was tested. Results Structurally, F-SE was positively associated with F-SMG, suggesting that higher F-SE predicts more (higher) F-SMG; however, F-SMG was not associated with either the frequency of CAUTI’s or the presence or absence of CAUTI. F-SE was positively related to F-SMG and F-SMG predicted less frequency of catheter blockage, but neither F-SE nor F-SMG predicted the presence or absence of blockage. Discussion Further research is needed to better understand determinants of CAUTI in long-term catheter users and factors which might influence or prevent its occurrence. Increased confidence (self-efficacy) and self-management behaviors to promote fluid intake could be of value in long-term urinary catheter users to decrease catheter blockage. PMID:26938358

  9. Emergency department management of gastro-enteritis in Australia and New Zealand.

    PubMed

    Schutz, Jacquie; Babl, Franz E; Sheriff, Nisa; Borland, Meredith

    2008-10-01

    Comparison of clinical practice guideline (CPG) recommendations and reported physician management of gastro-enteritis at Paediatric Research in Emergency Departments International Collaborative (PREDICT) network sites as a baseline for further randomised controlled trials. Two part survey comprising: (i) review of CPGs from PREDICT sites for gastro-enteritis; and (ii) survey of senior emergency department physicians regarding the management of gastro-enteritis. All 11 PREDICT sites participated. Nine CPGs were available with three sites using a common CPG. For moderate dehydration, eight CPGs advocated nasogastric (NG) rehydration in preference to intravenous (IV) rehydration. The IV route was reserved for severe dehydration or failed NG rehydration. In the second component of the survey, 78 of 83 (94%) physicians responded. In moderate dehydration, 82% of respondents used NG rehydration. In severe dehydration, 86% used IV fluids; 12% used NG and 3% an initial IV bolus followed by NG fluid. Serum electrolytes were measured universally with IV fluid use and by 22% using NG rehydration. The IV fluid bolus was with normal saline (86%). Fifty-four per cent used anti-emetics 'rarely' or 'sometimes'. The commonest agents were ondansetron (60%) and metoclopramide (29%). CPG recommendations and physician practice for the management of gastro-enteritis were similar across PREDICT sites with a focus on NG for moderate dehydration and IV for severe dehydration. A variety of fluids and administration rates were used. Anti-emetics were used infrequently. The efficacy and safety of newer anti-emetics should be explored in collaborative studies. Collaborative development of new CPGs should be considered to simplify fluid regimens.

  10. Lumen apposing metal stents for pancreatic fluid collections: Recognition and management of complications.

    PubMed

    DeSimone, Michael L; Asombang, Akwi W; Berzin, Tyler M

    2017-09-16

    For patients recovering from acute pancreatitis, the development of a pancreatic fluid collection (PFC) predicts a more complex course of recovery, and introduces difficult management decisions with regard to when, whether, and how the collection should be drained. Most PFCs resolve spontaneously and drainage is indicated only in pseudocysts and walled-off pancreatic necrosis when the collections are causing symptoms and/or local complications such as biliary obstruction. Historical approaches to PFC drainage have included surgical (open or laparoscopic cystgastrostomy or pancreatic debridement), and the placement of percutaneous drains. Endoscopic drainage techniques have emerged in the last several years as the preferred approach for most patients, when local expertise is available. Lumen-apposing metal stents (LAMS) have recently been developed as a tool to facilitate potentially safer and easier endoscopic drainage of pancreatic fluid collections, and less commonly, for other indications, such as gallbladder drainage. Physicians considering LAMS placement must be aware of the complications most commonly associated with LAMS including bleeding, migration, buried stent, stent occlusion, and perforation. Because of the patient complexity associated with severe pancreatitis, management of pancreatic fluid collections can be a complex and multidisciplinary endeavor. Successful and safe use of LAMS for patients with pancreatic fluid collections requires that the endoscopist have a full understanding of the potential complications of LAMS techniques, including how to recognize and manage expected complications.

  11. Assessment and Management of Volume Overload and Congestion in Chronic Heart Failure: Can Measuring Blood Volume Provide New Insights?

    PubMed

    Miller, Wayne L

    2017-01-01

    Volume overload and fluid congestion remain primary clinical challenges in the assessment and management of patients with chronic heart failure (HF). The pathophysiology of volume regulation is complex, and the simple concept of passive intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to the central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in chronic HF. The quantitative assessment of intravascular volume is an effective tool to help guide individualized, appropriate therapy. Not all volume overload is the same, and the measurement of intravascular volume identifies heterogeneity to guide tailored therapy.

  12. Estimating Energy Consumption of Mobile Fluid Power in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Lauren; Zigler, Bradley T.

    This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumedmore » by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.« less

  13. The present and future role of microfluidics in biomedical research.

    PubMed

    Sackmann, Eric K; Fulton, Anna L; Beebe, David J

    2014-03-13

    Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

  14. Processing of polyphenolic composites with supercritical fluid anti-solvent technology

    NASA Astrophysics Data System (ADS)

    Kurniawansyah, Firman; Mammucari, Raffaella; Foster, Neil R.

    2017-05-01

    Polyphenols have been developed, primarily exploiting their robust antioxidant properties, for medical and food applications. In spite of their advantages, polyphenolic compounds have drawbacks from their natural characteristics of being poorly soluble in aqueous solutions, thermo-labile and low oral bioavailaibility. In this article, strategy of processing with supercritical fluid (SCF) anti-solvent to improve the shortcomings is overviewed. Information obtained from the existing studies commonly confirms SCF technology applicability to produce composites of polyphenols with various morphology, size distributions and crystallinity. The application of SCF technology also enables to develop polyphenolic composites for alternative drug delivery such as in the pulmonary administrations.

  15. Novel Measures of Volume Status and Cardiac Function in Traumatic Shock

    DTIC Science & Technology

    2016-06-01

    cardio -protective, fluid-limited method of resuscitation. In addition to providing insight into fluid management and cardiac function, the data indicate... cardio -protective method of resuscitation. 8.0 REFERENCES 1. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann

  16. EMERGING TECHNOLOGY BULLETIN: ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetic Soil Processing (or Electrokinetic Remediation) uses two series of electrodes (anodes and cathodes) positioned inside compartments that allow egress and ingress of pore fluids to the porous media. The compartments are filled with water or other process fluids and ...

  17. Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG

    NASA Technical Reports Server (NTRS)

    Jordan, Lee

    2016-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of direct current power via a versatile supply interface (120, 28, plus or minus 12, and 5 volts direct current), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 27,000 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, biological studies and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space Flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of video and biological upgrades. The author would like to acknowledge Teledyne Brown Engineering and the entire MSG Team for their inputs into this poster.

  18. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This photograph shows astronaut Ken Bowersox conducting the Astroculture experiment in the middeck of the orbiter Columbia. This experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water as well as lower the costs of removing carbon dioxide in human space habitats. The Astroculture experiment flew aboard the STS-50 mission in June 1992 and was managed by the Marshall Space Flight Center.

  19. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightless environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Astroculture experiment rack in the middeck of the orbiter. The Astroculture experiment was to evaluate and find effective ways to supply nutrient solutions for optimizing plant growth and avoid releasing solutions into the crew quarters in microgravity. Since fluids behave differently in microgravity, plant watering systems that operate well on Earth do not function effectively in space. Plants can reduce the costs of providing food, oxygen, and pure water, as well as lower the costs of removing carbon dioxide in human space habitats. The USML-1 flew aboard the STS-50 mission on June 1992 and was managed by the Marshall Space Flight Center.

  20. Hydraulic fracturing: paving the way for a sustainable future?

    PubMed

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  1. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  2. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    PubMed Central

    Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  3. Portable Medical Diagnosis Instrument

    NASA Technical Reports Server (NTRS)

    Coleman, Matthew A. (Inventor); Straume, Tore (Inventor); Loftus, David J. (Inventor); Li, Jing (Inventor); Singh, Anup K. (Inventor); Davis, Cristina E. (Inventor)

    2017-01-01

    A system that integrates several technologies into a single, portable medical diagnostic apparatus for analyzing a sample body fluid (liquid and/or gas): (1) a mechanism to capture airborne microdroplets and to separate the body fluid into a first fluid component (primarily gas) and a second fluid component (primarily liquid); (2) a volatilizer to convert a portion of the second fluid component into a third fluid component that is primarily a gas; (3) a functionalized nanostructure (NS) array configured to receive, identify, and estimate concentration of at least one constituent in the first and/or third fluid components; (4) a miniaturized differential mobility spectrometer (DMS) module; and (5) a biomarker sensor, to detect volatile and non-volatile molecules in a sample fluid, which may contain one or more components of blood, breath, perspiration, saliva, and urine.

  4. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, Eric J

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  5. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  6. Fluid Balance, Diuretic Use, and Mortality in Acute Kidney Injury

    PubMed Central

    Estrella, Michelle M.; Coresh, Josef; Brower, Roy G.; Liu, Kathleen D.

    2011-01-01

    Summary Background and objectives Management of volume status in patients with acute kidney injury (AKI) is complex, and the role of diuretics is controversial. The primary objective was to elucidate the association between fluid balance, diuretic use, and short-term mortality after AKI in critically ill patients. Design, setting, participants, & measurements Using data from the Fluid and Catheter Treatment Trial (FACTT), a multicenter, randomized controlled trial evaluating a conservative versus liberal fluid-management strategy in 1000 patients with acute lung injury (ALI), we evaluated the association of post-renal injury fluid balance and diuretic use with 60-day mortality in patients who developed AKI, as defined by the AKI Network criteria. Results 306 patients developed AKI in the first 2 study days and were included in our analysis. There were 137 in the fluid-liberal arm and 169 in the fluid-conservative arm (P = 0.04). Baseline characteristics were similar between groups. Post-AKI fluid balance was significantly associated with mortality in both crude and adjusted analysis. Higher post-AKI furosemide doses had a protective effect on mortality but no significant effect after adjustment for post-AKI fluid balance. There was no threshold dose of furosemide above which mortality increased. Conclusions A positive fluid balance after AKI was strongly associated with mortality. Post-AKI diuretic therapy was associated with 60-day patient survival in FACTT patients with ALI; this effect may be mediated by fluid balance. PMID:21393482

  7. Amniotic fluid embolism: diagnosis and management.

    PubMed

    Pacheco, Luis D; Saade, George; Hankins, Gary D V; Clark, Steven L

    2016-08-01

    We sought to provide evidence-based guidelines regarding the diagnosis and management of amniotic fluid embolism. A systematic literature review was performed using MEDLINE, PubMed, EMBASE, and the Cochrane Library. The search was restricted to English-language articles published from 1966 through March 2015. Priority was given to articles reporting original research, in particular randomized controlled trials, although review articles and commentaries were consulted. Abstracts of research presented at symposia and scientific conferences were not considered adequate for inclusion. Evidence reports and published guidelines were also reviewed, and additional studies were located by reviewing bibliographies of identified articles. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used for defining the strength of recommendations and rating quality of the evidence. Consistent with US Preventive Task Force guidelines, references were evaluated for quality based on the highest level of evidence. We recommend the following: (1) we recommend consideration of amniotic fluid embolism in the differential diagnosis of sudden cardiorespiratory collapse in the laboring or recently delivered woman (GRADE 1C); (2) we do not recommend the use of any specific diagnostic laboratory test to either confirm or refute the diagnosis of amniotic fluid embolism; at the present time, amniotic fluid embolism remains a clinical diagnosis (GRADE 1C); (3) we recommend the provision of immediate high-quality cardiopulmonary resuscitation with standard basic cardiac life support and advanced cardiac life support protocols in patients who develop cardiac arrest associated with amniotic fluid embolism (GRADE 1C); (4) we recommend that a multidisciplinary team including anesthesia, respiratory therapy, critical care, and maternal-fetal medicine should be involved in the ongoing care of women with AFE (Best Practice); (5) following cardiac arrest with amniotic fluid embolism, we recommend immediate delivery in the presence of a fetus ≥23 weeks of gestation (GRADE 2C); (6) we recommend the provision of adequate oxygenation and ventilation and, when indicated by hemodynamic status, the use of vasopressors and inotropic agents in the initial management of amniotic fluid embolism. Excessive fluid administration should be avoided (GRADE 1C); and (7) because coagulopathy may follow cardiovascular collapse with amniotic fluid embolism, we recommend the early assessment of clotting status and early aggressive management of clinical bleeding with standard massive transfusion protocols (GRADE 1C). Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Diagnosis and management of pyothorax in a domestic ferret (Mustela putorius furo).

    PubMed

    Sladakovic, Izidora; Brainard, Benjamin M; Lane, Selena L; Secrest, Scott A; Fox, Andrew J; Tarigo, Jaime L; Yeuroukis, Corry K; Sanchez, Susan; Proenca, Laila M; Mayer, Joerg

    2017-07-01

    To describe the diagnosis, management, and outcome of pyothorax in a domestic ferret (Mustela putorius furo). A domestic ferret was evaluated for a history of lethargy, anorexia, and pyrexia. Pleural effusion was detected with radiography and ultrasonography, and a diagnosis of pyothorax was made following cytologic evaluation of pleural fluid. Bilateral thoracostomy tubes were placed for thoracic drainage and lavage, and the ferret was treated with intravenous crystalloid fluids, antimicrobials, and analgesics. Bacterial culture of the pleural fluid yielded Fusobacterium spp. and Actinomyces hordeovulneris. This treatment protocol resulted in resolution of pyothorax, and a positive clinical outcome. This is the first reported case of successful management of pyothorax caused by Fusobacterium spp. and A. hordeovulneris in a ferret. © Veterinary Emergency and Critical Care Society 2017.

