Stability of mixed time integration schemes for transient thermal analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lin, J. I.
1982-01-01
A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.
Radiotracer Technology in Mixing Processes for Industrial Applications
Othman, N.; Kamarudin, S. K.
2014-01-01
Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer. PMID:24616642
Incompressibility without tears - How to avoid restrictions of mixed formulation
NASA Technical Reports Server (NTRS)
Zienkiewicz, O. C.; Wu, J.
1991-01-01
Several time-stepping schemes for incompressibility problems are presented which can be solved directly for steady state or iteratively through the time domain. The difficulty of mixed interpolation is avoided by using these schemes. The schemes are applicable to problems of fluid and solid mechanics.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Fluid Structure Interaction Techniques For Extrusion And Mixing Processes
NASA Astrophysics Data System (ADS)
Valette, Rudy; Vergnes, Bruno; Coupez, Thierry
2007-05-01
This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L C C
2017-03-15
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.
NASA Astrophysics Data System (ADS)
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-03-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically.
Khan, Ilyas; Shah, Nehad Ali; Dennis, L. C. C.
2017-01-01
This scientific report investigates the heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate with constant wall temperature. The problem is modelled in terms of coupled partial differential equations with initial and boundary conditions. Some suitable non-dimensional variables are introduced in order to transform the governing problem into dimensionless form. The resulting problem is solved via Laplace transform method and exact solutions for velocity, shear stress and temperature are obtained. These solutions are greatly influenced with the variation of embedded parameters which include the Prandtl number and Grashof number for various times. In the absence of free convection, the corresponding solutions representing the mechanical part of velocity reduced to the well known solutions in the literature. The total velocity is presented as a sum of both cosine and sine velocities. The unsteady velocity in each case is arranged in the form of transient and post transient parts. It is found that the post transient parts are independent of time. The solutions corresponding to Newtonian fluids are recovered as a special case and comparison between Newtonian fluid and Maxwell fluid is shown graphically. PMID:28294186
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
NASA Astrophysics Data System (ADS)
Cook, Andrew W.
2007-05-01
An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
A fast numerical method for ideal fluid flow in domains with multiple stirrers
NASA Astrophysics Data System (ADS)
Nasser, Mohamed M. S.; Green, Christopher C.
2018-03-01
A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.
State space approach to mixed boundary value problems.
NASA Technical Reports Server (NTRS)
Chen, C. F.; Chen, M. M.
1973-01-01
A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.
Metalworking and machining fluids
Erdemir, Ali; Sykora, Frank; Dorbeck, Mark
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Fractal Viscous Fingering in Fracture Networks
NASA Astrophysics Data System (ADS)
Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.
2007-12-01
We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.
Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes
NASA Astrophysics Data System (ADS)
Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry
2007-04-01
This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
Dapelo, Davide; Alberini, Federico; Bridgeman, John
2015-11-15
A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application. Copyright © 2015 Elsevier Ltd. All rights reserved.
A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows
NASA Astrophysics Data System (ADS)
Lei, Xin; Li, Jiequan
2018-04-01
This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.
A mixed fluid-kinetic solver for the Vlasov-Poisson equations
NASA Astrophysics Data System (ADS)
Cheng, Yongtao
Plasmas are ionized gases that appear in a wide range of applications including astrophysics and space physics, as well as in laboratory settings such as in magnetically confined fusion. There are two prevailing types of modeling strategies to describe a plasma system: kinetic models and fluid models. Kinetic models evolve particle probability density distributions (PDFs) in phase space, which are accurate but computationally expensive. Fluid models evolve a small number of moments of the distribution function and reduce the dimension of the solution. However, some approximation is necessary to close the system, and finding an accurate moment closure that correctly captures the dynamics away from thermodynamic equilibrium is a difficult and still open problem. The main contributions of the present work can be divided into two main parts: (1) a new class of moment closures, based on a modification of existing quadrature-based moment-closure methods, is developed using bi-B-spline and bi-bubble representations; and (2) a novel mixed solver that combines a fluid and a kinetic solver is proposed, which uses the new class of moment-closure methods described in the first part. For the newly developed quadrature-based moment-closure based on bi-B-spline and bi-bubble representation, the explicit form of flux terms and the moment-realizability conditions are given. It is shown that while the bi-delta system is weakly hyperbolic, the newly proposed fluid models are strongly hyperbolic. Using a high-order Runge-Kutta discontinuous Galerkin method together with Strang operator splitting, the resulting models are applied to the Vlasov-Poisson-Fokker-Planck system in the high field limit. In the second part of this work, results from kinetic solver are used to provide a corrected closure to the fluid model. This correction keeps the fluid model hyperbolic and gives fluid results that match the moments as computed from the kinetic solution. Furthermore, a prolongation operation based on the bi-bubble moment-closure is used to make the first few moments of the kinetic and fluid solvers match. This results in a kinetic solver that exactly conserves mass and total energy. This mixed fluid-kinetic solver is applied to standard test problems for the Vlasov-Poisson system, including two-stream-instability problem and Landau damping.
Viscous flow computations using a second-order upwind differencing scheme
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1988-01-01
In the present computations of a wide range of fluid flow problems by means of the primitive variables-incorporating Navier-Stokes equations, a mixed second-order upwinding scheme approximates the convective terms of the transport equations and the scheme's accuracy is verified for convection-dominated high Re number flow problems. An adaptive dissipation scheme is used as a monotonic supersonic shock flow capture mechanism. Many benchmark fluid flow problems, including the compressible and incompressible, laminar and turbulent, over a wide range of M and Re numbers, are presently studied to verify the accuracy and robustness of this numerical method.
A stable partitioned FSI algorithm for incompressible flow and deforming beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu
2016-05-01
An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less
Micromixer utilizing electrokinetic instability-induced shedding effect.
Tai, Chang-Hsien; Yang, Ruey-Jen; Huang, Min-Zhong; Liu, Chia-Wei; Tsai, Chien-Hsiung; Fu, Lung-Ming
2006-12-01
This paper presents a T-shaped micromixer featuring 45 degrees parallelogram barriers (PBs) within the mixing channel. The presented device obtains a rapid mixing of two sample fluids with conductivity ratio of 10:1 (sample concentration:running buffer concentration) by means of the electrokinetic instability-induced shedding effects which are produced when a direct current (DC) electric field of an appropriate intensity is applied. The presented device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the PBs obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct 4/5 of the channel width and an electrical field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
NASA Astrophysics Data System (ADS)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.
Favre-Averaged Turbulence Statistics in Variable Density Mixing of Buoyant Jets
NASA Astrophysics Data System (ADS)
Charonko, John; Prestridge, Kathy
2014-11-01
Variable density mixing of a heavy fluid jet with lower density ambient fluid in a subsonic wind tunnel was experimentally studied using Particle Image Velocimetry and Planar Laser Induced Fluorescence to simultaneously measure velocity and density. Flows involving the mixing of fluids with large density ratios are important in a range of physical problems including atmospheric and oceanic flows, industrial processes, and inertial confinement fusion. Here we focus on buoyant jets with coflow. Results from two different Atwood numbers, 0.1 (Boussinesq limit) and 0.6 (non-Boussinesq case), reveal that buoyancy is important for most of the turbulent quantities measured. Statistical characteristics of the mixing important for modeling these flows such as the PDFs of density and density gradients, turbulent kinetic energy, Favre averaged Reynolds stress, turbulent mass flux velocity, density-specific volume correlation, and density power spectra were also examined and compared with previous direct numerical simulations. Additionally, a method for directly estimating Reynolds-averaged velocity statistics on a per-pixel basis is extended to Favre-averages, yielding improved accuracy and spatial resolution as compared to traditional post-processing of velocity and density fields.
Perfect mixing of immiscible macromolecules at fluid interfaces
NASA Astrophysics Data System (ADS)
Sheiko, Sergei S.; Zhou, Jing; Arnold, Jamie; Neugebauer, Dorota; Matyjaszewski, Krzysztof; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.; Carrillo, Jan-Michael Y.; Dobrynin, Andrey V.; Rubinstein, Michael
2013-08-01
The difficulty of mixing chemically incompatible substances—in particular macromolecules and colloidal particles—is a canonical problem limiting advances in fields ranging from health care to materials engineering. Although the self-assembly of chemically different moieties has been demonstrated in coordination complexes, supramolecular structures, and colloidal lattices among other systems, the mechanisms of mixing largely rely on specific interfacing of chemically, physically or geometrically complementary objects. Here, by taking advantage of the steric repulsion between brush-like polymers tethered to surface-active species, we obtained long-range arrays of perfectly mixed macromolecules with a variety of polymer architectures and a wide range of chemistries without the need of encoding specific complementarity. The net repulsion arises from the significant increase in the conformational entropy of the brush-like polymers with increasing distance between adjacent macromolecules at fluid interfaces. This entropic-templating assembly strategy enables long-range patterning of thin films on sub-100 nm length scales.
NASA Astrophysics Data System (ADS)
Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.
2017-06-01
An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.
Transurethral resection of the prostate (TURP) - Series (image)
The prostate gland is an organ that surrounds the urinary urethra in men. It secretes fluid that mixes with ... An enlarged prostate gland compresses the urethra, causing problems with ... is caused by prostate gland overgrowth (benign prostatic ...
MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity
NASA Astrophysics Data System (ADS)
Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit
2017-06-01
In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.
Spectral methods for partial differential equations
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Streett, C. L.; Zang, T. A.
1983-01-01
Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized.
Peristaltic transport of copper-water nanofluid saturating porous medium
NASA Astrophysics Data System (ADS)
Abbasi, F. M.; Hayat, T.; Ahmad, B.
2015-03-01
Prime goal of present study is to model the problem for peristaltic transport of copper-water nanofluid in an asymmetric channel. The fluid fills porous space. Analysis is carried out in the presence of mixed conviction, viscous dissipation and heat generation/absorption. Long wavelength and low Reynolds number approximations are utilized in problem formulation. Numerical computations are presented for the axial velocity, pressure gradient, streamlines, temperature and heat transfer rate at the boundary. Graphical analysis is carried out to examine the effects of sundry parameters on flow quantities of interest. Results revealed that the axial velocity of copper-water nanofluid decreases with an increase in the nanoparticle volume fraction. Copper nanoparticles prove effective coolant since they sufficiently reduce the fluid temperature and show increase in the heat transfer between the fluid and solid boundary. Moreover temperature of the fluid decreases by increasing the permeability of porous medium.
Toward multiscale modelings of grain-fluid systems
NASA Astrophysics Data System (ADS)
Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon
2017-06-01
Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.
Lagrangian particles with mixing. I. Simulating scalar transport
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2009-06-01
The physical similarity and mathematical equivalence of continuous diffusion and particle random walk forms one of the cornerstones of modern physics and the theory of stochastic processes. The randomly walking particles do not need to posses any properties other than location in physical space. However, particles used in many models dealing with simulating turbulent transport and turbulent combustion do posses a set of scalar properties and mixing between particle properties is performed to reflect the dissipative nature of the diffusion processes. We show that the continuous scalar transport and diffusion can be accurately specified by means of localized mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. Particles with scalar properties and localized mixing represent an alternative formulation for the process, which is selected to represent the continuous diffusion. Simulating diffusion by Lagrangian particles with mixing involves three main competing requirements: minimizing stochastic uncertainty, minimizing bias introduced by numerical diffusion, and preserving independence of particles. These requirements are analyzed for two limited cases of mixing between two particles and mixing between a large number of particles. The problem of possible dependences between particles is most complicated. This problem is analyzed using a coupled chain of equations that has similarities with Bogolubov-Born-Green-Kirkwood-Yvon chain in statistical physics. Dependences between particles can be significant in close proximity of the particles resulting in a reduced rate of mixing. This work develops further ideas introduced in the previously published letter [Phys. Fluids 19, 031702 (2007)]. Paper I of this work is followed by Paper II [Phys. Fluids 19, 065102 (2009)] where modeling of turbulent reacting flows by Lagrangian particles with localized mixing is specifically considered.
Scalar entrainment in the mixing layer
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Mungal, M. G.; Broadwell, J. E.; Reynolds, W. C.
1988-01-01
New definitions of entrainment and mixing based on the passive scalar field in the plane mixing layer are proposed. The definitions distinguish clearly between three fluid states: (1) unmixed fluid, (2) fluid engulfed in the mixing layer, trapped between two scalar contours, and (3) mixed fluid. The difference betwen (2) and (3) is the amount of fluid which has been engulfed during the pairing process, but has not yet mixed. Trends are identified from direct numerical simulations and extensions to high Reynolds number mixing layers are made in terms of the Broadwell-Breidenthal mixing model. In the limit of high Peclet number (Pe = ReSc) it is speculated that engulfed fluid rises in steps associated with pairings, introducing unmixed fluid into the large scale structures, where it is eventually mixed at the Kolmogorov scale. From this viewpoint, pairing is a prerequisite for mixing in the turbulent plane mixing layer.
Problems in Microgravity Fluid Mechanics: G-Jitter Convection
NASA Technical Reports Server (NTRS)
Homsy, G. M.
2005-01-01
This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.
Fuel-Air Mixing and Combustion in Scramjets. Chapter 6
NASA Technical Reports Server (NTRS)
Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.
2006-01-01
At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.
NASA Astrophysics Data System (ADS)
Thiele, Michael
1998-04-01
Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Numerical Simulations of High-Speed Chemically Reacting Flow
NASA Technical Reports Server (NTRS)
Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.
1994-01-01
The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.
Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection
NASA Astrophysics Data System (ADS)
Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming
2007-08-01
In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.
Sun, WaiChing; Cai, Zhijun; Choo, Jinhyun
2016-11-18
An Arlequin poromechanics model is introduced to simulate the hydro-mechanical coupling effects of fluid-infiltrated porous media across different spatial scales within a concurrent computational framework. A two-field poromechanics problem is first recast as the twofold saddle point of an incremental energy functional. We then introduce Lagrange multipliers and compatibility energy functionals to enforce the weak compatibility of hydro-mechanical responses in the overlapped domain. Here, to examine the numerical stability of this hydro-mechanical Arlequin model, we derive a necessary condition for stability, the twofold inf–sup condition for multi-field problems, and establish a modified inf–sup test formulated in the product space ofmore » the solution field. We verify the implementation of the Arlequin poromechanics model through benchmark problems covering the entire range of drainage conditions. Finally, through these numerical examples, we demonstrate the performance, robustness, and numerical stability of the Arlequin poromechanics model.« less
Fluid dynamic problems associated with air-breathing propulsive systems
NASA Technical Reports Server (NTRS)
Chow, W. L.
1979-01-01
A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.; White, A. F.; Tokunaga, T.
1986-12-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series [White et al., 1984] we presented field data as well as an interpretation based on a static mixing model. As an upper bound, we estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work we present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNAmic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narashimhan, T.N.; White, A.F.; Tokunaga, T.
1986-12-01
At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. Inmore » the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency.« less
Computational Analyses of Pressurization in Cryogenic Tanks
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry
2010-01-01
A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.
Final Report for Intravenous Fluid Generation (IVGEN) Spaceflight Experiment
NASA Technical Reports Server (NTRS)
McQuillen, John B.; McKay, Terri L.; Griffin, DeVon W.; Brown, Dan F.; Zoldak, John T.
2011-01-01
NASA designed and operated the Intravenous Fluid Generation (IVGEN) experiment onboard the International Space Station (ISS), Increment 23/24, during May 2010. This hardware was a demonstration experiment to generate intravenous (IV) fluid from ISS Water Processing Assembly (WPA) potable water using a water purification technique and pharmaceutical mixing system. The IVGEN experiment utilizes a deionizing resin bed to remove contaminants from feedstock water to a purity level that meets the standards of the United States Pharmacopeia (USP), the governing body for pharmaceuticals in the United States. The water was then introduced into an IV bag where the fluid was mixed with USP-grade crystalline salt to produce USP normal saline (NS). Inline conductivity sensors quantified the feedstock water quality, output water purity, and NS mixing uniformity. Six 1.5-L bags of purified water were produced. Two of these bags were mixed with sodium chloride to make 0.9 percent NS solution. These two bags were returned to Earth to test for compliance with USP requirements. On-orbit results indicated that all of the experimental success criteria were met with the exception of the salt concentration. Problems with a large air bubble in the first bag of purified water resulted in a slightly concentrated saline solution of 117 percent of the target value of 0.9 g/L. The second bag had an inadequate amount of salt premeasured into the mixing bag resulting in a slightly deficient salt concentration of 93.8 percent of the target value. The USP permits a range from 95 to 105 percent of the target value. The testing plans for improvements for an operational system are also presented.
A fictitious domain approach for the Stokes problem based on the extended finite element method
NASA Astrophysics Data System (ADS)
Court, Sébastien; Fournié, Michel; Lozinski, Alexei
2014-01-01
In the present work, we propose to extend to the Stokes problem a fictitious domain approach inspired by eXtended Finite Element Method and studied for Poisson problem in [Renard]. The method allows computations in domains whose boundaries do not match. A mixed finite element method is used for fluid flow. The interface between the fluid and the structure is localized by a level-set function. Dirichlet boundary conditions are taken into account using Lagrange multiplier. A stabilization term is introduced to improve the approximation of the normal trace of the Cauchy stress tensor at the interface and avoid the inf-sup condition between the spaces for velocity and the Lagrange multiplier. Convergence analysis is given and several numerical tests are performed to illustrate the capabilities of the method.
Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.
Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F
2013-01-01
An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.
Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Malcolm J.; Livescu, Daniel; Youngs, David L.
2012-08-14
The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chaptermore » include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (and ways to treat the acceleration ramp at the start of the experiment). This is followed by a section that defines data to be collected from the simulations, with results from the experiments and DNS from Livescu using the CFDNS code, and ILES simulations from Youngs using the compressible TURMOIL code and Andrews using the incompressible RTI3D code. We close the TP with concluding remarks, and Appendices that includes details of the sister Case 115, initial condition specifications for density and pressure fields. The Tilted-Rig Test Problem is intended to serve as a validation problem for RANS models, and as such we have provided ILES and DNS simulations in support of the test problem definition. The generally good agreement between experiment, ILES and DNS supports our assertion that the Tilted-Rig is useful, and the only 2-D TP that can be used to validate RANS models.« less
Mixed convection of nanofluids in a lid-driven rough cavity
NASA Astrophysics Data System (ADS)
Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.
2017-06-01
Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.
Performance of mixed formulations for the particle finite element method in soil mechanics problems
NASA Astrophysics Data System (ADS)
Monforte, Lluís; Carbonell, Josep Maria; Arroyo, Marcos; Gens, Antonio
2017-07-01
This paper presents a computational framework for the numerical analysis of fluid-saturated porous media at large strains. The proposal relies, on one hand, on the particle finite element method (PFEM), known for its capability to tackle large deformations and rapid changing boundaries, and, on the other hand, on constitutive descriptions well established in current geotechnical analyses (Darcy's law; Modified Cam Clay; Houlsby hyperelasticity). An important feature of this kind of problem is that incompressibility may arise either from undrained conditions or as a consequence of material behaviour; incompressibility may lead to volumetric locking of the low-order elements that are typically used in PFEM. In this work, two different three-field mixed formulations for the coupled hydromechanical problem are presented, in which either the effective pressure or the Jacobian are considered as nodal variables, in addition to the solid skeleton displacement and water pressure. Additionally, several mixed formulations are described for the simplified single-phase problem due to its formal similitude to the poromechanical case and its relevance in geotechnics, since it may approximate the saturated soil behaviour under undrained conditions. In order to use equal-order interpolants in displacements and scalar fields, stabilization techniques are used in the mass conservation equation of the biphasic medium and in the rest of scalar equations. Finally, all mixed formulations are assessed in some benchmark problems and their performances are compared. It is found that mixed formulations that have the Jacobian as a nodal variable perform better.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fluid mix for ice cream and other frozen desserts subcategory. 405.70 Section 405.70 Protection of... PROCESSING POINT SOURCE CATEGORY Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory § 405.70 Applicability; description of the fluid mix for ice cream and other frozen desserts subcategory. The provisions...
Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications
2015-09-01
ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
Instability in Immiscible Fluids Displacement from Cracks and Porous Samples
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.
2002-01-01
problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a number of fingers in the cell, and allowed us to make some additional suggestions for the cleanup procedure. depending on the resident fluid properties, for which the displacement still remains stable. viscous one were carried out. Validation of the code was performed by comparing the results of model problems simulations with the existing solutions published in literature. Being in a good agreement with the previously obtained results, nevertheless, the developed code is an advanced one. While the existing codes could operate with linear equations and regular geometry and initial disturbances only, the new code permits taking into account non-linear effects as well. characterizing the quality of displacement. The functional dependence of the dimensionless criteria on the values of governing parameters needs further investigations. Services, an international company in the oil and gas industry.
NASA Astrophysics Data System (ADS)
Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.
2017-11-01
Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.
The Vetter-Sturtevant Shock Tube Problem in KULL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulitsky, M S
2005-10-06
The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on an example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) with the additional complication of reshock. The experiment by Vetter & Sturtevant (VS) [1], involving a Mach 1.50 incident shock striking an air/SF{sub 6} interface, is a good one to model, now that we understand how the model performs for the Benjamin shock tube [2] and a prototypical incompressible Rayleigh-Taylormore » problem [3]. The x-t diagram for the VS shock tube is quite complicated, since the transmitted shock hits the far wall at {approx}2 millisec, reshocks the mixing zone slightly after 3 millisec (which sets up a release wave that hits the wall at {approx}4 millisec), and then the interface is hit with this expansion wave around 5 millisec. Needless to say, this problem is much more difficult to model than the Bejamin shock tube.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... mix for ice cream and other frozen desserts subcategory. 405.70 Section 405.70 Protection of... PROCESSING POINT SOURCE CATEGORY Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory § 405.70 Applicability; description of the fluid mix for ice cream and other frozen desserts subcategory. The provisions...
Code of Federal Regulations, 2014 CFR
2014-07-01
... mix for ice cream and other frozen desserts subcategory. 405.70 Section 405.70 Protection of... PROCESSING POINT SOURCE CATEGORY Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory § 405.70 Applicability; description of the fluid mix for ice cream and other frozen desserts subcategory. The provisions...
Code of Federal Regulations, 2010 CFR
2010-07-01
... mix for ice cream and other frozen desserts subcategory. 405.70 Section 405.70 Protection of... PROCESSING POINT SOURCE CATEGORY Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory § 405.70 Applicability; description of the fluid mix for ice cream and other frozen desserts subcategory. The provisions...
Code of Federal Regulations, 2011 CFR
2011-07-01
... mix for ice cream and other frozen desserts subcategory. 405.70 Section 405.70 Protection of... PROCESSING POINT SOURCE CATEGORY Fluid Mix for Ice Cream and Other Frozen Desserts Subcategory § 405.70 Applicability; description of the fluid mix for ice cream and other frozen desserts subcategory. The provisions...
Data on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank.
Khapre, Akhilesh; Munshi, Basudeb
2016-09-01
The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.
The golden-mean surface pattern to enhance flow mixing in micro-channel.
Wang, J F; Liu, Y; Xu, Y S
2009-04-01
Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.
The Benjamin Shock Tube Problem in KULL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulitsky, M
2005-08-26
The goal of the EZturb mix model in KULL is to predict the turbulent mixing process as it evolves from Rayleigh-Taylor, Richtmyer-Meshkov, or Kelvin-Helmholtz instabilities. In this report we focus on a simple example of the Richtmyer-Meshkov instability (which occurs when a shock hits an interface between fluids of different densities) without the complication of reshock. The experiment by Benjamin et al. involving a Mach 1.21 incident shock striking an air / SF6 interface, is a good one to model and understand before moving onto shock tubes that follow the growth of the turbulent mixing zone from first shock throughmore » well after reshock.« less
Pre-mixing apparatus for a turbine engine
Lacy, Benjamin Paul [Greer, SC; Varatharajan, Balachandar [Cincinnati, OH; Ziminsky, Willy Steve [Simpsonville, SC; Kraemer, Gilbert Otto [Greer, SC; Yilmaz, Ertan [Albany, NY; Melton, Patrick Benedict [Horse Shoe, NC; Zuo, Baifang [Simpsonville, SC; Stevenson, Christian Xavier [Inman, SC; Felling, David Kenton [Greenville, SC; Uhm, Jong Ho [Simpsonville, SC
2012-04-03
A pre-mixing apparatus for a turbine engine includes a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish at least one fluid delivery plenum, and a plurality of fluid delivery tubes extending through at least a portion of the at least one fluid delivery plenum. Each of the plurality of fluid delivery tubes includes at least one fluid delivery opening fluidly connected to the at least one fluid delivery plenum. With this arrangement, a first fluid is selectively delivered to the at least one fluid delivery plenum, passed through the at least one fluid delivery opening and mixed with a second fluid flowing through the plurality of fluid delivery tubes prior to being combusted in a combustion chamber of a turbine engine.
Viscoelastic stability in a single-screw channel flow
NASA Astrophysics Data System (ADS)
Agbessi, Y.; Bu, L. X.; Béreaux, Y.; Charmeau, J.-Y.
2018-05-01
In this work, we perform a linear stability analysis on pressure and drag flows of an Upper Convected Maxwell viscoelastic fluid. We use the well-recognised method of expanding the disturbances in Chebyschev polynomials and solve the resulting generalized eigenvalues problem with a collocation spectra method. Both the level of elasticity and the back-pressure vary. In a second stage, recent analytic solutions of viscoelastic fluid flows in slowly varying sections [1] are used to extend this stability analysis to flows in a compression or in a diverging section of a single screw channel, for example a wave mixing screw.
Mixing from below in hydrothermal ore deposits
NASA Astrophysics Data System (ADS)
Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin
2014-05-01
Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe 3 O 4) was selected as a conventional base fluid. In addition, non-magnetic (Al 2 O 3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
NASA Astrophysics Data System (ADS)
Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.
In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.
An adaptive front tracking technique for three-dimensional transient flows
NASA Astrophysics Data System (ADS)
Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.
2000-01-01
An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright
NASA Technical Reports Server (NTRS)
Blumenthal, Rob; Kim, Dongmoon; Bache, George
1992-01-01
The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
NASA Astrophysics Data System (ADS)
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Organic synthesis during fluid mixing in hydrothermal systems
NASA Astrophysics Data System (ADS)
Shock, Everett L.; Schulte, Mitchell D.
1998-12-01
Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth or Mars. The single largest control on the potential for organic synthesis is the composition of the rock that hosts the hydrothermal system.
Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California
Forrest, Matthew J.; Kulongoski, Justin T.; Edwards, Matthew S.; Farrar, Christopher D.; Belitz, Kenneth; Norris, Richard D.
2013-01-01
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code
NASA Astrophysics Data System (ADS)
N-Body Shop
2017-10-01
Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.
Numerical Analysis of Micromixers for Optimization of Mixing Action
NASA Astrophysics Data System (ADS)
Panta, Yogendra; Adhikari, Param
2011-03-01
Micro-bio/chemical applications often require rapid and uniform mixing of a number of fluid streams that carries bio/chemical species in the solution. At microscale, fluid flow is highly laminar with low Reynolds number, fluids mixing mechanism is primarily by diffusion and free from any turbulence. Demand for highly efficient micromixers for microfluidic networks is due to slower mixing process for larger bio-molecules such as peptides, proteins, and nucleic acids compared to micro-scale molecules. Passive and active mixers are two basic mixers that are currently in use for these applications. Passive mixers often require very long mixing channels where are most active mixers require bulky moving parts to stir the fluids. In this study, electroosmotic effects orthogonally aligned with the fluid flowstream are utilized for optimum mixing effect in various micromixers. Cross-dependencies among several geometrical, electrical, and fluid parameters and their significance are studied in order to achieve an optimum mixing effect. It has been planned to optimize the mixer by non-moving stirring actions provided by an external magnetic field. Acknowledgements to School of Graduate Studies and Research at YSU for URC Grant and RP Award 2009-2010.
Solids mass flow determination
Macko, Joseph E.
1981-01-01
Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, Michael A.; Stickel, Jonathan J.; Sitaraman, Hariswaran
Designing processing equipment for the mixing of settling suspensions is a challenging problem. Achieving low-cost mixing is especially difficult for the application of slowly reacting suspended solids because the cost of impeller power consumption becomes quite high due to the long reaction times (batch mode) or due to large-volume reactors (continuous mode). Further, the usual scale-up metrics for mixing, e.g., constant tip speed and constant power per volume, do not apply well for mixing of suspensions. As an alternative, computational fluid dynamics (CFD) can be useful for analyzing mixing at multiple scales and determining appropriate mixer designs and operating parameters.more » We developed a mixture model to describe the hydrodynamics of a settling cellulose suspension. The suspension motion is represented as a single velocity field in a computationally efficient Eulerian framework. The solids are represented by a scalar volume-fraction field that undergoes transport due to particle diffusion, settling, fluid advection, and shear stress. A settling model and a viscosity model, both functions of volume fraction, were selected to fit experimental settling and viscosity data, respectively. Simulations were performed with the open-source Nek5000 CFD program, which is based on the high-order spectral-finite-element method. Simulations were performed for the cellulose suspension undergoing mixing in a laboratory-scale vane mixer. The settled-bed heights predicted by the simulations were in semi-quantitative agreement with experimental observations. Further, the simulation results were in quantitative agreement with experimentally obtained torque and mixing-rate data, including a characteristic torque bifurcation. In future work, we plan to couple this CFD model with a reaction-kinetics model for the enzymatic digestion of cellulose, allowing us to predict enzymatic digestion performance for various mixing intensities and novel reactor designs.« less
Health Hazard Evaluation Report HETA 83-107-1574, Dana Corporation, Fort Wayne, Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, R.G.; Wallingford, K.M.