  9. Low-G fluid transfer technology study

    NASA Technical Reports Server (NTRS)

    Stark, J. A.

    1976-01-01

    Technology gaps and system characteristics critical to cryogenic and noncryogenic in-orbit fluid transfer were identified. Four different supply systems were conceptually designed as space shuttle payloads. These were; (1) space tug supply - LH2, LO2, N2H4, He - linear acceleration for liquid acquisition with supply module and tug separated from shuttle, (2) tug supply using orbiter drag, (3) orbiter supply - N2O4,MMH,He, H2,O2 - surface tension screens, (4) multiple receivers supply 0 solar electric propulsion stage, Hg, diaphragm - HEAO B, HEe, paddle fluid rotation-satellite control section, N2H4, screens. It was found that screens had the best overall potential for low weight and simplicity, however, thermal problems with cryogenics still need final resolution.

  10. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  11. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial.

    PubMed

    Hecking, Manfred; Antlanger, Marlies; Winnicki, Wolfgang; Reiter, Thomas; Werzowa, Johannes; Haidinger, Michael; Weichhart, Thomas; Polaschegg, Hans-Dietrich; Josten, Peter; Exner, Isabella; Lorenz-Turnheim, Katharina; Eigner, Manfred; Paul, Gernot; Klauser-Braun, Renate; Hörl, Walter H; Sunder-Plassmann, Gere; Säemann, Marcus D

    2012-06-08

    Data generated with the body composition monitor (BCM, Fresenius) show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR) and/or regulation of ultrafiltration and temperature (UTR) will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. BCM measurements yield results on fluid overload (in liters), relative to extracellular water (ECW). In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW). Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, 'final' dry weight is set to normohydration weight -7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase). In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study phase (secondary outcome parameters). Patients are not requested to revert to their initial degree of fluid overload after each study phase. Therefore, the crossover design of the present study merely serves the purpose of secondary endpoint evaluation, for example to determine patient choice of treatment modality. Previous studies on blood volume monitoring have yielded inconsistent results. Since we include only patients with BCM-determined fluid overload, we expect a benefit for all study participants, due to strict fluid management, which decreases the mortality risk of hemodialysis patients. ClinicalTrials.gov, NCT01416753.

  12. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Data generated with the body composition monitor (BCM, Fresenius) show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR) and/or regulation of ultrafiltration and temperature (UTR) will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. Methods/design BCM measurements yield results on fluid overload (in liters), relative to extracellular water (ECW). In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW). Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, ‘final’ dry weight is set to normohydration weight −7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase). In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study phase (secondary outcome parameters). Discussion Patients are not requested to revert to their initial degree of fluid overload after each study phase. Therefore, the crossover design of the present study merely serves the purpose of secondary endpoint evaluation, for example to determine patient choice of treatment modality. Previous studies on blood volume monitoring have yielded inconsistent results. Since we include only patients with BCM-determined fluid overload, we expect a benefit for all study participants, due to strict fluid management, which decreases the mortality risk of hemodialysis patients. Trial registration ClinicalTrials.gov, NCT01416753 PMID:22682149

  13. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically <5%), and large quantities of produced water are generated. Our analysis indicates some fraction of returning fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of management of produced water include reuse for irrigation and discharge into sewer systems. Each of these disposal and reuse methods presents its own unique set of concerns that need to be considered together, in designing a produced water management plan.

  14. Fluids and Combustion Facility: Fluids Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids Integrated Rack (FIR) is one of two racks in the Fluids and Combustion Facility on the International Space Station. The FIR is dedicated to the scientific investigation of space system fluids management supporting NASA s Exploration of Space Initiative. The FIR hardware was modal tested and FIR finite element model updated to satisfy the International Space Station model correlation criteria. The final cross-orthogonality results between the correlated model and test mode shapes was greater than 90 percent for all primary target modes.

  15. Inter-device differences in monitoring for goal-directed fluid therapy.

    PubMed

    Thiele, Robert H; Bartels, Karsten; Gan, Tong-Joo

    2015-02-01

    Goal-directed fluid therapy is an integral component of many Enhanced Recovery After Surgery (ERAS) protocols currently in use. The perioperative clinician is faced with a myriad of devices promising to deliver relevant physiologic data to better guide fluid therapy. The goal of this review is to provide concise information to enable the clinician to make an informed decision when choosing a device to guide goal-directed fluid therapy. The focus of many devices used for advanced hemodynamic monitoring is on providing measurements of cardiac output, while other, more recent, devices include estimates of fluid responsiveness based on dynamic indices that better predict an individual's response to a fluid bolus. Currently available technologies include the pulmonary artery catheter, esophageal Doppler, arterial waveform analysis, photoplethysmography, venous oxygen saturation, as well as bioimpedance and bioreactance. The underlying mechanistic principles for each device are presented as well as their performance in clinical trials relevant for goal-directed therapy in ERAS. The ERAS protocols typically involve a multipronged regimen to facilitate early recovery after surgery. Optimizing perioperative fluid therapy is a key component of these efforts. While no technology is without limitations, the majority of the currently available literature suggests esophageal Doppler and arterial waveform analysis to be the most desirable choices to guide fluid administration. Their performance is dependent, in part, on the interpretation of dynamic changes resulting from intrathoracic pressure fluctuations encountered during mechanical ventilation. Evolving practice patterns, such as low tidal volume ventilation as well as the necessity to guide fluid therapy in spontaneously breathing patients, will require further investigation.

  16. Spontaneous Intracranial Hypotension: A Review and Introduction of an Algorithm For Management.

    PubMed

    Davidson, Benjamin; Nassiri, Farshad; Mansouri, Alireza; Badhiwala, Jetan H; Witiw, Christopher D; Shamji, Mohammed F; Peng, Philip W; Farb, Richard I; Bernstein, Mark

    2017-05-01

    Spontaneous intracranial hypotension (SIH) is a condition of low cerebrospinal fluid volume and pressure caused by a leak of cerebrospinal fluid through a dural defect. Diagnosis and management can be difficult, often requiring coordination between multiple disciplines for myelography, blood patching, and possible surgical repair. Patients should be monitored closely, because they can deteriorate into a coma or even death. There are no widely accepted guidelines for the management of SIH. We review the existing SIH literature, illustrate management challenges via a case review, and propose an algorithm developed by neurosurgeons, radiologists, and anesthesiologists intended to simplify and streamline the management of SIH. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of a novel closed-loop fluid-administration system based on dynamic predictors of fluid responsiveness: an in silico simulation study.

    PubMed

    Rinehart, Joseph; Alexander, Brenton; Le Manach, Yannick; Hofer, Christoph; Tavernier, Benoit; Kain, Zeev N; Cannesson, Maxime

    2011-01-01

    Dynamic predictors of fluid responsiveness have made automated management of fluid resuscitation more practical. We present initial simulation data for a novel closed-loop fluid-management algorithm (LIR, Learning Intravenous Resuscitator). The performance of the closed-loop algorithm was tested in three phases by using a patient simulator including a pulse-pressure variation output. In the first phase, LIR was tested in three different hemorrhage scenarios and compared with no management. In the second phase, we compared LIR with 20 practicing anesthesiologists for the management of a simulated hemorrhage scenario. In the third phase, LIR was tested under conditions of noise and artifact in the dynamic predictor. In the first phase, we observed a significant difference between the unmanaged and the LIR groups in moderate to large hemorrhages in heart rate (76 ± 8 versus 141 ± 29 beats/min), mean arterial pressure (91 ± 6 versus 59 ± 26 mm Hg), and cardiac output (CO; (6.4 ± 0.9 versus 3.2 ± 1.8 L/min) (P < 0.005 for all comparisons). In the second phase, LIR intervened significantly earlier than the practitioners (16.0 ± 1.3 minutes versus 21.5 ± 5.6 minutes; P < 0.05) and gave more total fluid (2,675 ± 244 ml versus 1,968 ± 644 ml; P < 0.05). The mean CO was higher in the LIR group than in the practitioner group (5.9 ± 0.2 versus 5.2 ± 0.6 L/min; P < 0.05). Finally, in the third phase, despite the addition of noise to the pulse-pressure variation value, no significant difference was found across conditions in mean, final, or minimum CO. These data demonstrate that LIR is an effective volumetric resuscitator in simulated hemorrhage scenarios and improved physician management of the simulated hemorrhages.

  18. Development of a Web-Based Self-management Intervention for Intermittent Urinary Catheter Users With Spinal Cord Injury.

    PubMed

    Wilde, Mary H; Fairbanks, Eileen; Parshall, Robert; Zhang, Feng; Miner, Sarah; Thayer, Deborah; Harrington, Brian; Brasch, Judith; McMAHON, James M

    2015-11-01

    While Web-based interventions have proliferated recently, information in the literature is often lacking about how the intervention was developed. In response to that gap, this is a report of the development of a Web-based self-management intervention for intermittent urinary catheter users and pretesting with four adults with spinal cord injury living in the community. Two Web sites were created, one for recruitment and the other for the intervention itself. The intervention involved developing new Web-based technology, including an interactive urinary diary (with fluid intake/urine output and a journal), extensive catheter products information, three intervention nurse phone call consultations, and user-community discussion forums. Study participants completed an online survey and were interviewed twice about the enrollment process and their perceptions of their involvement in the intervention. Suggestions from the pretesting participants were used to revise the Web site applications prior to the next stage of research (a feasibility study). Numerous recommendations and comments were received related to content, interactivity of components, and usability. This article provides a description of how the Web sites were developed (including the technology and software programs used), issues encountered and what was done to address them, and how the Web-based intervention was modified for improvements.

  19. Development of an Internet Self-Management Intervention for Intermittent Urinary Catheter Users with Spinal Cord Injury

    PubMed Central

    Wilde, Mary H.; Fairbanks, Eileen; Parshall, Robert; Zhang, Feng; Miner, Sarah; Thayer, Deborah; Harrington, Brian; Brasch, Judith; McMahon, James M.

    2015-01-01

    While web-based interventions have proliferated recently, information in the literature is often lacking of how the intervention was developed. In response to that gap, this is a report of the development of a web-based self-management intervention for intermittent urinary catheter users and the pretesting with four adults with spinal cord injury living in the community. Two websites were created, one for recruitment and the other for the intervention itself. The intervention involved developing new web-based technology, including an interactive urinary diary (with fluid intake/urine output and a journal), extensive catheter products information, three intervention nurse phone call consultations, and user-community discussion forums. Study participants completed an online survey and were interviewed twice about the enrollment process and their perceptions of their involvement in the intervention. Suggestions from the pretesting participants were used to revise the website applications prior to the next stage of research (a feasibility study). Numerous recommendations and comments were received related to content, interactivity of components, and usability. This paper provides a description of how the websites were developed (including the technology and software programs used), issues encountered and what was done to address them, and how the web-based intervention was modified for improvements. PMID:26361267

  20. Solid-liquid staged combustion space boosters

    NASA Technical Reports Server (NTRS)

    Culver, D. W.

    1990-01-01

    NASA has begun to evaluate solid-liquid hybrid propulsion for launch vehicle booster. A three-phase program was outlined to identify, acquire, and demonstrate technology needed to approximate solid and liquid propulsion state of the art. Aerojet has completed a Phase 1 study and recommends a solid-liquid staged combustion concept in which turbopump fed LO2 is burned with fuel-rich solid propellant effluent in aft-mounted thrust chambers.These reasonably sized thrust chambers are LO2 regeneratively cooled, supplemented with fuel-rich barrier cooling. Turbopumps are driven by the resulting GO2 coolant in an expander-bleed-burnoff cycle. Turbine exhaust pressurizes the LO2 tankage directly, and the excess is bled into supersonic nozzle splitlines, where it combusts with the fuel rich boundary layer. Thrust vector control is enhanced by supersonic nozzle movement on flexseal mounts. Every hybrid solid-liquid concept examined improves booster energy management and launch propellant safety compared to current solid boosters. Solid-liquid staged combustion improves hybrid performance by improving both combustion efficiency and combustion stability, especially important for large boosters. These improvements result from careful fluid management and use of smaller combustors. The study shows NASA safety, reliability, cost, and performance criteria are best met with this concept, wherein simple hardware relies on several separate emerging technologies, all of which have been demonstrated successfully.

  1. Lyophilization for Water Recovery From Solid Waste

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  2. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.

    PubMed

    García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-07-15

    The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.

  3. Research and Technology 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Glenn Research Center at Lewis Field, in partnership with U.S. industries, universities, and other Government institutions, is responsible for developing critical technologies that address national priorities in aeropropulsion and space applications. Our work is focused on research for new aeropropulsion technologies, aerospace power, microgravity science (fluids and combustion), electric propulsion, and communications technologies for aeronautics, space, and aerospace applications. As NASA s premier center for aeropropulsion, aerospace power, and turbomachinery, our role is to conduct world-class research and to develop key technologies. We contribute to economic growth and national security through safe, superior, and environmentally compatible U.S. civil and military aircraft propulsion systems. Our Aerospace Power Program supports all NASA Enterprises and major programs, including the International Space Station, Advanced Space Transportation, and new initiatives in human and robotic exploration. Glenn Research Center leads NASA s research in the microgravity science disciplines of fluid physics, combustion science, and acceleration measurement. Almost every space shuttle science mission has had an experiment managed by NASA Glenn, and we have conducted a wide array of similar experiments on the International Space Station. The Glenn staff consists of over 3200 civil service employees and support service contractor personnel. Scientists and engineers comprise more than half of our workforce, with technical specialists, skilled workers, and an administrative staff supporting them. We aggressively strive for technical excellence through continuing education, increased diversity in our workforce, and continuous improvement in our management and business practices so that we can expand the boundaries of aeronautics, space, and aerospace technology. Glenn Research Center is a unique facility located in northeast Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Glenn comprises more than 140 buildings, including 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Plum Brook Station has four large, major, world-class facilities for space research available for Government and industry programs. Knowledge is the end product of our activities. The R&T reports help make this knowledge fully available to potential users the aircraft engine industry, the space industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove valuable for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Glenn s technology programs. We hope that this information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified at the end of each article and to visit Glenn on the World Wide Web at http://www.grc.nasa.gov.

  4. Aeronautics research and technology program and specific objectives

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.

  5. Sedimentary basin geochemistry and fluid/rock interactions workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and othermore » Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.« less

  6. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  7. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  8. The development of technology for detection of marijuana intoxication by analysis of body fluids

    DOT National Transportation Integrated Search

    1975-09-01

    A method employing high pressure liquid chromatography plus mass spectrometry was developed for the detection of low concentrations of various marijuana metabolites in body fluids. A new marijuana metabolite was found which could be detected in blood...

  9. Detail view of the Fluid Acquisition and Resupply Equipment experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-09-019 (2 - 9 Dec 1992) --- A medium close-up view of part of the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Featured in the mid-deck FARE setup is fluid activity in one of two 12.5-inch spherical tanks made of transparent acrylic. Pictured is the receiver tank. The other tank, out of frame below, is for supplying fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.

  10. Pulse pressure variation-guided fluid therapy after cardiac surgery: a pilot before-and-after trial.

    PubMed

    Suzuki, Satoshi; Woinarski, Nicholas C Z; Lipcsey, Miklos; Candal, Cristina Lluch; Schneider, Antoine G; Glassford, Neil J; Eastwood, Glenn M; Bellomo, Rinaldo

    2014-12-01

    The aim of this study is to study the feasibility, safety, and physiological effects of pulse pressure variation (PPV)-guided fluid therapy in patients after cardiac surgery. We conducted a pilot prospective before-and-after study during mandatory ventilation after cardiac surgery in a tertiary intensive care unit. We introduced a protocol to deliver a fluid bolus for a PPV≥13% for at least >10 minutes during the intervention period. We studied 45 control patients and 53 intervention patients. During the intervention period, clinicians administered a fluid bolus on 79% of the defined PPV trigger episodes. Median total fluid intake was similar between 2 groups during mandatory ventilation (1297 mL [interquartile range 549-1968] vs 1481 mL [807-2563]; P=.17) and the first 24 hours (3046 mL [interquartile range 2317-3982] vs 3017 mL [2192-4028]; P=.73). After adjusting for several baseline factors, PPV-guided fluid management significantly increased fluid intake during mandatory ventilation (P=.004) but not during the first 24 hours (P=.47). Pulse pressure variation-guided fluid therapy, however, did not significantly affect hemodynamic, renal, and metabolic variables. No serious adverse events were noted. Pulse pressure variation-guided fluid management was feasible and safe during mandatory ventilation after cardiac surgery. However, its advantages may be clinically small. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Diagnosis and management of fluid overload in heart failure and cardio-renal syndrome: the "5B" approach.

    PubMed

    Ronco, Claudio; Kaushik, Manish; Valle, Roberto; Aspromonte, Nadia; Peacock, W Frank

    2012-01-01

    Cardio-Renal syndrome may occur as a result of either primarily renal or cardiac dysfunction. This complex interaction requires a tailored approach to manage the underlying pathophysiology while optimizing the patient's symptoms and thus providing the best outcomes. Patients often are admitted to the hospital for signs and symptoms of congestion and fluid overload is the most frequent cause of subsequent re-admission. Fluid management is of paramount importance in the strategy of treatment for heart failure patients. Adequate fluid status should be obtained but a target value should be set according to objective indicators and biomarkers. Once the fluid excess is identified, a careful prescription of fluid removal by diuretics or extracorporeal therapies must be made. While delivering these therapies, adequate monitoring should be performed to prevent unwanted effects such as worsening of renal function or other complications. There is a very narrow window of optimal hydration for heart failure patients. Overhydration can result in myocardial stretching and potential decompensation. Inappropriate dehydration or relative reduction of circulating blood volume may result in distant organ damage caused by inadequate perfusion. We suggest consideration of the "5B" approach. This stands for balance of fluids (reflected by body weight), blood pressure, biomarkers, bioimpedance vector analysis, and blood volume. Addressing these parameters ensures that the most important issues affecting symptoms and outcomes are addressed. Furthermore, the patient is receiving the best possible care while avoiding unwanted side effects of the treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Network-Theoretic Modeling of Fluid Flow

    DTIC Science & Technology

    2015-07-29

    Final Report STIR: Network-Theoretic Modeling of Fluid Flow ARO Grant W911NF-14-1-0386 Program manager: Dr. Samuel Stanton ( August 1, 2014–April 30...Morzyński, M., and Comte , P., “A finite-time thermodynamics of unsteady fluid flows,” Journal of Non-Equilibrium Thermody- namics, Vol. 33, No. 2

  13. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for a...

  14. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are...

  15. A Simulation for Teaching the Basic and Clinical Science of Fluid Therapy

    ERIC Educational Resources Information Center

    Rawson, Richard E.; Dispensa, Marilyn E.; Goldstein, Richard E.; Nicholson, Kimberley W.; Vidal, Noni Korf

    2009-01-01

    The course "Management of Fluid and Electrolyte Disorders" is an applied physiology course taught using lectures and paper-based cases. The course approaches fluid therapy from both basic science and clinical perspectives. While paper cases provide a basis for application of basic science concepts, they lack key components of genuine clinical…

  16. Rebound and jet formation of a fluid-filled sphere

    NASA Astrophysics Data System (ADS)

    Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.

    2012-12-01

    This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.

  17. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  18. [Nutritional management in geriatric traumatology].

    PubMed

    Singler, K; Goisser, S; Volkert, D

    2016-08-01

    The prevalence of malnutrition or the risk of malnourishment is high among orthogeriatric patients and a poor nutritional status is associated with a negative outcome. A comprehensive management of preoperative and postoperative nutritional and fluid intake in these patients can help to improve the situation. The management includes identification of patients affected, a thorough assessment of the nutritional status, work-up of possible underlying causes, documentation of nutritional and fluid intake and, most importantly, procedures to improve the preoperative and postoperative nutritional situation. This article gives an overview of the recently updated recommendations on nutritional management in orthogeriatric patients as published by the orthogeriatric working group of the German Geriatric Society.

  19. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  20. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  1. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  2. Surface tension and contact angles: Molecular origins and associated microstructure

    NASA Technical Reports Server (NTRS)

    Davis, H. T.

    1982-01-01

    Gradient theory converts the molecular theory of inhomogeneous fluid into nonlinear boundary value problems for density and stress distributions in fluid interfaces, contact line regions, nuclei and microdroplets, and other fluid microstructures. The relationship between the basic patterns of fluid phase behavior and the occurrence and stability of fluid microstructures was clearly established by the theory. All the inputs of the theory have molecular expressions which are computable from simple models. On another level, the theory becomes a phenomenological framework in which the equation of state of homogeneous fluid and sets of influence parameters of inhomogeneous fluids are the inputs and the structures, stress tensions and contact angles of menisci are the outputs. These outputs, which find applications in the science and technology of drops and bubbles, are discussed.

  3. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  4. Relationship between Race and the Effect of Fluids on Long-term Mortality after Acute Respiratory Distress Syndrome. Secondary Analysis of the National Heart, Lung, and Blood Institute Fluid and Catheter Treatment Trial.

    PubMed

    Jolley, Sarah E; Hough, Catherine L; Clermont, Gilles; Hayden, Douglas; Hou, Suqin; Schoenfeld, David; Smith, Nicholas L; Thompson, Boyd Taylor; Bernard, Gordon R; Angus, Derek C

    2017-09-01

    Short-term follow-up in the Fluid and Catheter Treatment Trial (FACTT) suggested differential mortality by race with conservative fluid management, but no significant interaction. In a post hoc analysis of FACTT including 1-year follow-up, we sought to estimate long-term mortality by race and test for an interaction between fluids and race. We performed a post hoc analysis of FACTT and the Economic Analysis of Pulmonary Artery Catheters (EAPAC) study (which included 655 of the 1,000 FACTT patients with near-complete 1-year follow up). We fit a multistate Markov model to estimate 1-year mortality for all non-Hispanic black and white randomized FACTT subjects. The model estimated the distribution of time from randomization to hospital discharge or hospital death (available on all patients) and estimated the distribution of time from hospital discharge to death using data on patients after hospital discharge for patients in EAPAC. The 1-year mortality was found by combining these estimates. Non-Hispanic black (n = 217, 25%) or white identified subjects (n = 641, 75%) were included. There was a significant interaction between race and fluid treatment (P = 0.012). One-year mortality was lower for black subjects assigned to conservative fluids (38 vs. 54%; mean mortality difference, 16%; 95% confidence interval, 2-30%; P = 0.027 between conservative and liberal). Conversely, 1-year mortality for white subjects was 35% versus 30% for conservative versus liberal arms (mean mortality difference, -4.8%; 95% confidence interval, -13% to 3%; P = 0.23). In our cohort, conservative fluid management may have improved 1-year mortality for non-Hispanic black patients with ARDS. However, we found no long-term benefit of conservative fluid management in white subjects.

  5. Evolutionary space station fluids management strategies

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Results are summarized for an 11-month study to define fluid storage and handling strategies and requirements for various specific mission case studies and their associated design impacts on the Space Station. There are a variety of fluid users which require a variety of fluids and use rates. Also, the cryogenic propellants required for NASA's STV, Planetary, and Code Z missions are enormous. The storage methods must accommodate fluids ranging from a high pressure gas or supercritical state fluid to a sub-cooled liquid (and superfluid helium). These requirements begin in the year 1994, reach a maximum of nearly 1800 metric tons in the year 2004, and trail off to the year 2018, as currently planned. It is conceivable that the cryogenic propellant needs for the STV and/or Lunar mission models will be met by LTCSF LH2/LO2 tanksets attached to the SS truss structure. Concepts and corresponding transfer and delivery operations have been presented for STV propellant provisioning from the SS. A growth orbit maneuvering vehicle (OMV) and associated servicing capability will be required to move tanksets from delivery launch vehicles to the SS or co-orbiting platforms. Also, appropriate changes to the software used for OMV operation are necessary to allow for the combined operation of the growth OMV. To support fluid management activities at the Space Station for the experimental payloads and propellant provisioning, there must be truss structure space allocated for fluid carriers and propellant tanksets, and substantial beam strengthening may be required. The Station must have two Mobile Remote Manipulator Systems (MRMS) and the growth OMV propellant handling operations for the STV at the SS. Propellant needs for the Planetary Initiatives and Code Z mission models will most likely be provided by co-orbiting propellant platform(s). Space Station impacts for Code Z mission fluid management activities will be minimal.

  6. Core Design Characteristics of the Fluoride Salt-Cooled High Temperature Demonstration Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R; Qualls, A L; Betzler, Benjamin R

    2016-01-01

    Fluoride salt-cooled high temperature reactors (FHRs) are a promising reactor technology option with significant knowledge gaps to implementation. One potential approach to address those technology gaps is via a small-scale demonstration reactor with the goal of increasing the technology readiness level (TRL) of the overall system for the longer term. The objective of this paper is to outline a notional concept for such a system, and to address how the proposed concept would advance the TRL of FHR concepts. Development of the proposed FHR Demonstration Reactor (DR) will enable commercial FHR deployment through disruptive and rapid technology development and demonstration.more » The FHR DR will close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. Important capabilities that will be demonstrated by building and operating the FHR DR include core design methodologies; fabrication and operation of high temperature reactors; salt procurement, handling, maintenance, and ultimate disposal; salt chemistry control to maximize vessel life; tritium management; heat exchanger performance; pump performance; and reactivity control. The FHR DR is considered part of a broader set of FHR technology development and demonstration efforts, some of which are already underway. Nonreactor test efforts (e.g., heated salt loops or loops using simulant fluids) can demonstrate many technologies necessary for commercial deployment of FHRs. The FHR DR, however, fulfills a crucial role in FHR technology development by advancing the technical maturity and readiness level of the system as a whole.« less

  7. An inexpensive open-source ultrasonic sensing system for monitoring fluid levels

    USDA-ARS?s Scientific Manuscript database

    Fluid levels are measured in a variety of agricultural applications, and are often measured manually, which can be time-consuming and labor-intensive. Rapid advances in electronic technologies have made a variety of inexpensive sensing, monitoring, and control capabilities available. A monitoring ...

  8. MISCIBLE FLUID DISPLACEMENT STABILITY IN UNCONFINED POROUS MEDIA: TWO-DIMENSIONAL FLOW EXPERIMENTS AND SIMULATIONS

    EPA Science Inventory

    In situ flushing groundwater remediation technologies, such as cosolvent flushing, rely on the stability of the interface between the resident and displacing fluids for efficient removal of contaminants. Contrasts in density and viscosity between the resident and displacing flui...

  9. Diagnosis and management of dehydration in children.

    PubMed

    Canavan, Amy; Arant, Billy S

    2009-10-01

    The most useful individual signs for identifying dehydration in children are prolonged capillary refill time, abnormal skin turgor, and abnormal respiratory pattern. However, clinical dehydration scales based on a combination of physical examination findings are better predictors than individual signs. Oral rehydration therapy is the preferred treatment of mild to moderate dehydration caused by diarrhea in children. Appropriate oral rehydration therapy is as effective as intravenous fluid in managing fluid and electrolyte losses and has many advantages. Goals of oral rehydration therapy are restoration of circulating blood volume, restoration of interstitial fluid volume, and maintenance of rehydration. When rehydration is achieved, a normal age-appropriate diet should be initiated.