1985-04-01
Environmental and breathing-zone samples of cutting fluids and oils were analyzed at Dana Corporation, Fort Wayne, Indiana in May, 1983. The survey was requested by a company representative to evaluate the cause of dermatitis among machine-tool operators. A cutting fluid used at the facility was thought to be the cause of the dermatitis. Medical questionnaires were administered to 95 workers. Company dispensary records were reviewed. N-nitrosodimethylamine and triethanolamine were detected in new and used cutting fluid samples. Nickel, chromium, and zinc were detected in a sample of used cutting oil residue. Chloromethyl-phenol was found in two cutting fluid mix samples.more » The authors conclude that a health hazard exists at the facility. The skin problems appear to be related to exposure to cutting fluids and solvents in general, rather than a specific agent. Recommendations include using protective clothing, using waterless hand cleaners instead of solvents, and avoiding contact with chlorothene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J.W., E-mail: banksj3@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Kapila, A.K., E-mail: kapila@rpi.edu
We describe an added-mass partitioned (AMP) algorithm for solving fluid–structure interaction (FSI) problems involving inviscid compressible fluids interacting with nonlinear solids that undergo large rotations and displacements. The computational approach is a mixed Eulerian–Lagrangian scheme that makes use of deforming composite grids (DCG) to treat large changes in the geometry in an accurate, flexible, and robust manner. The current work extends the AMP algorithm developed in Banks et al. [1] for linearly elasticity to the case of nonlinear solids. To ensure stability for the case of light solids, the new AMP algorithm embeds an approximate solution of a nonlinear fluid–solidmore » Riemann (FSR) problem into the interface treatment. The solution to the FSR problem is derived and shown to be of a similar form to that derived for linear solids: the state on the interface being fundamentally an impedance-weighted average of the fluid and solid states. Numerical simulations demonstrate that the AMP algorithm is stable even for light solids when added-mass effects are large. The accuracy and stability of the AMP scheme is verified by comparison to an exact solution using the method of analytical solutions and to a semi-analytical solution that is obtained for a rotating solid disk immersed in a fluid. The scheme is applied to the simulation of a planar shock impacting a light elliptical-shaped solid, and comparisons are made between solutions of the FSI problem for a neo-Hookean solid, a linearly elastic solid, and a rigid solid. The ability of the approach to handle large deformations is demonstrated for a problem of a high-speed flow past a light, thin, and flexible solid beam.« less
Primi, Ricardo
2014-09-01
Ability testing has been criticized because understanding of the construct being assessed is incomplete and because the testing has not yet been satisfactorily improved in accordance with new knowledge from cognitive psychology. This article contributes to the solution of this problem through the application of item response theory and Susan Embretson's cognitive design system for test development in the development of a fluid intelligence scale. This study is based on findings from cognitive psychology; instead of focusing on the development of a test, it focuses on the definition of a variable for the creation of a criterion-referenced measure for fluid intelligence. A geometric matrix item bank with 26 items was analyzed with data from 2,797 undergraduate students. The main result was a criterion-referenced scale that was based on information from item features that were linked to cognitive components, such as storage capacity, goal management, and abstraction; this information was used to create the descriptions of selected levels of a fluid intelligence scale. The scale proposed that the levels of fluid intelligence range from the ability to solve problems containing a limited number of bits of information with obvious relationships through the ability to solve problems that involve abstract relationships under conditions that are confounded with an information overload and distraction by mixed noise. This scale can be employed in future research to provide interpretations for the measurements of the cognitive processes mastered and the types of difficulty experienced by examinees. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
NASA Astrophysics Data System (ADS)
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.
Extreme concentration fluctuations due to local reversibility of mixing in turbulent flows
NASA Astrophysics Data System (ADS)
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Szewc, Kamil; Shats, Michael
2018-05-01
Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible process towards homogeneous distribution of a substance. In a moving fluid, due to the chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge, 1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405 (2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbulence exhibits local reversibility in mixing, which leads to the generation of unpredictable strong fluctuations in the scalar concentration. These fluctuations can also be detected from the analysis of the fluid particle trajectories of the underlying flow.
NASA Astrophysics Data System (ADS)
Algar, C. K.
2015-12-01
Hydrogenotrophic methanogenesis is an important mode of metabolism in deep-sea hydrothermal vents. Diffuse vent fluids often show a depletion in hydrogen with a corresponding increase in methane relative to pure-mixing of end member fluid and seawater, and genomic surveys show an enrichment in genetic sequences associated with known methanogens. However, because we cannot directly sample the subseafloor habitat where these organisms are living, constraining the size and activity of these populations remains a challenge and limits our ability to quantify the role they play in vent biogeochemistry. Reactive-transport modeling may provide a useful tool for approaching this problem. Here we present a reactive-transport model describing methane production along the flow-path of hydrothermal fluid from its high temperature end-member to diffuse venting at the seafloor. The model is set up to reflect conditions at several diffuse vents in the Axial Seamount. The model describes the growth of the two dominant thermophilic methanogens, Methanothermococcus and Methanocaldococcus, observed at Axial seamount. Monod and Arrhenius constants for Methanothermococcus thermolithotrophicus and Methanocaldococcus jannaschii were obtained for the model using chemostat and bottle experiments at varying temperatures. The model is used to investigate the influence of different mixing regimes on the subseafloor populations of these methanogens. By varying the model flow path length and subseafloor cell concentrations, and fitting to observed hydrogen and methane concentrations in the venting fluid, the subseafloor biomass, fluid residence time, and methane production rate can be constrained.
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
NASA Astrophysics Data System (ADS)
Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas
2002-08-01
In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.
NASA Astrophysics Data System (ADS)
Sabine, Ortiz; Marc, Chomaz Jean; Thomas, Loiseleux
2001-11-01
In mixing layers between two parallel streams of different densities, shear and gravity effects interplay. When the Roosby number, which compares the nonlinear acceleration terms to the Coriolis forces, is large enough, buoyancy acts as a restoring force, the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, propagating in opposite directions appear. This mechanism has been study in the temporal instability framework. We analyze the associated spatial instability problem, in the Boussinesq approximation, for two immiscible inviscid fluids with broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In convective region, the spatial theory is relevant and the slowest propagative wave is shown to be the most spatially amplified, as suggested by the intuition. Spatial theory is compared with mixing layer experiments (C.G. Koop and Browand J. Fluid Mech. 93, part 1, 135 (1979)), and wedge flows (G. Pawlak and L. Armi J. Fluid Mech. 376, 1 (1999)). Physical mechanism for the Holmboe mode destabilization is analyzed via an asymptotic expansion that explains precisely the absolute instability domain at large Richardson number.
Active mixing of complex fluids at the microscale
Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.
2015-09-22
Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. As a result, active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks withmore » programmable control of local composition.« less
NASA Technical Reports Server (NTRS)
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
Active mixing of complex fluids at the microscale
Ober, Thomas J.; Foresti, Daniele; Lewis, Jennifer A.
2015-01-01
Mixing of complex fluids at low Reynolds number is fundamental for a broad range of applications, including materials assembly, microfluidics, and biomedical devices. Of these materials, yield stress fluids (and gels) pose the most significant challenges, especially when they must be mixed in low volumes over short timescales. New scaling relationships between mixer dimensions and operating conditions are derived and experimentally verified to create a framework for designing active microfluidic mixers that can efficiently homogenize a wide range of complex fluids. Active mixing printheads are then designed and implemented for multimaterial 3D printing of viscoelastic inks with programmable control of local composition. PMID:26396254
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactionsmore » among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.« less
Experimental and computational fluid dynamics studies of mixing of complex oral health products
NASA Astrophysics Data System (ADS)
Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team
2017-11-01
Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Numerical methods for systems of conservation laws of mixed type using flux splitting
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1990-01-01
The essentially non-oscillatory (ENO) finite difference scheme is applied to systems of conservation laws of mixed hyperbolic-elliptic type. A flux splitting, with the corresponding Jacobi matrices having real and positive/negative eigenvalues, is used. The hyperbolic ENO operator is applied separately. The scheme is numerically tested on the van der Waals equation in fluid dynamics. Convergence was observed with good resolution to weak solutions for various Riemann problems, which are then numerically checked to be admissible as the viscosity-capillarity limits. The interesting phenomena of the shrinking of elliptic regions if they are present in the initial conditions were also observed.
The evaporatively driven cloud-top mixing layer
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro
2010-11-01
Turbulent mixing caused by the local evaporative cooling at the top cloud-boundary of stratocumuli will be discussed. This research is motivated by the lack of a complete understanding of several phenomena in that important region, which translates into an unacceptable variability of order one in current models, including those employed in climate research. The cloud-top mixing layer is a simplified surrogate to investigate, locally, particular aspects of the fluid dynamics at the boundary between the stratocumulus clouds and the upper cloud-free air. In this work, direct numerical simulations have been used to study latent heat effects. The problem is the following: When the cloud mixes with the upper cloud-free layer, relatively warm and dry, evaporation tends to cool the mixture and, if strong enough, the buoyancy reversal instability develops. This instability leads to a turbulent convection layer growing next to the upper boundary of the cloud, which is, in several aspects, similar to free convection below a cold horizontal surface. In particular, results show an approximately self-preserving behavior that is characterized by the molecular buoyancy flux at the inversion base, fact that helps to explain the difficulties found when doing large-eddy simulations of this problem using classical subgrid closures.
Magnetic Force Switches for Magnetic Fluid Micromixing
NASA Astrophysics Data System (ADS)
Wei, Zung-Hang; Lee, Chiun-Peng; Lai, Mei-Feng
2010-01-01
A magnetic fluid micromixer with energy-saving magnetic force switches that can manipulate the magnetic fluid flow is proposed. The micromixer of high mixing efficiency uses single-domain micro magnets that have strong magnetic anisotropy to produce the magnetic force for the mixing. By altering the magnetization directions of the magnets that have different aspect ratios and coercivities, open and closed magnetic fluxes can be produced around each magnet cluster. For open magnetic flux, the mixing efficiency is numerically found to increase with the saturation magnetization of the magnets. On the contrary, the magnet clusters barely affects the mixing efficiency in the case of closed magnetic flux. Due to the different magnetic forces produced in open and closed magnetic fluxes, the magnetic fluid mixing can be switched on and off.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.
1995-01-01
This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.
NASA Technical Reports Server (NTRS)
Duncan, Comer; Jones, Jim
1993-01-01
A key ingredient in the simulation of self-gravitating astrophysical fluid dynamical systems is the gravitational potential and its gradient. This paper focuses on the development of a mixed method multigrid solver of the Poisson equation formulated so that both the potential and the Cartesian components of its gradient are self-consistently and accurately generated. The method achieves this goal by formulating the problem as a system of four equations for the gravitational potential and the three Cartesian components of the gradient and solves them using a distributed relaxation technique combined with conventional full multigrid V-cycles. The method is described, some tests are presented, and the accuracy of the method is assessed. We also describe how the method has been incorporated into our three-dimensional hydrodynamics code and give an example of an application to the collision of two stars. We end with some remarks about the future developments of the method and some of the applications in which it will be used in astrophysics.
NASA Astrophysics Data System (ADS)
Khan, Noor Saeed; Gul, Taza; Khan, Muhammad Altaf; Bonyah, Ebenezer; Islam, Saeed
Mixed convection in gravity-driven non-Newtonian nanofluid films (Casson and Williamson) flow containing both nanoparticles and gyrotactic microorganisms along a convectively heated vertical surface is investigated. The actively controlled nanofluid model boundary conditions are used to explore the liquid films flow. The study exhibits an analytical approach for the non-Newtonian thin film nanofluids bioconvection based on physical mechanisms responsible for the nanoparticles and the base fluid, such as Brownian motion and thermophoresis. Both the fluids have almost the same behaviors for the effects of all the pertinent parameters except the effect of Schmidt number on the microorganism density function where the effect is opposite. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The study is relevant to novel microbial fuel cell technologies combining the nanofluid with bioconvection phenomena.
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.
2017-09-01
Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.
Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate
Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C
2015-03-17
A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
Combustion theory for liquids with a free surface. 3: Special problems
NASA Technical Reports Server (NTRS)
Milkov, S. N.; Sukhov, G. S.; Yarin, L. P.
1986-01-01
Two special problems concerning the combustion of liquids with a free surface, i.e., flame quenching during the mixing of a burning liquid inside a container and liquid burnout from a porous layer, are analyzed using a quasi-one-dimensional model. The critical parameters corresponding to the quenching of a burning fluid with a free surface are determined. Determinations are also made of the limiting pressure gradients corresponding to the transition from the combustion mode where the liquid evaporates from the surface of a porous layer to the mode where the phase transition surface lies inside the porous layer.
Direct contact, binary fluid geothermal boiler
Rapier, Pascal M.
1982-01-01
Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.
Direct contact, binary fluid geothermal boiler
Rapier, P.M.
1979-12-27
Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.
Coupled charge migration and fluid mixing in reactive fronts
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves
2017-04-01
Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501
A novel effective micromixer having horizontal and vertical weaving flow motion
NASA Astrophysics Data System (ADS)
Yoo, Won-Sul; Go, Jung Sang; Park, Seonghun; Park, Sang-Hu
2012-03-01
The need for small-scale product-related biotechnology (BT) is rapidly increasing. An important product among these is high-performance biochips. In these devices, many microchannels are used for separation, filtering and mixing of various materials; therefore, for compactness, these reactions should be carried out in the small space of microfluidic systems. However, there is no turbulence that can induce materials to be mixed or reacted in the microchannel, especially with low Reynolds number laminar flow. Hence, it is difficult to sufficiently mix different materials. To address this problem, we propose the HVW (horizontal and vertical weaving) micromixer having crossed barriers inside of a microchannel, for effective mixing and reacting different materials. From CFD analysis, we have evaluated the mixing mechanism and efficiency of the HVW mixer. In this work, it is shown that the HVW mixer has the maximum mixing efficiency of 89.9% with a short mixing distance of 450 µm at a Reynolds number of 5 with the barrier angle of 30°, when water and water combined with Rhodamine B figment were used as fluids.
NASA Astrophysics Data System (ADS)
Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.
2008-12-01
The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.
Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
Ellis, Paul A; Mackay, Rae; Rivett, Michael O
2007-04-01
Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Ergodic theory and experimental visualization of chaos in 3D flows
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Mezic, Igor
2000-11-01
In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.
Application of CFX-10 to the Investigation of RPV Coolant Mixing in VVER Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Fabio; Melideo, Daniele; Terzuoli, Fulvio
2006-07-01
Coolant mixing phenomena occurring in the pressure vessel of a nuclear reactor constitute one of the main objectives of investigation by researchers concerned with nuclear reactor safety. For instance, mixing plays a relevant role in reactivity-induced accidents initiated by de-boration or boron dilution events, followed by transport of a de-borated slug into the vessel of a pressurized water reactor. Another example is constituted by temperature mixing, which may sensitively affect the consequences of a pressurized thermal shock scenario. Predictive analysis of mixing phenomena is strongly improved by the availability of computational tools able to cope with the inherent three-dimensionality ofmore » such problem, like system codes with three-dimensional capabilities, and Computational Fluid Dynamics (CFD) codes. The present paper deals with numerical analyses of coolant mixing in the reactor pressure vessel of a VVER-1000 reactor, performed by the ANSYS CFX-10 CFD code. In particular, the 'swirl' effect that has been observed to take place in the downcomer of such kind of reactor has been addressed, with the aim of assessing the capability of the codes to predict that effect, and to understand the reasons for its occurrence. Results have been compared against experimental data from V1000CT-2 Benchmark. Moreover, a boron mixing problem has been investigated, in the hypothesis that a de-borated slug, transported by natural circulation, enters the vessel. Sensitivity analyses have been conducted on some geometrical features, model parameters and boundary conditions. (authors)« less
Jet mixing in low gravity - Results of the Tank Pressure Control Experiment
NASA Technical Reports Server (NTRS)
Bentz, M. D.; Meserole, J. S.; Knoll, R. H.
1992-01-01
The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.
The numerical modelling of mixing phenomena of nanofluids in passive micromixers
NASA Astrophysics Data System (ADS)
Milotin, R.; Lelea, D.
2018-01-01
The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.
Current Problems in Turbomachinery Fluid Dynamics.
1982-05-21
Research Center. It is thought to result from the termination of the 3-D bow shock as the relAtive blade Mach decreases ,.zom tip to hub. This low...project emphasized development of at least a plausible inverse scheme for mixed supersonic, subsonic flow with the possibility of shock waves appearing...Calculation Procedure for Shock -Free or Strong Passage Shock Turbomachinery Cascades," ASME paper 82-GT-220. The next phase of this project was expected to
Measurements of fluid transport by controllable vertical migrations of plankton
NASA Astrophysics Data System (ADS)
Houghton, Isabel A.; Dabiri, John O.
2016-11-01
Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.
Eulerian-Lagrangian Simulations of Transonic Flutter Instabilities
NASA Technical Reports Server (NTRS)
Bendiksen, Oddvar O.
1994-01-01
This paper presents an overview of recent applications of Eulerian-Lagrangian computational schemes in simulating transonic flutter instabilities. This approach, the fluid-structure system is treated as a single continuum dynamics problem, by switching from an Eulerian to a Lagrangian formulation at the fluid-structure boundary. This computational approach effectively eliminates the phase integration errors associated with previous methods, where the fluid and structure are integrated sequentially using different schemes. The formulation is based on Hamilton's Principle in mixed coordinates, and both finite volume and finite element discretization schemes are considered. Results from numerical simulations of transonic flutter instabilities are presented for isolated wings, thin panels, and turbomachinery blades. The results suggest that the method is capable of reproducing the energy exchange between the fluid and the structure with significantly less error than existing methods. Localized flutter modes and panel flutter modes involving traveling waves can also be simulated effectively with no a priori knowledge of the type of instability involved.
NASA Astrophysics Data System (ADS)
Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Duan, Zhenya
The aim of this work is to investigate the effect of the shaft eccentricity on the flow field and mixing characteristics in a stirred tank with the novel stirrer composed of perturbed six-bent-bladed turbine (6PBT). The difference between coaxial and eccentric agitations is studied using computational fluid dynamics (CFD) simulations combined with standard k-ε turbulent equations, that offer a complete image of the three-dimensional flow field. In order to determine the capability of CFD to forecast the mixing process, particle image velocimetry (PIV), which provide an accurate representation of the time-averaged velocity, was used to measure fluid velocity. The test liquid used was 1.25% (wt) xanthan gum solution, a pseudoplastic fluid with a yield stress. The comparison of the experimental and simulated mean flow fields has demonstrated that calculations based on Reynolds-averaged Navier-Stokes equations are suitable for obtaining accurate results. The effects of the shaft eccentricity and the stirrer off-bottom distance on the flow model, mixing time and mixing efficiency were extensively analyzed. It is observed that the microstructure of the flow field has a significant effect on the tracer mixing process. The eccentric agitation can lead to the flow model change and the non-symmetric flow structure, which would possess an obvious superiority of mixing behavior. Moreover, the mixing rate and mixing efficiency are dependent on the shaft eccentricity and the stirrer off-bottom distance, showing the corresponding increase of the eccentricity with the off-bottom distance. The efficient mixing process of pseudoplastic fluid stirred by 6PBT impeller is obtained with the considerably low mixing energy per unit volume when the stirrer off-bottom distance, C, is T/3 and the eccentricity, e, is 0.2. The research results provide valuable references for the improvement of pseudoplastic fluid agitation technology.
Foundations of chaotic mixing.
Wiggins, Stephen; Ottino, Julio M
2004-05-15
The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (2D) 'blinking flows', or three-dimensional (3D) duct flows. Given that mixing in continuous 3D duct flows depends critically on cross-sectional mixing, and that many microfluidic applications involve continuous flows, we focus on the essential aspects of mixing in 2D flows, as they provide a foundation from which to base our understanding of more complex cases. The baker's transformation is taken as the centrepiece for describing the dynamical systems framework. In particular, a hierarchy of characterizations of mixing exist, Bernoulli --> mixing --> ergodic, ordered according to the quality of mixing (the strongest first). Most importantly for the design process, we show how the so-called linked twist maps function as a minimal picture of mixing, provide a mathematical structure for understanding the type of 2D flows that arise in many micromixers already built, and give conditions guaranteeing the best quality mixing. Extensions of these concepts lead to first-principle-based designs without resorting to lengthy computations.
Hydrodynamic instabilities in miscible fluids
NASA Astrophysics Data System (ADS)
Truzzolillo, Domenico; Cipelletti, Luca
2018-01-01
Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Integrated aeroelastic vibrator for fluid mixing in open microwells
NASA Astrophysics Data System (ADS)
Xia, H. M.; Jin, X.; Zhang, Y. Y.; Wu, J. W.; Zhang, J.; Wang, Z. P.
2018-01-01
Fluid mixing in micro-wells/chambers is required in a variety of biological and biochemical processes. However, mixing fluids of small volumes is usually difficult due to increased viscous effects. In this study, we propose a new method for mixing enhancement in microliter-scale open wells. A thin elastic diaphragm is used to seal the bottom of the mixing microwell, underneath which an air chamber connects an aeroelastic vibrator. Driven by an air flow, the vibrator produces self-excited vibrations and causes pressure oscillations in the air chamber. Then the elastic diaphragm is actuated to mix the fluids in the microwell. Two designs that respectively have one single well and 2 × 2 wells were prototyped. Testing results show that for liquids with a volume ranging from 10-60 µl and viscosity ranging from 1-5 cP, complete mixing can be obtained within 5-20 s. Furthermore, the device is operable with an air micropump, and hence facilitating the miniaturization and integration of lab-on-a-chip and microbioreactor systems.
Systems and methods for thermal imaging technique for measuring mixing of fluids
Booten, Charles; Tomerlin, Jeff; Winkler, Jon
2016-06-14
Systems and methods for thermal imaging for measuring mixing of fluids are provided. In one embodiment, a method for measuring mixing of gaseous fluids using thermal imaging comprises: positioning a thermal test medium parallel to a direction gaseous fluid flow from an outlet vent of a momentum source, wherein when the source is operating, the fluid flows across a surface of the medium; obtaining an ambient temperature value from a baseline thermal image of the surface; obtaining at least one operational thermal image of the surface when the fluid is flowing from the outlet vent across the surface, wherein the fluid has a temperature different than the ambient temperature; and calculating at least one temperature-difference fraction associated with at least a first position on the surface based on a difference between temperature measurements obtained from the at least one operational thermal image and the ambient temperature value.
Online capacitive densitometer
Porges, K.G.
1988-01-21
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.
Online capacitive densitometer
Porges, Karl G.
1990-01-01
This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.
NASA Technical Reports Server (NTRS)
Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)
1994-01-01
A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.
Brannock, M; Wang, Y; Leslie, G
2010-05-01
Membrane Bioreactors (MBRs) have been successfully used in aerobic biological wastewater treatment to solve the perennial problem of effective solids-liquid separation. The optimisation of MBRs requires knowledge of the membrane fouling, biokinetics and mixing. However, research has mainly concentrated on the fouling and biokinetics (Ng and Kim, 2007). Current methods of design for a desired flow regime within MBRs are largely based on assumptions (e.g. complete mixing of tanks) and empirical techniques (e.g. specific mixing energy). However, it is difficult to predict how sludge rheology and vessel design in full-scale installations affects hydrodynamics, hence overall performance. Computational Fluid Dynamics (CFD) provides a method for prediction of how vessel features and mixing energy usage affect the hydrodynamics. In this study, a CFD model was developed which accounts for aeration, sludge rheology and geometry (i.e. bioreactor and membrane module). This MBR CFD model was then applied to two full-scale MBRs and was successfully validated against experimental results. The effect of sludge settling and rheology was found to have a minimal impact on the bulk mixing (i.e. the residence time distribution).
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields
NASA Astrophysics Data System (ADS)
Fairley, Jerry P.; Nicholson, Kirsten N.
2006-04-01
Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.
Computations of Drop Collision and Coalescence
NASA Technical Reports Server (NTRS)
Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed
1996-01-01
Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.
Supercritical fuel injection system
NASA Technical Reports Server (NTRS)
Marek, C. J.; Cooper, L. P. (Inventor)
1980-01-01
a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.
Statistical Moments in Variable Density Incompressible Mixing Flows
2015-08-28
front tracking method: Verification and application to simulation of the primary breakup of a liquid jet . SIAM J. Sci. Comput., 33:1505–1524, 2011. [15... elliptic problem. In case of failure, Generalized Minimal Residual (GMRES) method [78] is used instead. Then update face velocities as follows: u n+1...of the ACM Solid and Physical Modeling Symposium, pages 159–170, 2008. [51] D. D. Joseph. Fluid dynamics of two miscible liquids with diffusion and
30 CFR 35.4 - Types of hydraulic fluid for which certificates of approval may be granted.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS.... Certificates of approval will be granted for completely compounded or mixed fluids and not for individual ingredients; except that when a concentrate is submitted for testing, complete instructions for mixing with...
NASA Astrophysics Data System (ADS)
Fodor, Petru; Vyhnalek, Brian; Kaufman, Miron
2013-03-01
We investigate mixing in Dean flows by solving numerically the Navier-Stokes equation for a circular channel. Tracers of two chemical species are carried by the fluid. The centrifugal forces, experienced as the fluid travels along a curved trajectory, coupled with the fluid incompressibility induce cross-sectional rotating flows (Dean vortices). These transversal flows promote the mixing of the chemical species. We generate images for different cross sections along the trajectory. The mixing efficiency is evaluated using the Shannon entropy. Previously we have found, P. S. Fodor and M. Kaufman, Modern Physics Letters B 25, 1111 (2011), this measure to be useful in understanding mixing in the staggered herringbone mixer. The mixing entropy is determined as function of the Reynolds number, the angle of the cross section and the observation scale (number of bins). Quantitative comparison of the mixing in the Dean micromixer and in the staggered herringbone mixer is attempted.
Initial temperatures effect on the mixing efficiency and flow modes in T-shaped micromixer
NASA Astrophysics Data System (ADS)
Lobasov, A. S.; Shebeleva, A. A.
2017-09-01
Flow patterns and mixing of liquids with different initial temperatures in T-shaped micromixers are numerically investigated on the Reynolds number range from 1 to 250. The temperature of the one of mixing media was set equal to 20°C, while the temperature of the another mixing media was varied from 10°C to 50°C its effect on the flow structure and the mixing was studied. The dependences of the mixing efficiency and the pressure difference in this mixer on the difference in initial temperatures of miscible fluids and the Reynolds number were obtained. It was shown that the presence of a difference in initial temperatures of miscible fluids leads to a shift of flow regimes and the flow and mixing of two fluids with different initial temperatures can be considered as self-similar pattern with regard to the reduced Reynolds number.
Mixing high-viscosity fluids via acoustically driven bubbles
NASA Astrophysics Data System (ADS)
Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun
2017-01-01
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.
Novel design and fabrication of a geometrical obstacle-embedded micromixer with notched wall
NASA Astrophysics Data System (ADS)
Wu, Shih-Jeh; Hsu, Hsiang-Chen; Feng, Wen-Jui
2014-09-01
A microfluidic embedded MEMS mixer with a Y-junction type channel and cylindrical obstructions was designed and fabricated for improving the fluid mixing mechanism under low Reynolds number (\\mathit{Re}) condition. The flow field was simulated numerically by software (COMSOL multiphysics®) first. The design was then realized through casting the device in PDMS by lithographed SU-8 photo-resistive mold on silicon wafer. Parametric experimental studies were conducted for optimal design. Two different fluids were pumped into the two legs of the Y-junction channel, and the fluids were broken-up by an embedded cylindrical obstacle in the middle of the tapered micro-channel. The chaotic convection took place in the mixing channel behind the embedded cylindrical obstacles. The flow motion was observed under CCD camera and analyzed by grey level. The developed micromixer in this study can enhance the fluid mixing by the interaction of diffusion and convection for wide range of Reynolds numbers (0.01 < \\mathit{Re} < 100). Experimental results showed that the mixing index reached the required value at 0.1 within 0.024 seconds when the inlet fluid velocity is 0.499 m/s (i.e., at 1200 µl/min flow rate) for merely four cylindrical obstacles. A shorter mixing distance can be accomplished compared to the current devices reported due to faster mixing and shorter mixing time.
NASA Astrophysics Data System (ADS)
Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.
2011-12-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.
Swirling structure for mixing two concentric fluid flows at nozzle outlet
Mensink, Daniel L.
1993-01-01
A nozzle device for causing two fluids to mix together. In particular, a spray nozzle comprise two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.
Clouding tracing: Visualization of the mixing of fluid elements in convection-diffusion systems
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Smith, Philip J.
1993-01-01
This paper describes a highly interactive method for computer visualization of the basic physical process of dispersion and mixing of fluid elements in convection-diffusion systems. It is based on transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Fluid elements are traced through the vector field for the mean path as well as the statistical dispersion of the fluid elements about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of fluid elements are traced and are not just mean paths. We have used this method to visualize the simulation of an industrial incinerator to help identify mechanisms for poor mixing.
Teaching contact metamorphism, isograds, and mixed-volatile reactions: A suite-based approach
NASA Astrophysics Data System (ADS)
Peck, W. H.
2003-12-01
An important goal of teaching Introductory Petrology is to demonstrate how different kinds of approaches are integrated in studying petrologic problems. Depending on the goals of the study data used can be from the field, hand-sample, microscope, electron beam instrument, or mass spectrometer. A suite of samples with a known geographical and geological context can help students in drawing connections between different petrologic approaches, as the `geologic story' of the samples becomes a unifying theme. For teaching a unit on calc-silicates I use a suite of siliceous dolomite samples collected from the Ubehebe contact aureole (Death Valley, NV) as well as published data (Roselle et al., 1997; 1999) in a linked series of laboratory exercises and problem sets. The geology of the contact aureole is introduced in a three-hour laboratory exercise, where students identify the appearance of tremolite, forsterite, and periclase/brucite and the disappearance of quartz as the intrusion is approached. A concurrent problem set uses simplified mineral assemblage maps from the aureole. In the problem set students delineate isograds and determine the balanced metamorphic reactions by which the metamorphic minerals formed. Lecture material during this unit focuses on the physical properties of fluids in the crust and the mineralogical evidence for fluid-flow (with an emphasis on mixed-volatile reactions and T-XCO2 diagrams). A concrete field example helps focus student attention on the interrelation of disparate approaches by which petrologic problems addressed. The Ubehebe suite then becomes a unifying theme throughout the course: the specimens or regional geology are used in subsequent laboratories and lectures when introducing concepts such as grain nucleation and growth, reaction overstepping, and replacement textures. A virtual field trip of the Alta aureole, UT (using field photographs, maps, and photomicrographs) concludes the unit. The geology of the Alta aureole is similar to that of Ubehebe, and the virtual field trip acts as a review that emphases the general usefulness of the approaches discussed.
Experimental and computational fluid dynamic studies of mixing for complex oral health products
NASA Astrophysics Data System (ADS)
Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota
2015-11-01
Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.