  10. Cardiac output-based fluid optimization for kidney transplant recipients: a proof-of-concept trial.

    PubMed

    Corbella, Davide; Toppin, Patrick Jason; Ghanekar, Anand; Ayach, Nour; Schiff, Jeffery; Van Rensburg, Adrian; McCluskey, Stuart A

    2018-04-10

    Intravenous fluid management for deceased donor kidney transplantation is an important, modifiable risk factor for delayed graft function (DGF). The primary objective of this study was to determine if goal-directed fluid therapy using esophageal Doppler monitoring (EDM) to optimize stroke volume (SV) would alter the amount of fluid given. This randomized, proof-of-concept trial enrolled 50 deceased donor renal transplant recipients. Data collected included patient characteristics, fluid administration, hemodynamics, and complications. The EDM was used to optimize SV in the EDM group. In the control group, fluid management followed the current standard of practice. The groups were compared for the primary outcome of total intraoperative fluid administered. There was no difference in the mean (standard deviation) volume of intraoperative fluid administered to the 24 control and 26 EDM patients [2,307 (750) mL vs 2,675 (842) mL, respectively; mean difference, 368 mL; 95% confidence interval (CI), - 87 to + 823; P = 0.11]. The incidence of complications in the control and EDM groups was similar (15/24 vs 17/26, respectively; P = 0.99), as was the incidence of delayed graft failure (8/24 vs 11/26, respectively; P = 0.36). Goal-directed fluid therapy did not alter the volume of fluid administered or the incidence of complications. This proof-of-concept trial provides needed data for conducting a larger trial to determine the influence of fluid therapy on the incidence in DGF in deceased donor kidney transplantation. www.clinicaltrials.gov (NCT02512731). Registered 31 July 2015.

  11. Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.

    PubMed

    Fujita, Yoshihiko; Kubo, Shin-ichi

    2006-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.

  12. The profile of high school students’ scientific literacy on fluid dynamics

    NASA Astrophysics Data System (ADS)

    Parno; Yuliati, L.; Munfaridah, N.

    2018-05-01

    This study aims to describe the profile of scientific literacy of high school students on Fluid Dynamics materials. Scientific literacy is one of the ability to solve daily problems in accordance with the context of materials related to science and technology. The study was conducted on 90 high school students in Sumbawa using survey design. Data were collected using an instrument of scientific literacy for high school students on dynamic fluid materials. Data analysis was conducted descriptively to determine the students’ profile of scientific literacy. The results showed that high school students’ scientific literacy on Fluid Dynamics materials was in the low category. The highest average is obtained on indicators of scientific literacy i.e. the ability to interpret data and scientific evidence. The ability of scientific literacy is related to the mastery of concepts and learning experienced by students, therefore it is necessary to use learning that can trace this ability such as Science, Technology, Engineering, and Mathematics (STEM).

  13. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    NASA Technical Reports Server (NTRS)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.

  14. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  15. [Perioperative management of the pancreaticoduoden-ectomy: fluid administration and nutritional support based on complication prevention and treatment].

    PubMed

    Peng, Jun-sheng; Chen, Shi

    2013-11-01

    Pancreaticoduodenectomy(PD) has been widely accepted as one of the most complicated operation in abdominal surgery. The patients who receive PD operation always have other concurrent conditions, such as jaundice, diabetes, liver dysfunction, and malnutrition. Pancreatic fistula, biliary fistula and gastrointestinal dysfunction are common complications after PD. Proper perioperative management and fluid administration can reduce postoperative complications and the mortality.

  16. The role of interventional radiology in management of benign and malignant gynecologic diseases.

    PubMed

    Yu, Hyeon; Stavas, Joseph M

    2013-10-01

    This article focuses on the role of interventional radiology in the therapeutic and diagnostic management of benign and malignant gynecologic conditions. The subspecialty of interventional radiology utilizes minimally invasive advanced image-guided percutaneous techniques in gynecology that include central venous catheter placement, fluid aspiration, drainage catheter placement, tissue biopsy, inferior vena cava filter placement, and pelvic arterial embolization. Central venous catheters, such as ports, peripherally inserted central catheters, and tunneled catheters, are placed for intermediate to long-term intravenous chemotherapy or total parental nutrition or antibiotics. Patients with refractory malignant ascites or pleural effusion from seeding of advanced gynecologic cancers may benefit by percutaneous aspiration of fluid collections or placement of drainage catheters. Postoperative fluid collections including abscess, seroma, or lymphocele are managed by percutaneous drainage catheter insertion. Pelvic, peritoneal, or retroperitoneal masses can be sampled by image-guided percutaneous biopsy or aspiration of fluid to determine a pathologic diagnosis. Certain patients are at risk for deep venous thrombosis with pulmonary embolism and may benefit from an inferior vena cava filter. Patients with uncontrolled postoperative or postpartum bleeding can be effectively managed with emergent transarterial pelvic embolization. Each of the aforementioned interventions with indications, expected benefits, and complications is described including a published literature.

  17. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  18. Microgravity science and applications program tasks, 1991 revision

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Presented here is a compilation of the active research tasks for FY 1991 sponsored by the Microgravity Science and Applications Division of the NASA Office of Space Science and Applications. The purpose is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. Included is an introductory description of the program, the strategy and overall goal, identification of the organizational structures and the people involved, and a description of each. The tasks are grouped into several categories: electronic materials; solidification of metals, alloys, and composites; fluids, interfaces, and transport; biotechnology; combustion science; glasses and ceramics; experimental technology, instrumentation, and facilities; and Physical and Chemistry Experiments (PACE). The tasks cover both the ground based and flight programs.

  19. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  20. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an overview of the facility enhancements that will shortly be available for use by future investigators.

  1. Mechanical changes caused by CO2-driven cement dissolution in the Morrow B Sandstone at reservoir conditions: Experimental observations

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luhmann, A. J.; Rinehart, A. J.; Mozley, P.; Dewers, T. A.

    2017-12-01

    Carbon Capture, Utilization and Storage (CCUS) in transmissive reservoirs is a proposed mechanism in reducing CO2 emissions. Injection of CO2 perturbs reservoir chemistry, and can modify porosity and permeability and alter mineralogy. However, little work has been done on the coupling of rock alteration by CO2 injection and the mechanical integrity of the reservoir. In this study, we perform flow-through experiments on calcite- and dolomite-cemented Pennsylvanian Morrow B Sandstone (West Texas, USA) cores. We hypothesize that poikilotopic calcite cement has a larger impact on chemo-mechanical alteration than disseminated dolomite cement given similar CO2 exposure. With one control brine flow-through experiment and two CO2-plus-brine flow-through experiments for each cement composition, flow rates of 0.1 and 0.01 ml/min were applied under 4200 psi pore fluid pressure and 5000 psi confining pressure at 71 °C. Fluid chemistry and permeability data enable monitoring of mineral dissolution. Ultrasonic velocities were measured pre-test using 1.2 MHz source-receiver pairs at 0.5 MPa axial load and show calcite-cemented samples with higher dynamic elastic moduli than dolomite-cemented samples. Velocities measured post-experiment will identify changes from fluid-rock interaction. We plan to conduct cylinder-splitting destructive mechanical test (Brazil test) to measure the pristine and altered tensile strength of different cemented sandstones. The experiments will identify extents to which cement composition and texture control chemo-mechanical degradation of CCUS reservoirs. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  2. An On-Chip Disposable Salivary Glucose Sensor for Diabetes Control.

    PubMed

    Du, Yunqing; Zhang, Wenjun; Wang, Ming L

    2016-11-01

    Self-management of blood glucose (BG) is considered a norm for diabetes control. However, this invasive process is uncomfortable for patients, especially when intensive measurements with frequent finger pricks are required. Saliva, an alternative body fluid that is easily accessible and contains trace amount of glucose can be potentially used for the noninvasive monitoring of diabetes. As a solution for real-time glucose measurements using saliva for diabetic care, we have developed an on-chip disposable glucose nano-biosensor through a layer-by-layer assembly process. In this work, a clinical study of 10 healthy subjects was conducted to determine the potential usefulness of salivary glucose (SG) sensors for glycemic control. Findings revealed (1) the individual BG/SG ratio at fasting was consistent over an entire year when there was no significant change of personal health; (2) the individual SG levels tracked closely with BG levels after meals; (3) a time difference of 15-30 minutes exists between peak levels of BG and SG; (4) 2 hours after a meal, the BG/SG ratio returned to a similar value at fasting. We propose to measure fasting and pre- and 2-hour postprandial SG levels for self-management of glycemic levels. As a result, this article is not intended to replace the common BG tests. With preliminary results, we believe SG itself could be used as means for reliable diabetes monitoring and a potential fluid for prognosis of future disease. © 2016 Diabetes Technology Society.

  3. Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Best, Philip J.; Unger, Ronald J.; Waits, David A.

    2005-01-01

    The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.

  4. KSC-2012-3731

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2012-3732

    NASA Image and Video Library

    2012-07-09

    CAPE CANAVERAL, Fla. – Near the Hypergolic Maintenance Facility at NASA’s Kennedy Space Center in Florida, a groundbreaking ceremony was held to mark the location of the Ground Operations Demonstration Unit Liquid Hydrogen, or GODU LH2, test site. From left, are Johnny Nguyen, Fluids Test and Technology Development branch chief Emily Watkins, engineering intern Jeff Walls, Engineering Services Contract, or ESC, Cryogenics Test Lab engineer Kelly Currin, systems engineer Stephen Huff and Rudy Werlink partially hidden, cryogenics engineers Angela Krenn, systems engineer Doug Hammond, command and control engineer in the electrical division William Notardonato, GODU LH2 project manager and Kevin Jumper, ESC Cryogenics Test Lab manager. The GODU LH2 test site is one of the projects in NASA’s Advanced Exploration Systems Program. The site will be used to demonstrate advanced liquid hydrogen systems that are cost and energy efficient ways to store and transfer liquid hydrogen during process, loading, launch and spaceflight. The main components of the site will be a storage tank and a cryogenic refrigerator. Photo credit: NASA/Dimitri Gerondidakis

  6. Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study

    NASA Technical Reports Server (NTRS)

    Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.

    1991-01-01

    Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.

  7. The future of viral hepatitis testing: innovations in testing technologies and approaches.

    PubMed

    Peeling, Rosanna W; Boeras, Debrah I; Marinucci, Francesco; Easterbrook, Philippa

    2017-11-01

    A large burden of undiagnosed hepatitis virus cases remains globally. Despite the 257 million people living with chronic hepatitis B virus infection, and 71 million with chronic viraemic HCV infection, most people with hepatitis remain unaware of their infection. Advances in rapid detection technology have created new opportunities for enhancing access to testing and care, as well as monitoring of treatment. This article examines a range of other technological innovations that can be leveraged to provide more affordable and simplified approaches to testing for HBV and HCV infection and monitoring of treatment response. These include improved access to testing through alternative sampling methods (use of dried blood spots, oral fluids, self-testing) and combination rapid diagnostic tests for detection of HIV, HBV and HCV infection; more affordable options for confirmation of virological infection (HBV DNA and HCV RNA) such as point-of-care molecular assays, HCV core antigen and multi-disease polyvalent molecular platforms that make use of existing centralised laboratory based or decentralised TB and HIV instrumentation for viral hepatitis testing; and finally health system improvements such as integration of laboratory services for procurement and sample transportation and enhanced data connectivity to support quality assurance and supply chain management.

  8. 1999 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    2000-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.

  9. Instability of multi-layer fluid configurations in the presence of time-dependent accelerations in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    The increasing number of research opportunities in a microgravity environment will benefit not only fundamental studies in fluid dynamics, but also technological applications such as those involving materials processing. In particular, fluid configurations which involve fluid-fluid interfaces would occur in a variety of experimental investigations. This work investigates the stability of a configuration involving fluid-fluid interfaces in the presence of a time-dependent forcing. Both periodic (g-jitter) and nonperiodic accelerations are considered. The fluid configuration is multilayered, and infinite in extent. The analysis is linear and inviscid, and the acceleration vector is oriented perpendicular to each interface. A Floquet analysis is employed in the case of the periodic forcing. In the problem of nonperiodic forcing, the resulting system of equations are integrated in time. Specific nondimensional parameters appear in each problem. The configuration behavior is investigated for a range of parameter values.

  10. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid

    DTIC Science & Technology

    2013-03-01

    Technologies International, LTD for collection and recycling of fluids. Spent fluid, diluted with any water, slush or snow removed from the aircraft or...Resistance Unmated only – some failures Voltage Withstand Testing Unmated only – some failures Plastic Windows Crazing Effect Pass The testing did result...At Joint Base McGuire-Dix-Lakehurst, however, waste PG is currently collected with a vacuum truck and recycled . Factors such as the market demand

  11. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid

    DTIC Science & Technology

    2013-03-04

    Technologies International, LTD for collection and recycling of fluids. Spent fluid, diluted with any water, slush or snow removed from the aircraft or...Resistance Unmated only – some failures Voltage Withstand Testing Unmated only – some failures Plastic Windows Crazing Effect Pass The testing did result...At Joint Base McGuire-Dix-Lakehurst, however, waste PG is currently collected with a vacuum truck and recycled . Factors such as the market demand

  12. Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.

    2011-01-01

    This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.

  13. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  14. A 100-Year Review: The production of fluid (market) milk.

    PubMed

    Barbano, David M

    2017-12-01

    During the first 100 years of the Journal of Dairy Science, dairy foods and dairy production dairy scientists have partnered to publish new data and research results that have fostered the development of new knowledge. This knowledge has been the underpinning of both the commercial development of the fluid milk processing industry and regulations and marketing policies for the benefit of dairy farmers, processors, and consumers. During the first 50 years, most of the focus was on producing and delivering high-quality raw milk to factories and improving the shelf life of pasteurized fluid milk. During the second 50 years, raw milk quality was further improved through the use of milk quality payment incentives. Due to changing demographics and lifestyle, whole fluid milk consumption declined and processing technologies were developed to increase the range of fluid milk products (skim and low-fat milks, flavored milks, lactose-reduced milk, long-shelf-life milks, and milks with higher protein and calcium contents) offered to the consumer. In addition, technology to produce specialty high-protein sports beverages was developed, which expanded the milk-based beverage offerings to the consumer. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. High-performance holographic technologies for fluid-dynamics experiments

    PubMed Central

    Orlov, Sergei S.; Abarzhi, Snezhana I.; Oh, Se Baek; Barbastathis, George; Sreenivasan, Katepalli R.

    2010-01-01

    Modern technologies offer new opportunities for experimentalists in a variety of research areas of fluid dynamics. Improvements are now possible in the state-of-the-art in precision, dynamic range, reproducibility, motion-control accuracy, data-acquisition rate and information capacity. These improvements are required for understanding complex turbulent flows under realistic conditions, and for allowing unambiguous comparisons to be made with new theoretical approaches and large-scale numerical simulations. One of the new technologies is high-performance digital holography. State-of-the-art motion control, electronics and optical imaging allow for the realization of turbulent flows with very high Reynolds number (more than 107) on a relatively small laboratory scale, and quantification of their properties with high space–time resolutions and bandwidth. In-line digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 frames per second) over a relatively large spatial area with high spatial (1–10 μm) and temporal (better than a few nanoseconds) resolution, and can give accurate quantitative description of the fluid flows, including those of multi-phase and unsteady conditions. This technology can be applied in a variety of problems to study fundamental properties of flow–particle interactions, rotating flows, non-canonical boundary layers and Rayleigh–Taylor mixing. Some of these examples are discussed briefly. PMID:20211881

  16. Surgical Management of Complications Associated With Percutaneous and/or Endoscopic Management of Pseudocyst of the Pancreas

    PubMed Central

    Nealon, William H.; Walser, Eric

    2005-01-01

    Objective: To study the magnitude of complications associated with the nonoperative management of peripancreatic fluid collections and pseudocysts and to assess the surgical management of these complications. These are compared with complications associated with operative management. Summary Background Data: Pancreatic pseudocysts and peripancreatic fluid collections associated with acute pancreatitis have been managed with success using nonoperative techniques for more than a decade. When successful, these techniques have clear advantages compared with operative management. There has, however, been little focus on the magnitude and outcomes after complications sustained by nonoperative management. Our report focuses on these complications and pseudocysts and on the surgical management. We have been struck by the high percentage of patients who sustain significant and at times life-threatening complications related to the nonoperative management of fluid collections. We further define an association between the main pancreatic ductal anatomy and the likelihood of major complications after nonoperative management. Methods: Between 1992 and 2003, all patients admitted to our service with peripancreatic fluid collections or pseudocysts were monitored. We evaluated complications patients managed with percutaneous (PD) or endoscopic drainage (E). Data were collected regarding patient characteristics, need for intensive care unit (ICU) stays, hemorrhage, hypotension, renal failure, and ventilator support. We further focused on the duration of fistula drainage from patients who have had a percutaneous drainage, and we assessed the necessity for urgent or emergent operation. By protocol, all patients had pancreatic ductal anatomy evaluated by means of endoscopic retrograde cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography (MRCP). Patients with complications of E and PD were compared with 100 consecutive patients who underwent operative management of pseudocyst and fluid collections as their sole mode of intervention. Results: A total of 79 patients with complications of PD, E, or both were studied. There were 41 males and 38 females in the group of patients who sustained complications (mean age 49 years). Sixty-six of the 79 subsequently required operation to manage their peripancreatic fluid collection, 37 urgent or emergent. The mean elapsed time from diagnosis to nonoperative intervention was 18.1 days. This group of 79 patients had mean 3.1 ± 0.7 hospitalization (range, 1–7) and length-of-stay 42.7 ± 4.1 days. ICU stays were required in 36 of the 79 (46%). A defined episode of clinical sepsis was identified in 72 of 79 (91%) and was by far the most common complication. Hemorrhage requiring transfusion was identified in 16 of the 79 (20%), clinical shock 51 of the 79 (65%), renal failure 16 of the 79 (20%), ventilator support for longer than 24 hours 19 of the 79 (24%). A persistent pancreatic fistula occurred in 66 of the 79 patients (84%); mean duration was 61.4 ± 9.6 days. Sixty-three of the 79 patients with complications of E or PD had ductal anatomy (ERCP/MRCP) which predicted failure because of significant disruption or stenosis of the main pancreatic duct. Among the 100 operated patients, 69 complications occurred in 6 of the 100 (6%). Operation was initiated electively a mean interval of 42.7 days after diagnosis of pseudocyst. Hemorrhage, hypotension, renal failure, sepsis, persistent fistula, or urgent operation all were not seen in the complications associated with operated patients. CT imaging obtained at least 6 months after intervention documented complete resolution after surgery alone in 91 and 9 with cystic structures less than 2 cm. In patients with operation after failed nonoperative therapy, 6 patients had persistent cystic lesions less than 2 cm in diameter. Conclusion: These data support the premise that a choice between operative and nonoperative management for peripancreatic fluid collections and pseudocysts should be made with careful assessment of the pancreatic ductal anatomy, with a clear recognition of the magnitude of complications which are likely to occur should nonoperative measures be used in patients most likely to sustain complications. It is vital to recognize the magnitude and severity of complications of nonoperative measures as one chooses a modality. Ductal anatomy predicts patients who will have complications or failure of management of their peripancreatic fluid collection. PMID:15912044

  17. The use of cardiac output monitoring to guide the administration of intravenous fluid during hyperthermic intraperitoneal chemotherapy.

    PubMed

    Thanigaimani, K; Mohamed, F; Cecil, T; Moran, B J; Bell, J

    2013-12-01

    The optimal strategy for intravenous (IV) fluid management during administration of hyperthermic intraperitoneal chemotherapy (HIPEC) is unclear. In this prospective study we describe the use of a LiDCOrapid™ (LiDCO, Cambridge, UK) cardiac output monitor to guide IV fluid management during cytoreductive surgery (CRS) with HIPEC. The aim of this study was to determine whether cardiac output monitoring will allow close maintenance of physiological parameters during the HIPEC phase. Twenty-five patients who underwent CRS combined with HIPEC were included in the study. Intra-operative IV fluid boluses were titrated using parameters measured by the LiDCOrapid™ monitor. Stroke volume variation was maintained below 10% with fluid boluses and mean arterial pressure was maintained within 20% of the baseline figure with vasopressors. There was no significant change in heart rate and cardiac output. The systemic vascular resistance dropped from an average of 966 dyn.s/cm-5 to 797 dyn s/cm(5) at 60 min during the HIPEC phase (P = 0.62) despite an increase in the dose of phenylepherine. The average total volume of fluid given was 748 ml in the first 30 min and 630 ml in the second 30 min with an average urine output of 307 and 445 ml, respectively. The change in lactate levels was not statistically or clinically significant. LiDCOrapid™ is an effective noninvasive tool for guiding fluid management in this population. It allows the anaesthesiologist to maintain tight control of essential physiological parameters during a phase of the procedure in which there is a risk of renal injury. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  18. Fluid Distribution for In-space Cryogenic Propulsion

    NASA Technical Reports Server (NTRS)

    Lear, William

    2005-01-01

    The ultimate goal of this task is to enable the use of a single supply of cryogenic propellants for three distinct spacecraft propulsion missions: main propulsion, orbital maneuvering, and attitude control. A fluid distribution system is sought which allows large propellant flows during the first two missions while still allowing control of small propellant flows during attitude control. Existing research has identified the probable benefits of a combined thermal management/power/fluid distribution system based on the Solar Integrated Thermal Management and Power (SITMAP) cycle. Both a numerical model and an experimental model are constructed in order to predict the performance of such an integrated thermal management/propulsion system. This research task provides a numerical model and an experimental apparatus which will simulate an integrated thermal/power/fluid management system based on the SITMAP cycle, and assess its feasibility for various space missions. Various modifications are done to the cycle, such as the addition of a regeneration process that allows heat to be transferred into the working fluid prior to the solar collector, thereby reducing the collector size and weight. Fabri choking analysis was also accounted for. Finally the cycle is to be optimized for various space missions based on a mass based figure of merit, namely the System Mass Ratio (SMR). -. 1 he theoretical and experimental results from these models are be used to develop a design code (JETSIT code) which is able to provide design parameters for such a system, over a range of cooling loads, power generation, and attitude control thrust levels. The performance gains and mass savings will be compared to those of existing spacecraft systems.

  19. Crewmembers in the middeck with the FARE experiment.

    NASA Image and Video Library

    1992-12-09

    STS053-04-018 (2-9 Dec 1992) --- Astronauts Guion S. Bluford (left) and Michael R. U. (Rich) Clifford monitor the Fluid Acquisition and Resupply Equipment (FARE) onboard the Space Shuttle Discovery. Clearly visible in the mid-deck FARE setup is one of two 12.5-inch spherical tanks made of transparent acrylic, one to supply and one to receive fluids. The purpose of FARE is to investigate the dynamics of fluid transfer in microgravity and develop methods for transferring vapor-free propellants and other liquids that must be replenished in long-term space systems like satellites, Extended-Duration Orbiters (EDO), and Space Station Freedom. Eight times over an eight-hour test period, the mission specialists conducted the FARE experiment. A sequence of manual valve operations caused pressurized air from the bottles to force fluids from the supply tank to the receiver tank and back again to the supply tank. Baffles in the receiver tank controlled fluid motion during transfer, a fine-mesh screen filtered vapor from the fluid, and the overboard vent removed vapor from the receiver tank as the liquid rose. FARE is managed by NASA's Marshall Space Flight Center (MSFC) in Alabama. The basic equipment was developed by Martin Marietta for the Storable Fluid Management Demonstration. Susan L. Driscoll is the principal investigator.

  20. Patient perspectives on fluid management in chronic hemodialysis.

    PubMed

    Smith, Kimberly; Coston, Melinda; Glock, Kimberly; Elasy, Tom A; Wallston, Kenneth A; Ikizler, T Alp; Cavanaugh, Kerri L

    2010-09-01

    We sought to describe the perspectives and experiences of chronic hemodialysis (CHD) patients regarding self-care and adherence to fluid restrictions. Semistructured focus groups. Two outpatient hemodialysis centers. Nineteen patients on chronic hemodialysis. Patients were asked a series of open-ended questions to encourage discussion about the management of fluid restriction within the broad categories of general knowledge, knowledge sources or barriers, beliefs and attitudes, self-efficacy, emotion, and self-care skills. We analyzed session transcripts using the theoretical framework of content analysis to identify themes generated by the patients. Patients discussed both facilitators and barriers to fluid restriction, which we categorized into six themes: knowledge, self-assessment, psychological factors, social, physical, and environmental. Psychological factors were the most common barriers to fluid restriction adherence, predominantly involving lack of motivation. Knowledge was the most discussed facilitator with accurate self-assessment, positive psychological factors, and supportive social contacts also playing a role. Dialysis providers were most commonly described as the source of dialysis information (54%), but learning through personal experience was also frequently noted (28%). Interventions to improve fluid restriction adherence of chronic hemodialysis patients should target motivational issues, assess and improve patient knowledge, augment social support, and facilitate accurate self-assessment of fluid status. (c) 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  2. Development of the Technology of Vortex Diagnostics to Improve the Safety of Operation of Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Mitrofanova, O. V.; Ivlev, O. A.; Pozdeeva, I. G.; Urtenov, D. S.

    2017-11-01

    The results of studies are aimed at developing theoretical foundations and instrumentation system to ensure a technology of vortex diagnostics of the state of flows of fluids for nuclear power installations with power water reactors and fast neutrons reactors with liquid-metal coolants. The technology of vortex diagnostics is based on the study of acoustic, magneto-hydrodynamic and resonant effects related to the formation of stable vortex structures. For creation a system of monitoring and diagnostics of the crisis phenomena due to hydrodynamics of the flow, it is proposed to use acoustic method to record the radiation of elastic waves in the fluids caused by the dynamic local rearrangement of its structure.

  3. Technical accomplishments of the NASA Lewis Research Center, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Topics addressed include: high-temperature composite materials; structural mechanics; fatigue life prediction for composite materials; internal computational fluid mechanics; instrumentation and controls; electronics; stirling engines; aeropropulsion and space propulsion programs, including a study of slush hydrogen; space power for use in the space station, in the Mars rover, and other applications; thermal management; plasma and radiation; cryogenic fluid management in space; microgravity physics; combustion in reduced gravity; test facilities and resources.

  4. Endoscopic Management of Peri-Pancreatic Fluid Collections.

    PubMed

    Yip, Hon Chi; Teoh, Anthony Yuen Bun

    2017-09-15

    In the past decade, there has been a progressive paradigm shift in the management of peri-pancreatic fluid collections after acute pancreatitis. Refinements in the definitions of fluid collections from the updated Atlanta classification have enabled better communication amongst physicians in an effort to formulate optimal treatments. Endoscopic ultrasound (EUS)-guided drainage of pancreatic pseudocysts has emerged as the procedure of choice over surgical cystogastrostomy. The approach provides similar success rates with low complications and better quality of life compared with surgery. However, an endoscopic "step up" approach in the management of pancreatic walled-off necrosis has also been advocated. Both endoscopic and percutaneous drainage routes may be used depending on the anatomical location of the collections. New-generation large diameter EUS-specific stent systems have also recently been described. The device allows precise and effective drainage of the collections and permits endoscopic necrosectomy through the stents.