NASA Astrophysics Data System (ADS)
Figueroa, Aldo; Meunier, Patrice; Cuevas, Sergio; Villermaux, Emmanuel; Ramos, Eduardo
2014-01-01
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, "The diffusive strip method for scalar mixing in two-dimensions," J. Fluid Mech. 662, 134-172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Influence of mixing conditions on the rheological properties and structure of capillary suspensions
Bossler, Frank; Weyrauch, Lydia; Schmidt, Robert; Koos, Erin
2017-01-01
The rheological properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk liquid. These capillary suspensions exist either in the pendular state where the secondary fluid preferentially wets the particles or the capillary state where the bulk fluid is preferentially wetting. The yield stress, as well as storage and loss moduli, depends on the size and distribution of secondary phase droplets created during sample preparation. Enhanced droplet breakup leads to stronger sample structures. In capillary state systems, this can be achieved by increasing the mixing speed and time of turbulent mixing using a dissolver stirrer. In the pendular state, increased mixing speed also leads to better droplet breakup, but spherical agglomeration is favored at longer times decreasing the yield stress. Additional mixing with a ball mill is shown to be beneficial to sample strength. The influence of viscosity variance between the bulk and second fluid on the droplet breakup is excluded by performing experiments with viscosity-matched fluids. These experiments show that the capillary state competes with the formation of Pickering emulsion droplets and is often more difficult to achieve than the pendular state. PMID:28194044
Resolution of the buoyancy in the 8-foot high temperature tunnel combustor
NASA Technical Reports Server (NTRS)
Loney, Norman W.
1995-01-01
Currently, the 8-Foot High Temperature Tunnel (8-Ft. HTT) combustor produces a good profile at only one point (2000 psia and 3650 R with oxygen enrichment). Air is enriched with oxygen (liquid) so that the combustor product gas will contain the volumetric amount of oxygen normally found in air. The oxygen enriched air has a large fraction that is not reacted and flows through the outer periphery of the fuel injector. This ring of cold air in addition to the relatively cold walls of the combustor set up buoyancy forces that produce a segregation of relatively cool gases at the bottom of the combustor exit. The basic problem is to produce a test gas that has uniform properties at all combustor conditions. The combustor temperature may be as high as 3700 R or as low as 2000 R. Combustor pressures can be as high as 3500 psia (no oxygen enrichment) and as low as 600 psia. The segregation is most severe with oxygen enriched air, since its temperature is lower and its density is high. The combustor is lined with nickel 201 and can be operated at about 1600 R maximum. A global mixing process is desired that produces an acceptable profile of temperature, species, and velocity at the exit of the combustor. The ultimate goal is a temperature profile with about 100 R variance and about 2 percent variance in oxygen. The exit total temperature must not be lowered significantly by the mixing apparatus or mechanisms employed. If immersed bodies are used, they must also be kept very hot. All combustor wall modifications must be able to survive the heat and structural conditions of the varied operating conditions. Our approach to resolving this issue is being conducted in three stages: (1) Consider mixing exclusively, (2) Resolve the heat transfer concerns resulting from the chosen mixing strategy, and (3) Solve the material and structural problems resulting from stages (1) and (2). Since the 8-Ft. HTT is unavailable for experimentation, the study is conducted exclusively with computational fluid dynamic (CPD) codes (Fluent/Uns and Rampant 3.1) using unstructured grid through body fitted coordinates. Both CFD codes are general purpose Navier-Stokes solution packages that can solve integral conservation equations for conservation of mass, momentum and energy. The governing equations are discretized using a control-volume finite-element method on unstructured triangular 2-D grids. In the interest of time, a 3-D tetrahedral grid was used to check the 2-D results on one mixing strategy and the 2-D results were confirmed. Preliminary results indicate that excellent mixing can be achieved with a body placed in the center of the flowing hot fluid with a minor modification to the combustor wall similar to a model positioned in the test section of a wind tunnel. The concept here, is to create longitudinal vortices strong enough to bring both fluids into intimate contact with each other near the wall where the cold fluid resides. However, there may be a trade-off in the choice of mixing strategy, heat transfer and structural requirements. Currently, we are examining the more promising geometries for heat transfer concerns and developing strategies for the material of construction of the center body.
2015-09-30
Meneveau, C., and L. Shen (2014), Large-eddy simulation of offshore wind farm , Physics of Fluids, 26, 025101. Zhang, Z., Fringer, O.B., and S.R...being centimeter scale, surface mixed layer processes arising from the combined actions of tides, winds and mesoscale currents. Issues related to...the internal wave field and how it impacts the surface waves. APPROACH We are focusing on the problem of modification of the wind -wave field
A New Mixing Diagnostic and Gulf Oil Spill Movement
NASA Astrophysics Data System (ADS)
Mezić, Igor; Loire, S.; Fonoberov, Vladimir A.; Hogan, P.
2010-10-01
Chaotic advection has served as the paradigm for mixing in fluid flows with simple time dependence. Its skeletal structure is based on analysis of invariant attracting and repelling manifolds in fluid flows. Here we develop a finite-time theory for two-dimensional incompressible fluid flows with arbitrary time dependence and introduce a new mixing diagnostic based on it. Besides stretching events around attracting and repelling manifolds, this allows us to detect hyperbolic mixing zones. We used the new diagnostic to forecast the spatial location and timing of oil washing ashore in Plaquemines Parish and Grand Isle, Louisiana, and Pensacola, Florida, in May 2010 and the flow of oil toward Panama City Beach, Florida, in June 2010.
Prize to a Faculty Member for Research in an Undergraduate: Chaotic mixing and front propagation
NASA Astrophysics Data System (ADS)
Solomon, Tom
2014-03-01
We present results from a series of experiments - all done with undergraduate students - on chaotic fluid mixing and the effects of fluid flows on the behavior of reaction systems. Simple, well-ordered laminar fluid flows can give rise to fluid mixing with complexity far beyond that of the underlying flow, with tracers that separate exponentially in time and invariant manifolds that act as barriers to transport. Recently, we have studied how fluid mixing affects the propagation of reaction fronts in a flow. This is an issue with applications to a wide range of systems including microfluidic chemical reactors, blooms of phytoplankton in the oceans, and the spreading of a disease in a moving population. To analyze and predict the behavior of the fronts, we generalize tools developed to describe passive mixing. In particular, the concept of an invariant manifold is expanded to account for reactive burning. ``Burning invariant manifolds'' (BIMs) are predicted and measured experimentally as structures in the flow that act as one-way barriers that block the motion of reaction fronts. We test these ideas experimentally in three fluid flows: (a) and chain of alternating vortices; (b) an extended, spatially-random pattern of vortices; and (c) a time-independent, three-dimensional, nested vortex flow. The reaction fronts are produced chemically with variations of the well-known Belousov-Zhabotinsky reaction. Supported by Research Corporation and the National Science Foundation.
NASA Technical Reports Server (NTRS)
Wieber, P. R.
1973-01-01
A numerical program was developed to compute transient compressible and incompressible laminar flows in two dimensions with multicomponent mixing and chemical reaction. The algorithm used the Los Alamos Scientific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as its base. The program can compute both high and low speed compressible flows. The numerical program incorporating the stabilization techniques was quite successful in treating both old and new problems. Detailed calculations of coaxial flow very close to the entry plane were possible. The program treated complex flows such as the formation and downstream growth of a recirculation cell. An implicit solution of the species equation predicted mixing and reaction rates which compared favorably with the literature.
Combustor assembly for use in a turbine engine and methods of assembling same
Uhm, Jong Ho; Johnson, Thomas Edward
2013-05-14
A fuel nozzle assembly for use with a turbine engine is described herein. The fuel nozzle assembly includes a plurality of fuel nozzles positioned within an air plenum defined by a casing. Each of the plurality of fuel nozzles is coupled to a combustion liner defining a combustion chamber. Each of the plurality of fuel nozzles includes a housing that includes an inner surface that defines a cooling fluid plenum and a fuel plenum therein, and a plurality of mixing tubes extending through the housing. Each of the mixing tubes includes an inner surface defining a flow channel extending between the air plenum and the combustion chamber. At least one mixing tube of the plurality of mixing tubes including at least one cooling fluid aperture for channeling a flow of cooling fluid from the cooling fluid plenum to the flow channel.
NASA Astrophysics Data System (ADS)
Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng
2015-02-01
Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.
GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA
NASA Astrophysics Data System (ADS)
Ren, Qinlong
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1,000 US dollars. The release of NVIDIA's CUDA architecture which includes both hardware and programming environment in 2007 makes GPU computing attractive. Due to its highly parallel nature, lattice Boltzmann method is successfully ported into GPU with a performance benefit during the recent years. In the current work, LBM CUDA code is developed for different fluid flow and heat transfer problems. In this dissertation, lattice Boltzmann method and immersed boundary method are used to study natural convection in an enclosure with an array of conduting obstacles, double-diffusive convection in a vertical cavity with Soret and Dufour effects, PCM melting process in a latent heat thermal energy storage system with internal fins, mixed convection in a lid-driven cavity with a sinusoidal cylinder, and AC electrothermal pumping in microfluidic systems on a CUDA computational platform. It is demonstrated that LBM is an efficient method to simulate complex heat transfer problems using GPU on CUDA.
A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1971-01-01
An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.
NASA Astrophysics Data System (ADS)
Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou
This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.
NASA Astrophysics Data System (ADS)
Baratian-Ghorghi, Z.; Kaye, N. B.
2013-07-01
An experimental study is presented to investigate the mechanism of flushing a trapped dense contaminant from a canyon by turbulent boundary layer flow. The results of a series of steady-state experiments are used to parameterize the flushing mechanisms. The steady-state experimental results for a canyon with aspect ratio one indicate that dense fluid is removed from the canyon by two different processes, skimming of dense fluid from the top of the dense layer; and by an interfacial mixing flow that mixes fresh fluid down into the dense lower layer (entrainment) while mixing dense fluid into the flow above the canyon (detrainment). A model is developed for the time varying buoyancy profile within the canyon as a function of the Richardson number which parameterizes both the interfacial mixing and skimming processes observed. The continuous release steady-state experiments allowed for the direct measurement of the skimming and interfacial mixing flow rates for any layer depth and Richardson number. Both the skimming rate and the interfacial mixing rate were found to be power-law functions of the Richardson number of the layer. The model results were compared to the results of previously published finite release experiments [Z. Baratian-Ghorghi and N. B. Kaye, Atmos. Environ. 60, 392-402 (2012)], 10.1016/j.atmosenv.2012.06.077. A high degree of consistency was found between the finite release data and the continuous release data. This agreement acts as an excellent check on the measurement techniques used, as the finite release data was based on curve fitting through buoyancy versus time data, while the continuous release data was calculated directly by measuring the rate of addition of volume and buoyancy once a steady-state was established. Finally, a system of ordinary differential equations is presented to model the removal of dense fluid from the canyon based on empirical correlations of the skimming and interfacial mixing taken form the steady-state experiments. The ODE model predicts well the time taken for a finite volume of dense fluid to be flushed from a canyon.
High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.
1996-01-01
This research program dealt with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in January 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a bypass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled three-component problem were developed during 1994 and 1995. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor tor parallel versions of ENG10 was developed. During 1995 and 1996 we developed the capability tor the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames. Benchmark results were presented at the 1196 Computational Aeroscience meeting.
A numerical method for the solution of internal pipe/channel flows in laminar or turbulent motion
NASA Astrophysics Data System (ADS)
Lourenco, L.; Essers, J. A.
1981-11-01
A computer program which is useful in the solution of problems of internal turbulent or laminar flow without recirculation is described. The flow is treated in terms of parabolic boundary layer differential equations. The eddy diffusivity concept is used to model turbulent stresses. Two turbulent models are available: the Prandtl mixing length model and the Nee-Kovasznay model for the effective viscosity. Fluid is considered incompressible, but little program modification is needed to treat compressible flows. Initial conditions are prescribed as well as the boundary conditions. The differencing scheme employed is fully implicit for the dependent variables. This allows the use of relatively large forward steps without stability problems.
Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing
NASA Astrophysics Data System (ADS)
Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben
2017-11-01
Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.
Microfluidic T-form mixer utilizing switching electroosmotic flow.
Lin, Che-Hsin; Fu, Lung-Ming; Chien, Yu-Sheng
2004-09-15
This paper presents a microfluidic T-form mixer utilizing alternatively switching electroosmotic flow. The microfluidic device is fabricated on low-cost glass slides using a simple and reliable fabrication process. A switching DC field is used to generate an electroosmotic force which simultaneously drives and mixes the fluid samples. The proposed design eliminates the requirements for moving parts within the microfluidic device and delicate external control systems. Two operation modes, namely, a conventional switching mode and a novel pinched switching mode, are presented. Computer simulation is employed to predict the mixing performance attainable in both operation modes. The simulation results are then compared to those obtained experimentally. It is shown that a mixing performance as high as 97% can be achieved within a mixing distance of 1 mm downstream from the T-junction when a 60 V/cm driving voltage and a 2-Hz switching frequency are applied in the pinched switching operation mode. This study demonstrates how the driving voltage and switching frequency can be optimized to yield an enhanced mixing performance. The novel methods presented in this study provide a simple solution to mixing problems in the micro-total-analysis-systems field.
Active chimney effect using heated porous layers: optimum heat transfer
NASA Astrophysics Data System (ADS)
Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid
2017-05-01
The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Swirling structure for mixing two concentric fluid flows at nozzle outlet
Mensink, D.L.
1993-07-20
A nozzle device is described for causing two fluids to mix together. In particular, a spray nozzle comprises two hollow, concentric housings, an inner housing and an outer housing. The inner housing has a channel formed therethrough for a first fluid. Its outer surface cooperates with the interior surface of the outer housing to define the second channel for a second fluid. The outer surface of the inner housing and the inner surface of the outer housing each carry a plurality of vanes that interleave but do not touch, each vane of one housing being between two vanes of the other housing. The vanes are curved and the inner surface of the outer housing and the outer surface of the inner housing converge to narrow the second channel. The shape of second channel results in a swirling, accelerating second fluid that will impact the first fluid just past the end of the nozzle where mixing will take place.
Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry
NASA Astrophysics Data System (ADS)
Moore, Kenneth Thomas
A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities
NASA Astrophysics Data System (ADS)
Chuprakov, D.; Melchaeva, O.; Prioul, R.
2014-09-01
We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.
Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas
2015-05-15
Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less
Micromixer based on dielectric stack actuators for medical applications
NASA Astrophysics Data System (ADS)
Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.
A novel passive micromixer based on unbalanced splits and collisions of fluid streams
NASA Astrophysics Data System (ADS)
Ansari, Mubashshir Ahmad; Kim, Kwang-Yong; Anwar, Khalid; Kim, Sun Min
2010-05-01
A new passive micromixer based on the concept of unbalanced splits and cross-collisions of fluid streams is designed and fabricated. Experimental and numerical studies have been carried out on the micromixer at Reynolds numbers ranging from 10 to 80. The three-dimensional Navier-Stokes equations have been used to analyze the mixing and flow behavior of the micromixer, which is composed of two sub-channels of unequal widths which repeatedly undergo splitting and recombination. The difference between the mass flow rates in the two sub-channels creates an unbalanced collision of the two fluid streams. Mixing is mainly due to the combined effect of unbalanced collisions of the fluid streams and Dean vortices. The micromixer shows interesting mixing behavior for different ratios of the widths of the two split sub-channels. The sub-channels wherein the major sub-channel is twice as wide as the minor sub-channel exhibit the highest mixing performance at Reynolds numbers larger than 40. The results show the lowest mixing performance for the case of uniform width, where balanced collisions occur.
Transport and Mixing Induced by Beating Cilia in Human Airways
Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien
2018-01-01
The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases. PMID:29559920
Transport and Mixing Induced by Beating Cilia in Human Airways.
Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien
2018-01-01
The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann-Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases.
NASA Astrophysics Data System (ADS)
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyler, L.L.; Trent, D.S.
The TEMPEST computer program was used to simulate fluid and thermal mixing in the cold leg and downcomer of a pressurized water reactor under emergency core cooling high-pressure injection (HPI), which is of concern to the pressurized thermal shock (PTS) problem. Application of the code was made in performing an analysis simulation of a full-scale Westinghouse three-loop plant design cold leg and downcomer. Verification/assessment of the code was performed and analysis procedures developed using data from Creare 1/5-scale experimental tests. Results of three simulations are presented. The first is a no-loop-flow case with high-velocity, low-negative-buoyancy HPI in a 1/5-scale modelmore » of a cold leg and downcomer. The second is a no-loop-flow case with low-velocity, high-negative density (modeled with salt water) injection in a 1/5-scale model. Comparison of TEMPEST code predictions with experimental data for these two cases show good agreement. The third simulation is a three-dimensional model of one loop of a full size Westinghouse three-loop plant design. Included in this latter simulation are loop components extending from the steam generator to the reactor vessel and a one-third sector of the vessel downcomer and lower plenum. No data were available for this case. For the Westinghouse plant simulation, thermally coupled conduction heat transfer in structural materials is included. The cold leg pipe and fluid mixing volumes of the primary pump, the stillwell, and the riser to the steam generator are included in the model. In the reactor vessel, the thermal shield, pressure vessel cladding, and pressure vessel wall are thermally coupled to the fluid and thermal mixing in the downcomer. The inlet plenum mixing volume is included in the model. A 10-min (real time) transient beginning at the initiation of HPI is computed to determine temperatures at the beltline of the pressure vessel wall.« less
Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification
NASA Astrophysics Data System (ADS)
Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.
2017-12-01
We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.
The importance of fluctuations in fluid mixing.
Kadau, Kai; Rosenblatt, Charles; Barber, John L; Germann, Timothy C; Huang, Zhibin; Carlès, Pierre; Alder, Berni J
2007-05-08
A ubiquitous example of fluid mixing is the Rayleigh-Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations.
Numerical Simulation of Mixing Performances of a Passive Micromixer with Internal Ribs
NASA Astrophysics Data System (ADS)
Guo, L.; Zhang, S. S.; Han, K. J.
2010-03-01
Effective mixing of microfluids is the basic requirement for biochemical analysis. Unfortunately, the macroscale mixing methods such as stirring and creation of turbulent flow are not applicable to the mixing of microfluids. To tackle such problems, we proposed a new, passive micromixer with internal ribs, which improves the mixing performances by changing the internal structure and shape of microchannels, and increasing the interfacial surface areas as far as possible. In this paper, the impact of geometric parameters on the mixing performance, and the pressure loss of the proposed micromixer were simulated using the software package FLUENT. The simulation shows that the mixing index M of each crosssection increases initially and then decreases with the increase of inlet velocity V. It also shows that at Point V = 0.01 m/s, the fluid mixing changes from convective mass transfer to molecular diffusion mass transfer. With the increase of W1, the mixing index M of each crosssection decreases gradually, whereas it increases accordingly with the growth of P/W. The larger the number of internal ribs is, the better the mixing performance of the micromixer will be. On the other hand, the mixing index M of the proposed micromixer decreases with the increase of H/W. At H/W> = 0.6, the variation of H/W imposes little influence on the micromixer's mixing performance. At Q = 28.8 mLh-1, an improved mixing efficiency and lowered pressure loss will be achieved, thus meeting the requirement of microfluidic chip.
NASA Astrophysics Data System (ADS)
Wilckens, F. K.; Kasemann, S.; Bach, W.; Reeves, E. P.; Meixner, A.; Seewald, J.
2016-12-01
In this study we present boron (B), lithium (Li) and strontium (Sr) concentrations and isotopic composition of submarine hydrothermal fluids collected in 2006 and 2011 from PACMANUS, DESMOS and SuSu Knolls vent fields located in the Eastern Manus Basin [1,2]. Hydrothermal vent fluids within the Eastern Manus Basin range from high-temperature black smoker fluids to low-temperature diffuse fluids and acid-sulfate fluids. In general, the different fluid types show variable water-rock ratios during water-rock interaction and different inputs of magmatic volatiles. End-member black smoker fluids, which have in general high temperatures (mostly higher than 280°C) and pH values higher than 2 (measured at 25°C) are characterized by low δ7Li values (3.9 to 5.9‰) and 87Sr/86Sr ratios (0.704 to 0.705) similar to the values for island arc basalts. These results suggest low water-rock ratios during hydrothermal circulation. B concentrations and isotopic compositions in these fluids range from 1.0 to 2.6μM and 13 to 20‰, respectively. These data match with other vent fluids from island arc settings in the Western Pacific and plot in a B versus δ11B diagram on a two-component mixing line between seawater and island arc basalts [3]. Sr and Li isotopic composition of white smoker and acid-sulfate fluids overlap generally with the isotopic ratios for the black smoker fluids. However, in some fluids Sr isotope ratios are up to 0.709 near seawater composition suggesting higher water-rock ratios during water-rock interaction. B concentrations and isotope ratios in the white smoker and acid-sulfate fluids range from 0.6 to 2.2μM and 9 to 16‰, respectively which are lower compared with the values of black smoker fluids. In addition, these fluids do not fit on the mixing line between seawater and island arc basalt, and define another mixing trend in a B versus δ11B diagram. To explain this contradictory trend, a third mixing endmember is required that shifts B concentrations and δ11B to lower values. A possible mixing endmember is B volatized from magmatic gases. This endmember seems to be reasonable because it only influences B, whereas Li and Sr stay unaffected. [1] Reeves et al. (2011) GCA 75, 1088-1123 [2] Seewald et al. (2015) GCA 163, 178-199 [3] Yamaoka et al. (2015) CG 392, 9-18
Numerical and experimental characterization of a novel modular passive micromixer.
Pennella, Francesco; Rossi, Massimiliano; Ripandelli, Simone; Rasponi, Marco; Mastrangelo, Francesco; Deriu, Marco A; Ridolfi, Luca; Kähler, Christian J; Morbiducci, Umberto
2012-10-01
This paper reports a new low-cost passive microfluidic mixer design, based on a replication of identical mixing units composed of microchannels with variable curvature (clothoid) geometry. The micromixer presents a compact and modular architecture that can be easily fabricated using a simple and reliable fabrication process. The particular clothoid-based geometry enhances the mixing by inducing transversal secondary flows and recirculation effects. The role of the relevant fluid mechanics mechanisms promoting the mixing in this geometry were analysed using computational fluid dynamics (CFD) for Reynolds numbers ranging from 1 to 110. A measure of mixing potency was quantitatively evaluated by calculating mixing efficiency, while a measure of particle dispersion was assessed through the lacunarity index. The results show that the secondary flow arrangement and recirculation effects are able to provide a mixing efficiency equal to 80 % at Reynolds number above 70. In addition, the analysis of particles distribution promotes the lacunarity as powerful tool to quantify the dispersion of fluid particles and, in turn, the overall mixing. On fabricated micromixer prototypes the microscopic-Laser-Induced-Fluorescence (μLIF) technique was applied to characterize mixing. The experimental results confirmed the mixing potency of the microdevice.
Waste Water Treatment Apparatus and Methods
NASA Technical Reports Server (NTRS)
Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor); Littman, Howard (Inventor)
2014-01-01
An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
Seo, Hyeon-Seok; Han, Bongtae; Kim, Youn-Jea
2012-06-01
A new type of electrokinetic micromixer with a ring-type channel is introduced for fast mixing. The proposed mixer takes two fluids from different inlets and combines them in a ring-type mixing chamber. The fluids enter two different inlets (inner radius: 25 microm and outer radius: 50 microm), respectively. The total channel length is 500 microm, and four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with time, having various maximum values of voltage, zeta potential and frequency. Also, in order to compare the mixing performance with different obstacle configurations, we performed a numerical analysis using a commercial code, COMSOL. The concentration of the dissolved substances in the working fluid and the flow and electric fields in the channel were investigated and the results were graphically depicted for various flow and electric conditions.
A highly reliable cryogenic mixing pump with no mechanical moving parts
NASA Astrophysics Data System (ADS)
Chen, W.; Niblick, A. L.
2017-12-01
This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.
Methods and apparatus for handling or treating particulate material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2009-01-01
An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
Intermittency and Topology of Shock Induced Mixing
NASA Astrophysics Data System (ADS)
Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa
2016-04-01
The advance of a Rayleigh-Taylor front is described in Linden & Redondo (1991),[1-3] and may be shown to follow a quadratic law in time where the width of the growing region of instability depends on the local mixing efficiency of the different density fluids that accelerate against each other g is the acceleration and A is the Atwood number defined as the diference of densities divided by their sum. This results show the independence of the large amplitude structures on the initial conditions the width of the mixing region depends also on the intermittency of the turbulence. Then dimensional analysis may also depend on the relevant reduced acceleration driven time and the molecular reactive time akin to Damkholer number and the fractal structure of the contact zone [2,4]. Detailed experiments and simulations on RT and RM shock induced fronts analized with respect to structure functions are able to determine which mechanisms are most effective in local mixing which increase the effective fractal dimension, as well as the effect of higher order geometrical parameters, such as the structure functions, in non-homogeneous fluids (Mahjoub et al 1998)[5]. The structure of a Mixing blob shows a relatively sharp head with most of the mixing taking place at the sides due to what seems to be shear instability very similar to the Kelvin-Helmholtz instabilities, but with sideways accelerations. The formation of the blobs and spikes with their secondary instabilities produces a turbulent cascade, evident just after about 1 non-dimensional time unit, from a virtual time origin that takes into account the linear growth phase, as can be seen by the growth of the fractal dimension for different volume fractions. Two-dimensional cuts of the 3D flow also show that vortex flows have closed or spiral streamlines around their core. Examples of such flows can be also seen in the laboratory, for example at the interface of atwo-layer stratified fluid in a tank in which case streamlines are more regular. Mixing in turbulent flows remains less well understood, and in spite research some basic problems are still virtually unexplored. Th e indications suggest that mixing in non-decaying and accelerating turbulent flows are different from those in vortical and steady flows. Fluid element pairs separate, neither linearly nor exponentially but according to a generalized intermittent Richardson's law. Fractal analysis in the laboratory shows that fluid element pairs travel close to each other for a long time until they separate quite suddenly suggest that straining regions around hyperbolic points play an important role in the violent turbulent stirring and in the mechanisms by which turbulence causes fluid element pairs to move apart [6,7]. So the eddies that are most effective in separating fluid elements are those that have a size comparable to the instantaneous separation between the two fluid elements. This is seen in both RT and RM instabilities. For a constant acceleration, the RT instability is found to grow self -similarly according to mixing coefficients which when measured over a comprehensive range of density ratio (Atwood nubers)show that the results are found applicable to supernova exlposions.For an impulsive acceleration (RM), there are two components. The RM impulse from a shock is greatly reduced at high Mach number due to compressive effects in reasonable agreement with linear theory. The ensuing motion is essentially incompressible and described by a power law However, the exponents obtained from the compressible RM experiments are larger than those obtained from incompressible RT experiments. The discrepancy is not well understood but intermittency differences could explain the role of compressibility in fractal media. [1] Linden P.F., Redondo J.M. and Youngs D. (1994) Molecular mixing in Rayleigh-Taylor Instability. Jour. Fluid Mech. 265, 97-124. [2] Redondo, J.M., 1990. The structure of density interfaces. Ph.D. Thesis. DAMTP, University of Cambridge. Cambridge [3] Redondo J.M. (1996) Vertical microstructure and mixing in stratified flows. Advances in Turbulence VI. Eds. S. Gavrilakis et al. 605-608. [4] Redondo J.M.,M.A. Sanchez y R. Castilla (2000) Vortical structures in stratified turbulent flows, Turbulent diffusion in the environment. Eds. Redondo J.M. and Babiano A. 113-120. [5] Mahjoub, O. B., Babiano A. and Redondo, J. M.: Structure functions in complex flows, Flow, Turbulence and Combustion, 59,299-313, 1998. [6] Malik, N.A. Vassilicos, J.C. 1999 A Lagrangian model of turbulent dispersion with turbulent-like flow structure: comparison with direct numerical simulation for two-particle statistics. Phys. Fluids, 11, 1572-1580. [7] Fung, J.C.H., Hunt, J.C.R., Malik, N.A. and Perkins, R.J.(1992. Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech.236-281. [8] Tarquis, A. M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M., & Redondo, J. M. (2014). Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlinear Processes in Geophysics, 21(2), 439-450. [9] Fraunie, P., Berreba, S., Chashechkin, Y. D., Velasco, D., & Redondo, J. M. (2008). Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows. Nuovo Cimento C, 31, 909-930.
Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing
NASA Astrophysics Data System (ADS)
Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.
2016-12-01
Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ben; Li, Peiwen; Waller, Peter
2015-02-27
This paper analyzes and evaluates the flow mixing in an open channel algal raceway for biofuel production. The flow mixing governs the frequency of how algae cells are exposed to sunlight, due to the fluid movement between the surface and the bottom of the algal raceway, thereby affecting algal growth rate. In this work, we investigated the flow mixing performance in a table-sized model of the High Velocity Algae Raceway Integrated Design (ARID-HV). Various geometries of the raceway channels and dams were considered in both the CFD analysis and experimental flowvisualization. In the CFD simulation, the pathlines of fluid particlesweremore » analyzed to obtain the distribution of the number of times that particles passed across a critical water depth, Dc, defined as a cycle count. In addition, the distribution of the time period fraction that the fluid particles stayed in the zones above and below Dc was recorded. Such information was used to evaluate the flow mixing in the raceway. The CFD evaluation of the flow mixing was validated using experimental flow visualization, which showed a good qualitative agreement with the numerical results. In conclusion, this CFD-based evaluation methodology is recommended for flow field optimization for open channel algal raceways, as well as for other engineering applications in which flow mixing is an important concern.« less
Disintegration of fluids under supercritical conditions from mixing layer studies
NASA Technical Reports Server (NTRS)
Okong'o, N.; Bellan, J.
2003-01-01
Databases of transitional states obtained from Direct Numerical simulations (DNS) of temporal, supercritical mixing layers for two species systems, O2/H2 and C7H16/N2, are analyzed to elucidate species-specific turbulence aspects and features of fluid disintegration.
Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.
Fujita, Yoshihiko; Kubo, Shin-ichi
2006-01-01
FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.
Effect of zeta potential on the performance of a ring-type electroosmotic mixer.
Kim, T A; Koo, K H; Kim, Y J
2009-12-01
In order to achieve faster mixing, a new type of electrokinetic mixer with a T-type channel is introduced. The proposed mixer takes two fluids from different inlets and combines them into a single channel. The fluids then enter a mixing chamber with different inner and outer radii. Four microelectrodes are positioned on the outer wall of the mixing chamber. The electric potentials on the four microelectrodes are sinusoidal with respect to time and have various maximum voltages, zeta potentials and frequency values. The working fluid is water and each inlet has a different initial concentration values. The incompressible Navier-Stokes equation is solved in the channel, with a slip boundary condition on the inner and outer walls of the mixing chamber. The convection-diffusion equation is used to describe the concentration of the dissolved substances in the fluid. The pressure, concentration and flow fields in the channel are calculated and the results are graphically depicted for various flow and electric conditions.