  5. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  6. Environmental assessment of alternative pasteurization technologies for fluid milk production using process simulation

    USDA-ARS?s Scientific Manuscript database

    Fluid milk processing (FMP) has significant environmental impact because of its high energy use. High temperature short time (HTST) pasteurization is the third most energy intensive operation comprising about 16% of total energy use, after clean-in-place operations and packaging. Nonthermal processe...

  7. Environmental assessment of alternative pasteurization technologies for fluid milk production using process simulation

    USDA-ARS?s Scientific Manuscript database

    JUSTIFICATION Fluid milk processing (FMP) has significant environmental impact because of its high energy use and greenhouse gas (GHG) emissions. High temperature short time (HTST) pasteurization is the third most energy intense operation in FMP comprising about 16% of total energy use, after clean-...

  8. Thermal and Mechanical Microspacecraft Technologies for X-2000 Future Deliveries

    NASA Technical Reports Server (NTRS)

    Birur, Gaj; Bruno, Robin

    1999-01-01

    Thermal and mechanical technologies are an important part of the X-2000 Future Delivery (X-2000 FD) microspacecraft. A wide range of future space missions are expected to utilize the technologies and the architecture developed by the X-2000 FD. These technologies, besides being small in physical size, make the tiny spacecraft robust and flexible. The X2000 FD architecture is designed to be highly reliable and suitable for a wide range of missions such as planetary landers/orbiters/flybys, earth orbiters, cometary flybys/landers/sample returns, etc. One of the key ideas used in the development of these technologies and architecture is that several functions be in included in each of the thermal and mechanical elements. One of the thermal architecture being explored for the X-2000 FD microspacecraft is integrated thermal energy management of the complete spacecraft using a fluid loop. The robustness and the simplicity of the loop and the flexibility with which it can be integrated in the spacecraft have made it attractive for applications to X-2000 FD. Some of the thermal technologies to be developed as a part of this architecture are passive and active cooling loops, electrically variable emittance surfaces, miniature thermal switches, and specific high density electronic cooling technologies. In the mechanical area, multifunction architecture for the structural elements will be developed. The multifunction aspect is expected to substantially reduce the mass and volume of the spacecraft. Some of the technologies that will be developed are composite material panels incorporating electronics, cabling, and thermal elements in them. The paper to be presented at the 1999 conference, will describe the progress made so far in the microspacecraft thermal and mechanical technologies and approaches for the X2000 Future Deliveries microspacecraft.

  9. Use of the Esophageal Doppler Machine to help guide the intraoperative management of two children with pheochromocytoma.

    PubMed

    Hack, Henrik

    2006-08-01

    The anesthetic management of pheochromocytoma has been based upon the intraoperative control of blood pressure and fluid balance following adequate preoperative preparation. This can be difficult, especially in the presence of significant comorbidity such as cardiac or renal dysfunction. Two cases of children with pheochromocytoma are reported where the introperative management of fluid balance and blood pressure control were guided by measurement of changes in descending aortic blood flow using an esophageal Doppler probe. The advantages of such a technique compared with more invasive monitors are discussed.

  10. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  11. Flowmeter evaluation for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Baird, R. S.

    1988-01-01

    Various flowmetering concepts were flow tested to characterize the relative capabilities and limitations for on-orbit fluid-transfer operations. Performance results and basic operating principles of each flowmetering concept tested are summarized, and basic considerations required to select the best flowmeter(s) for fluid system application are discussed. Concepts tested were clamp-on ultrasonic, area averaging ultrasonic, offset ultrasonic, coriolis mass, vortex shedding, universal venturi tube, turbine, bearingless turbine, turbine/turbine differential-pressure hybrid, dragbody, and dragbody/turbine hybrid flowmeters. Fluid system flowmeter selection considerations discussed are flowmeter performance, fluid operating conditions, systems operating environments, flowmeter packaging, flowmeter maintenance, and flowmeter technology. No one flowmetering concept tested was shown to be best for all on-orbit fluid systems.

  12. Multifluid geo-energy systems: Using geologic CO 2 storage for geothermal energy production and grid-scale energy storage in sedimentary basins

    DOE PAGES

    Buscheck, Thomas A.; Bielicki, Jeffrey M.; Edmunds, Thomas A.; ...

    2016-05-05

    We present an approach that uses the huge fluid and thermal storage capacity of the subsurface, together with geologic carbon dioxide (CO 2) storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, nuclear, fossil) thermal resources, as well as excess energy on electric grids. Captured CO 2 is injected into saline aquifers to store pressure, generate artesian flow of brine, and provide a supplemental working fluid for efficient heat extraction and power conversion. Concentric rings of injection and production wells create a hydraulic mound to store pressure, CO 2, and thermal energy. This energy storage canmore » take excess power from the grid and excess/waste thermal energy, and dispatch that energy when it is demanded and thus enable higher penetration of variable renewable energy technologies (e.g., wind, solar). CO 2 stored in the subsurface functions as a cushion gas to provide enormous pressure-storage capacity and displace large quantities of brine, some of which can be treated for a variety of beneficial uses. Geothermal power and energy-storage applications may generate enough revenues to compensate for CO 2 capture costs. While our approach can use nitrogen (N 2), in addition to CO 2, as a supplemental fluid, and store thermal energy, this study focuses using CO 2 for geothermal energy production and grid-scale energy storage. We conduct a techno-economic assessment to determine the levelized cost of electricity of using this approach to generate geothermal power. We present a reservoir pressure-management strategy that diverts a small portion of the produced brine for beneficial consumptive use to reduce the pumping cost of fluid recirculation, while reducing the risk of seismicity, caprock fracture, and CO 2 leakage.« less

  13. Microfabrication of hybrid fluid membrane for microengines

    NASA Astrophysics Data System (ADS)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2015-12-01

    This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

  14. The coupled dynamics of fluids and spacecraft in low gravity and low gravity fluid measurement

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Peterson, Lee D.; Crawley, Edward F.

    1987-01-01

    The very large mass fraction of liquids stored on broad current and future generation spacecraft has made critical the technologies of describing the fluid-spacecraft dynamics and measuring or gauging the fluid. Combined efforts in these areas are described, and preliminary results are presented. The coupled dynamics of fluids and spacecraft in low gravity study is characterizing the parametric behavior of fluid-spacecraft systems in which interaction between the fluid and spacecraft dynamics is encountered. Particular emphasis is given to the importance of nonlinear fluid free surface phenomena to the coupled dynamics. An experimental apparatus has been developed for demonstrating a coupled fluid-spacecraft system. In these experiments, slosh force signals are fed back to a model tank actuator through a tunable analog second order integration circuit. In this manner, the tank motion is coupled to the resulting slosh force. Results are being obtained in 1-g and in low-g (on the NASA KC-135) using dynamic systems nondimensionally identical except for the Bond numbers.

  15. Non-intrusive telemetry applications in the oilsands: from visible light and x-ray video to acoustic imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Shaw, John M.

    2013-06-01

    While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process fouling. The intent of this contribution is to present some of the challenges and to provide an introduction grounded in current work on non-intrusive telemetry applications - from a mine or reservoir to a refinery!

  16. Solar thermal power systems point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.

  17. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  18. Development of an accurate fluid management system for a pediatric continuous renal replacement therapy device

    PubMed Central

    SANTHANAKRISHNAN, ARVIND; NESTLE, TRENT T.; MOORE, BRIAN L.; YOGANATHAN, AJIT P.; PADEN, MATTHEW L.

    2013-01-01

    Acute kidney injury is common in critically ill children and renal replacement therapies provide a life saving therapy to a subset of these children. However, there is no Food and Drug Administration approved device to provide pediatric continuous renal replacement therapy (CRRT). Consequently, clinicians adapt approved adult CRRT devices for use in children due to lack of safer alternatives. Complications occur using adult CRRT devices in children due to inaccurate fluid balance (FB) between the volumes of ultrafiltrate (UF) removed and replacement fluid (RF) delivered. We demonstrate the design and validation of a pediatric fluid management system for obtaining accurate instantaneous and cumulative FB. Fluid transport was achieved via multiple novel pulsatile diaphragm pumps. The conservation of volume principle leveraging the physical property of fluid incompressibility along with mechanical coupling via a crankshaft was used for FB. Accuracy testing was conducted in vitro for 8-hour long continuous operation of the coupled UF and RF pumps. The mean cumulative FB error was <1% across filtration flows from 300 mL/hour to 3000 mL/hour. This approach of FB control in a pediatric specific CRRT device would represent a significant accuracy improvement over currently used clinical implementations. PMID:23644618

  19. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  20. Combustion Integration Rack (CIR) Testing

    NASA Image and Video Library

    2015-02-18

    Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.

  1. Supercritical fluid technology of nanoparticle coating for new ceramic materials.

    PubMed

    Aymonier, Cyril; Elissalde, Catherine; Reveron, Helen; Weill, François; Maglione, Mario; Cansell, François

    2005-06-01

    This work highlights, for the first time, the coating of ferroelectric nanoparticles with a chemical fluid deposition process in supercritical fluids. BaTiO3 nanoparticles of about 50 nm are coated with a shell of a few nanometers of amorphous alumina and can be recovered as a dry powder for processing. The sintering of these core-shell nanoparticles gives access to a ceramic material with very interesting ferroelectric properties, in particular, dielectric losses below 1%.

  2. EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR

    EPA Science Inventory

    The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...

  3. Conservative fluid management prevents age-associated ventilator induced mortality.

    PubMed

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Management of Diarrhoeal Dehydration in Childhood: A Review for Clinicians in Developing Countries

    PubMed Central

    Anigilaje, Emmanuel Ademola

    2018-01-01

    The survival of a child with severe volume depletion at the emergency department depends on the competency of the first responder to recognize and promptly treat hypovolemic shock. Although the basic principles on fluid and electrolytes therapy have been investigated for decades, the topic remains a challenge, as consensus on clinical management protocol is difficult to reach, and more adverse events are reported from fluid administration than for any other drug. While the old principles proposed by Holliday and Segar, and Finberg have stood the test of time, recent systematic reviews and meta-analyses have highlighted the risk of hyponatraemia, and hyponatraemic encephalopathy in some children treated with hypotonic fluids. In the midst of conflicting literature on fluid and electrolytes therapy, it would appear that isotonic fluids are best suitable for the correction of hypotonic, isonatraemic, and hypernatraemic dehydration. Although oral rehydration therapy is adequate to correct mild to moderate isonatraemic dehydration, parenteral fluid therapy is safer for the child with severe dehydration and those with changes in serum sodium. The article reviews the pathophysiology of water and sodium metabolism and, it uses the clinical case examples to illustrate the bed-side approach to the management of three different types of dehydration using a pre-mixed isotonic fluid solution (with 20 or 40 mmol/L of potassium chloride added depending on the absence or presence of hypokalemia, respectively). When 3% sodium chloride is unavailable to treat hyponatraemic encephalopathy, 0.9% sodium chloride becomes inevitable, albeit, a closer monitoring of serum sodium is required. The importance of a keen and regular clinical and laboratory monitoring of a child being rehydrated is emphasized. The article would be valuable to clinicians in less-developed countries, who must use pre-mixed fluids, and who often cannot get some suitable rehydrating solutions. PMID:29527518

  5. Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality

    PubMed Central

    Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.

    2017-01-01

    Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767

  6. Microgravity

    NASA Image and Video Library

    2004-04-15

    Some of the earliest concerns about fluid behavior in microgravity was the management of propellants in spacecraft tanks as they orbited the Earth. On the ground, gravity pulls a fluid to a bottom of a tank (ig, left). In orbit, fluid behavior depends on surface tension, viscosity, wetting effects with the container wall, and other factors. In some cases, a propellant can wet a tank and leave a large gas bubbles in the center (ug, right). Similar probelms can affect much smaller experiments using fluids in small spaces. Photo credit: NASA/Glenn Research Center.

  7. [Arterial pressure curve and fluid status].

    PubMed

    Pestel, G; Fukui, K

    2009-04-01

    Fluid optimization is a major contributor to improved outcome in patients. Unfortunately, anesthesiologists are often in doubt whether an additional fluid bolus will improve the hemodynamics of the patient or not as excess fluid may even jeopardize the condition. This article discusses physiological concepts of liberal versus restrictive fluid management followed by a discussion on the respective capabilities of various monitors to predict fluid responsiveness. The parameter difference in pulse pressure (dPP), derived from heart-lung interaction in mechanically ventilated patients is discussed in detail. The dPP cutoff value of 13% to predict fluid responsiveness is presented together with several assessment techniques of dPP. Finally, confounding variables on dPP measurements, such as ventilation parameters, pneumoperitoneum and use of norepinephrine are also mentioned.

  8. Intraoperative Fluids and Fluid Management for Ambulatory Dental Sedation and General Anesthesia.

    PubMed

    Saraghi, Mana

    2015-01-01

    Intravenous fluids are administered in virtually every parenteral sedation and general anesthetic. The purpose of this article is to review the physiology of body-water distribution and fluid dynamics at the vascular endothelium, evaluation of fluid status, calculation of fluid requirements, and the clinical rationale for the use of various crystalloid and colloid solutions. In the setting of elective dental outpatient procedures with minor blood loss, isotonic balanced crystalloid solutions are the fluids of choice. Colloids, on the other hand, have no use in outpatient sedation or general anesthesia for dental or minor oral surgery procedures but may have several desirable properties in long and invasive maxillofacial surgical procedures where advanced hemodynamic monitoring may assess the adequacy of intravascular volume.