Experiments and High-resolution Simulations of Density and Viscosity Feedbacks on Convective Mixing
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; MacMinn, Christopher W.; Cueto-Felgueroso, Luis; Juanes, Ruben
2011-11-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. Initially, the buoyant CO2 dissolves into the underlying brine by diffusion. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. We explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture by means of high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol). We find that the value of the concentration for which the density of the mixture is maximum, and the viscosity contrast between the fluids, both exert a powerful control on the convective flux. From the experimental and simulation results, we obtain the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks. JJH acknowledges the support from the FP7 Marie Curie Actions of the European Commission, via the CO2-MATE project (PIOF-GA-2009-253678).
Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Meyer, Grant D.; Bourdon, Christopher Jay
2005-11-01
We present an active method for mixing fluid streams in microchannels at low Reynolds number with no dead volume. To overcome diffusion limited mixing in microchannels, surface acoustic wave streaming offers an extremely effective approach to rapidly homogenize fluids. This is a pivotal improvement over mixers based on complex 3D microchannels which have significant dead volume resulting in trapping or loss of sample. Our micromixer is integrable and highly adaptable for use within existing microfluidic devices. Surface acoustic wave devices fabricated on 128° YX LiNbO 3 permitted rapid mixing of flow streams as evidenced by fluorescence microscopy. Longitudinal waves createdmore » at the solid-liquid interface were capable of inducing strong nonlinear gradients within the bulk fluid. In the highly laminar regime (Re = 2), devices achieved over 93% mixing efficacy in less than a second. Micro-particle imaging velicometry was used to determine the mixing behavior in the microchannels and indicated that the liquid velocity can be controlled by varying the input power. Fluid velocities in excess of 3 cm•s -1 were measured in the main excitation region at low power levels (2.8mW). We believe that this technology will be pivotal in the development and advancement of microfluidic devices and applications.« less
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method
NASA Astrophysics Data System (ADS)
Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro
2017-07-01
In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
Microfluidic mixing through oscillatory transverse perturbations
NASA Astrophysics Data System (ADS)
Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.
2018-05-01
Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Aldo; Meunier, Patrice; Villermaux, Emmanuel
2014-01-15
We present a combination of experiment, theory, and modelling on laminar mixing at large Péclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, “The diffusive strip method for scalar mixing in two-dimensions,” J. Fluid Mech. 662, 134–172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement withmore » quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.« less
NASA Astrophysics Data System (ADS)
Guo, Zhouchao; Lu, Tao; Liu, Bo
2017-04-01
Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
Analysis of supersonic combustion flow fields with embedded subsonic regions
NASA Technical Reports Server (NTRS)
Dash, S.; Delguidice, P.
1972-01-01
The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.
Tank Pressure Control Experiment on the Space Shuttle
NASA Technical Reports Server (NTRS)
1989-01-01
The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.
The importance of fluctuations in fluid mixing
Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.
2007-01-01
A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811
Rapid Confined Mixing with Transverse Jets Part 1: Single Jet
NASA Astrophysics Data System (ADS)
Salazar, David; Forliti, David
2012-11-01
Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.
Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
Youngs, David L
2009-07-28
Rayleigh-Taylor (RT) instability occurs when a dense fluid rests on top of a light fluid in a gravitational field. It also occurs in an equivalent situation (in the absence of gravity) when an interface between fluids of different density is accelerated by a pressure gradient, e.g. in inertial confinement fusion implosions. Engineering models (Reynolds-averaged Navier-Stokes models) are needed to represent the effect of mixing in complex applications. However, large eddy simulation (LES) currently makes an essential contribution to understanding the mixing process and calibration or validation of the engineering models. In this paper, three cases are used to illustrate the current role of LES: (i) mixing at a plane boundary, (ii) break-up of a layer of dense fluid due to RT instability, and (iii) mixing in a simple spherical implosion. A monotone integrated LES approach is preferred because of the need to treat discontinuities in the flow, i.e. the initial density discontinuities or shock waves. Of particular interest is the influence of initial conditions and how this needs to be allowed for in engineering modelling. It is argued that loss of memory of the initial conditions is unlikely to occur in practical applications.
Countercurrent direct contact heat exchange process and system
Wahl, III, Edward F.; Boucher, Frederic B.
1979-01-01
Recovery of energy from geothermal brines and other hot water sources by direct contact heat exchange with a working fluid, such as a hydrocarbon working fluid, e.g. isobutane. The process and system consists of a plurality of stages, each stage including mixing and settling units. In the first stage, hot brine and arm working fluid are intimately mixed and passed into a settler wherein the brine settles to the bottom of the settler and the hot working fluid rises to the top. The hot working fluid is passed to a heat engine or turbine to produce work and the working fluid is then recycled back into the system. The system is comprised of a series of stages each containing a settler and mixer, and wherein the working fluid and the brine flow in a countercurrent manner through the stages to recover the heat from the brine in increments and raise the temperature of the working fluid in increments.
Computational fluid dynamics characterization of a novel mixed cell raceway design
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...
Localized arc filament plasma actuators for noise mitigation and mixing enhancement
NASA Technical Reports Server (NTRS)
Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)
2008-01-01
A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.
Localized arc filament plasma actuators for noise mitigation and mixing enhancement
NASA Technical Reports Server (NTRS)
Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)
2010-01-01
A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.
Low pressure cooling seal system for a gas turbine engine
Marra, John J
2014-04-01
A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.
Mixing, Noise and Thrust Benefits Using Corrugated Designs
NASA Technical Reports Server (NTRS)
White, Samuel G.; Gilinsky, Mikhail M.
1998-01-01
This project was conducted as a support for effective research, training and teaching of Hampton University students in Fluid Mechanics and Acoustics. Basically, this work is organized and implemented by the new Fluid Mechanics and Acoustics Laboratory (FM & AL) which was established at Hampton University in the School of Engineering and Technology (E & T) in 1996. In addition, FM & AL in cooperation with NASA LaRC jointly conducts research with the Central AeroHydrodynamics Institute (TSAGI, Moscow) in Russia under a 2 year Civilian Research and Development Foundation (CRDF). This project is also conducted under control of NASA HQ. For fulfillment of the current project, several researchers were involved as was shown in the proposal to NASA in 1996. This work is the development and support for projects solve problems with the goal of reducing jet noise and increasing nozzle thrust.
Microfluidic mixing using orbiting magnetic microbeads
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mao, Wenbin; Hesketh, Peter; Alexeev, Alexander
2013-11-01
Using three-dimensional simulations and experiments, we examine mixing in a microfluidic channel that incorporates a hybrid passive-active micromixer. The passive part of the mixer consists of a series of angled parallel ridges lining the top microchannel wall. The active component of the mixer is made up of microbeads rotating around small pillars on the bottom of the microchannel. In our simulations, we use a binary fluid lattice Boltzmann model to simulate the system and characterize the microfluidic mixing in the system. We consider the passive and active micromixers separately and evaluate their combined effect on the mixing of binary fluids. We compare our simulations with the experimental results obtained in a microchannel with magnetically actuated microbeads. Our findings guide the design of an efficient micromixer to be used in sampling in complex fluids. Financial support from NSF (CBET-1159726) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Chen, H.; Huang, Q. Z.; Lee, T. Y.; Chiu, Y.; Chang, L. C.; Lamorski, K.; Sławiński, C.; Tsao, C. W.
2017-12-01
The interplay between resident ("old") fluid already in the vadose zone and infiltrating ("new") fluid was examined with micromodel experiments. The geometric patterns of the micromodels are based on a pore doublet and a 2D pore geometry of a sand-packing soil scanned by Micro X-Ray CT. We studied the old and new fluid interaction during imbibition process subject to different evaporation times (different the initial old fluid saturations). The results found that, in the pore-doublet micromodel experiment, the old fluid was mixed and displaced by the new fluid, and an increase in the initial old fluid saturation led to a decrease in the amount of old fluid displaced by the new fluid. On the other hand, the most of the old fluid in the micromodel of 2D sand-packing pore geometry was displaced by and mixed with the new fluid. However, a small amount of the initial old fluid that occupied pore throats remained untouched by the new fluid due to the air blockage. The amount of untouched old fluid increased as the initial old fluid saturation decreased. Our finding reveals the effect of pore geometry and inital old fluid distribution on the interaction between resident and infiltrating fluids.
Precipitation patterns during channel flow
NASA Astrophysics Data System (ADS)
Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.
2013-12-01
Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001
Thermal stratification potential in rocket engine coolant channels
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.
1992-01-01
The potential for rocket engine coolant channel flow stratification was computationally studied. A conjugate, 3-D, conduction/advection analysis code (SINDA/FLUINT) was used. Core fluid temperatures were predicted to vary by over 360 K across the coolant channel, at the throat section, indicating that the conventional assumption of a fully mixed fluid may be extremely inaccurate. Because of the thermal stratification of the fluid, the walls exposed to the rocket engine exhaust gases will be hotter than an assumption of full mixing would imply. In this analysis, wall temperatures were 160 K hotter in the turbulent mixing case than in the full mixing case. The discrepancy between the full mixing and turbulent mixing analyses increased with increasing heat transfer. Both analysis methods predicted identical channel resistances at the coolant inlet, but in the stratified analysis the thermal resistance was negligible. The implications are significant. Neglect of thermal stratification could lead to underpredictions in nozzle wall temperatures. Even worse, testing at subscale conditions may be inadequate for modeling conditions that would exist in a full scale engine.
Effect on Non-Newtonian Rheology on Mixing in Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Cagney, Neil; Balabani, Stavroula
2017-11-01
Mixing processes within many industry applications are strongly affected by the rheology of the working fluid. This is particularly relevant for pharmaceutical, food and waste treatment industries, where the working fluids are often strongly non-Newtonian, and significant variations in rheology between batches may occur. We approach the question of how rheology affects mixing by focussing on a the classical case of Taylor-Couette flow, which exhibits a number of instabilities and flow regimes as a function of Reynolds number. We examine Taylor-Couette flow generated for a range of aqueous solutions of xantham gum or corn starch, such that the rheology varies from shear-thinning to shear-thickening. For each case, we measure the power consumption using a torque meter and the flow field using high speed, time-resolved Particle-Image Velocimetry. The mixing characteristics are quantified using a number of Lagrangian and Eulerian approaches, including the coarse grained density method and vortex strength. By comparing these metrics to the power number, we discuss how the mixing efficiency (ratio of mixing effectiveness to power input) varies with the flow index of the fluid.
NASA Astrophysics Data System (ADS)
Guo, Qinghai; Wang, Yanxin; Liu, Wei
2007-10-01
The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in fluoride bearing silicate minerals during the geothermal fluid upflow might be the causes for the observed concentration differences.
NASA Astrophysics Data System (ADS)
Fan, Yanfeng; Hassan, Ibrahim
2010-09-01
The present paper investigates experimentally and numerically a scaled-up micromixer that combines the mixing principles of focusing/diverging and flow split-and-recombine. The micromixer consists of two units called “cross” and “omega”, which are similar to a zigzag structure. The total length is 199.5 mm with a depth of 3 mm. Fluorescence technique is used in the present study for local quantitative measurements of concentration. Two syringe pumps are used to supply the working fluids at two inlets. The testing range of Reynolds number is at 1 ≤ Re ≤ 50. The results of the experiment, obtained by fluorescence technique, are supported by the mixing visualization. The experimental results show that the mixing efficiency decreases at Re ≤ 10 and increases at Re ≥ 10. This is caused by the change in mixing mechanism from mass-diffusion domination to mass-convection domination. After five cells, the mixing efficiency reaches to 70% at Re = 50. The computational fluid dynamics is applied to assist in the understanding of fluid characteristics in channels. The simulation has a good agreement with the experiment. Based on the simulation results, vortices are observed in the channels at high Re, which could stretch and fold the fluids to enhance the effect of mass-convection on mixing. This design has the potential to be developed for micromixers with high flow rates.
Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions
Mountain, Raymond D.; Harvey, Allan H.
2015-01-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009
Mountain, Raymond D; Harvey, Allan H
2015-10-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.
Reynolds number effects on mixing due to topological chaos.
Smith, Spencer A; Warrier, Sangeeta
2016-03-01
Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.
An ultrashort mixing length micromixer: the shear superposition micromixer.
Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor
2007-03-01
We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.
Energy efficiency in industrial mixing and cooling of non-Newtonian fluid in a stirred tank reactor
NASA Astrophysics Data System (ADS)
Baghli, Houda; Benyettou, Mohamed; Tchouar, Noureddine; Merah, Abdelkrim; Djafri, Mohammed
2018-05-01
This paper study the energy efficiency of the mixing and cooling of a non-Newtonian fluid manufactured on an industrial scale in a stirred tank reactor equipped with jacketed cooling side. The purpose of this study is to optimize the heat transfer to degrease the cooling time and recommend a technologic innovation to realize this purpose without altering the quality of this product. First the different production processes are analyzed. The decrease of the shear stress with time indicates that this fluid is non-Newtonian and has to be characterized. The rheological behavior of this fluid is determined by a series of viscosimetric measurements, at different shear rates (30 to 400 s-1), and at different temperatures in the range (20° C to 80 °C), representing the stress and temperature conditions recorded during production, storage and packaging cycles of this product. Experimental results show that the nature of the fluid is pseudo-plastic with flow behavior index n<1 and follow the power law model, with the influence of temperature on flow consistency index K. A thermo-dependent model is given to express this rheological parameters and viscosity of this fluid as a function of temperature, valid for the fluid temperature between 20 to 80 °C. This rheological model is used to achieve the heat transfer simulation in the industrial stirred tank with an anchor impeller mixing. Simulation results shows that the cooling time by mixing can be the quarter by reducing the stirring speed to 125 rpm, and decreasing the coolant temperature to 20°C and therefore reduce energy consumption. A technologic integration of a natural cooling thermo-siphon devise outside the process is proposed to afford a cooling fluid below 20°C.
40 CFR Appendix 3 to Subpart A of... - Procedure for Mixing Base Fluids With Sediments
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Procedure for Mixing Base Fluids With Sediments 3 Appendix 3 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore...
40 CFR Appendix 3 to Subpart A of... - Procedure for Mixing Base Fluids With Sediments
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Procedure for Mixing Base Fluids With Sediments 3 Appendix 3 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY Offshore...
Drop deployment system for crystal growth apparatus
NASA Technical Reports Server (NTRS)
Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)
1990-01-01
A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.
NASA Astrophysics Data System (ADS)
Leong, J. M.; Howells, A. H.; Robinson, K. J.; Shock, E. L.
2018-05-01
A combination of reaction-path, mixing, and sensitivity calculations was used to reconcile deviations between thermodynamic predictions and actual measurements of low-temperature serpentinizing fluid chemistry.
Flow analysis for efficient design of wavy structured microchannel mixing devices
NASA Astrophysics Data System (ADS)
Kanchan, Mithun; Maniyeri, Ranjith
2018-04-01
Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.
Combined Microfluidic-Eectric Diffused Mixing of Living Cells in Continuous Flow
NASA Astrophysics Data System (ADS)
Ming-Wen Wang,
2010-02-01
The mixing process is a crucially important stage in the operation of biological and chemical microfluidic devices. If the mixing is inadequate, reactants do not fully interact with each other, and the device may not operate properly. This paper describes a simplified microfluidic mixer (different from a chaotic mixer) which can uniformly mix a buffer solution with living cells by applying an AC electric charge. Diffusion of the living cells into the buffer solution occurs rapidly following the interface of the flow stream with the electric charge; no further agitating step is needed. To accomplish this, an asymmetric pair of electrodes was integrated at the inlets of the buffer solution and the cells fluid. When the buffer solution and the cells fluid were introduced into one flow path, they remained limited to that flow stream. When the electrodes were charged, however, the cells in a short distance were efficiently moved into the solution flow, and the original fluids were mixed. The mixing efficiency depends on the polarizability of the cells, and this in turn is governed by the dielectric properties of the cells, the medium, and the solvent. This micro device, capable of efficiently mixing living cells with a buffer solution, may potentially allow biological mixing to be done outside of hospitals, in facilities without biological analyzing instruments.
NASA Astrophysics Data System (ADS)
Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.
2015-12-01
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth's history, fluid mixing may have provided the substrates and energy to support a unique subseafloor community of microorganisms over geological timescales.
NASA Astrophysics Data System (ADS)
Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.
2014-12-01
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth's history, fluid mixing may have provided the substrates and energy to support a unique subseafloor community of microorganisms over geological timescales.
Studying mixing in Non-Newtonian blue maize flour suspensions using color analysis.
Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés
2014-01-01
Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions.
Interactive computer graphics applications for compressible aerodynamics
NASA Technical Reports Server (NTRS)
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
Adherence in patients on dialysis: strategies for success.
Kammerer, Jean; Garry, Glenn; Hartigan, Marguerite; Carter, Barbara; Erlich, Linda
2007-01-01
Adherence is a major problem in patients with chronic kidney disease. Patients can be nonadherent with different aspects of their treatment, which includes medications, treatment regimens, and dietary and fluid restrictions. Although many lessons have been learned from adherence research, the evidence of how to modify adherence is somewhat mixed. To minimize nonadherence, interventions need to focus on both patient factors and the extent to which relationships and system problems compromise the patient's ability to adhere to medication and treatment plans. There continues to be a tendency to focus on the patient as the reason for problems with adherence, ignoring other factors such as the patient-health care provider relationships and the health care system that surrounds the patient. These latter factors can have a considerable effect on adherence. The nurse can develop a strong relationship of support with the patient, identify barriers, and offer strategies to help patients improve adherence.
NASA Astrophysics Data System (ADS)
Jamieson, John William; Hannington, Mark D.; Tivey, Margaret K.; Hansteen, Thor; Williamson, Nicole M.-B.; Stewart, Margaret; Fietzke, Jan; Butterfield, David; Frische, Matthias; Allen, Leigh; Cousens, Brian; Langer, Julia
2016-01-01
Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60-120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
Development of a new continuous process for mixing of complex non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration
2017-11-01
Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.
de Loubens, Clément; Lentle, Roger G.; Love, Richard J.; Hulls, Corrin; Janssen, Patrick W. M.
2013-01-01
We conducted numerical experiments to study the influence of non-propagating longitudinal and circular contractions, i.e. pendular activity and segmentation, respectively, on flow and mixing in the proximal duodenum. A lattice-Boltzmann numerical method was developed to simulate the fluid mechanical consequences for each of 22 randomly selected sequences of high-definition video of real longitudinal and radial contractile activity in the isolated proximal duodenum of the rat and guinea pig. During pendular activity in the rat duodenum, the flow was characterized by regions of high shear rate. Mixing was so governed by shearing deformation of the fluid that increased the interface between adjacent domains and accelerated their inter-diffusion (for diffusion coefficients approx. less than 10−8 m² s−1). When pendular activity was associated with a slow gastric outflow characteristic of post-prandial period, the dispersion was also improved, especially near the walls. Mixing was not promoted by isolated segmentative contractions in the guinea pig duodenum and not notably influenced by pylorus outflow. We concluded that pendular activity generates mixing of viscous fluids ‘in situ’ and accelerates the diffusive mass transfer, whereas segmentation may be more important in mixing particulate suspensions with high solid volume ratios. PMID:23536539
de Loubens, Clément; Lentle, Roger G; Love, Richard J; Hulls, Corrin; Janssen, Patrick W M
2013-06-06
We conducted numerical experiments to study the influence of non-propagating longitudinal and circular contractions, i.e. pendular activity and segmentation, respectively, on flow and mixing in the proximal duodenum. A lattice-Boltzmann numerical method was developed to simulate the fluid mechanical consequences for each of 22 randomly selected sequences of high-definition video of real longitudinal and radial contractile activity in the isolated proximal duodenum of the rat and guinea pig. During pendular activity in the rat duodenum, the flow was characterized by regions of high shear rate. Mixing was so governed by shearing deformation of the fluid that increased the interface between adjacent domains and accelerated their inter-diffusion (for diffusion coefficients approx. less than 10(-8) m² s(-1)). When pendular activity was associated with a slow gastric outflow characteristic of post-prandial period, the dispersion was also improved, especially near the walls. Mixing was not promoted by isolated segmentative contractions in the guinea pig duodenum and not notably influenced by pylorus outflow. We concluded that pendular activity generates mixing of viscous fluids 'in situ' and accelerates the diffusive mass transfer, whereas segmentation may be more important in mixing particulate suspensions with high solid volume ratios.
Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D
2015-09-29
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.
Klein, Frieder; Humphris, Susan E.; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M.; Orsi, William D.
2015-01-01
Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments. PMID:26324888
Kang, X; Wang, H; Wang, Y; Harvey, L M; McNeil, B
2001-10-01
The filamentous fungus, Sclerotium glucanicum NRRL 3006, was cultivated in a 0.008 m(3) airlift bioreactor with internal recirculation loop (ARL-IL) for production of the biopolymer, scleroglucan. The rheological behaviour of the culture fluid was characterised by measurement of the fluid consistency coefficient (K) and the flow behaviour index (n). Based on these measurements, the culture fluid changed from a low viscosity Newtonian system early in the process, to a viscous non-Newtonian (pseudoplastic) system. In addition, reactor hydrodynamics and mixing behaviour were characterised by measurement of whole mean gas hold-up (epsilon(g)), liquid re-circulation velocity (U(ld)) and mixing time (t(m)). Under identical process conditions, the effects of the viscosity of the culture fluid and air flow rate on epsilon(g), U(ld) and t(m) were examined and empirical correlations for epsilon(g), U(ld) and t(m) with both superficial velocity U(g) and consistency coefficient K were obtained and expressed separately. The correlations obtained are likely to describe the behaviour of real fungal culture fluids more accurately than previous correlations based on Newtonian or simulated non-Newtonian systems.
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
A Darwinian mechanism for biogenic ocean mixing
NASA Astrophysics Data System (ADS)
Katija, Kakani; Dabiri, John
2009-11-01
Recent observations of biogenic turbulence in the ocean have led to conflicting ideas regarding the contribution of animal swimming to ocean mixing. Previous measurements indicate elevated turbulent dissipation in the vicinity of large populations of planktonic animals swimming in concert. However, elevated turbulent dissipation is by itself insufficient proof of substantial biogenic mixing. We conducted field measurements of mixing efficiency by individual Mastigias sp. (a Palauan jellyfish) using a self-contained underwater velocimetry apparatus. These measurements revealed another mechanism that contributes to animal mixing besides wake turbulence. This mechanism was first described by Sir Charles Galton Darwin and is in fact the dominant mechanism of mixing by swimming animals. The efficiency of Darwin's mechanism (or drift) is dependent on animal shape rather than fluid length scale and, unlike turbulent wake mixing, is enhanced by the fluid viscosity. Therefore, it provides a means of biogenic mixing that can be equally effective in small plankton and large mammals.
MIXING STUDY FOR JT-71/72 TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2013-11-26
All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5more » hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours’ mixing time of the tank contents by one recirculation pump to get well mixed.« less
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Procedure for Mixing Base Fluids With Sediments (EPA Method 1646) 3 Appendix 3 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...
Electrokinetic micro-fluid mixer
Paul, Phillip H.; Rakestraw, David J.
2000-01-01
A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.
40 CFR 747.115 - Mixed mono and diamides of an organic acid.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subject to this section: P-84-529, mixed mono and diamides of an organic acid. (b) Definitions... used in or as a metalworking fluid, which includes as one of its components P-84-529, is prohibited... metalworking fluid a product containing P-84-529 is prohibited from adding any nitrosating agent to the product...
Low-g fluid mixing - Further results from the Tank Pressure Control Experiment
NASA Technical Reports Server (NTRS)
Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.
1993-01-01
The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach
Arrieta, Jorge; Cartwright, Julyan H. E.; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number— in an inertialess environment—is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the “belly phase,” peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing. PMID:26154384
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Gram stain of pleural fluid ... mixing it with a violet stain (called a Gram stain). A laboratory specialist uses a microscope to ... reveals an abnormal collection of pleural fluid. The Gram stain can help identify the bacteria that might ...
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles
NASA Astrophysics Data System (ADS)
Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.
Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.
Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian
2017-11-01
We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.
Inertial microfluidic physics.
Amini, Hamed; Lee, Wonhee; Di Carlo, Dino
2014-08-07
Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials synthesis, and chemical process control.
Reynolds number effects on mixing due to topological chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Spencer A.; Warrier, Sangeeta
2016-03-15
Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for threemore » different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.« less
NASA Astrophysics Data System (ADS)
Shvarts, Dov
2017-10-01
Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.
Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis
Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés
2014-01-01
Background Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. Methodology and Findings We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Conclusion and Relevance Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions. PMID:25401332
Study of Active Micromixer Driven by Electrothermal Force
NASA Astrophysics Data System (ADS)
Huang, Kuan-Rong; Chang, Jeng-Shian; Chao, Sheng D.; Wung, Tzong-Shyan; Wu, Kuang-Chong
2012-04-01
Biochemical applications of microchips often require a rapid mixing of different fluid samples. At the microscale level, fluid flow is usually a highly ordered laminar flow and diffusion is the primary mechanism for mixing owing to the lack of disturbances, yielding inefficiency for practical biochemical analysis. In this work, we design a prototype active micromixer by employing the electrothermal effect. We apply to the flow microchannel a non-uniform AC electric field, which can generate an electrothermal force on the fluid flow and induce vortex pairs for enhancing mixing efficiency. The performance of this active micromixer is studied and compared, under the same mixing quality, with that of a conventional passive micromixer of the same size with obstacles in the flow channel by three-dimensional finite element simulations. The numerical results show that the pressure drop between the inlet and the outlet for the active micromixer is much less than (only 3000th) that for the passive micro-mixer with the same mixing quality. To obtain an optimal mixing quality, we have systematically studied the mixing quality by varying the geometrical arrangements of the electrodes. An almost complete mixing can be obtained using a specific design. Moreover, the temperature increases around the electrodes are lower than 3 K, which does not adversely affect the biochemical analysis. It is suggested that the prototype active micromixer designed is promising and effective and useful for biochemical analysis.
NASA Technical Reports Server (NTRS)
Niederhaus, Charles E.; Miller, Fletcher J.
2008-01-01
The missions envisioned under the Vision for Space Exploration will require development of new methods to handle crew medical care. Medications and intravenous (IV) fluids have been identified as one area needing development. Storing certain medications and solutions as powders or concentrates can both increase the shelf life and reduce the overall mass and volume of medical supplies. The powders or concentrates would then be mixed in an IV bag with Sterile Water for Injection produced in situ from the potable water supply. Fluid handling in microgravity is different than terrestrial settings, and requires special consideration in the design of equipment. This document describes the analyses and down-select activities used to identify the IV mixing method to be developed that is suitable for ISS and exploration missions. The chosen method is compatible with both normal gravity and microgravity, maintains sterility of the solution, and has low mass and power requirements. The method will undergo further development, including reduced gravity aircraft experiments and computations, in order to fully develop the mixing method and associated operational parameters.
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls
NASA Astrophysics Data System (ADS)
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook
2017-03-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.
Transport and mixing in strongly coupled dusty plasma medium
NASA Astrophysics Data System (ADS)
Dharodi, Vikram; Das, Amita; Patel, Bhavesh
2016-10-01
The generalized hydrodynamic (GHD) fluid model has been employed to study the transport and mixing properties of Dusty plasma medium in strong coupling limit. The response of lighter electron and ion species to the dust motion is taken to be instantaneous i.e. inertia-less. Thus the electron and ion density are presumed to follow the Boltzman relation. In the incompressible limit (i-GHD) the model supports Transverse Shear wave in contrast to the Hydrodynamic fluids. It has been shown that the presence of these waves leads to a better mixing of fluid in this case. Several cases of flow configuration have been considered for the study. The transport and mixing attributes have been quantified by studying the dynamical evolution of tracer particles in the system. The diffusion and clustering of these test particles are directly linked to the mixing characteristic of a medium. The displacement of these particles provides for a quantitative estimate of the diffusion coefficient of the medium. It is shown that these test particles often organize themselves in spatially inhomogeneous pattern leading to the phenomena of clustering.
Compact and controlled microfluidic mixing and biological particle capture
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander
2016-11-01
We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.
Paramagnetic particles and mixing in micro-scale flows.
Calhoun, R; Yadav, A; Phelan, P; Vuppu, A; Garcia, A; Hayes, M
2006-02-01
Mixing in microscale flows with rotating chains of paramagnetic particles can be enhanced by adjusting the ratio of viscous to magnetic forces so that chains dynamically break and reform. Lattice Boltzmann (LB) simulations were used to calculate the interaction between the fluid and suspended paramagnetic particles under the influence of a rotating magnetic field. Fluid velocities obtained from the LB simulations are used to solve the advection diffusion equation for massless tracer particles. At relatively high Mason numbers, small chains result in low edge velocities, and hence mixing is slower than at other Mason numbers. At low Mason numbers, long, stable chains form and produce little mixing toward the center of the chains. A peak in mixing rate is observed when chains break and reform. The uniformity of mixing is greater at higher Mason numbers because more small chains result in a larger number of small mixing areas.
Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments
2015-08-01
elements: • Expendable items: including materials such as stainless steel mixing bowls/spoons, decontamination supplies (buckets, brushes, distilled...PE samplers. Traditional sediment sampling equipment would include items such as decontamination fluids, stainless steel mixing bowls and spoons...hazardous/hazardous wastes (excess sediment, decontamination fluids). There is not expected to be a big difference in solid waste disposal costs
Fully alternating, triaxial electric or magnetic fields offer new routes to fluid vorticity
Martin, James E.; Solis, Kyle J.
2014-10-31
Noncontact methods of generating strong fluid vorticity are important to problems involving heat and mass transfer, fluid mixing, active wetting, and droplet transport. Furthermore, because zero or even negative shear viscosities can be induced, vorticity can greatly extend the control range of the smart fluids used in magnetorheological devices. In recent work we have shown that a particular class of ac/ac/dc triaxial fields (so-called symmetry-breaking rational fields) can create strong vorticity in magnetic particle suspensions and have presented a theory of the vorticity that is based on the symmetry of the 2-d Lissajous trajectories of the field and its converse.more » In this paper we demonstrate that there are three countably infinite sets of fully alternating ac/ac/ac triaxial fields whose frequencies form rational triads that have the symmetry required to drive fluid vorticity. The symmetry of the 3-d Lissajous trajectories of the field and its converse can be derived and from this the direction of the vorticity axis can be predicted, as can the dependence of the sign of the vorticity on the phase relations between the three field components. Experimental results are presented that validate the symmetry theory. These discoveries significantly broaden the class of triaxial fields that can be exploited to produce strong noncontact flow.« less
Mixing and reactions in multiphase flow through porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.
2016-12-01
The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
EDITORIAL: The FDR Prize The FDR Prize
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2011-08-01
From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.
Lee, Nae Yoon; Yamada, Masumi; Seki, Minoru
2005-11-01
We have developed a three-dimensional passive micromixer based on new mixing principles, fluid twisting and flattening. This micromixer is constructed by repeating two microchannel segments, a "main channel" and a "flattened channel", which are very different in size and are arranged perpendicularly. At the intersection of these segments the fluid inside the micromixer is twisted and then, in the flattened channel, the diffusion length is greatly reduced, achieving high mixing efficiency. Several types of micromixer were fabricated and the effect of microchannel geometry on mixing performance was evaluated. We also integrated this micromixer with a miniaturized DNA purification device, in which the concentration of the buffer solution could be rapidly changed, to perform DNA purification based on solid-phase extraction.
Scaling of Convective Mixing in Porous Media
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis; Juanes, Ruben
2012-12-01
Convective mixing in porous media is triggered by a Rayleigh-Bénard-type hydrodynamic instability as a result of an unstable density stratification of fluids. While convective mixing has been studied extensively, the fundamental behavior of the dissolution flux and its dependence on the system parameters are not yet well understood. Here, we show that the dissolution flux and the rate of fluid mixing are determined by the mean scalar dissipation rate. We use this theoretical result to provide computational evidence that the classical model of convective mixing in porous media exhibits, in the regime of high Rayleigh number, a dissolution flux that is constant and independent of the Rayleigh number. Our findings support the universal character of convective mixing and point to the need for alternative explanations for nonlinear scalings of the dissolution flux with the Rayleigh number, recently observed experimentally.
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.
2015-12-01
Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.
Mixed ethnicity and behavioural problems in the Millennium Cohort Study
Zilanawala, Afshin; Sacker, Amanda; Kelly, Yvonne
2018-01-01
Background The population of mixed ethnicity individuals in the UK is growing. Despite this demographic trend, little is known about mixed ethnicity children and their problem behaviours. We examine trajectories of behavioural problems among non-mixed and mixed ethnicity children from early to middle childhood using nationally representative cohort data in the UK. Methods Data from 16 330 children from the Millennium Cohort Study with total difficulties scores were analysed. We estimated trajectories of behavioural problems by mixed ethnicity using growth curve models. Results White mixed (mean total difficulties score: 8.3), Indian mixed (7.7), Pakistani mixed (8.9) and Bangladeshi mixed (7.2) children had fewer problem behaviours than their non-mixed counterparts at age 3 (9.4, 10.1, 13.1 and 11.9, respectively). White mixed, Pakistani mixed and Bangladeshi mixed children had growth trajectories in problem behaviours significantly different from that of their non-mixed counterparts. Conclusions Using a detailed mixed ethnic classification revealed diverging trajectories between some non-mixed and mixed children across the early life course. Future studies should investigate the mechanisms, which may influence increasing behavioural problems in mixed ethnicity children. PMID:26912571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinov, N.M.; Westbrook, C.K.; Cloutman, L.D.
Work being carried out at LLNL has concentrated on studies of the role of chemical kinetics in a variety of problems related to hydrogen combustion in practical combustion systems, with an emphasis on vehicle propulsion. Use of hydrogen offers significant advantages over fossil fuels, and computer modeling provides advantages when used in concert with experimental studies. Many numerical {open_quotes}experiments{close_quotes} can be carried out quickly and efficiently, reducing the cost and time of system development, and many new and speculative concepts can be screened to identify those with sufficient promise to pursue experimentally. This project uses chemical kinetic and fluid dynamicmore » computational modeling to examine the combustion characteristics of systems burning hydrogen, either as the only fuel or mixed with natural gas. Oxidation kinetics are combined with pollutant formation kinetics, including formation of oxides of nitrogen but also including air toxics in natural gas combustion. We have refined many of the elementary kinetic reaction steps in the detailed reaction mechanism for hydrogen oxidation. To extend the model to pressures characteristic of internal combustion engines, it was necessary to apply theoretical pressure falloff formalisms for several key steps in the reaction mechanism. We have continued development of simplified reaction mechanisms for hydrogen oxidation, we have implemented those mechanisms into multidimensional computational fluid dynamics models, and we have used models of chemistry and fluid dynamics to address selected application problems. At the present time, we are using computed high pressure flame, and auto-ignition data to further refine the simplified kinetics models that are then to be used in multidimensional fluid mechanics models. Detailed kinetics studies have investigated hydrogen flames and ignition of hydrogen behind shock waves, intended to refine the detailed reactions mechanisms.« less
Hayba, D.O.
1997-01-01
Detailed fluid inclusion studies on coarse-grained sphalerite from the OH vein, Creede, Colorado, have shown that the abrupt color changes between growth zones correspond to abrupt changes in the nature of the ore fluids. Within each growth zone, however, the composition of the fluids remained constant. The base of a distinctive orange-brown growth zone marks a sharp increase in both temperature and salinity relative to the preceding yellow-white zone. The orange-brown growth zone can be correlated along much of the vein and is believed to represent a time-stratigraphic interval. Along the vein, temperatures and salinities of fluid inclusions within this interval show a systematic decrease from about 285??C and 11.5 wt percent NaCl equiv near the base of the vein to about 250??C and 8 wt percent NaCl equiv, respectively, near the top of the vein. The iron concentration of this sphalerite growth zone shows a similar pattern, decreasing from about 2.8 to 1.2 mole percent FeS. When plotted on an enthalpy-salinity diagram, the fluid inclusion data define a spatial trend indicating the progressive mixing of deeply circulating hydrothermal brines with overlying, dilute ground waters. The hydrothermal brines entered the OH vein from below at a temperature, salinity, and density of approximately 285??C, 11.5 wt percent NaCl equiv, and 860 kg/m3, respectively, whereas the overlying ground waters appear to have been preheated to roughly 150??C and had an assumed salinity of 0 wt percent and a density of 920 kg/m3. The greater density of the heated ground water promoted mixing with the hydrothermal brine within the open fractures, causing sphalerite deposition. Although there were also episodes of boiling during vein mineralization, boiling appears unimportant for this sphalerite. Isotopic evidence and geochemical modeling studies also indicate that mixing was the depositional mechanism for sphalerite. An important aspect of the mixing hydrology of the Creede system involves an aquitard overlying the OH vein. This low permeability zone restricted the flow of ground water into the vein from above and forced the upwelling hydrothermal fluids to flow laterally along the vein. The mixing environment thus occurred along the interface between a deeply circulating hydrothermal convection cell and a topographically driven shallow ground-water system.
Electrokinetic effects on motion of submicron particles in microchannel
NASA Astrophysics Data System (ADS)
Sato, Yohei; Hishida, Koichi
2006-11-01
Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.
Xia, H M; Wan, S Y M; Shu, C; Chew, Y T
2005-07-01
We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.
Pumping Characteristics of a Helical Screw Agitator with a Draught Tube
NASA Astrophysics Data System (ADS)
Hwang, Jung-Hoon; Kim, Youn-Jea
In the use of helical type agitator, the mixing process is usually restricted to the laminar flow regime. Common examples of laminar mixing are found where the fluid has a very high viscosity, i.e., pseudoplastic fluids. It can be indicated that a helical type agitator is sufficiently suited to the creeping flow mixing. The pumping characteristic of a Helical Screw Agitator with a draught tube (HSA) is required to evaluate its capacity for the optimal configuration of the mixing chamber. It could be executed by changing some parameters such as the number of helix, the angular velocity and the rotating direction and so on. In this study, the numerical simulation was carried out with the Eulerian multiphase mixture model and the moving mesh approximation. Some of the optimum design parameters have been developed with the aid of numerical data from the Computational Fluid Dynamics (CFD) analysis. Using the commercial code, Fluent, the pumping characteristics in the HSA are investigated from the rheological properties, and the results are graphically depicted.
Flowers, Tracey C.; Hunt, James R.
2010-01-01
The transport of fluids miscible with water arises in groundwater contamination and during remediation of the subsurface environment. For concentrated salt solutions, i.e., brines, the increased density and viscosity determine mixing processes between these fluids and ambient groundwater. Under downward flow conditions, gravitational and viscous forces work against each other to determine the interfacial mixing processes. Historically, mixing has been modeled as a dispersive process, as viscous fingering, and as a combination of both using approaches that were both analytical and numerical. A compilation of previously reported experimental data on vertical miscible displacements by fluids with significant density and viscosity contrasts reveals some agreement with a stability analysis presented by Hill (1952). Additional experimental data on one-dimensional dispersion during downward displacement of concentrated salt solutions by freshwater and freshwater displacement by brines support the stability analysis and provides an empirical representation for dispersion coefficients as functions of a gravity number and a mobility ratio. PMID:20300476
Drift due to viscous vortex rings
NASA Astrophysics Data System (ADS)
Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc
2016-11-01
Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.
Directed Fluid Transport and Mixing with Biomimetic Cilia Arrays
NASA Astrophysics Data System (ADS)
Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.
2009-03-01
We present results on the long-range, directed fluid transport and fluidic mixing produced by the collective beating of arrays of biomimetic cilia. These artificial cilia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material and actuate with permanent magnets to mimic biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the cilia tips, while between the cilia tips and the floor particle motion is complicated and suggestive of chaotic advection.
Power plant emissions reduction
Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy
2015-10-20
A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.
Advances in borehole geophysics for hydrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.H.
1982-01-01
Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems themore » most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.« less
Ultra low injection angle fuel holes in a combustor fuel nozzle
York, William David
2012-10-23
A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.
Heater-mixer for stored fluids
NASA Technical Reports Server (NTRS)
Canning, T. N. (Inventor)
1974-01-01
A fluid storage vessel for containing cryogenic fluids is described. The storage vessel contains an auxiliary chamber which is connected to the main container by a jet nozzle. The wall of the auxiliary vessel is heat cycled to produce a corresponding expansion and contraction of the fluid within the auxiliary chamber. This action causes heating and mixing of the stored fluid by means of jetting the expanded fluid to and from relative to the stored fluid contents of the vessel.
Experimental growth of inertial forced Richtmyer-Meshkov instabilities for different Atwood numbers
NASA Astrophysics Data System (ADS)
Redondo, J. M.; Castilla, R.
2009-04-01
Richtmyer-Meshkov instability occurs when a shock wave impinges on an interface separating two fluids having different densities [1,2]. The instability causes perturbations on the interface to grow, bubbles and spikes, producing vortical structures which potentially result in a turbulent mixing layer. In addition to shock tube experiments, the incompressible Richtmyer-Meshkov instability has also been studied by impulsively accelerating containers of incompressible fluids. Castilla and Redondo (1994) [3] first exploited this technique by dropping tanks containing a liquid and air or two liquids onto a cushioned surface. This technique was improved upon by Niederhaus and Jacobs (2003)[4] by mounting the tank onto a rail system and then allowing it to bounce off of a fixed spring. A range of both miscible and inmiscible liquids were used, giving a wide range of Atwood numbers using the combinations of air, water, alcohol, oil and mercury. Experimental results show the different pattern selection of both the bubbles and spikes for the different Atwood numbers. Visual analysis of the marked interfaces allows to distinguish the regions of strong mixing and compare self-similarity growth of the mixing region. [1] Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics 4, 101-104. [2] Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. Journal of Fluid Mechanics 263, 271-292. [3] Castilla, R. & Redondo, J. M. 1994 Mixing Front Growth in RT and RM Instabilities. Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge, United Kingdom, edited by P. F. Linden, D. L. Youngs, and S. B. Dalziel, 11-31. [4] Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer-Meshkov instability of incompressible fluids. Journal of Fluid Mechanics 485, 243-277.
Stability of flow of a thermoviscoelastic fluid between rotating coaxial circular cylinders
NASA Technical Reports Server (NTRS)
Ghandour, N. N.; Narasimhan, M. N. L.
1976-01-01
The stability problem of thermoviscoelastic fluid flow between rotating coaxial cylinders is investigated using nonlinear thermoviscoelastic constitutive equations due to Eringen and Koh. The velocity field is found to be identical with that of the classical viscous case and the case of the viscoelastic fluid, but the temperature and pressure fields are found to be different. By imposing some physically reasonable mechanical and geometrical restrictions on the flow, and by a suitable mathematical analysis, the problem is reduced to a characteristic value problem. The resulting problem is solved and stability criteria are obtained in terms of critical Taylor numbers. In general, it is found that thermoviscoelastic fluids are more stable than classical viscous fluids and viscoinelastic fluids under similar conditions.
Reaction front dynamics under shear flow for arbitrary Damköhler numbers
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Méheust, Yves; Le Borgne, Tanguy
2016-04-01
Reaction fronts where two reactive fluids displace one another play an important role in a range of applications, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration, geothermal dipoles and the development of hotspots of reaction in mixing zones. The background flow induces enhanced mixing, and therefore reaction, through interfacial shear. Hence the coupling of fluid flow with chemical reactions is pivotal in understanding and quantifying effective reaction kinetics in reaction fronts. While this problem has been addressed in the limit of fast reactions (e.g. de Simoni 2005, Le Borgne 2014), in natural systems reactions can span a large range of Damköhler numbers since their characteristic reaction times vary over a large range of typical values. Here the coupling of shear flow and reversible chemical reactions is studied for a reaction front with initially separated reactants at arbitrary Damköhler numbers. Approximate analytical expressions for the global production rate are derived based on a reactive lamella approach. We observe three distinct regimes, each of them characterized by different scalings of the global production rate and width of the reactive zone. We describe the dependency of these scalings and the associated characteristic transition times as a function of Damköhler and Péclet numbers. These results are validated against 2D numerical simulations. The study is expected to shed light on the inherently complex cases of reactive mixing with varying reaction rates under the influence of an imposed flow. de Simoni et al. (2005) Water Resour. Res., 41, W11410 Le Borgne et al. (2014) GRL, 41(22), 7898
A solution to Rayleigh-Taylor instabilities. Bubbles, spikes, and their scalings
Mikaelian, Karnig O.
2014-05-12
A fluid that pushes on and accelerates a heavier fluid, small perturbations at their interface grows with time and lead. to turbulent mixing. The same instability, known as the Rayleigh-Taylor instability, operates when a heavy fluid is supported by a lighter fluid in a gravitational field. Moreover, it has a particularly deleterious effect on inertial-confinement-fusion implosions and is known to operate over 18 orders of magnitude in dimension. We propose analytic expressions for the bubble and spike amplitudes and mixing widths in the linear, nonlinear, and turbulent regimes. They cover arbitrary density ratios and accelerations that are constant or changingmore » relatively slowly with time. Here, we discuss their scalings and compare them with simulations and experiments.« less
Turbulence and mixing from optimal perturbations to a stratified shear layer
NASA Astrophysics Data System (ADS)
Kaminski, Alexis; Caulfield, C. P.; Taylor, John
2014-11-01
The stability and mixing of stratified shear layers is a canonical problem in fluid dynamics with relevance to flows in the ocean and atmosphere. The Miles-Howard theorem states that a necessary condition for normal-mode instability in parallel, inviscid, steady stratified shear flows is that the gradient Richardson number, Rig is less than 1/4 somewhere in the flow. However, substantial transient growth of non-normal modes may be possible at finite times even when Rig > 1 / 4 everywhere in the flow. We have calculated the ``optimal perturbations'' associated with maximum perturbation energy gain for a stably-stratified shear layer. These optimal perturbations are then used to initialize direct numerical simulations. For small but finite perturbation amplitudes, the optimal perturbations grow at the predicted linear rate initially, but then experience sufficient transient growth to become nonlinear and susceptible to secondary instabilities, which then break down into turbulence. Remarkably, this occurs even in flows for which Rig > 1 / 4 everywhere. We will describe the nonlinear evolution of the optimal perturbations and characterize the resulting turbulence and mixing.
Unity and diversity in mixing: Stretching, diffusion, breakup, and aggregation in chaotic flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottino, J.M.
1991-05-01
Experiments and theory have produced a reasonably good qualitative understanding of the evolution of chaotic mixing of passive tracers, especially in two-dimensional time-periodic flow fields. Such an understanding forms a fabric for the evolution of breakup, aggregation, and diffusion-controlled reactions in more complex flows. These systems can be viewed as a population of microstructures'' whose behavior is dictated by iterations of a chaotic flow; microstructures break, diffuse, and aggregate, causing the population to evolve in space and time. This paper presents simple physical models for such processes. Self-similarity is common to all the problems; examples arise in the context ofmore » the distribution of stretchings within chaotic flows, in the asymptotic evolution of diffusion-reaction processes at striation thickness scales, in the equilibrium distribution of drop sizes generated upon mixing of immiscible fluids, in the equations describing mean-field kinetics of coagulation, in the sequence of actions necessary for the destruction of islands in two-dimensional flow, and in the fractal structure of clusters produced upon aggregation in chaotic flows.« less
Modeling molecular mixing in a spatially inhomogeneous turbulent flow
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Deb, Rajdeep
2012-02-01
Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.
Numerical simulation of the non-Newtonian mixing layer
NASA Technical Reports Server (NTRS)
Azaiez, Jalel; Homsy, G. M.
1993-01-01
This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates. PMID:27524896
3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.
Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook
2017-01-01
Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.
Ortiz de Solorzano, Isabel; Uson, Laura; Larrea, Ane; Miana, Mario; Sebastian, Victor; Arruebo, Manuel
2016-01-01
By using interdigital microfluidic reactors, monodisperse poly(d,l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d,l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification-evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye; Cabot, William H.; Thornber, Ben
Rayleigh–Taylor instability (RTI) and Richtmyer–Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixedmore » mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.« less
NASA Astrophysics Data System (ADS)
Bukač, M.
2016-05-01
We model the interaction between an incompressible, viscous fluid, thin elastic structure and a poroelastic material. The poroelastic material is modeled using the Biot's equations of dynamic poroelasticity. The fluid, elastic structure and the poroelastic material are fully coupled, giving rise to a nonlinear, moving boundary problem with novel energy estimates. We present a modular, loosely coupled scheme where the original problem is split into the fluid sub-problem, elastic structure sub-problem and poroelasticity sub-problem. An energy estimate associated with the stability of the scheme is derived in the case where one of the coupling parameters, β, is equal to zero. We present numerical tests where we investigate the effects of the material properties of the poroelastic medium on the fluid flow. Our findings indicate that the flow patterns highly depend on the storativity of the poroelastic material and cannot be captured by considering fluid-structure interaction only.
Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2016-04-01
Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.
Staude, S.; Gob, S.; Pfaff, K.; Strobele, F.; Premo, W.R.; Markl, G.
2011-01-01
Primary and secondary barites from hydrothermal mineralizations in SW Germany were investigated, for the first time, by a combination of strontium (Sr) isotope systematics (87Sr/86Sr), Sr contents and δ34S values to distinguish fluid sources and precipitation mechanisms responsible for their formation. Barite of Permian age derived its Sr solely from crystalline basement rocks, whereas all younger barite also incorporate Sr from formation waters of the overlying sediments. In fact, most of the Sr in younger barite is leached from Lower and Middle Triassic sediments. In contrast, most of the sulfur (S) of Permian, Jurassic and northern Schwarzwald Miocene barite originated from basement rocks. The S source of Upper Rhinegraben (URG)-related Paleogene barite differs depending on geographic position: for veins of the southern URG, it is the Oligocene evaporitic sequence, while central URG mineralizations derived its S from Middle Triassic evaporites. Using Sr isotopes of barite of known age combined with estimates on the Sr contents and Sr isotopic ratios of the fluids' source rocks, we were able to quantify mixing ratios of basement-derived fluids and sedimentary formation waters for the first time. These calculations show that Jurassic barite formed by mixing of 75–95% ascending basement-derived fluids with 5–25% sedimentary formation water, but that only 20–55% of the Sr was brought by the basement-derived fluid to the depositional site. Miocene barite formed by mixing of an ascending basement-derived brine (60–70%) with 30–40% sedimentary formation waters. In this case, only 8–15% of the Sr was derived from the deep brine. This fluid-mixing calculation is an example for deposits in which the fluid source is known. This method applied to a greater number of deposits formed at different times and in various geological settings may shed light on more general causes of fluid movement in the Earth's crust and on the formation of hydrothermal ore deposits.
Diffusive mixing through velocity profile variation in microchannels
NASA Astrophysics Data System (ADS)
Yakhshi-Tafti, Ehsan; Cho, Hyoung J.; Kumar, Ranganathan
2011-03-01
Rapid mixing does not readily occur at low Reynolds number flows encountered in microdevices; however, it can be enhanced by passive diffusive mixing schemes. This study of micromixing of two miscible fluids is based on the principle that (1) increased velocity at the interface of co-flowing fluids results in increased diffusive mass flux across their interface, and (2) diffusion interfaces between two liquids progress transversely as the flow proceeds downstream. A passive micromixer is proposed that takes advantage of the peak velocity variation, inducing diffusive mixing. The effect of flow variation on the enhancement of diffusive mixing is investigated analytically and experimentally. Variation of the flow profile is confirmed using micro-Particle Image Velocimetry (μPIV) and mixing is evaluated by color variations resulting from the mixing of pH indicator and basic solutions. Velocity profile variations obtained from μPIV show a shift in peak velocities. The mixing efficiency of the Σ-micromixer is expected to be higher than that for a T-junction channel and can be as high as 80%. The mixing efficiency decreases with Reynolds number and increases with downstream length, exhibiting a power law.
Simpson, Mark P.; Strmic Palinkas, Sabina; Mauk, Jeffrey L.; Bodnar, Robert J.
2015-01-01
LA-ICP-MS analyses show that in some cases different fluid inclusion assemblages (FIAs) within a single sample trapped fluids with variable chemistries. These differences likely reflect modification of a single parent fluid through mineral dissolution and precipitation, water/rock interactions, boiling and vapor loss, conductive cooling, and mixing.
Tracer airflow measurement system (TRAMS)
Wang, Duo [Albany, CA
2007-04-24
A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-01-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Astrophysics Data System (ADS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-06-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems.
Matlock-Colangelo, Lauren; Colangelo, Nicholas W; Fenzl, Christoph; Frey, Margaret W; Baeumner, Antje J
2016-08-05
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450-550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8-2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3-10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems
Matlock-Colangelo, Lauren; Colangelo, Nicholas W.; Fenzl, Christoph; Frey, Margaret W.; Baeumner, Antje J.
2016-01-01
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8–2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices. PMID:27527184
The potential for free and mixed convection in sedimentary basins
Raffensperger, Jeff P.; Vlassopoulos, D.
1999-01-01
Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.
Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip
NASA Astrophysics Data System (ADS)
Ghosh, Sukhendu; Usha, R.
2016-10-01
The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed layer) when the mixed layer is away/close from/to the slippery inclined wall. The trend of slip effect is influenced by the location of the mixed layer, the location of more viscous fluid, and the mass diffusivity of the two fluids. The stabilizing characteristics of slip can be favourably used to suppress the non-linear breakdown which may happen due to the coexistence of the unstable modes in a flow over a substrate with no slip. The results of the present study suggest that it is desirable to design a slippery surface with appropriate slip sensitivity in order to meet a particular need for a specific application.
RFQ (radio-frequency quadrupole) accelerator tuning system
Bolie, V.W.
1988-04-12
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in responsive to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. 3 figs., 2 tabs.
ERIC Educational Resources Information Center
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.
Siders, Paul D
2017-12-08
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of a rapid magnetic microfluidic mixer
NASA Astrophysics Data System (ADS)
Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander
2015-11-01
Using three-dimensional simulations and experiments, we demonstrate rapid mixing of fluid streams in a microchannel using orbiting magnetic microbeads. We use a lattice Boltzmann model coupled to a Brownian dynamics model to perform numerical simulations that study in depth the effect of system parameters such as channel configuration and fluid and bead velocities. We use our findings to aid the design of an experimental micromixer. Using this experimental device, we demonstrate rapid microfluidic mixing over a compact channel length, and validate our numerical simulation results. Finally, we use numerical simulations to study the physical mechanisms leading to microfluidic mixing in our system. Our findings demonstrate a promising method of rapid microfluidic mixing over a short distance, with applications in lab-on-a-chip sample testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
Versatile fluid-mixing device for cell and tissue microgravity research applications.
Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H
1996-01-01
Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.
NASA Astrophysics Data System (ADS)
Cardoso, Vanessa F.; Martins, Pedro; Botelho, Gabriela; Rebouta, Luis; Lanceros-Méndez, Senentxu; Minas, Graca
2010-08-01
Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.
Colman, D R; Garcia, J R; Crossey, L J; Karlstrom, K; Jackson-Weaver, O; Takacs-Vesbach, C
2014-01-01
Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro-organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture-independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well-characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle-derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Alshomrani, Ali Saleh; Alghamdi, Metib Said
2017-01-01
Applications of carbon nanotubes, single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) in thermal engineering have recently attracted significant attention. However, most of the studies on CNTs are either experimental or numerical and the lack of analytical studies limits further developments in CNTs research particularly in channel flows. In this work, an analytical investigation is performed on heat transfer analysis of SWCNTs and MWCNTs for mixed convection Poiseuille flow of a Casson fluid along a vertical channel. These CNTs are suspended in three different types of base fluids (Water, Kerosene and engine Oil). Xue [Phys. B Condens. Matter 368, 302-307 (2005)] model has been used for effective thermal conductivity of CNTs. A uniform magnetic field is applied in a transverse direction to the flow as magnetic field induces enhancement in the thermal conductivity of nanofluid. The problem is modelled by using the constitutive equations of Casson fluid in order to characterize the non-Newtonian fluid behavior. Using appropriate non-dimensional variables, the governing equations are transformed into the non-dimensional form, and the perturbation method is utilized to solve the governing equations with some physical conditions. Velocity and temperature solutions are obtained and discussed graphically. Expressions for skin friction and Nusselt number are also evaluated in tabular form. Effects of different parameters such as Casson parameter, radiation parameter and volume fraction are observed on the velocity and temperature profiles. It is found that velocity is reduced under influence of the exterior magnetic field. The temperature of single wall CNTs is found greater than MWCNTs for all the three base fluids. Increase in volume fraction leads to a decrease in velocity of the fluid as the nanofluid become more viscous by adding CNTs.
NASA Astrophysics Data System (ADS)
de Mier, M.; Costa, F.; Idelsohn, S.
2008-12-01
Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account in the momentum conservation equation through the full shear-stress tensor. The implications of different magma intrusion rates, volumes, and times will be discussed in the context of mafic-silicic magma mixing and eruption triggers.
Spectral analysis of the turbulent mixing of two fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, M.J.
1996-02-01
The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used asmore » a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.« less
Development of a cryogenic mixed fluid J-T cooling computer code, 'JTMIX'
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1991-01-01
An initial study was performed for analyzing and predicting the temperatures and cooling capacities when mixtures of fluids are used in Joule-Thomson coolers and in heat pipes. A computer code, JTMIX, was developed for mixed gas J-T analysis for any fluid combination of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with the NIST computer code, DDMIX, it has accurately predicted order-of-magnitude increases in J-T cooling capacities when various hydrocarbons are added to nitrogen, and it predicts nitrogen normal boiling point depressions to as low as 60 K when neon is added.
In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.
Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V
2005-03-01
Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.
Cellular Biotechnology Operations Support System Fluid Dynamics Investigation
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
Energy conversion system involving change in the density of an upwardly moving liquid
Petrick, Michael
1989-01-01
A system for converting thermal energy into electrical energy includes a fluid reservoir, a relatively high boiling point fluid such as lead or a lead alloy within the reservoir, a downcomer defining a vertical fluid flow path communicating at its upper end with the reservoir and an upcomer defining a further vertical fluid flow path communicating at its upper end with the reservoir. A variable area nozzle of rectangular section may terminate the upper end of the upcomer and the lower end of the of the downcomer communicates with the lower end of the upcomer. A mixing chamber is located at the lower end portion of the upcomer and receives a second relatively low boiling point fluid such as air, the mixing chamber serving to introduce the low boiling point fluid into the upcomer so as to produce bubbles causing the resultant two-phase fluid to move at high velocity up the upcomer. Means are provided for introducing heat into the system preferably between the lower end of the downcomer and the lower end of the upcomer. Power generating means are associated with the one of the vertical fluid flow paths one such power generating means being a magneto hydrodynamic electrical generator.
Tran-Minh, Nhut; Dong, Tao; Karlsen, Frank
2014-10-01
In this paper, a passive planar micromixer with ellipse-like micropillars is proposed to operate in the laminar flow regime for high mixing efficiency. With a splitting and recombination (SAR) concept, the diffusion distance of the fluids in a micromixer with ellipse-like micropillars was decreased. Thus, space usage for micromixer of an automatic sample collection system is also minimized. Numerical simulation was conducted to evaluate the performance of proposed micromixer by solving the governing Navier-Stokes equation and convection-diffusion equation. With software (COMSOL 4.3) for computational fluid dynamics (CFD) we simulated the mixing of fluids in a micromixer with ellipse-like micropillars and basic T-type mixer in a laminar flow regime. The efficiency of the proposed micromixer is shown in numerical results and is verified by measurement results. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Apparatus for mixing solutions in low gravity environments
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Broom, Mary B. (Inventor)
1990-01-01
An apparatus is disclosed for allowing mixing of solutions in low gravity environments so as to carry out crystallization of proteins and other small molecules or other chemical syntheses, under conditions that maximize crystal growth and minimize disruptive turbulent effects. The apparatus is comprised of a housing, a plurality of chambers, and a cylindrical rotatable valve disposed between at least two of the chambers, said valve having an internal passageway so as to allow fluid movement between the chambers by rotation of the valve. In an alternate embodiment of the invention, a valve is provided having an additional internal passage way so that fluid from a third chamber can be mixed with the fluids of the first two chambers. This alternate embodiment of the invention is particularly desirable when it is necessary to provide a termination step to the crystal growth, or if a second synthetic step is required.
NASA Astrophysics Data System (ADS)
Amenzade, R. Yu.; Kiiko, I. A.