  9. Slow progress in diarrhea case management in low and middle income countries: evidence from cross-sectional national surveys, 1985-2012.

    PubMed

    Sreeramareddy, Chandrashekhar T; Low, Yue-Peng; Forsberg, Birger Carl

    2017-03-21

    Diarrhea remains to be a main cause of childhood mortality. Diarrhea case management indicators reflect the effectiveness of child survival interventions. We aimed to assess time trends and country-wise changes in diarrhea case management indicators among under-5 children in low-and-middle-income countries. We analyzed aggregate data from Demographic and Health Surveys and Multiple Indicator Cluster Surveys done from 1986 to 2012 in low-and-middle-income countries. Two-week prevalence rates of diarrhea, caregiver's care seeking behavior and three case management indicators were analyzed. We assessed overall time trends across the countries using panel data analyses and country-level changes between two sequential surveys. Overall, yearly increase in case management indicators ranged from 1 · 3 to 2 · 5%. In the year 2012, <50% of the children were given correct treatment (received oral rehydration and increased fluids) for diarrhea. Annually, an estimated 300 to 350 million children were not given oral rehydration solutions, or recommended home fluids or 'increased fluids' and 304 million children not taken to a healthcare provider during an episode of diarrhea. Overall, care seeking for diarrhea, increased from pre-2000 to post-2000, i.e. from 35 to 45%; oral rehydration rates increased by about 7% but the rate of 'increased fluids' decreased by 14%. Country-level trends showed that care seeking had decreased in 15 countries but increased in 33 countries. Care seeking from a healthcare provider increased by ≥10% in about 23 countries. Oral rehydration rates had increased by ≥10% in 15 countries and in 30 countries oral rehydration rates increased by <10%. Very limited progress has been made in the case management of childhood diarrhea. A better understanding of caregiver's care seeking behavior and health care provider's case management practices is needed to improve diarrhea case management in low- and-middle-income countries.

  10. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk thermal conductivity. Moreover, bot h-BN and graphene are exfoliated through the same method. In essence, this project, for the first time, unravels the behavior of the exfoliated h-BN effect on reinforced conventional fluids under the influence of atomistic scale structures (particularly, electrically insulating and lubricant/cutting fluids), thereby linking the physical, electrical and mechanical properties of these nanoscale materials. The innovative experimental approach is expected to result in de novo strategies for introducing these systems for new concepts and variables to engineer nanofluid properties suitable for very promising industrial applications.

  11. Formulating food protein-stabilized indomethacin nanosuspensions into pellets by fluid-bed coating technology: physical characterization, redispersibility, and dissolution.

    PubMed

    He, Wei; Lu, Yi; Qi, Jianping; Chen, Lingyun; Yin, Lifang; Wu, Wei

    2013-01-01

    Drug nanosuspensions are very promising for enhancing the dissolution and bioavailability of drugs that are poorly soluble in water. However, the poor stability of nanosuspensions, reflected in particle growth, aggregation/agglomeration, and change in crystallinity state greatly limits their applications. Solidification of nanosuspensions is an ideal strategy for addressing this problem. Hence, the present work aimed to convert drug nanosuspensions into pellets using fluid-bed coating technology. Indomethacin nanosuspensions were prepared by the precipitation-ultrasonication method using food proteins (soybean protein isolate, whey protein isolate, β-lactoglobulin) as stabilizers. Dried nanosuspensions were prepared by coating the nanosuspensions onto pellets. The redispersibility, drug dissolution, solid-state forms, and morphology of the dried nanosuspensions were evaluated. The mean particle size for the nanosuspensions stabilized using soybean protein isolate, whey protein isolate, and β-lactoglobulin was 588 nm, 320 nm, and 243 nm, respectively. The nanosuspensions could be successfully layered onto pellets with high coating efficiency. Both the dried nanosuspensions and nanosuspensions in their original amorphous state and not influenced by the fluid-bed coating drying process could be redispersed in water, maintaining their original particle size and size distribution. Both the dried nanosuspensions and the original drug nanosuspensions showed similar dissolution profiles, which were both much faster than that of the raw crystals. Fluid-bed coating technology has potential for use in the solidification of drug nanosuspensions.

  12. Fluid management in space construction

    NASA Technical Reports Server (NTRS)

    Snyder, Howard

    1989-01-01

    The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.

  13. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  14. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  15. A Unique Power System For The ISS Fluids And Combustion Facility

    NASA Technical Reports Server (NTRS)

    Fox, David A.; Poljak, Mark D.

    2001-01-01

    Unique power control technology has been incorporated into an electrical power control unit (EPCU) for the Fluids and Combustion Facility (FCF). The objective is to maximize science throughput by providing a flexible power system that is easily reconfigured by the science payload. Electrical power is at a premium on the International Space Station (ISS). The EPCU utilizes advanced power management techniques to maximize the power available to the FCF experiments. The EPCU architecture enables dynamic allocation of power from two ISS power channels for experiments. Because of the unique flexible remote power controller (FRPC) design, power channels can be paralleled while maintaining balanced load sharing between the channels. With an integrated and redundant architecture, the EPCU can tolerate multiple faults and still maintain FCF operation. It is important to take full advantage of the EPCU functionality. The EPCU acts as a buffer between the experimenter and the ISS power system with all its complex requirements. However, FCF science payload developers will still need to follow guidelines when designing the FCF payload power system. This is necessary to ensure power system stability, fault coordination, electromagnetic compatibility, and maximum use of available power for gathering scientific data.

  16. Momentary fitting in a fluid environment: A grounded theory of triage nurse decision making.

    PubMed

    Reay, Gudrun; Rankin, James A; Then, Karen L

    2016-05-01

    Triage nurses control access to the Emergency Department (ED) and make decisions about patient acuity, patient priority, and placement of the patient in the ED. Understanding the processes and strategies that triage nurses use to make decisions is therefore vital for patient safety and the operation of the ED. The aim of the current study was to generate a substantive grounded theory (GT) of decision making by emergency triage Registered Nurses (RNs). Data collection consisted of seven observations of the triage environment at three tertiary care hospitals where RNs conducted triage and twelve interviews with triage RNs. The data were analyzed by constant comparison in accordance with the classical GT method. In the resultant theory, Momentary Fitting in a Fluid Environment, triage is conceptualized as a process consisting of four categories, determining acuity, anticipating needs, managing space, and creating space. The findings indicate that triage RNs continually strive to achieve fit, while simultaneously considering the individual patient and the ED as a whole entity. Triage RNs require appropriately designed triage environments and computer technology that enable them to secure real time knowledge of the ED to maintain situation awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Low-gravity fluid physics: A program overview

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview is presented of the microgravity fluid physics program at Lewis Research Center. One of the main reasons for conducting low gravity research in fluid physics is to study phenomena such as surface tension, interfacial contact angles, and diffusion independent of such gravitationally induced effects as buoyant convection. Fluid physics is at the heart of many space-based technologies including power systems, thermal control systems, and life support systems. Fundamental understanding of fluid physics is a key ingredient to successful space systems design. In addition to describing ground-based and space-based low-gravity facilities, selected experiments are presented which highlight Lewis work in fluid physics. These experiments can be categorized into five theme areas which summarize the work being conducted at Lewis for OSSA: (1) isothermal/iso-solutal capillary phenomena; (2) capillary phenomena with thermal/solutal gradients; (3) thermal-solutal convection; (4) first- and second-order phase transitions in a static fluid; and (5) multiphase flow.

  18. Noninvasive diagnostic devices for diabetes through measuring tear glucose.

    PubMed

    Zhang, Jin; Hodge, William; Hutnick, Cindy; Wang, Xianbin

    2011-01-01

    This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4-5 times a day to check blood glucose levels--almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to manage the disease easily and painlessly. Instead of detecting the glucose in blood, monitoring the glucose level in other body fluids may provide a feasible approach for noninvasive diagnosis and diabetes control. Tear glucose has been studied for several decades. This article reviews studies on ocular glucose and its monitoring methods. Attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors are discussed as well as our current development of a nanostructured lens-based sensor for diabetes. This disposable biosensor for the detection of tear glucose may provide an alternative method to help patients manage the disease conveniently. © 2010 Diabetes Technology Society.

  19. Bioreactors Drive Advances in Tissue Engineering

    NASA Technical Reports Server (NTRS)

    2012-01-01

    It was an unlikely moment for inspiration. Engineers David Wolf and Ray Schwarz stopped by their lab around midday. Wolf, of Johnson Space Center, and Schwarz, with NASA contractor Krug Life Sciences (now Wyle Laboratories Inc.), were part of a team tasked with developing a unique technology with the potential to enhance medical research. But that wasn t the focus at the moment: The pair was rounding up colleagues interested in grabbing some lunch. One of the lab s other Krug engineers, Tinh Trinh, was doing something that made Wolf forget about food. Trinh was toying with an electric drill. He had stuck the barrel of a syringe on the bit; it spun with a high-pitched whirr when he squeezed the drill s trigger. At the time, a multidisciplinary team of engineers and biologists including Wolf, Schwarz, Trinh, and project manager Charles D. Anderson, who formerly led the recovery of the Apollo capsules after splashdown and now worked for Krug was pursuing the development of a technology called a bioreactor, a cylindrical device used to culture human cells. The team s immediate goal was to grow human kidney cells to produce erythropoietin, a hormone that regulates red blood cell production and can be used to treat anemia. But there was a major barrier to the technology s success: Moving the liquid growth media to keep it from stagnating resulted in turbulent conditions that damaged the delicate cells, causing them to quickly die. The team was looking forward to testing the bioreactor in space, hoping the device would perform more effectively in microgravity. But on January 28, 1986, the Space Shuttle Challenger broke apart shortly after launch, killing its seven crewmembers. The subsequent grounding of the shuttle fleet had left researchers with no access to space, and thus no way to study the effects of microgravity on human cells. As Wolf looked from Trinh s syringe-capped drill to where the bioreactor sat on a workbench, he suddenly saw a possible solution to both problems. It dawned on me that rotating the wall of the reactor would solve one of our fundamental fluid mechanical problems, specifically by removing the velocity gradient of the tissue culture fluid media near the reactor s walls, says Wolf. It looked as though it would allow us to suspend the growing cells within the reactor without introducing turbulent fluid mechanical conditions.

  20. The role of transpapillary drainage in management of patients with pancreatic fluid collections and pancreatic duct disruption as a consequences of severe acute pancreatitis.

    PubMed

    Jagielski, Mateusz; Smoczyński, Marian; Adrych, Krystian

    In last thirty years we have been observing significant development of an endoscopic treatment of pancreatic fluid collections, including transmural drainage of walled-off pancreatic necrosis. Simultaneously, the use of endotherapy in treatment of main pancreatic ducts disruptions has increased. Despite many publications available in current literature, concerning the endoscopic treatment of consequences of acute necrotizing pancreatitis, the role of transpapillary drainage in management of patients with pancreatic fluid collections and pancreatic duct disruption as an after-effect of severe acute pancreatitis remains unclear and is still a current problem. This publication includes comment on the article entitled 'Early dual drainage combining transpapillary endotherapy and percutaneous catheter drainage in patients with pancreatic fistula associated with severe acute pancreatitis' published by Yokoi et al. in the July-August 2016 issue of Pancreatology together with questions to the authors. Furthermore, in the article we did pay particular attention to the role of transpapillary drainage in management of pancreatic fluid collections, especially of walled-of pancreatic necrosis. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  1. Crystal Growth Texture in Light Vein at Garden City

    NASA Image and Video Library

    2015-11-11

    This view from the Mars Hand Lens Imager (MAHLI) on the arm of NASA's Curiosity Mars rover shows texture within a light-toned vein at a site called "Garden City" on lower Mount Sharp. The area shown is roughly 0.9 inch (2.2 centimeters) wide. It was taken during the 946th Martian day, or sol, of Curiosity's work on Mars (April 4, 2015). Differences in textures of light-toned veins in the Garden City complex of crisscrossing mineral veins are clues that these veins may result from distinct fluid events. This vein's texture shows indications of crystal growth, suggesting that crystallization may have exerted a force for opening the fracture filled by the vein. Different examples are at PIA19926 and PIA19927. Mineral veins often form where fluids move through fractured rocks, depositing minerals in the fractures and affecting chemistry of the surrounding rock. At Garden City, the veins have been more resistant to erosion than the surrounding host rock. The fluid movement through fractures at Garden City occurred later than wet environmental conditions in which the host rock formed, before it hardened and cracked. Malin Space Science Systems, San Diego, built and operates MAHLI. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover. http://photojournal.jpl.nasa.gov/catalog/PIA19925

  2. Spacelab

    NASA Image and Video Library

    1992-06-01

    The first United States Microgravity Laboratory (USML-1) was one of NASA's science and technology programs that provided scientists an opportunity to research various scientific investigations in a weightlessness environment inside the Spacelab module. It also provided demonstrations of new equipment to help prepare for advanced microgravity research and processing aboard the Space Station. The USML-1 flew in orbit for extended periods, providing greater opportunities for research in materials science, fluid dynamics, biotechnology (crystal growth), and combustion science. This is a close-up view of the Drop Physics Module (DPM) in the USML science laboratory. The DPM was dedicated to the detailed study of the dynamics of fluid drops in microgravity: their equilibrium shapes, the dynamics of their flows, and their stable and chaotic behaviors. It also demonstrated a technique known as containerless processing. The DPM and microgravity combine to remove the effects of the container, such as chemical contamination and shape, on the sample being studied. Sound waves, generating acoustic forces, were used to suspend a sample in microgravity and to hold a sample of free drops away from the walls of the experiment chamber, which isolated the sample from potentially harmful external influences. The DPM gave scientists the opportunity to test theories of classical fluid physics, which have not been confirmed by experiments conducted on Earth. This image is a close-up view of the DPM. The USML-1 flew aboard the STS-50 mission on June 1992, and was managed by the Marshall Space Flight Center.