2007-06-01
It is commonly assumed that the theory based on the Kirchhoff hypotheses describes the properties inherent in the wave processes occurring in shells filled with fluids. But there are several new effects that cannot be described by this theory (in particular, the appearance of new types of waves). In this paper, we present a linearized description of axisymmetric wave motion of a perfect incompressible fluid in a multilayered cylindrical shell with allowance for shear strain; the shell is assumed to be infinite and simply supported. This description is aimed at finding new mechanical effects and hence at estimating the influence of the multiple layers and the shear strain on the wave characteristics. In a sense, it generalizes and develops well-known studies of this type. Practice necessitates deriving equations constructed under the assumption that the physical and mechanical properties of the shell material are inhomogeneous along the thickness direction or the shell is multilayered; the development of refined theories (compared with the classical theory based on the Kirchhoff—Love straight normal hypothesis) is also inspired by practice. This is primarily related to the fact that multilayered thin-walled shells made of composite materials are used in various fields of technology. It is of interest to note that, as a result of long evolution, the phenomenon of being multilayered also predominates in living organisms. For example, this is typical of big blood vessels [1] (arteries and veins). In [2], on the basis of a three-dimensional variational principle of mixed type, the equations of motion and physical relations for elastic anisotropic shells rigidly inhomogeneous in the thickness direction are derived under the assumptions of the theory of thin shells and with shear strains taken into account. It is also noted that the case of multilayered shells can be modeled by introducing functions with integrable singularities. When studying wave propagation in deformable shells containing fluid, hydroelasticity problems arise; the solution of such problems is of both theoretical and practical importance. Of topical problems in this field, problems related to pulsating blood flow in big blood vessels [3] (the theory of pulse waves) are worth mentioning. The incentive for such studies is that they can help to understand the normal operation of the blood circulatory system, predict its reaction to variations, and propose methods for artificial intervention. Thus, diagnostics, surgery, and prosthesis are closely related to biomechanics. But the applied value of such problems is not bounded by their applications in hemodynamics. They are also very important in technology because of the wide use of systems of fluid and gas transportation through pipelines with corrosion-resistant coating.
Association of physical examination with pulmonary artery catheter parameters in acute lung injury.
Grissom, Colin K; Morris, Alan H; Lanken, Paul N; Ancukiewicz, Marek; Orme, James F; Schoenfeld, David A; Thompson, B Taylor
2009-10-01
To correlate physical examination findings, central venous pressure, fluid output, and central venous oxygen saturation with pulmonary artery catheter parameters. Retrospective study. Data from the multicenter Fluid and Catheter Treatment Trial of the National Institutes of Health Acute Respiratory Distress Syndrome Network. Five hundred thirteen patients with acute lung injury randomized to treatment with a pulmonary artery catheter. Correlation of physical examination findings (capillary refill time >2 secs, knee mottling, or cool extremities), central venous pressure, fluid output, and central venous oxygen saturation with parameters from a pulmonary artery catheter. We determined association of baseline physical examination findings and on-study parameters of central venous pressure and central venous oxygen saturation with cardiac index <2.5 L/min/m2 and mixed venous oxygen saturation <60%. We determined correlation of baseline central venous oxygen saturation and mixed venous oxygen saturation and predictive value of a low central venous oxygen saturation for a low mixed venous oxygen saturation. Prevalence of cardiac index <2.5 and mixed venous oxygen saturation <60% was 8.1% and 15.5%, respectively. Baseline presence of all three physical examination findings had low sensitivity (12% and 8%), high specificity (98% and 99%), low positive predictive value (40% and 56%), but high negative predictive value (93% and 86%) for cardiac index <2.5 and mixed venous oxygen saturation <60%, respectively. Central venous oxygen saturation <70% predicted a mixed venous oxygen saturation <60% with a sensitivity 84%,specificity 70%, positive predictive value 31%, and negative predictive value of 96%. Low cardiac index correlated with cool extremities, high central venous pressure, and low 24-hr fluid output; and low mixed venous oxygen saturation correlated with knee mottling and high central venous pressure, but these correlations were not found to be clinically useful. In this subset of patients with acute lung injury, there is a high prior probability that cardiac index and mixed venous oxygen saturation are normal and physical examination findings of ineffective circulation are not useful for predicting low cardiac index or mixed venous oxygen saturation. Central venous oxygen saturation <70% does not accurately predict mixed venous oxygen saturation <60%, but a central venous oxygen saturation >or=70% may be useful to exclude mixed venous oxygen saturation <60%.
Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer
NASA Technical Reports Server (NTRS)
Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.
1987-01-01
Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.
Heat exchanger with leak detecting double wall tubes
Bieberbach, George; Bongaards, Donald J.; Lohmeier, Alfred; Duke, James M.
1981-01-01
A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yidong; Andrs, David; Martineau, Richard Charles
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for timemore » integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
NASA Astrophysics Data System (ADS)
Auduson, Aaron E.
2018-07-01
One of the most common problems in the North Sea is the occurrence of salt (solid) in the pores of Triassic sandstones. Many wells have failed due to interpretation errors based conventional substitution as described by the Gassmann equation. A way forward is to device a means to model and characterize the salt-plugging scenarios. Modelling the effects of fluid and solids on rock velocity and density will ascertain the influence of pore material types on seismic data. In this study, two different rock physics modelling approaches are adopted in solid-fluid substitution, namely the extended Gassmann theory and multi-mineral mixing modelling. Using the modified new Gassmann equation, solid-and-fluid substitutions were performed from gas or water filling in the hydrocarbon reservoirs to salt materials being the pore-filling. Inverse substitutions were also performed from salt-filled case to gas- and water-filled scenarios. The modelling results show very consistent results - Salt-plugged wells clearly showing different elastic parameters when compared with gas- and water-bearing wells. While the Gassmann equation-based modelling was used to discretely compute effective bulk and shear moduli of the salt plugs, the algorithm based on the mineral-mixing (Hashin-Shtrikman) can only predict elastic moduli in a narrow range. Thus, inasmuch as both of these methods can be used to model elastic parameters and characterize pore-fill scenarios, the New Gassmann-based algorithm, which is capable of precisely predicting the elastic parameters, is recommended for use in forward seismic modelling and characterization of this reservoir and other reservoir types. This will significantly help in reducing seismic interpretation errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucha, E.I.
1984-01-01
A general method was developed to calculate two dimensional (axisymmetric) mixing of a compressible jet in a variable cross-sectional area mixing channel of the ejector. The analysis considers mixing of the primary and secondary fluids at constant pressure and incorporates finite difference approximations to the conservation equations. The flow model is based on the mixing length approximations. A detailed study and modeling of the flow phenomenon determines the best (optimum) mixing channel geometry of the ejector. The detailed ejector performance characteristics are predicted by incorporating the flow model into a solar-powered ejector cycle cooling system computer model. Freon-11 is usedmore » as both the primary and secondary fluids. Performance evaluation of the cooling system is examined for its coefficient of performance (COP) under a variety of operating conditions. A study is also conducted on a modified ejector cycle in which a secondary pump is introduced at the exit of the evaporator. Results show a significant improvement in the overall performance over that of the conventional ejector cycle (without a secondary pump). Comparison between one and two-dimensional analyses indicates that the two-dimensional ejector fluid flow analysis predicts a better overall system performance. This is true for both the conventional and modified ejector cycles.« less
NASA Astrophysics Data System (ADS)
Larsen, D.; Paul, J.
2017-12-01
Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with crustal He production. Our model for the system invokes upward migration of Smackover pore fluids and other deep groundwater along faults in SE AR, whereby the saline fluids intrude and mix with dilute water in the MRVA aquifer to create saline conditions. Other processes, such as infiltration of saline irrigation runoff, may also be contributing to the problem.
Numerical investigations on unstable direct contact condensation of cryogenic fluids
NASA Astrophysics Data System (ADS)
Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh
2017-02-01
A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.
High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.
1997-01-01
Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.
Treating contaminated organics using the DETOX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsberry, K.D.; Dhooge, P.M.
1993-05-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less
Implementation of an optimized microfluidic mixer in alumina employing femtosecond laser ablation
NASA Astrophysics Data System (ADS)
Juodėnas, M.; Tamulevičius, T.; Ulčinas, O.; Tamulevičius, S.
2018-01-01
Manipulation of liquids at the lowest levels of volume and dimension is at the forefront of materials science, chemistry and medicine, offering important time and resource saving applications. However, manipulation by mixing is troublesome at the microliter and lower scales. One approach to overcome this problem is to use passive mixers, which exploit structural obstacles within microfluidic channels or the geometry of channels themselves to enforce and enhance fluid mixing. Some applications require the manipulation and mixing of aggressive substances, which makes conventional microfluidic materials, along with their fabrication methods, inappropriate. In this work, implementation of an optimized full scale three port microfluidic mixer is presented in a slide of a material that is very hard to process but possesses extreme chemical and physical resistance—alumina. The viability of the selected femtosecond laser fabrication method as an alternative to conventional lithography methods, which are unable to process this material, is demonstrated. For the validation and optimization of the microfluidic mixer, a finite element method (FEM) based numerical modeling of the influence of the mixer geometry on its mixing performance is completed. Experimental investigation of the laminar flow geometry demonstrated very good agreement with the numerical simulation results. Such a laser ablation microfabricated passive mixer structure is intended for use in a capillary force assisted nanoparticle assembly setup (CAPA).
Inside out: Speed-dependent barriers to reactive mixing
NASA Astrophysics Data System (ADS)
Kelley, Douglas; Nevins, Thomas
2015-11-01
Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
VanOsdol, John G.
2013-06-25
The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, a TCM is shown after mixing protocols, and bubbles of various sizes can be seen.
NASA Astrophysics Data System (ADS)
Wang, Pao-Lien
1992-09-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1992-01-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
Normal compression wave scattering by a permeable crack in a fluid-saturated poroelastic solid
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2017-04-01
A mathematical formulation is presented for the dynamic stress intensity factor (mode I) of a finite permeable crack subjected to a time-harmonic propagating longitudinal wave in an infinite poroelastic solid. In particular, the effect of the wave-induced fluid flow due to the presence of a liquid-saturated crack on the dynamic stress intensity factor is analyzed. Fourier sine and cosine integral transforms in conjunction with Helmholtz potential theory are used to formulate the mixed boundary-value problem as dual integral equations in the frequency domain. The dual integral equations are reduced to a Fredholm integral equation of the second kind. It is found that the stress intensity factor monotonically decreases with increasing frequency, decreasing the fastest when the crack width and the slow wave wavelength are of the same order. The characteristic frequency at which the stress intensity factor decays the fastest shifts to higher frequency values when the crack width decreases.
Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers
NASA Astrophysics Data System (ADS)
Newton, P. K.; Meiburg, Eckart
1991-05-01
The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.
Hammerli, Johannes; Rusk, Brian; Spandler, Carl; Emsbo, Poul; Oliver, Nicholas H.S.
2013-01-01
Bromine and chlorine are important halogens for fluid source identification in the Earth's crust, but until recently we lacked routine analytical techniques to determine the concentration of these elements in situ on a micrometer scale in minerals and fluid inclusions. In this study, we evaluate the potential of in situ Cl and Br measurements by LA-ICP-MS through analysis of a range of scapolite grains with known Cl and Br concentrations. We assess the effects of varying spot sizes, variable plasma energy and resolve the contribution of polyatomic interferences on Br measurements. Using well-characterised natural scapolite standards, we show that LA-ICP-MS analysis allows measurement of Br and Cl concentrations in scapolite, and fluid inclusions as small as 16 μm in diameter and potentially in sodalite and a variety of other minerals, such as apatite, biotite, and amphibole. As a demonstration of the accuracy and potential of Cl and Br analyses by LA-ICP-MS, we analysed natural fluid inclusions hosted in sphalerite and compared them to crush and leach ion chromatography Cl/Br analyses. Limit of detection for Br is ~8 μg g−1, whereas relatively high Cl concentrations (> 500 μg g−1) are required for quantification by LA-ICP-MS. In general, our LA-ICP-MS fluid inclusion results agree well with ion chromatography (IC) data. Additionally, combined cathodoluminescence and LA-ICP-MS analyses on natural scapolites within a well-studied regional metamorphic suite in South Australia demonstrate that Cl and Br can be quantified with a ~25 μm resolution in natural minerals. This technique can be applied to resolve a range of hydrothermal geology problems, including determining the origins of ore forming brines and ore deposition processes, mapping metamorphic and hydrothermal fluid provinces and pathways, and constraining the effects of fluid–rock reactions and fluid mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de; Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de; Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevantmore » physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.« less
The fluid mechanics of root canal irrigation.
Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I
2010-12-01
Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid agitation using a closely fitting instrument or by sonic or ultrasonic activation. This review highlights a way forward by understanding the physical processes involved through physical models, mathematical modelling and numerical computations.
Fluid control structures in microfluidic devices
Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.
2008-11-04
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.
Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.
Fluid control structures in microfluidic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathies, Richard A.; Grover, William H.; Skelley, Alison
2017-05-09
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Fluid control structures in microfluidic devices
NASA Technical Reports Server (NTRS)
Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)
2008-01-01
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
An adjoint-based framework for maximizing mixing in binary fluids
NASA Astrophysics Data System (ADS)
Eggl, Maximilian; Schmid, Peter
2017-11-01
Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.
Zhang, Yuan; Yu, Guangren; Yu, Liang; Siddhu, Muhammad Abdul Hanan; Gao, Mengjiao; Abdeltawab, Ahmed A; Al-Deyab, Salem S; Chen, Xiaochun
2016-03-01
Computational fluid dynamics (CFD) was applied to investigate mixing mode and power consumption in anaerobic mono- and co-digestion. Cattle manure (CM) and corn stover (CS) were used as feedstock and stirred tank reactor (STR) was used as digester. Power numbers obtained by the CFD simulation were compared with those from the experimental correlation. Results showed that the standard k-ε model was more appropriate than other turbulence models. A new index, net power production instead of gas production, was proposed to optimize feedstock ratio for anaerobic co-digestion. Results showed that flow field and power consumption were significantly changed in co-digestion of CM and CS compared with those in mono-digestion of either CM or CS. For different mixing modes, the optimum feedstock ratio for co-digestion changed with net power production. The best option of CM/CS ratio for continuous mixing, intermittent mixing I, and intermittent mixing II were 1:1, 1:1 and 1:3, respectively. Copyright © 2016. Published by Elsevier Ltd.
Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J
2010-03-21
In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.
Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2004-01-01
This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.
Zhao, Shilin; Li, Rongxia; Cai, Xiaofan; Chen, Wanjia; Li, Qingrun; Xing, Tao; Zhu, Wenjie; Chen, Y Eugene; Zeng, Rong; Deng, Yueyi
2013-01-01
Body fluid proteome is the most informative proteome from a medical viewpoint. But the lack of accurate quantitation method for complicated body fluid limited its application in disease research and biomarker discovery. To address this problem, we introduced a novel strategy, in which SILAC-labeled mouse serum was used as internal standard for human serum and urine proteome analysis. The SILAC-labeled mouse serum was mixed with human serum and urine, and multidimensional separation coupled with tandem mass spectrometry (IEF-LC-MS/MS) analysis was performed. The shared peptides between two species were quantified by their SILAC pairs, and the human-only peptides were quantified by mouse peptides with coelution. The comparison for the results from two replicate experiments indicated the high repeatability of our strategy. Then the urine from Immunoglobulin A nephropathy patients treated and untreated was compared by this quantitation strategy. Fifty-three peptides were found to be significantly changed between two groups, including both known diagnostic markers for IgAN and novel candidates, such as Complement C3, Albumin, VDBP, ApoA,1 and IGFBP7. In conclusion, we have developed a practical and accurate quantitation strategy for comparison of complicated human body fluid proteome. The results from such strategy could provide potential disease-related biomarkers for evaluation of treatment.
Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow
NASA Astrophysics Data System (ADS)
Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad
2018-06-01
In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.
NASA Technical Reports Server (NTRS)
Drews, D.; Stein, T. P.
1992-01-01
The doubly labeled water (DLW, 2H(2)18O) method is a highly accurate method for measuring energy expenditure (EE). A possible source of error is bolus fluid intake before body water sampling. If there is bolus fluid intake immediately before body water sampling, the saliva may reflect the ingested water disproportionately, because the ingested water may not have had time to mix fully with the body water pool. To ascertain the magnitude of this problem, EE was measured over a 5-day period by the DLW method. Six subjects were dosed with 2H2(18)O. After the reference salivas for the two-point determination were obtained, subjects drank water (700-1,000 ml), and serial saliva samples were collected for the next 3 h. Expressing the postbolus saliva enrichments as a percentage of the prebolus value, we found 1) a minimum in the saliva isotopic enrichments were reached at approximately 30 min with the minimum for 2H (95.48 +/- 0.43%) being significantly lower than the minimum for 18O (97.55 +/- 0.44, P less than 0.05) and 2) EE values calculated using the postbolus isotopic enrichments are appreciably higher (19.9 +/- 7.5%) than the prebolus reference values. In conclusion, it is not advisable to collect saliva samples for DLW measurements within approximately 1 h of bolus fluid intake.
NASA Astrophysics Data System (ADS)
Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.
2013-05-01
The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.
An approach for accurate simulation of liquid mixing in a T-shaped micromixer.
Matsunaga, Takuya; Lee, Ho-Joon; Nishino, Koichi
2013-04-21
In this paper, we propose a new computational method for efficient evaluation of the fluid mixing behaviour in a T-shaped micromixer with a rectangular cross section at high Schmidt number under steady state conditions. Our approach enables a low-cost high-quality simulation based on tracking of fluid particles for convective fluid mixing and posterior solving of a model of the species equation for molecular diffusion. The examined parameter range is Re = 1.33 × 10(-2) to 240 at Sc = 3600. The proposed method is shown to simulate well the mixing quality even in the engulfment regime, where the ordinary grid-based simulation is not able to obtain accurate solutions with affordable mesh sizes due to the numerical diffusion at high Sc. The obtained results agree well with a backward random-walk Monte Carlo simulation, by which the accuracy of the proposed method is verified. For further investigation of the characteristics of the proposed method, the Sc dependency is examined in a wide range of Sc from 10 to 3600 at Re = 200. The study reveals that the model discrepancy error emerges more significantly in the concentration distribution at lower Sc, while the resulting mixing quality is accurate over the entire range.
Bolie, V.W.
1990-07-03
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.
Bolie, Victor W.
1990-01-01
A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.
Internal waves and rectification in a linearly stratified fluid
NASA Astrophysics Data System (ADS)
Pérenne, Nicolas; Renouard, Dominique P.
Laboratory experiments were performed in a 13-m diameter rotating tank equipped with a continuous shelf break geometry and a central piston-like plunger. The fluid density was linearly stratified. The amplitude and period of the plunger, the rotation rate of the platform and the stratification are the parameters of the problem. The density fluctuations at six stations above and at mid-depth of the slope, along with dye visualization of the flow, were recorded. A limited set of experiments showed that a barotropic periodical forcing generated a first mode baroclinic wave which initially appears at the slope and propagates offshore. The likely presence of internal energy rays either slightly above, or immediately along the slope, is in agreement with previous analytical, laboratory and selected oceanic observations. In the former case, the stratification was such that the slope flow at mid-depth was supercritical while in the latter case, slope flow at mid-depth was critical. Rotation tended to decrease the amplitude of the generated internal wave. Also, non-linear processes were likely to act upon these waves for their normalized amplitude tended to decrease as the forcing increased (for similar forcing period, rotation rate and stratification). After the internal wave reflected from the plunger reaches the slope, there is a complex non-stationary regime with an occurrence of internal wave breaking in the vicinity of the slope. Thus there was an appearance of localized patches of turbulence and mixing. These events appeared both in dye visualization and in density fluctuations records. The subsequent mixing, or else the combined effect of topographical rectification and mixing, led to the appearance of a distinct Lagrangian transport, localized in the first few centimeters above the slope and oriented so as to leave the shallow waters on the right of its displacement.
NASA Astrophysics Data System (ADS)
Burisch, Mathias; Walter, Benjamin F.; Gerdes, Axel; Lanz, Maximilian; Markl, Gregor
2018-02-01
The majority of hydrothermal vein systems of economic interest occur at relatively shallow crustal levels, although many of them formed at significantly greater depths. Their present position is a consequence of uplift and erosion. Although, many aspects of their formation are well constrained, the temporal chemical evolution of such systems during uplift and erosion is still poorly understood. These vein minerals comprise calcite, dolomite-ankerite, siderite-magnesite, anhydrite and gypsum forming the last gangue assemblages in Jurassic and Tertiary sulphide-fluorite-quartz-barite veins of the Schwarzwald mining district, SW Germany. Mineral textures of samples from nine localities reveal that in these sequences, mineral precipitation follows a recurring pattern: early calcite is followed by anhydrite or gypsum, siderite and/or dolomite. This succession may repeat up to three times. In-situ (LA-ICP-MS) U-Pb age dating of 15 carbonates from three subsequent generations of the late-stage vein assemblage yield robust ages between 20 and 0.6 Ma. Each mineral sequence forms in a distinctive period of about 2-5 Ma. These ages clearly relate these late-stage mineral phases to the youngest geological episode of the Schwarzwald, which is associated with the Cenozoic Rhine Graben rifting and basement uplift. Based on thermodynamic modelling, the formation of the observed mineral assemblages required an deeply sourced Mg-, Fe- and SO4-rich fluid (b), which was episodically mixed with a shallow crustal HCO3-rich fluid (a). As a consequence of fluid mixing, concentrations of Mg, Fe and SO4 temporarily increased and initiated the formation of the observed sulphate-carbonate mineral sequences. This discontinuous large-scale vertical fluid mixing was presumably directly related to episodes of active tectonics associated with the Cenozoic strike-slip regime of the Upper Rhine Graben. Analogously, episodic fluid mixing is a major key in the formation of older (Jurassic to early Tertiary) Pb-Zn-fluorite-quartz-barite assemblages in the same specific vein systems, albeit involving different fluid compositions. Late-stage hydrothermal (∼20-70 °C) vein assemblages reported in this study record the transition from deep (>2 km) to very shallow (0-1 km) crustal conditions. As a consequence of successive uplift, increasing proportions of shallower and cooler (∼50-70 °C) fluids could take part in such mixing processes. Associated changes in the fluid composition caused the vein mineralogy to change from sulphide-quartz-fluorite-barite to calcite-anhydrite/gypsum-siderite-dolomite, as the system passively ascended closer to the surface.
NASA Astrophysics Data System (ADS)
Smit, Karen V.; Stachel, Thomas; Stern, Richard A.; Shirey, Steven B.; Steele, Andrew
2017-04-01
Traditional models for diamond formation within the lithospheric mantle invoke either carbonate reduction or methane oxidation. Both these mechanisms require some oxygen exchange with the surrounding wall-rock at the site of diamond precipitation. However, peridotite does not have sufficient buffering capacity to allow for diamond formation via these traditional models and instead peridotitic diamonds may form through isochemical cooling of H2O-rich CHO fluids [1]. Marange mixed-habit diamonds from eastern Zimbabwe provide the first natural confirmation of this new diamond growth model [2]. Although Marange diamonds do not contain any silicate or sulphide inclusions, they contain Ni-N-vacancy complexes detected through photoluminescence (PL) spectroscopy that suggest the source fluids equilibrated in the Ni-rich depleted peridotitic lithosphere. Cuboid sectors also contain abundant micro-inclusions of CH4, the first direct observation of reduced CH4-rich fluids that are thought to percolate through the lithospheric mantle [2]. In fluid inclusion-free diamonds, core-to-rim trends in δ13C and N content are used to infer the speciation of the diamond-forming fluid. Core to rim trends of increasing δ13C with decreasing N content are interpreted as diamond growth from oxidized CO2- or carbonate-bearing fluids. Diamond growth from reduced species should show the opposite trends - decreasing δ13C from core to rim with decreasing N content. Within the CH4-bearing growth sectors of Marange diamonds, however, such a 'reduced' trend is not observed. Rather, δ13C increases from core to rim within a homogeneously grown zone [2]. These contradictory observations can be explained through either mixing between CH4- and CO2-rich end-members of hydrous fluids [2] or through closed system precipitation from an already mixed CH4-CO2 H2O-maximum fluid with XCO2 (CO2/[CO2+CH4]) between 0.3 and 0.7 [3]. These results demonstrate that Marange diamonds precipitated from cooling CH4-CO2-bearing hydrous fluids rather than through redox buffering. As this growth mechanism applies to both the fluid-rich cuboid and gem-like octahedral sectors of Marange diamonds, a non-redox model for diamond formation from mixed CH4-CO2 fluids is indicated for a wider range of gem-quality peridotitic diamonds. Indeed, at the redox conditions of global diamond-bearing lithospheric mantle (FMQ -2 to -4; [4]), CHO fluids are strongly water-dominated and contain both CH4 and CO2 as dominant carbon species [5]. By contrast diamond formation in eclogitic assemblages, through either redox buffering or cooling of carbon-bearing fluids, is not as well constrained. Zimmi diamonds from the West African craton have eclogitic sulphide inclusions (with low Ni and high Re/Os) and formed at 650 Ma, overlapping with the timing of subduction [6]. In one Zimmi diamond, a core to rim trend of decreasing δ13C (-23.4 to -24.5 ) and N content is indicative of formation from reduced C2H6/CH4-rich fluids, likely derived from oceanic crust recycled during Neoproterozoic subduction. Unlike mixed CH4-CO2 fluids near the water maximum, isochemical cooling or ascent of such reduced CHO fluids is not effficient at diamond precipitation. Furthermore, measurable carbon isotopic variations in diamond are not predicted in this model and therefore cannot be reconciled with the ˜1 ‰ internal variation seen. Consequently, this Zimmi eclogitic diamond likely formed through redox buffering of reduced subduction-related fluids, infiltrating into sulphide-bearing eclogite. References 1. Luth and Stachel, 2014. CMP, 168, 1083 2. Smit et al., 2016. Lithos, 265, 68-81 3. Stachel et al., in review 4. Stagno et al., 2013. Nature, 493, 84-88 5. Zhang and Duan, 2009. GCA 73, 2089-2102 6. Smit et al., 2016. Precamb Res, 286, 152-166
a New Approach for Complete Mixing by Transverse and Streamwise Flow Motions in Micro-Channels
NASA Astrophysics Data System (ADS)
Wang, Muh-Rong; Dai, Chiau-Yi; Huang, Yang-Sheng
Mixing control is an important issue in micro-fluid chip applications, such as μTAS (Micro-Total Analysis System) or LOC (Lab-on-Chip) because the flow at micro-scale is highly laminar. Several flow control schemes had been developed for complete mixing in the micro-channels in the past decades. However, most of the mixing control schemes are performed by utilizing specific excitation devices, such as electrokinetic, magnetic or pressure drivers. This paper investigates a new control scheme which is composed of a series of flow manipulation by changing the pressure at the two inlets of the micromixer as the external excitation. The fluids from two inlets are introduced to a square mixing chamber, which provides a space where the streamwise and transverse flow motions take place. The results show that the micromixer can be used to produce a large recirculation zone with series of small transverse fringes under external excitations. It is found that this new flow pattern enhances mixing processes at the micro-scale. A complete mixing can be achieved under appropriate flow control with the corresponding design.
Chaotic Fluid Mixing in Crystalline Sphere Arrays
NASA Astrophysics Data System (ADS)
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2017-12-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.
Stratified mixing by microorganisms
NASA Astrophysics Data System (ADS)
Wagner, Gregory; Young, William; Lauga, Eric
2013-11-01
Vertical mixing is of fundamental significance to the general circulation, climate, and life in the ocean. In this work we consider whether organisms swimming at low Reynolds numbers might collectively contribute substantially to vertical mixing. Scaling analysis indicates that the mixing efficiency η, or the ratio between the rate of potential energy conversion and total work done on the fluid, should scale with η ~(a / l) 3 as a / l --> 0 , where a is the size of the organism and l = (νκ /N2)1/4 is an intrinsic length scale of a stratified fluid with kinematic viscosity ν, tracer diffusivity κ, and buoyancy frequency N2. A regularized singularity model demonstrates this scaling, indicating that in this same limit η ~ 1.2 (a / l) 3 for vertical swimming and η ~ 0.14 (a / l ) 3 for horizontal swimming. The model further predicts the absolute maximum mixing efficiency of an ensemble of randomly oriented organisms is around 6% and that the greatest mixing efficiencies in the ocean (in regions of strong salt-stratification) are closer to 0.1%, implying that the total contribution of microorganisms to vertical ocean mixing is negligible.
Topology optimization of unsteady flow problems using the lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Nørgaard, Sebastian; Sigmund, Ole; Lazarov, Boyan
2016-02-01
This article demonstrates and discusses topology optimization for unsteady incompressible fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial bounceback model is implemented to model the transition between fluid and solid phases in the optimization problems. The optimization problem is solved with a gradient based method, and the design sensitivities are computed by solving the discrete adjoint problem. For moderate Reynolds number flows, it is demonstrated that topology optimization can successfully account for unsteady effects such as vortex shedding and time-varying boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid pumps and control valves.
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
Voskoboev, Nikolay V; Cambern, Sarah J; Hanley, Matthew M; Giesen, Callen D; Schilling, Jason J; Jannetto, Paul J; Lieske, John C; Block, Darci R
2015-11-01
Validation of tests performed on body fluids other than blood or urine can be challenging due to the lack of a reference method to confirm accuracy. The aim of this study was to evaluate alternate assessments of accuracy that laboratories can rely on to validate body fluid tests in the absence of a reference method using the example of sodium (Na(+)), potassium (K(+)), and magnesium (Mg(2+)) testing in stool fluid. Validations of fecal Na(+), K(+), and Mg(2+) were performed on the Roche cobas 6000 c501 (Roche Diagnostics) using residual stool specimens submitted for clinical testing. Spiked recovery, mixing studies, and serial dilutions were performed and % recovery of each analyte was calculated to assess accuracy. Results were confirmed by comparison to a reference method (ICP-OES, PerkinElmer). Mean recoveries for fecal electrolytes were Na(+) upon spiking=92%, mixing=104%, and dilution=105%; K(+) upon spiking=94%, mixing=96%, and dilution=100%; and Mg(2+) upon spiking=93%, mixing=98%, and dilution=100%. When autoanalyzer results were compared to reference ICP-OES results, Na(+) had a slope=0.94, intercept=4.1, and R(2)=0.99; K(+) had a slope=0.99, intercept=0.7, and R(2)=0.99; and Mg(2+) had a slope=0.91, intercept=-4.6, and R(2)=0.91. Calculated osmotic gap using both methods were highly correlated with slope=0.95, intercept=4.5, and R(2)=0.97. Acid pretreatment increased magnesium recovery from a subset of clinical specimens. A combination of mixing, spiking, and dilution recovery experiments are an acceptable surrogate for assessing accuracy in body fluid validations in the absence of a reference method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.
2016-12-01
Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.
Zero Boil-Off Tank (ZBOT) Experiment
NASA Technical Reports Server (NTRS)
Mcquillen, John
2016-01-01
The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.
Counter flow cooling drier with integrated heat recovery
Shivvers, Steve D [Prole, IA
2009-08-18
A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.
Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas
2016-01-01
Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.; ...
2016-12-21
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, Joshua M.; Lauchnor, Ellen G.; Redden, George D.
Here, precipitation reactions in porous media influence transport properties of the environment and can control advective and dispersive transport. In subsurface environments, mixing of saline groundwater or injected solutions for remediation with fresh groundwater can induce supersaturation of constituents and drive precipitation reactions. Magnetic resonance imaging (MRI) and micro-computed tomography (µ-CT) were employed as complimentary techniques to evaluate advection, dispersion and formation of precipitate in a 3D porous media flow cell. Two parallel fluids were flowed concentrically through the porous media under two flow rate conditions with Na 2CO 3 and CaCl 2 in the inner and outer fluids, respectively.more » Upon mixing, calcium carbonate became supersaturated and formed a precipitate at the interface of the two fluids. Spatial maps of changing local velocity fields and dispersion in the flow cell were generated from MRI, while high resolution imaging of the precipitate formed in the porous media was achieved via µ-CT imaging. Formation of a precipitate layer minimized dispersive and advective transport between the two fluids and the shape of the precipitation was influenced by the flow rate condition.« less
NASA Astrophysics Data System (ADS)
Rollin, Bertrand; Denissen, Nicholas A.; Reisner, Jon M.; Andrews, Malcolm J.
2012-11-01
The tilted rig experiment is a derivative of the rocket rig experiment designed to investigate turbulent mixing induced by the Rayleigh-Taylor (RT) instability. A tank containing two fluids of different densities is accelerated downwards between two parallel guiding rods by rocket motors. The acceleration is such that the pressure and density gradients face opposite directions at the fluids interface, creating a Rayleigh-Taylor unstable configuration. The rig is tilted such that the tank is initially at an angle and the acceleration is not perpendicular to the fluids interface when the rockets fire. This results in a two dimensional Rayleigh-Taylor instability case where the fluids experience RT mixing and a bulk overturning motion. The tilted rig is therefore a valuable experiment to help calibrating two-dimensional mixing models. Large Eddy Simulations of the tilted rig experiments will be compared to available experimental results. A study of the behavior of turbulence variables relevant to turbulence modeling will be presented. LA-UR 12-23829. This work was performed for the U.S. Department of Energy by Los Alamos National Laboratory under Contract No.DEAC52- 06NA2-5396.
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
NASA Astrophysics Data System (ADS)
Khosravi Parsa, Mohsen; Hormozi, Faramarz
2014-06-01
In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.
Nonideal Rayleigh–Taylor mixing
Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.
2010-01-01
Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.; Jones, H.; Wong, K.
The Marshall Islands Environmental Characterization and Dose Assessment Program has recently implemented waste minimization measures to reduce low level radioactive (LLW) and low level mixed (LLWMIXED) waste streams at the Lawrence Livermore National Laboratory (LLNL). Several thousand environmental samples are collected annually from former US nuclear test sites in the Marshall Islands, and returned to LLNL for processing and radiometric analysis. In the past, we analyzed coconut milk directly by gamma-spectrometry after adding formaldehyde (as preservative) and sealing the fluid in metal cans. This procedure was not only tedious and time consuming but generated storage and waste disposal problems. Wemore » have now reduced the number of coconut milk samples required for analysis from 1500 per year to approximately 250, and developed a new analytical procedure which essentially eliminates the associated mixed radioactive waste stream. Coconut milk samples are mixed with a few grams of ammonium-molydophosphate (AMP) which quantitatively scavenges the target radionuclide cesium 137 in an ion-exchange process. The AMP is then separated from the mixture and sealed in a plastic container. The bulk sample material can be disposed of as a non- radioactive non-hazardous waste, and the relatively small amount of AMP conveniently counted by gamma-spectrometry, packaged and stored for future use.« less
McCollom, Thomas M
2007-12-01
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.
An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls.
Ozcelik, Adem; Ahmed, Daniel; Xie, Yuliang; Nama, Nitesh; Qu, Zhiguo; Nawaz, Ahmad Ahsan; Huang, Tony Jun
2014-05-20
During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ~0.01) in less than 100 ms.
Re-injection feasibility study of fracturing flow-back fluid in shale gas mining
NASA Astrophysics Data System (ADS)
Kang, Dingyu; Xue, Chen; Chen, Xinjian; Du, Jiajia; Shi, Shengwei; Qu, Chengtun; Yu, Tao
2018-02-01
Fracturing flow-back fluid in shale gas mining is usually treated by re-injecting into formation. After treatment, the fracturing flow-back fluid is injected back into the formation. In order to ensure that it will not cause too much damage to the bottom layer, feasibility evaluations of re-injection of two kinds of fracturing fluid with different salinity were researched. The experimental research of the compatibility of mixed water samples based on the static simulation method was conducted. Through the analysis of ion concentration, the amount of scale buildup and clay swelling rate, the feasibility of re-injection of different fracturing fluid were studied. The result shows that the swelling of the clay expansion rate of treated fracturing fluid is lower than the mixed water of treated fracturing fluid and the distilled water, indicating that in terms of clay expansion rate, the treated fracturing flow-back fluid is better than that of water injection after re-injection. In the compatibility test, the maximum amount of fouling in the Yangzhou oilfield is 12mg/L, and the maximum value of calcium loss rate is 1.47%, indicating that the compatibility is good. For the fracturing fluid with high salinity in the Yanchang oilfield, the maximum amount of scaling is 72mg/L, and the maximum calcium loss rate is 3.50%, indicating that the compatibility is better.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
Lagrangian analysis of multiscale particulate flows with the particle finite element method
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy
2014-05-01
We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.
NASA Technical Reports Server (NTRS)
Robbins, Woodrow E. (Editor); Fisher, Scott S. (Editor)
1989-01-01
Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems.
From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem
NASA Astrophysics Data System (ADS)
Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team
2016-11-01
The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.
NASA Astrophysics Data System (ADS)
Cenedese, A.; Dore, V.; Moroni, M.
2009-05-01
Free thermal convection refers to the motion of vertical turbulent plumes or domes, which can occur when, an initially in-rest stratified fluid, is submitted to buoyancy forces, caused by a permanent perturbation associated to a heat transfer mechanism. When a fluid, in equilibrium, is stably stratified the external forcing can produce an unstable configuration ensuing the increasing in amplitude of internal waves, and, if it has strength enough, it can definitely erode the stratification, involving an increasing thickness of fluid volume. The entrainment phenomenon justifies the penetrative feature of convection and causes the growth of a convective boundary layer of well mixed fluid (Convective Mixing Layer) against the adjacent stable stratified layer. The non-steady phenomenon of penetrative convection in a stably stratified fluid has been reproduced in laboratory employing a tank filled with water and subjected to heating from below. The goal in the experiment is predicting the convective boundary layer growth as a function of initial and boundary conditions and describing the fate of a tracer dissolved in the fluid phase. The motivations of the research are mostly related to its connections to environmental topics. In nature the dynamics of penetrative convection influences the transport and mixing features of stratified fluids, playing a fundamental role in characterizing and forecasting the distribution of chemical species, with implication for water or air quality in the upper oceans and lakes or in the lower troposphere. When studying turbulent convective phenomenon, dispersion is mostly due to transport by large organized structures while molecular diffusion can be neglected. The knowledge of the horizontal and vertical extension of the structures dominating the flow field appears to be mandatory. In order to better understanding and likely describing the evolution of turbulent structures inside the convective layer, a fully three dimensional experimental technique is required. The equipment employed is suitable for simultaneously providing temperatures inside the domain through thermocouples and Lagrangian particle trajectories obtained by using a 3D-PTV technique. The combined use of a vertical array of thermocouples and 3D-PTV allows, simultaneously, profiling temperature and the 3D velocity components. A properly calibrated stereoscopic system of three monochrome 25 fps CCD cameras has been employed. The combination of image and object space based information is applied to establish the spatio-temporal correspondences between particle position of consecutive time steps, resulting in the reconstruction of 3D trajectories. The vertical dimension of convective structures is associated to the mixing layer height, detected both employing temperature data and statistics of the velocity field. On the other hand, the spatial correlation of the velocity field, providing the plume horizontal dimension, allows the horizontal extension of the mixing region to be determined. This information coupled to the knowledge of the mixing layer height allows the spatial extension of the convective region to be fully described.
NASA Astrophysics Data System (ADS)
Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha
2018-03-01
A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.
FDNS CFD Code Benchmark for RBCC Ejector Mode Operation
NASA Technical Reports Server (NTRS)
Holt, James B.; Ruf, Joe
1999-01-01
Computational Fluid Dynamics (CFD) analysis results are compared with benchmark quality test data from the Propulsion Engineering Research Center's (PERC) Rocket Based Combined Cycle (RBCC) experiments to verify fluid dynamic code and application procedures. RBCC engine flowpath development will rely on CFD applications to capture the multi-dimensional fluid dynamic interactions and to quantify their effect on the RBCC system performance. Therefore, the accuracy of these CFD codes must be determined through detailed comparisons with test data. The PERC experiments build upon the well-known 1968 rocket-ejector experiments of Odegaard and Stroup by employing advanced optical and laser based diagnostics to evaluate mixing and secondary combustion. The Finite Difference Navier Stokes (FDNS) code was used to model the fluid dynamics of the PERC RBCC ejector mode configuration. Analyses were performed for both Diffusion and Afterburning (DAB) and Simultaneous Mixing and Combustion (SMC) test conditions. Results from both the 2D and the 3D models are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardle, K.E.
2013-07-01
Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor aremore » reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.« less
Transport relaxation processes in supercritical fluids
NASA Astrophysics Data System (ADS)
Jonas, J.
The technique for solubility measurements of solids in compressed supercritical fluids using NMR and theoretical analysis of experimental data on collision induced scattering were examined. Initial tests for a determination of solid solubilities in supercritical fluids without mixing were previously described and these preparations have continued. Super critical carbon dioxide dissolving naphthalene, for which solubility data is already available (M. McHugh, M.E. Paulaitis, J. Chem. Eng. Data, Vol. 25 (4), 1980) is being studied. This initial testing of the NMR technique for measuring solubilities in a well characterized system should prove very valuable for our later determinations with the proposed mixing probe. Systematic experimental studies of collision induced spectra in several supercritical fluids using both Raman and Rayleigh scattering are continued. The experimental work on SF6 and CH4 was finished and the experimental data testing of the various theoretical models for collision induced scattering is being analyzed.
The Earth: Kinda like a Mai Tai?
NASA Astrophysics Data System (ADS)
Jellinek, M.
2005-12-01
Many problems in the Earth sciences involve fluid flow. Examples include the formation and differentiation of planets, mantle convection, plate tectonics, the generation of planetary magnetic fields, the generation, rise, and chemical differentiation of magmas, crystal nucleation and growth, sedimentation and mechanical erosion at riverbeds, and circulation in the atmosphere and oceans. In each of these situations fluid motions arise as a result of balances among body forces (e.g. effects of gravitational and magnetic fields) and (or) surface forces (e.g. effects of surface tension, shear and pressure gradients). Processes in which such force balance arise naturally are examples of ``Natural convection''. Familiar examples of natural convection include thermally-driven motions above a radiator in a cold room or inside a pot of pasta sauce warmed on a stove. Analog fluid mechanics experiments are a useful and fun way to isolate and learn about the mechanics of such processes. Experiments need not be done in a fluid dynamics laboratory. Indeed some of the most interesting occur in your favorite cocktails. In this demonstration I first use household materials from the kitchen and from the liquor cabinet to isolate and build understanding of individual examples of convection driven by thermal, compositional and surface tension effects over a range of conditions. Next, using more complicated experiments with actual and analog bar drinks I will present and analyze a number of coupled convective processes and also address the role of the rheology of the working fluids. In particular, the structure, transport and mixing properties of the motions are investigated.
Lattice Boltzmann computation of creeping fluid flow in roll-coating applications
NASA Astrophysics Data System (ADS)
Rajan, Isac; Kesana, Balashanker; Perumal, D. Arumuga
2018-04-01
Lattice Boltzmann Method (LBM) has advanced as a class of Computational Fluid Dynamics (CFD) methods used to solve complex fluid systems and heat transfer problems. It has ever-increasingly attracted the interest of researchers in computational physics to solve challenging problems of industrial and academic importance. In this current study, LBM is applied to simulate the creeping fluid flow phenomena commonly encountered in manufacturing technologies. In particular, we apply this novel method to simulate the fluid flow phenomena associated with the "meniscus roll coating" application. This prevalent industrial problem encountered in polymer processing and thin film coating applications is modelled as standard lid-driven cavity problem to which creeping flow analysis is applied. This incompressible viscous flow problem is studied in various speed ratios, the ratio of upper to lower lid speed in two different configurations of lid movement - parallel and anti-parallel wall motion. The flow exhibits interesting patterns which will help in design of roll coaters.
Incompressible variable-density turbulence in an external acceleration field
Gat, Ilana; Matheou, Georgios; Chung, Daniel; ...
2017-08-24
Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less
Incompressible variable-density turbulence in an external acceleration field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gat, Ilana; Matheou, Georgios; Chung, Daniel
Dynamics and mixing of a variable-density turbulent flow subject to an externally imposed acceleration field in the zero-Mach-number limit are studied in a series of direct numerical simulations. The flow configuration studied consists of alternating slabs of high- and low-density fluid in a triply periodic domain. Density ratios in the range ofmore » $$1.05\\leqslant R\\equiv \\unicode[STIX]{x1D70C}_{1}/\\unicode[STIX]{x1D70C}_{2}\\leqslant 10$$are investigated. The flow produces temporally evolving shear layers. A perpendicular density–pressure gradient is maintained in the mean as the flow evolves, with multi-scale baroclinic torques generated in the turbulent flow that ensues. For all density ratios studied, the simulations attain Reynolds numbers at the beginning of the fully developed turbulence regime. An empirical relation for the convection velocity predicts the observed entrainment-ratio and dominant mixed-fluid composition statistics. Two mixing-layer temporal evolution regimes are identified: an initial diffusion-dominated regime with a growth rate$${\\sim}t^{1/2}$$followed by a turbulence-dominated regime with a growth rate$${\\sim}t^{3}$$. In the turbulent regime, composition probability density functions within the shear layers exhibit a slightly tilted (‘non-marching’) hump, corresponding to the most probable mole fraction. In conclusion, the shear layers preferentially entrain low-density fluid by volume at all density ratios, which is reflected in the mixed-fluid composition.« less
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Okong'o, Nora
2003-01-01
This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.
NASA Technical Reports Server (NTRS)
Bellan, J.
1999-01-01
A critical review of recent investigations in the real of supercritical (and subcritical) fluid behavior is presented with the goal of obtaining a perspective on the peculiarities of high pressure observations.
The Optimization Design of An AC-Electroosmotic Micro mixer
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Suh, Yongkweon; Kang, Sangmo
2007-11-01
We propose the optimization design of an AC-electroosmotic micro-mixer, which is composed of a channel and a series of pairs of electrodes attached on the bottom wall in zigzag patterns. The AC electric field is applied to the electrodes so that a fluid flow takes place around the electrodes across the channel, thus contributing to the mixing of the fluid within the channel. We have performed numerical simulations by using a commercial code (CFX 10) to optimize the shape and pattern of the electrodes via the concept of mixing index. It is found that the best combination of two kinds of electrodes, which leads to good mixing performance, is not simply harmonic one. When the length ratio of the two kinds of electrodes closes to 2:1, we can get the best mixing effect. Furthermore, we will visualize the flow pattern and measure the velocity field with a PTV technique to validate the numerical simulations. In addition, the mixing pattern will be visualized via the experiment.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light
Dispersion effects in the miscible displacement of two fluids in a duct of large aspect ratio
NASA Astrophysics Data System (ADS)
Zhang, J.; Frigaard, I. A.
We study miscible displacements in long ducts in the dispersive limit of small \\varepsilon Pe, where \\varepsilon ≪ 1 is the inverse aspect ratio and Pe the Péclet number. We consider the class of generalized Newtonian fluids, with specified closure laws for the fluid properties of the concentration-dependent mixture. Regardless of viscosity ratio and the constitutive laws of the pure fluids, for sufficiently small \\varepsilon Pe these displacements are characterized by rapid cross-stream diffusion and slow streamwise dispersion, i.e. the concentration appears to be near-uniform across the duct and spreads slowly as it translates. Using the multiple-scales method we derive the leading-order asymptotic approximation to the average fluid concentration bar{c}_0. We show that bar{c}_0 evolves on the slow timescale t ˜ (\\varepsilon Pe)^{-1}, and satisfies a nonlinear diffusion equation in a frame of reference moving with the mean speed of the flow. In the case that the two fluids have identical rheologies and the concentration represents a passive tracer, the diffusion equation is linear. For Newtonian fluids we recover the classical results of Taylor (l953), Aris (1956), and for power-law fluids those of Vartuli et al. (1995). In the case that the fluids differ and/or that mixing is non-passive, bar{c}_0 satisfies a nonlinear diffusion equation in the moving frame of reference. Given a specific mixing/closure law for the rheological properties, we are able to compute the dispersive diffusivity D_T(bar{c}_0) and predict spreading along the channel. We show that D_T(bar{c}_0) can vary significantly with choice of mixing law and discuss why. This also opens the door to possibilities of controlling streamwise spreading by the rheological design of reactive mixtures, i.e. including chemical additives such that the rheology of the mixture behaves very differently to the rheology of either pure fluid. Computed examples illustrate the potential effects that might be achieved.
Analysis, approximation, and computation of a coupled solid/fluid temperature control problem
NASA Technical Reports Server (NTRS)
Gunzburger, Max D.; Lee, Hyung C.
1993-01-01
An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.
How animals drink and swim in fluids
NASA Astrophysics Data System (ADS)
Jung, Sunghwan
2011-10-01
Fluids are essential for most living organisms to maintain a healthy body and also serve as a medium in which they locomote. The fluid bulk or interfaces actively interact with biological structures, which produces highly nonlinear, interesting, and complicated dynamical problems. We studied the lapping of cats and the swimming of Paramecia in various fluidic environments. The problem of the cat drinking can be simplified as the competition between inertia and gravity whereas the problem of Paramecium swimming in viscous fluids results from the competition between viscous drag and thrust. The underlying mechanisms are discussed and understood through laboratory experiments utilizing high-speed photography.
NASA Astrophysics Data System (ADS)
Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos
The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
Intravenous Fluid Generation System
NASA Technical Reports Server (NTRS)
McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John
2013-01-01
The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in the water before entering the salt bag and mixing with the salt to create a normal saline solution.
L4 Milestone Report for MixEOS 2016 experiments and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, Eric Nicholas; Bradley, Paul Andrew; Merritt, Elizabeth Catherine
2016-08-01
Accurate simulations of fluid and plasma flows require accurate thermodynamic properties of the fluids or plasmas. This thermodynamic information is represented by the equations of state of the materials. For pure materials, the equations of state may be represented by analytical models for idealized circumstances, or by tabular means, such as the Sesame tables. However, when a computational cell has a mixture of two or more fluids, the equations of state are not well understood, particularly under the circumstances of high energy densities. This is a particularly difficult issue for Eulerian codes, wherein mixed cells arise simply due to themore » advection process. LANL Eulerian codes typically assume an “Amagat’s Law” (or Law of Partial Volumes) for the mixture in which the pressures and temperatures of fluids are at an equilibrium that is consistent with the fluids being segregated within the cell. However, for purposes of computing other EOS properties, e.g., bulk modulus, or sound speed, the fluids are considered to be fully “mixed”. LANL has also been investigating implementing instead “Dalton’s Law” in which the total pressure is considered to be the sum of the partial pressures within the cell. For ideal gases, these two laws give the same result. Other possibilities are nonpressure- temperature-equilibrated approaches in which the two fluids are not assumed to “mix” at all, and the EOS properties of the cell are computed from, say, volume-weighted averages of the individual fluid properties. The assumption of the EOS properties within a mixed cell can have a pronounced effect on the behavior of the cell, resulting in, for example, different shock speeds, pressures, temperatures and densities within the cell. There is no apparent consensus as to which approach is best under HED conditions, though we note that under typical atmospheric and near atmospheric conditions the differences may be slight.« less
Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor
2010-01-01
The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable similarities in terms of their age, mineralogy, and mineral chemistry to the MVT deposit near Wiesloch.
Flow regimes in a T-mixer operating with a binary mixture
NASA Astrophysics Data System (ADS)
Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria
2015-11-01
Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.
Modeling and simulation of large scale stirred tank
NASA Astrophysics Data System (ADS)
Neuville, John R.
The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the agitation of the vessel is adequate to produce a homogenous mixture but not so high that it produces excessive erosion to internal components. The main findings reported by this study were: (1) Careful consideration of the fluid yield stress characteristic is required to make predictions of fluid flow behavior. Laminar Models can predict flow patterns and stagnant regions in the tank until full movement of the flow field occurs. Power Curves and flow patterns were developed for the full scale mixing model to show the differences in expected performance of the mixing process for a broad range of fluids that exhibit Herschel--Bulkley and Bingham Plastic flow behavior. (2) The impeller power demand is independent of the flow model selection for turbulent flow fields in the region of the impeller. The laminar models slightly over predicted the agitator impeller power demand produced by turbulent models. (3) The CFD results show that the power number produced by the mixing system is independent of size. The 40 gallon model produced the same power number results as the 9300 gallon model for the same process conditions. (4) CFD Results show that the Scale-Up of fluid motion in a 40 gallon tank should compare with fluid motion at full scale, 9300 gallons by maintaining constant impeller Tip Speed.
NASA Astrophysics Data System (ADS)
Cook, Kristina J.; Fan, YanFeng; Hassan, Ibrahim
2012-05-01
Micromixers are vital components in micro total analysis systems. It is desirable to develop micromixers which are capable of rapidly mixing two or more fluids in a small footprint area, while minimizing mechanical losses. A novel planar scaled-up passive micromixer is experimentally investigated in this study. The design incorporates a 7-substream uneven interdigital inlet which supplies two liquid species in a parallel arrangement and promotes diffusion along the side walls. Forty-eight staggered teardrop-shaped obstruction elements located along the channel length combined with 32 side walls protrusions increase the two-fluid interfacial area while converging the flow due to periodic reductions in cross-sectional area. The scaled-up micromixer has a mixing channel length of 110 mm with a mixing channel height and width of 2 and 5 mm, respectively. Experimental investigations are carried out at four locations along the channel length and at Reynolds numbers equal to 1, 5, 10, 25, 50, and 100, where the Reynolds number is calculated based on total two-fluid flow and the mixing channel hydraulic diameter. Flow visualization is employed to study flow patterns, while induced fluorescence (IF), using de-ionized water and low concentration Rhodamine 6G solutions, provides mixing efficiency data. Results show a change in dominant mixing mechanism from mass diffusion to mass advection, with a critical Reynolds number of 25. At high Reynolds numbers, the formation of additional lamellae is observed, as is the formation of Dean vortices in the vicinity of the teardrop obstructions. Of the tested cases, the highest outlet mixing efficiency, 68.5%, is achieved at a Reynolds number of 1, where mass diffusion dominates. At low Reynolds numbers, superior mixing efficiency is due primarily to the implementation of the uneven interdigital inlet. A comparable mixing length is proposed to allow for reasonable comparison with published studies.
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi
2003-01-01
Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.
Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid
NASA Astrophysics Data System (ADS)
Jia, Xiao-Yue; Tian, Bo; Du, Zhong; Sun, Yan; Liu, Lei
2018-04-01
Under investigation in this paper is the variable-coefficient Kadomtsev-Petviashvili equation, which describes the long waves with small amplitude and slow dependence on the transverse coordinate in a single-layer shallow fluid. Employing the bilinear form and symbolic computation, we obtain the lump, mixed lump-stripe soliton and mixed rogue wave-stripe soliton solutions. Discussions indicate that the variable coefficients are related to both the lump soliton’s velocity and amplitude. Mixed lump-stripe soliton solutions display two different properties, fusion and fission. Mixed rogue wave-stripe soliton solutions show that a rogue wave arises from one of the stripe solitons and disappears into the other. When the time approaches 0, rogue wave’s energy reaches the maximum. Interactions between a lump soliton and one-stripe soliton, and between a rogue wave and a pair of stripe solitons, are shown graphically.
An Acoustofluidic Micromixer via Bubble Inception and Cavitation from Microchannel Sidewalls
2015-01-01
During the deep reactive ion etching process, the sidewalls of a silicon mold feature rough wavy structures, which can be transferred onto a polydimethylsiloxane (PDMS) microchannel through the soft lithography technique. In this article, we utilized the wavy structures of PDMS microchannel sidewalls to initiate and cavitate bubbles in the presence of acoustic waves. Through bubble cavitation, this acoustofluidic approach demonstrates fast, effective mixing in microfluidics. We characterized its performance by using viscous fluids such as poly(ethylene glycol) (PEG). When two PEG solutions with a resultant viscosity 54.9 times higher than that of water were used, the mixing efficiency was found to be 0.92, indicating excellent, homogeneous mixing. The acoustofluidic micromixer presented here has the advantages of simple fabrication, easy integration, and capability to mix high-viscosity fluids (Reynolds number: ∼0.01) in less than 100 ms. PMID:24754496
Bioremediation of aircraft deicing fluids (glycol) at airports. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, D.W.
1998-09-01
This report describes the work done to determine the effectiveness of various aerobic bioremediation techniques for reducing the biochemical oxygen demand (BOD) of aircraft deicing fluid runoff. Primary emphasis has been placed on laboratory and field demonstrations of bioremediation systems using various combinations of inocula (bacteria), nutrient mixes, enzyme mixes, and ultrasonic stimulation. Laboratory experiments with a variety of inocula and nutrients together with enzymes and ultrasound are demonstrated showing the importance of the appropriate bacteria and nutrient mix in bioaugmentation. The appropriate mix was shown to significantly influence biodegradation. Deicing solutions were routinely reduced to acceptable BOD levels formore » effluent discharge in 3 days or less. In the field experiment, a special dual-tank bioreactor system was developed to demonstrate a pilot small-scale system. Experimental operation of this system confirmed that a 3-day or less remediation cycle was possible during the winter season.« less
Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow
NASA Technical Reports Server (NTRS)
Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.
1997-01-01
Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.
Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)
NASA Technical Reports Server (NTRS)
2003-01-01
Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. The beads are similar in size and density to human lymphoid cells. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light. In this photograph, beads are trapped in the injection port, with bubbles forming shortly after injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speetjens, M. F. M.; Demissie, E. A.; Metcalfe, G.
Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zonesmore » between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its suitability for (at least first exploratory) studies on (qualitative) mixing properties.« less
Fuel Injector Design Optimization for an Annular Scramjet Geometry
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.
2003-01-01
A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.
NASA Astrophysics Data System (ADS)
Yu, Zhangfa; Chen, Maohong; Zhao, Haijie
2015-05-01
The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.
Bowel perforation detection using metabolic fluorescent chlorophylls
NASA Astrophysics Data System (ADS)
Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook
2016-03-01
Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.
Cognitive Predictors of Everyday Problem Solving across the Lifespan.
Chen, Xi; Hertzog, Christopher; Park, Denise C
2017-01-01
An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Patil, Rahul Harishchandra; Nadar, Mariappan Dharmaraj; Ali, Rashed
2017-05-01
The influence of Dean Number on the heat transfer to petroleum base oils (SN70, SN150 and SN300, flowing through four spiral coils, maintained at constant wall temperature and having average curvature ratio of 0.01568, 0.019, 0.02466 and 0.03011 are investigated in the present study. The fluid, with fully developed velocity profile and underdeveloped temperature profile (the Graetz problem), flows inside the tube at the entrance. Four correlations are developed which are valid for a range of Dean Number from 2 to 1043, Prandtl Number from 76 to 298, and Reynold's Number from 12 to 6013. These correlations are not available in literature and are developed for the first time for the given conditions. The correlations are compared with the correlations developed by earlier investigators and it is found that they are in good agreement. The developed correlations are corrected to account for the variable property relations for the viscous fluids used in the experiment. The average deviations in the developed correlations and the readings obtained by experiment are found to be <± 3%. The comparison of the developed correlations with the correlations of other investigators on helical coils showed an increase in heat transfer in spiral coils than the helical coils. The reason for this is that the magnitude of the secondary flow varied continuously with an increase in the mixing of the fluid particles occurring throughout the length of the spiral coil.
Parvaneh, Khalil; Shariati, Alireza
2017-09-07
In this study, a new modification of the perturbed chain-statistical associating fluid theory (PC-SAFT) has been proposed by incorporating the lattice fluid theory of Guggenheim as an additional term to the original PC-SAFT terms. As the proposed model has one more term than the PC-SAFT, a new mixing rule has been developed especially for the new additional term, while for the conventional terms of the PC-SAFT, the one-fluid mixing rule is used. In order to evaluate the proposed model, the vapor-liquid equilibria were estimated for binary CO 2 mixtures with 16 different ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium family with various anions consisting of bis(trifluoromethylsulfonyl) imide, hexafluorophosphate, tetrafluoroborate, and trifluoromethanesulfonate. For a comprehensive comparison, three different modes (different adjustable parameters) of the proposed model were compared with the conventional PC-SAFT. Results indicate that the proposed modification of the PC-SAFT EoS is generally more reliable with respect to the conventional PC-SAFT in all the three proposed modes of vapor-liquid equilibria, giving good agreement with literature data.
Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries
NASA Astrophysics Data System (ADS)
López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.
2015-03-01
We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required for capturing the state of solid and fluid materials close to the origin is achieved by making use of adaptive mesh refinement techniques. Rigid-body rotations contained in the deformation tensor have been shown to have a negative effect on the accuracy of the method in extreme compression conditions and are removed by transforming the deformation tensor into a stretch tensor at each time step. With this methodology, the evolution of the interface can be tracked up to a point at which numerical convergence cannot be achieved due to the inception of numerical Kelvin-Helmholtz instabilities caused by slip between materials. From that point, only qualitative conclusions can be extracted from this analysis. The influence of different geometrical parameters, initial conditions, and material properties on the motion of the interface are investigated. Some major differences are found with respect to the better understood fluid-fluid case. For example, increasing the wave number of the interface perturbations leads to a second phase reversal of the interface (i.e., the first phase reversal of the interface naturally occurs due to the initial negative growth-rate of the instability as the shock wave transitions from the high-density material to the low-density one). This phenomenon is caused by the compressive effect of the converging geometry and the low density of the gas with respect to the solid, which allows for the formation of an incipient spike in the center of an already existing bubble. Multiple solid-gas density ratios are also considered. Results show that the motion of the interface asymptotically converges to the solid-vacuum case. When a higher initial density for the gas is considered, the growth rate of interface perturbations decreases and, in some situations, its sign may reverse, as the fluid becomes more dense than the solid due to having higher compressibility. Finally, the influence of the Mach number of the driving shock and the yield stress on the mixing-zone is examined. We find that the width of the mixing zone produced after the re-shock increases in proportion to the strength of the incident shock. An increased yield stress in the solid material makes the interface less unstable due to vorticity being carried away from the interface by shear waves and limits the generation of smaller length scales after the re-shock.