  3. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  4. The aerospace plane design challenge: Credible computational fluid dynamics results

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1990-01-01

    Computational fluid dynamics (CFD) is necessary in the design processes of all current aerospace plane programs. Single-stage-to-orbit (STTO) aerospace planes with air-breathing supersonic combustion are going to be largely designed by means of CFD. The challenge of the aerospace plane design is to provide credible CFD results to work from, to assess the risk associated with the use of those results, and to certify CFD codes that produce credible results. To establish the credibility of CFD results used in design, the following topics are discussed: CFD validation vis-a-vis measurable fluid dynamics (MFD) validation; responsibility for credibility; credibility requirement; and a guide for establishing credibility. Quantification of CFD uncertainties helps to assess success risk and safety risks, and the development of CFD as a design tool requires code certification. This challenge is managed by designing the designers to use CFD effectively, by ensuring quality control, and by balancing the design process. For designing the designers, the following topics are discussed: how CFD design technology is developed; the reasons Japanese companies, by and large, produce goods of higher quality than the U.S. counterparts; teamwork as a new way of doing business; and how ideas, quality, and teaming can be brought together. Quality control for reducing the loss imparted to the society begins with the quality of the CFD results used in the design process, and balancing the design process means using a judicious balance of CFD and MFD.

  5. Development of a high-efficiency, gas-fired, absorption heat pump for residental and small-commercial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, B.A.

    1990-09-01

    The purpose of the total project is to develop a gas-fired absorption heat pump for residential and small-commercial applications that will produce at least 1.6 Btu of heating and 0.7 Btu of cooling per Btu of heat content in the gas being burned. The primary technology advances that can be used to attain the new goals are higher efficiency cycles, increased flue efficiency, and better fluids. Flue efficiency technology is well developed, and fan-assisted combustion systems with condensing heat exchangers can limit flue and insulation losses to the 10% range. If this 10% loss assumption is made, the resulting targetmore » cycle COPs are 1.78 in heating mode and 0.78 in cooling mode at the ARI rating conditions. The objective of Phase 1 was to analyze working fluids and absorption-cycle concepts that are capable of performing at the target COPs and are potentially competitive with existing space-conditioning products in cost, operating life, and reliability. Six advanced cycles were evaluated with ammonia/water as the fluid pair. Then additional analysis was performed with other fluid pairs to determine whether cycle ranking would change depending on which fluid was used. It was concluded that the preferred cycle/fluid was the generator-absorber heat exchange (GAX) cycle using ammonia/water as the fluid pair. A cost estimate made by an independent manufacturing engineering firm for a residential heat pump based on the cycle/fluid combination determined that the GAX heat pump could be cost competitive with existing products. 20 refs., 28 figs., 2 tabs.« less

  6. Energy efficiency in industrial mixing and cooling of non-Newtonian fluid in a stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Baghli, Houda; Benyettou, Mohamed; Tchouar, Noureddine; Merah, Abdelkrim; Djafri, Mohammed

    2018-05-01

    This paper study the energy efficiency of the mixing and cooling of a non-Newtonian fluid manufactured on an industrial scale in a stirred tank reactor equipped with jacketed cooling side. The purpose of this study is to optimize the heat transfer to degrease the cooling time and recommend a technologic innovation to realize this purpose without altering the quality of this product. First the different production processes are analyzed. The decrease of the shear stress with time indicates that this fluid is non-Newtonian and has to be characterized. The rheological behavior of this fluid is determined by a series of viscosimetric measurements, at different shear rates (30 to 400 s-1), and at different temperatures in the range (20° C to 80 °C), representing the stress and temperature conditions recorded during production, storage and packaging cycles of this product. Experimental results show that the nature of the fluid is pseudo-plastic with flow behavior index n<1 and follow the power law model, with the influence of temperature on flow consistency index K. A thermo-dependent model is given to express this rheological parameters and viscosity of this fluid as a function of temperature, valid for the fluid temperature between 20 to 80 °C. This rheological model is used to achieve the heat transfer simulation in the industrial stirred tank with an anchor impeller mixing. Simulation results shows that the cooling time by mixing can be the quarter by reducing the stirring speed to 125 rpm, and decreasing the coolant temperature to 20°C and therefore reduce energy consumption. A technologic integration of a natural cooling thermo-siphon devise outside the process is proposed to afford a cooling fluid below 20°C.

  7. Critically Loaded Hole Technology Pilot Collaborative Test Programme.

    DTIC Science & Technology

    1980-11-01

    270 rpm Spindle Speed - 1450 rpm Feed Rate - Manual Feed Rate - Manual Cutting Fluid - Dry Cutting Fluid - Dry Tool Type - Cordia S-18 Tool Type... Cordia S-18 TABLE XI MANUFACTURING DETAILS FOR HIGH AND LOW QUALITY HOLES SELECTED BY THE UNITED KINGDOM HIGH QUALITY LOW QUALITY Pilot Hole: - 1/8 inch

  8. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  9. Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed.

    PubMed

    Miller, Wayne L

    2016-08-01

    Volume regulation, assessment, and management remain basic issues in patients with heart failure. The discussion presented here is directed at opening a reassessment of the pathophysiology of congestion in congestive heart failure and the methods by which we determine volume overload status. Peer-reviewed historical and contemporary literatures are reviewed. Volume overload and fluid congestion remain primary issues for patients with chronic heart failure. The pathophysiology is complex, and the simple concept of intravascular fluid accumulation is not adequate. The dynamics of interstitial and intravascular fluid compartment interactions and fluid redistribution from venous splanchnic beds to central pulmonary circulation need to be taken into account in strategies of volume management. Clinical bedside evaluations and right heart hemodynamic assessments can alert clinicians of changes in volume status, but only the quantitative measurement of total blood volume can help identify the heterogeneity in plasma volume and red blood cell mass that are features of volume overload in patients with chronic heart failure and help guide individualized, appropriate therapy-not all volume overload is the same. © 2016 American Heart Association, Inc.

  10. Textbook coverage of a common topic: fluid management of patients after surgery.

    PubMed

    Chawla, Gunjan; Drummond, Gordon B

    2008-06-01

    Maintenance fluid therapy is a protean topic but is clinically often mismanaged. Our teaching of medical students led us to suspect that textbooks provide limited information about the topic, so we set out to verify this possibility by reviewing the content of books written in English that covered perioperative care. We reviewed publishers' lists of textbooks and found 22 suitable books. After compiling a standard list of questions on intravenous therapy, we read each book to find out to what extent it delivered the answers, and listed the information obtained. Only 13 books answered more than half of the questions. The information varied considerably. Suggested quantities of daily fluid, sodium and potassium requirements varied hugely. Information provided in standard textbooks to guide fluid prescription is scant and variable. This could be a cogent reason why junior doctors prescribe postoperative fluids badly: the information in textbooks is inadequate and varies from book to book. The reasons for the poor coverage are not clear. Perhaps other common topics that are often poorly managed are also badly addressed by standard books.

  11. Editorial special issue on "Laser Doppler vibrometry"

    NASA Astrophysics Data System (ADS)

    Vanlanduit, Steve; Dirckx, Joris

    2017-12-01

    The invention of the laser in 1960 has opened up many opportunities in the field of measurement science and technology. Just a few years after the invention of the laser, a novel fluid flow measurement technique based on the Doppler effect was introduced: at that moment the laser Doppler anemometer or shortly LDA [1] was born. The technique enabled fluid velocity measurement by using the light of a He-Ne beam which was scattered by very small polystyrene spheres entrained in the fluid. Later on, in the late nineteen seventees it was recognized that the detection of the Doppler frequency shift that occurs when light is scattered by a moving surface can also be used to measure the vibration velocity of an object. The instrument to perform these vibration measurements was called the laser Doppler vibrometer or LDV [2]. In the last decades several technological advances were made in the field of laser Doppler vibrometry. The result is that nowadays, velocity measurements of fluids (using LDA) and vibrating objects (using LDV) are performed in many challenging applications in different fields (microelectronics, civil structures, biomedical engineering, material science, etc.).

  12. Center for Advanced Space Propulsion (CASP)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With a mission to initiate and conduct advanced propulsion research in partnership with industry, and a goal to strengthen U.S. national capability in propulsion technology, the Center for Advanced Space Propulsion (CASP) is the only NASA Center for Commercial Development of Space (CCDS) which focuses on propulsion and associated technologies. Meetings with industrial partners and NASA Headquarters personnel provided an assessment of the constraints placed on, and opportunities afforded commercialization projects. Proprietary information, data rights, and patent rights were some of the areas where well defined information is crucial to project success and follow-on efforts. There were five initial CASP projects. At the end of the first year there are six active, two of which are approaching the ground test phase in their development. Progress in the current six projects has met all milestones and is detailed. Working closely with the industrial counterparts it was found that the endeavors in expert systems development, computational fluid dynamics, fluid management in microgravity, and electric propulsion were well received. One project with the Saturn Corporation which dealt with expert systems application in the assembly process, was placed on hold pending further direction from Saturn. The Contamination Measurment and Analysis project was not implemented since CASP was unable to identify an industrial participant. Additional propulsion and related projects were investigated during the year. A subcontract was let to a small business, MicroCraft, Inc., to study rocket engine certification standards. The study produced valuable results; however, based on a number of factors it was decided not to pursue this project further.

  13. Lab-on a-Chip

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  14. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  15. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    PubMed

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  16. Differential Group-Velocity Detection of Fluid Paths Leland Timothy Long

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Leland Timothy

    2003-06-01

    The objective of differential surface-wave interpretation is to identify and locate temporal perturbations in the shear-wave velocity. Perturbations in phase velocity are created when the stress and/or fluid content of soils changes, such as in pumping to remove or flush out contaminants. Differential surface wave analysis is a potential method to track the movement of fluids during remediation programs. This proposal is to develop and test this new technology to aid in the selection and design of remediation options in shallow aquifers.

  17. Preheating of fluid in a supercritical Brayton cycle power generation system at cold startup

    DOEpatents

    Wright, Steven A.; Fuller, Robert L.

    2016-07-12

    Various technologies pertaining to causing fluid in a supercritical Brayton cycle power generation system to flow in a desired direction at cold startup of the system are described herein. A sensor is positioned at an inlet of a turbine, wherein the sensor is configured to output sensed temperatures of fluid at the inlet of the turbine. If the sensed temperature surpasses a predefined threshold, at least one operating parameter of the power generation system is altered.

  18. Fluid management in children with diarrhea-related hyponatremic-hypernatremic dehydration: a retrospective study of 83 children.

    PubMed

    Kocaoglu, Celebi; Selma Solak, Ece; Kilicarslan, Cengizhan; Arslan, Sukru

    2014-02-01

    To investigate serum creatinine and electrolyte status of children with diarrhea-related hyponatremic or hypernatremic dehydration. Medical history of 83 patients admitted to the Pediatric Intensive Care Unit of the Konya Education and Research Hospital, Konya, Turkey with diarrhea, dehydration and electrolyte imbalance was retrospectively evaluated according to the degree of dehydration, serum creatinine, electrolytes, blood gas, approaches to the treatment such as content of given fluid, HCO3- and acute periotenal dialysis. Of 65 patients with hyponatremia, 44 (67.7%) were given fluids at appropriate concentration according to their age, and 21 (32.3%) were given fluids at higher concentration. Of 18 hypernatremic patients, 11 (61.1%) were given fluids at appropriate concentration for age, and seven (38.9%) were given fluids at higher concentration. Mean duration of amelioration of serum sodium levels for those admitted with hyponatremia and given fluids at appropriate concentration for age and at higher concentration were 33.9 ± 28.3 h and 53.7 ± 31.6 h, respectively. Mean duration of amelioration of serum sodium levels for hypernatremics and given fluids at appropriate concentration for age and at higher concentration were 34.7 ± 22.1 h and 46.3 ± 32 h, respectively. Four (4.8%) hyponatremic patients and three (3.6%) with hypernatremia were treated with acute peritoneal dialysis. Mortality rate was 6% (five of all patients). The children with severe diarrhea should be closely followed-up as to clinical examination, serum electrolytes, creatinine and blood gases, and because no single intravenous fluid management is optimal for all children, intravenous fluid therapy should be individualized for each patient.

  19. OAST Space Theme Workshop. Volume 3: Working group summary. 9: Aerothermodynamics (M-3). A: Statement. B: Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessments

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.

  20. A study of computer graphics technology in application of communication resource management

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liang; Yang, Fei

    2017-08-01

    With the development of computer technology, computer graphics technology has been widely used. Especially, the success of object-oriented technology and multimedia technology promotes the development of graphics technology in the computer software system. Therefore, the computer graphics theory and application technology have become an important topic in the field of computer, while the computer graphics technology becomes more and more extensive in various fields of application. In recent years, with the development of social economy, especially the rapid development of information technology, the traditional way of communication resource management cannot effectively meet the needs of resource management. In this case, the current communication resource management is still using the original management tools and management methods, resource management equipment management and maintenance, which brought a lot of problems. It is very difficult for non-professionals to understand the equipment and the situation in communication resource management. Resource utilization is relatively low, and managers cannot quickly and accurately understand the resource conditions. Aimed at the above problems, this paper proposes to introduce computer graphics technology into the communication resource management. The introduction of computer graphics not only makes communication resource management more vivid, but also reduces the cost of resource management and improves work efficiency.

Top