NASA Astrophysics Data System (ADS)
Lacassagne, Tom; Simoëns, Serge; El Hajem, Mahmoud; Champagne, Jean-Yves
2018-01-01
Inhibited planar laser-induced fluorescence (I-PLIF) techniques are widely used for heat and mass transfer studies in fluid mechanics. They allow the visualization of instantaneous two-dimensional field of a passive or reactive scalar, providing that this scalar acts as an inhibitor to the fluorescence of a specific molecule, and that this molecule is homogeneously mixed in the fluid at a known concentration. Local scalar values are deduced from fluorescence recordings thanks to preliminary calibration procedure. When confronted with non-optically thin systems, however, the knowledge of the excitation intensity distribution in the region of interest is also required, and this information is most of the time hard to obtain. To overcome that problem, two-color ratiometric PLIF techniques ( {I}^ {r}-PLIF) have been developed. In these methods, the ratio of two different fluorescence wavelengths triggered by the same excitation is used as an indicator of the scalar value. Such techniques have been used for temperature measurements in several studies but never, to the author's knowledge, for pH tracking and acid-base mixing, despite the frequent use of the one-color version in mass transfer studies. In the present work, a ratiometric pH-sensitive-inhibited PLIF technique ( {I}_ {pH}^ {r}-PLIF) using fluorescein sodium as a single dye and applicable to complex geometries and flows is developed. Theoretical considerations show that the ratio of the two-color fluorescence intensities should only depend on the dye's spectral quantum yield, itself pH-dependent. A detailed spectrofluorimetric study of fluorescein reveals that this ratio strictly increases with the pH for two well-chosen spectral bands (fluorescence colors). A similar trend is found when using sCmos cameras equipped with optical filters to record fluorescence signals. The method is then experimented on a test flow, a turbulent acidic jet injected in an initially pH-neutral volume of fluid. The results obtained using the ratiometric version are consistent with single-color technique measurements, but excitation intensity heterogeneity is more efficiently accounted for, with a much smaller time needed for data treatment and without requiring the knowledge of laser paths across the fluid. This new technique is also able to reduce the impact of some unwanted experimental features such as time-varying excitation intensity or reflections at interfaces. It can be of great interest for further applications to multiphase mass transfer studies.
NASA Astrophysics Data System (ADS)
Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos
2018-05-01
Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.
A Planar Microfluidic Mixer Based on Logarithmic Spirals
Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy
2013-01-01
A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3-D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes, and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. PMID:23956497
A planar microfluidic mixer based on logarithmic spirals
NASA Astrophysics Data System (ADS)
Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Sang-Won Park, Daniel; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy; Monroe, W. Todd
2012-05-01
A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing.
Diffusion-limited mixing by incompressible flows
NASA Astrophysics Data System (ADS)
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Performance analysis of a microfluidic mixer based on high gradient magnetic separation principles
NASA Astrophysics Data System (ADS)
Liu, Mengyu; Han, Xiaotao; Cao, Quanliang; Li, Liang
2017-09-01
To achieve a rapid mixing between a water-based ferrofluid and DI water in a microfluidic environment, a magnetically actuated mixing system based on high gradient magnetic separation principles is proposed in this work. The microfluidic system consists of a T-shaped mirochannel and an array of integrated soft-magnetic elements at the sidewall of the channel. With the aid of an external magnetic bias field, these elements are magnetized to produce a magnetic volume force acting on the fluids containing magnetic nanoparticles, and then to induce additional flows for improving the mixing performance. The mixing process is numerically investigated through analyzing the concentration distribution of magnetic nanoparticles using a coupled particle-fluid transport model, and mixing performances under different parametrical conditions are investigated in detail. Numerical results show that a high mixing efficiency around 97.5% can be achieved within 2 s under an inlet flow rate of 1 mm s-1 and a relatively low magnetic bias field of 50 mT. Meanwhile, it has been found that there is an optimum number of magnetic elements used for obtaining the best mixing performance. These results show the potential of the proposed mixing method in lab-on-a-chip system and could be helpful in designing and optimizing system performance.
NASA Astrophysics Data System (ADS)
Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua
2015-07-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices
Stenkamp, Victoria S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Alexandria, VA
2009-06-02
Advanced wicking structures and methods utilizing these structures are described. The use of advanced wicking structures can promote rapid mass transfer while maintaining high capillary pressure through the use of small pores. Particularly improved results in fluid contacting processes can be achieved by enhanced mixing within a wicking layer within a microchannel.
Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices
Stenkamp, Victoria S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Richland, WA
2011-04-19
Advanced wicking structures and methods utilizing these structures are described. The use of advanced wicking structures can promote rapid mass transfer while maintaining high capillary pressure through the use of small pores. Particularly improved results in fluid contacting processes can be achieved by enhanced mixing within a wicking layer within a microchannel.
Area production in supercritical, transitional mixing layers for reactive flow applications
NASA Technical Reports Server (NTRS)
Bellan, J.; Okong'o, N.
2002-01-01
An investigation of surface area production is conducted for supercritical mixing layers; the results are relevant to flame area evolution and fluid disintegration. In this study, the surface is chosen perpendicular to the mass fraction gradient.
ERIC Educational Resources Information Center
Ditmars, John D.
1978-01-01
Presents a literature review of longitudinal dispersion, mixing and transport in streams, rivers, lakes, reservoirs, estuaries, and oceans. This review covers also: (1) fluid-solid mixtures and (2) oil spill behavior. A list of 189 references published in 1976 and 1977 is presented. (HM)
The Buoyancy Approach to U-Tube Problems
ERIC Educational Resources Information Center
Binder, P.-M.; Magowan, M. A.
2016-01-01
In this note we unify two physical situations treatable with hydrostatics: an object floating on a denser fluid and an open U-shaped tube with two immiscible fluids. We begin by reviewing the problem of a partially floating uniform, rectangular prism of horizontal area "A" immersed in a denser fluid, with respective densities ?[subscript…
Cognitive Predictors of Everyday Problem Solving across the Lifespan
Chen, Xi; Hertzog, Christopher; Park, Denise C.
2017-01-01
Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664
A monolithic Lagrangian approach for fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.
2010-11-01
Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.
Rahaman, Mijanur; Pang, Chin-Tzong; Ishtyak, Mohd; Ahmad, Rais
2017-01-01
In this article, we introduce a perturbed system of generalized mixed quasi-equilibrium-like problems involving multi-valued mappings in Hilbert spaces. To calculate the approximate solutions of the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems, firstly we develop a perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems, and then by using the celebrated Fan-KKM technique, we establish the existence and uniqueness of solutions of the perturbed system of auxiliary generalized multi-valued mixed quasi-equilibrium-like problems. By deploying an auxiliary principle technique and an existence result, we formulate an iterative algorithm for solving the perturbed system of generalized multi-valued mixed quasi-equilibrium-like problems. Lastly, we study the strong convergence analysis of the proposed iterative sequences under monotonicity and some mild conditions. These results are new and generalize some known results in this field.
NASA Astrophysics Data System (ADS)
Hogg, Charlie; Dalziel, Stuart; Huppert, Herbert; Imberger, Jorg; Department of Applied Mathematics; Theoretical Physics Team; CentreWater Research Team
2014-11-01
Dense gravity currents feed fluid into confined basins in lakes, the oceans and many industrial applications. Existing models of the circulation and mixing in such basins are often based on the currents entraining ambient fluid. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the mixing in such currents. Laboratory experiments were carried out which visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the stratification in the basin. This new model gives a better approximation of the stratification observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lakes.
NASA Astrophysics Data System (ADS)
Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.
2017-09-01
The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.
Options for refractive index and viscosity matching to study variable density flows
NASA Astrophysics Data System (ADS)
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.
Laboratory and numerical simulation of internal wave attractors and their instability.
NASA Astrophysics Data System (ADS)
Brouzet, Christophe; Dauxois, Thierry; Ermanyuk, Evgeny; Joubaud, Sylvain; Sibgatullin, Ilias
2015-04-01
Internal wave attractors are formed as result of focusing of internal gravity waves in a confined domain of stably stratified fluid due to peculiarities of reflections properties [1]. The energy injected into domain due to external perturbation, is concentrated along the path formed by the attractor. The existence of attractors was predicted theoretically and proved both experimentally and numerically [1-4]. Dynamics of attractors is greatly influenced by geometrical focusing, viscous dissipation and nonlinearity. The experimental setup features Schmidt number equal to 700 which impose constraints on resolution in numerical schemes. Also for investigation of stability on large time intervals (about 1000 periods of external forcing) numerical viscosity may have significant impact. For these reasons, we have chosen spectral element method for investigation of this problem, what allows to carefully follow the nonlinear dynamics. We present cross-comparison of experimental observations and numerical simulations of long-term behavior of wave attractors. Fourier analysis and subsequent application of Hilbert transform are used for filtering of spatial components of internal-wave field [5]. The observed dynamics shows a complicated coupling between the effects of local instability and global confinement of the fluid domain. The unstable attractor is shown to act as highly efficient mixing box providing the efficient energy pathway from global-scale excitation to small-scale wave motions and mixing. Acknowledgement, IS has been partially supported by Russian Ministry of Education and Science (agreement id RFMEFI60714X0090) and Russian Foundation for Basic Research, grant N 15-01-06363. EVE gratefully acknowledges his appointment as a Marie Curie incoming fellow at Laboratoire de physique ENS de Lyon. This work has been partially supported by the ONLITUR grant (ANR-2011-BS04-006-01) and achieved thanks to the resources of PSMN from ENS de Lyon 1. Maas, L. R. M. & Lam, F.-P. A., Geometric focusing of internal waves. J. Fluid Mech, 1995,. 300, 1-41 L. R. M. Maas, D. Benielli, J. Sommeria, and F.-P. A. Lam, Nature (London) 388, 557 (1997). 2. Dauxois, Thierry; Young, W., Journal of Fluid Mechanics, 1999, vol. 390, Issue 01, p.271-295 3. Grisouard, N., Staquet, C., Pairaud, I., 2008, Journal of Fluid Mechanics, 614, 1 4. Scolan, H., Ermanyuk, E., Dauxois, T., 2013, Physical Review Letters, 110, 234501 5. Mercier, Matthieu J.; Garnier, Nicolas B.; Dauxois, Thierry Reflection and diffraction of internal waves analyzed with the Hilbert transform Physics of Fluids, Volume 20, Issue 8, pp. 086601-086601-10 (2008).
Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia
Mary Beth Adams
2011-01-01
In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parrish, P.R.; Macauley, J.M.; Montgomery, R.M.
1988-01-01
Toxicity tests were conducted with two laboratory-prepared generic drilling fluids (muds) and six commonly used drilling-fluid additives to determine their toxicity, alone and combined, to mysids (Mysidopsis bahia). In 25 tests, the acute toxicity of combinations of one, two, or three of the drilling-fluid additives mixed with either drilling fluid was less than the toxicity predicted from the empirical 96-h LC50s for drilling fluid additive(s) and/or drilling fluid alone; the observed 96-h LC50s of the mixtures were from 1.3 to 23.6 times the values predicted from the presumption of additive toxicity.
Segregation of asphalt mixes caused by surge silos : final report.
DOT National Transportation Integrated Search
1982-01-01
Segregation of asphalt mixes continues to be a problem in Virginia, particularly with base mixes and coarse surface mixes. Although the problem is encountered primarily on jobs using surge silos, it has been related to other factors such as mix desig...
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.
2017-07-01
This article is a numerical study of stagnation point flow of carbon nanotubes over an elongating sheet in presence of induced magnetic field submerged in bioconvection nanoparticles. Two types of carbon nanotubes are considered i.e. single wall carbon nanotube and multi wall carbon nanotube mixed in based fluid taken to be water as well as kerosene-oil. The emphasis of present study is to examine effect of induced magnetic field on boundary layer flows along with influence of SWCNT and MWCNT. Physical problem is mathematically modeled and simplified by using appropriate similarity transformations. Shooting method with Runge-Kutta of order 5 is employed to compute numerical results for non-dimensional velocity, induced magnetic field and temperature. The effects of pertinent parameters are portrayed through graphs. Numerical values of skinfriction coefficient and Nusselt number are tabulated to study the behaviors at the stretching surface. It is depicted that induced magnetic field is an increasing function of solid nanoparticles volumetric fraction. Moreover, MWCNT contributes in rising induced magnetic field more as compared to SWCNT for both water and kerosene-oil based fluids.
NASA Astrophysics Data System (ADS)
RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.
2017-06-01
The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.
Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.
NASA Astrophysics Data System (ADS)
Achterberg, A.; Norman, C. A.
2018-06-01
We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.
Transport and mixing of a volume of fluid in a complex geometry
NASA Astrophysics Data System (ADS)
Gavelli, Filippo
This work presents the results of the experimental investigation of an entire sequence of events, leading to an unwanted injection of boron-depleted water into the core of a PWR. The study is subdivided into three tasks: the generation of a dilute volume in the primary system, its transport to the core, and the mixing encountered along the path. Experiments conducted at the University of Maryland (UM) facility show that, during a Small-Break LOCA transient, volumes of dilute coolant are segregated in the system, by means of phase-separating energy transport from the core to the steam generators (Boiler Condenser Mode). Two motion-initiating mechanisms are considered: the resumption of natural circulation during the recovery of the primary liquid inventory, and the reactor coolant pump startup under BCM conditions. During the inventory recovery, various phenomena are observed, that contribute to the mixing of the dilute volumes prior to the resumption of flow. The pump activation, instead, occurs in a stagnant system, therefore, no mixing of the unborated liquid has occurred. Since an unmixed slug has the potential for a larger reactivity excursion than a partially mixed one, the pump-initiated flow resumption represents the worst-case scenario. The impulse - response method is applied, for the first time, to the problem of mixing in the downcomer. This allows to express the mixing in terms of two parameters, the dispersion number and the residence time, characteristics of the flow distribution in the complex annular geometry. Other important results are obtained from the analysis of the experimental data with this procedure. It is shown that the turbulence generated by the pump impeller has a significant impact on the overall mixing. Also, the geometric discontinuities in the downcomer (in particular, the gap enlargement below the cold leg elevation) are shown to be the cause of vortex structures that highly enhance the mixing process.
NASA Astrophysics Data System (ADS)
Schilling, Oleg; Mueschke, Nicholas J.
2017-12-01
Data from a 1152 ×760 ×1280 direct numerical simulation [N. J. Mueschke and O. Schilling, Phys. Fluids 21, 014106 (2009), 10.1063/1.3064120] of a Rayleigh-Taylor mixing layer modeled after a small-Atwood-number water-channel experiment is used to investigate the validity of gradient diffusion and similarity closures a priori. The budgets of the mean flow, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate transport equations across the mixing layer were previously analyzed [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] at different evolution times to identify the most important transport and mixing mechanisms. Here a methodology is introduced to systematically estimate model coefficients as a function of time in the closures of the dynamically significant terms in the transport equations by minimizing the L2 norm of the difference between the model and correlations constructed using the simulation data. It is shown that gradient-diffusion and similarity closures used for the turbulent kinetic energy K , turbulent kinetic energy dissipation rate ɛ , heavy-fluid mass fraction variance S , and heavy-fluid mass fraction variance dissipation rate χ equations capture the shape of the exact, unclosed profiles well over the nonlinear and turbulent evolution regimes. Using order-of-magnitude estimates [O. Schilling and N. J. Mueschke, Phys. Fluids 22, 105102 (2010), 10.1063/1.3484247] for the terms in the exact transport equations and their closure models, it is shown that several of the standard closures for the turbulent production and dissipation (destruction) must be modified to include Reynolds-number scalings appropriate for Rayleigh-Taylor flow at small to intermediate Reynolds numbers. The late-time, large Reynolds number coefficients are determined to be different from those used in shear flow applications and largely adopted in two-equation Reynolds-averaged Navier-Stokes (RANS) models of Rayleigh-Taylor turbulent mixing. In addition, it is shown that the predictions of the Boussinesq model for the Reynolds stress agree better with the data when additional buoyancy-related terms are included. It is shown that an unsteady RANS paradigm is needed to predict the transitional flow dynamics from early evolution times, analogous to the small Reynolds number modifications in RANS models of wall-bounded flows in which the production-to-dissipation ratio is far from equilibrium. Although the present study is specific to one particular flow and one set of initial conditions, the methodology could be applied to calibrations of other Rayleigh-Taylor flows with different initial conditions (which may give different results during the early-time, transitional flow stages, and perhaps asymptotic stage). The implications of these findings for developing high-fidelity eddy viscosity-based turbulent transport and mixing models of Rayleigh-Taylor turbulence are discussed.
NASA Astrophysics Data System (ADS)
Pedesseau, Laurent; Jouanna, Paul
2004-12-01
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation Ck⇔μk between the concentrations Ck and the chemical potentials μk of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation Ck⇔μk implies in fact two problems: a direct problem Ck⇒μk and an inverse problem μk⇒Ck. Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 Å thick gypsum interface. The major unexpected observation is the repulsion of SO42- ions towards the reference solution and the attraction of Ca2+ ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.
Scaffolding for solving problem in static fluid: A case study
NASA Astrophysics Data System (ADS)
Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.
2018-01-01
Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of scaffolding to support their students in finding the solutions.
Appraisal of transport and deformation in shale reservoirs using natural noble gas tracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, Jason E.; Kuhlman, Kristopher L.; Robinson, David G.
2015-09-01
This report presents efforts to develop the use of in situ naturally-occurring noble gas tracers to evaluate transport mechanisms and deformation in shale hydrocarbon reservoirs. Noble gases are promising as shale reservoir diagnostic tools due to their sensitivity of transport to: shale pore structure; phase partitioning between groundwater, liquid, and gaseous hydrocarbons; and deformation from hydraulic fracturing. Approximately 1.5-year time-series of wellhead fluid samples were collected from two hydraulically-fractured wells. The noble gas compositions and isotopes suggest a strong signature of atmospheric contribution to the noble gases that mix with deep, old reservoir fluids. Complex mixing and transport of fracturingmore » fluid and reservoir fluids occurs during production. Real-time laboratory measurements were performed on triaxially-deforming shale samples to link deformation behavior, transport, and gas tracer signatures. Finally, we present improved methods for production forecasts that borrow statistical strength from production data of nearby wells to reduce uncertainty in the forecasts.« less
Lee, Eun Young; Oh, Min Hwan; Yang, Seung-Hak; Yoon, Tae Han
2015-01-01
In this study, the optimal operation factors for struvite crystallization for removing and recovering nitrogen and phosphorus from anaerobic digestive fluid of swine manure containing highly concentrated nitrogen was determined. Every experiment for the struvite crystallization reaction was conducted by placing 1,000 mL of digestion fluid in a 2,000 mL Erlenmeyer flask at various temperatures, pH, and mixing speed. Except for special circumstances, the digestion fluid was centrifuged (10,000 rpm, 10 min) and then the supernatant was used for the experiment at room temperature and 100 rpm. The optimal mole ratio of PO43−:Mg2+ was 1:1.5, and the pH effect ranging from 9 to 11 was similar, when mixed for 1 hour. Under this condition, the removal efficiency of NH4+-N and PO43−-P was 40% and 88.6%, respectively. X-shaped crystal was observed by light and scanning electron microscopy. In addition, struvite crystal structure was confirmed through X-ray diffraction analysis. PMID:26104412
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Braley, J. C.
2015-03-01
Current methods of TRISO fuel kernel production in the United States use a sol-gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.
An analytical study of reduced-gravity flow dynamics
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.
1976-01-01
Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.
NASA Astrophysics Data System (ADS)
Lezberg, Erwin A.; Mularz, Edward J.; Liou, Meng-Sing
1991-03-01
The objectives and accomplishments of research in chemical reacting flows, including both experimental and computational problems are described. The experimental research emphasizes the acquisition of reliable reacting-flow data for code validation, the development of chemical kinetics mechanisms, and the understanding of two-phase flow dynamics. Typical results from two nonreacting spray studies are presented. The computational fluid dynamics (CFD) research emphasizes the development of efficient and accurate algorithms and codes, as well as validation of methods and modeling (turbulence and kinetics) for reacting flows. Major developments of the RPLUS code and its application to mixing concepts, the General Electric combustor, and the Government baseline engine for the National Aerospace Plane are detailed. Finally, the turbulence research in the newly established Center for Modeling of Turbulence and Transition (CMOTT) is described.
Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.; Fichtl, G. H.
1975-01-01
Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.
NASA Astrophysics Data System (ADS)
Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan
2015-09-01
This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an incorporation of alternative crack driving forces, such as a convenient criterion in terms of the effective stress. The proposed setting provides a modeling framework for the analysis of complex problems such as hydraulic fracture. This is demonstrated by a spectrum of model simulations.
NASA Technical Reports Server (NTRS)
Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.
1983-01-01
An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.
Passive micromixer using by convection and surface tension effects with air-liquid interface.
Ju, Jongil; Warrick, Jay
2013-12-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.
Passive micromixer using by convection and surface tension effects with air-liquid interface
Ju, Jongil; Warrick, Jay
2014-01-01
This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979
Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.
Magneto-Hydrodynamics Based Microfluidics
Qian, Shizhi; Bau, Haim H.
2009-01-01
In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
NASA Astrophysics Data System (ADS)
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
Inertial instabilities in a mixing-separating microfluidic device
NASA Astrophysics Data System (ADS)
Domingues, Allysson; Poole, Robert; Dennis, David
2017-11-01
Combining and separating fluids has many industrial and biomedical applications. This numerical and experimental study explores inertial instabilities in a so-called mixing-separating cell micro-geometry which could potentiality be used to enhance mixing. Our microfluidic mixing-separating cell consists of two straight square parallel channels with flow from opposite directions with a central gap that allows the streams to interact, mix or remain separate (often referred to as the `H' geometry). A stagnation point is generated at the centre of symmetry due to the two opposed inlets and outlets. Under creeping flow conditions (Reynolds number [ Re 0 ]) the flow is steady, two-dimensional and produces a sharp symmetric boundary between fluids stream entering the geometry from opposite directions. For Re > 30 , an inertial instability appears which leads to the generation of a central vortex and the breaking of symmetry, although the flow remains steady. As Re increases the central vortex divides into two vortices. Our experimental and numerical investigations both show the same phenomena. The results suggest that the effect observed can be exploited to enhance mixing in biomedical or other applications. Work supported by CNPq Grant 203195/2014-0.
Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.
Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y
2015-03-01
A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment.
Analysis of a Multi-Fidelity Surrogate for Handling Real Gas Equations of State
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S.
2017-06-01
The explosive dispersal of particles is a complex multiphase and multi-species fluid flow problem. In these flows, the detonation products of the explosive must be treated as real gas while the ideal gas equation of state is used for the surrounding air. As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both state equations must be satisfied. One of the most accurate, yet computationally expensive, methods to handle this problem is an algorithm that iterates between both equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work aims to use a multi-fidelity surrogate model to replace this process. A Kriging model is used to produce a curve fit which interpolates selected data from the iterative algorithm using Bayesian statistics. We study the model performance with respect to the iterative method in simulations using a finite volume code. The model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel approach. Also, optimizing the combination of model accuracy and computational speed through the choice of sampling points is explained. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program as a Cooperative Agreement under the Predictive Science Academic Alliance Program under Contract No. DE-NA0002378.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay
Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is usefulmore » when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.« less
Determination of the Landau Lifshitz damping parameter of composite magnetic fluids
NASA Astrophysics Data System (ADS)
Fannin, P. C.; Malaescu, I.; Marin, C. N.
2007-01-01
Measurements of the frequency dependent, complex magnetic susceptibility, χ(ω)= χ‧( ω)- iχ″( ω), in the GHz range, are used to investigate the effect which the mixing of two different magnetic fluids has on the value of the damping parameter, α, of the Landau-Lifshitz equation. The magnetic fluid samples investigated in this study were three kerosene-based magnetic fluids, stabilised with oleic acid, denoted as MF1, MF2 and MF3. Sample MF1 was a magnetic fluid with Mn 0.6Fe 0.4Fe 2O 4 particles, sample MF2 was a magnetic fluid with Ni 0.4Zn 0.6Fe 2O 4 particles and sample MF3 was a composite magnetic fluid obtained by mixing a part of sample MF1 with a part of sample MF2, in proportion of 1:1. The experimental results revealed that the value of the damping parameter of the composite sample (sample MF3) is between the α values obtained for its constituents (samples MF1 and MF2). Based on the superposition principle, which states that the susceptibility of a magnetic fluid sample is a superposition of individual contributions of the magnetic particles, a theoretical model is proposed. The experimental results are shown to be in close agreement with the theoretical results. This result is potentially useful in the design of microwave-operating materials, in that it enables one to determine a particular value of damping parameter.
Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J
2014-01-01
To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.
San Rafael, Peru: geology and structure of the worlds richest tin lode
NASA Astrophysics Data System (ADS)
Mlynarczyk, Michael S. J.; Sherlock, Ross L.; Williams-Jones, Anthony E.
2003-08-01
The San Rafael mine exploits an unusually high grade, lode-type Sn-Cu deposit in the Eastern Cordillera of the Peruvian Central Andes. The lode is centered on a shallow-level, Late Oligocene granitoid stock, which was emplaced into early Paleozoic metasedimentary rocks. It has a known vertical extent exceeding 1,200 m and displays marked vertical primary metal zoning, with copper overlying tin. The tin mineralization occurs mainly as cassiterite-quartz-chlorite veins and as cassiterite in breccias. The bulk of it is hosted by a K-feldspar megacrystic, biotite- and cordierite-bearing leucomonzogranite, which is the most distinctive phase of the pluton. Copper mineralization occurs predominantly in the veins that straddle the metasedimentary rock-intrusion contact or are hosted entirely by slates. Both tin and copper mineralization are associated with strong chloritic alteration, which is superimposed on an earlier episode of sericitization and tourmaline-quartz veining. Based on the distribution of alteration and ore mineralogy, cassiterite deposition and subsequent chalcopyrite precipitation are believed to have been the result of a single, prolonged hydrothermal event. The source of the metals is inferred to be a highly evolved, peraluminous magma, related to the leucomonzogranitic phase of the San Rafael pluton. Preliminary fluid inclusion microthermometry suggests that ore deposition took place during the mixing of moderate and low salinity fluids, which were introduced in a series of pulses. Several large fault-jogs, created by sinistral-normal, strike-slip movement, are interpreted to have focused synkinematic magmatic fluids and permitted their effective mixing with meteoric waters. It is proposed that this mixing led to rapid oxidation of Sn (II) chloride species and caused supersaturation of the fluids in cassiterite, resulting in the development of localized, high-grade ore shoots. A favorable structural regime that promoted large-scale mixing of two fluids originating under very different physico-chemical conditions appears to have been the key factor responsible for the unusual richness of the deposit.
Kersten, E; Barry, A; Klein, S
2016-03-01
Oral drug administration to children poses specific pharmaceutical challenges that are often not seen to the same extent in adults, and whose occurrence may also be age dependent. When an age-appropriate dosage form is not available, manipulation of adult dosage forms (e.g., splitting and crushing of tablets or opening of capsules) has been reported as a means to facilitate administration to children. To enhance swallowability and/or mask an unpleasant taste of the dosage form to be administered, crushed/split tablets or the contents of capsules are often mixed with food or drinks or suspended in a vehicle prior to administration. However, it seems that the risks and benefits of an approach whereby the dosage form is modified prior to administration in this manner are everything but clear. The aim of the present study was to gain an overview of the physicochemical properties of a number of fluids, soft foods and suspension vehicles that are commonly reported to be mixed with oral medications before administration to children to improve patient acceptability. For this purpose, physicochemical parameters of 15 different fluids, soft foods and suspension vehicles were measured. These included pH, buffer capacity, osmolality, surface tension and viscosity. Results of the study clearly show the differences in physicochemical properties of the test candidates. It is thus obvious that the type of fluid/food mixed with a drug product before administration may have a significant impact on bioavailability of the drug administered. Therefore, a risk-based assessment of such practices considering API properties, formulation features and physicochemical properties of the fluids and foods intended to be co-administered with the dosage form, in conjunction with the anatomical and physiological maturity of the gastro-intestinal tract in the intended paediatric population, should be an essential part of paediatric oral formulation development.
Homogenization models for thin rigid structured surfaces and films.
Marigo, Jean-Jacques; Maurel, Agnès
2016-07-01
A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.
2003-05-05
Aboard the International Space Station (ISS), the Tissue Culture Medium (TCM) is the bioreactor vessel in which cell cultures are grown. With its two syringe ports, it is much like a bag used to administer intravenous fluid, except it allows gas exchange needed for life. The TCM contains cell culture medium, and when frozen cells are flown to the ISS, they are thawed and introduced to the TCM through the syringe ports. In the Cellular Biotechnology Operations Support System-Fluid Dynamics Investigation (CBOSS-FDI) experiment, several mixing procedures are being assessed to determine which method achieves the most uniform mixing of growing cells and culture medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jill S. Buckley; Norman R. Morrow
2006-01-01
The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.
Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin
2013-10-01
As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.
Intravenous Solutions for Exploration Missions
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Niederhaus, Charles; Barlow, Karen; Griffin, DeVon
2007-01-01
This paper describes the intravenous (IV) fluids requirements being developed for medical care during NASA s future exploration class missions. Previous research on IV solution generation and mixing in space is summarized. The current exploration baseline mission profiles are introduced, potential medical conditions described and evaluated for fluidic needs, and operational issues assessed. We briefly introduce potential methods for generating IV fluids in microgravity. Conclusions on the recommended fluid volume requirements are presented.
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Complexity and compositionality in fluid intelligence.
Duncan, John; Chylinski, Daphne; Mitchell, Daniel J; Bhandari, Apoorva
2017-05-16
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition.
Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu
2005-06-04
Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemicalmore » industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.« less
NASA Astrophysics Data System (ADS)
Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin
2017-02-01
Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.
NASA Astrophysics Data System (ADS)
Brebbia, C. A.; Futagami, T.; Tanaka, M.
The boundary-element method (BEM) in computational fluid and solid mechanics is examined in reviews and reports of theoretical studies and practical applications. Topics presented include the fundamental mathematical principles of BEMs, potential problems, EM-field problems, heat transfer, potential-wave problems, fluid flow, elasticity problems, fracture mechanics, plates and shells, inelastic problems, geomechanics, dynamics, industrial applications of BEMs, optimization methods based on the BEM, numerical techniques, and coupling.
Internal Wave Generation by Convection
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.