Sample records for fluid pressure control

  1. Controlled differential pressure system for an enhanced fluid blending apparatus

    DOEpatents

    Hallman, Jr., Russell Louis

    2009-02-24

    A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

  2. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    DOEpatents

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  3. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  4. Miniaturized pressurization system

    DOEpatents

    Whitehead, John C.; Swink, Don G.

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  5. Control device for prosthetic urinary sphincter cuff

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H. (Inventor)

    1983-01-01

    A device for controlling flow of fluid to and from a resilient inflatable cuff implanted about the urethra to control flow of urine therethrough. The device comprises a flexible bulb reservoir and a control unit that includes a manually operated valve that opens automatically when the bulb is squeezed to force fluid into the cuff for closing the urethra. The control unit also includes a movable valve seat member having a relatively large area exposed to pressure of fluid in a chamber that is connected to the cuff and which moves to a position in which the valve member is unseated by an abutment when fluid pressure in the chamber exceeds a predetermined value to thereby relieve excess fluid pressure in the cuff. The arrangement is such that the valve element is held closed against the seat member by the full differential in fluid pressures acting on both sides of the valve element until the seat member is moved away from the valve element to thus insure positive closing of the valve element until the seat member is moved out of engagement with the valve element by excess pressure differential.

  6. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.; Rogers, I.

    1961-06-27

    Accurate and controlled drive for the control rod is from an electric motor. A hydraulic arrangement is provided to balance a piston against which a control rod is urged by the application of fluid pressure. The electric motor drive of the control rod for normal operation is made through the aforementioned piston. In the event scramming is required, the fluid pressure urging the control rod against the piston is relieved and an opposite fluid pressure is applied. The lack of mechanical connection between the electric motor and control rod facilitates the scramming operation.

  7. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  8. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  10. CONTROL ROD DRIVE

    DOEpatents

    Chapellier, R.A.

    1960-05-24

    BS>A drive mechanism was invented for the control rod of a nuclear reactor. Power is provided by an electric motor and an outside source of fluid pressure is utilized in conjunction with the fluid pressure within the reactor to balance the loadings on the motor. The force exerted on the drive mechanism in the direction of scramming the rod is derived from the reactor fluid pressure so that failure of the outside pressure source will cause prompt scramming of the rod.

  11. Control of intrauterine fluid pressure during operative hysteroscopy.

    PubMed

    Shirk, G J; Gimpelson, R J

    1994-05-01

    To evaluate the safety of a commonly used piston pump that controls the infusion pressure of low-viscosity fluids in a continuous-flow hysteroscopic system during operative hysteroscopy. Consecutive patients requiring operative hysteroscopy. Three hospital facilities in the Midwest. Sequential sample of 250 women who underwent operative hysteroscopy. Endometrial ablations, resection of submucosal or pedunculated uterine leiomyomata with or without endometrial ablation, polyp resections, metroplasty, and lysis of synechiae. The most serious complication of operative hysteroscopy is fluid overload due to intravasation into the patient's vascular system. Low-viscosity fluids were infused by the Zimmer Controlled Distention Irrigation System. The instrument uses a closed-feedback loop to monitor cavity pressure and automatically regulates the flow to maintain the set point pressure. It is designed to operate in a pressure range of 0 to 80 mm Hg and at flows in excess of 450 ml/minute. In 250 operative hysteroscopies no fluid complications occurred when intrauterine pressure was maintained below 80 mm Hg. No clinically significant differences in intravasation were seen in any type of operative hysteroscopy. This controlled mechanical pump system with exact intrauterine pressure measurement reduced many technical difficulties associated with low-viscosity media, and created a safe environment for the media's use in operative hysteroscopy.

  12. Variable pressure power cycle and control system

    DOEpatents

    Goldsberry, Fred L.

    1984-11-27

    A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.

  13. Pressure-controlled drainage of cerebrospinal fluid: clinical experience with a new type of ventricular catheter (Ventcontrol MTC)and an integrated Piezo-resistive sensor at its tip: technical note.

    PubMed

    Piek, J; Raes, P

    1996-01-01

    We described a new ventricular catheter that is the combination of a "classic" ventricular catheter with a piezo-resistive transducer at its tip. The device allows parallel recordings of intraventricular fluid pressure via a chip and a fluid-filled external transducer, drainage of cerebrospinal fluid from the ventricle or injection of fluid into the ventricle with simultaneous monitoring of intracranial pressure, and recording of brain tissue pressure in cases of misplacement or dislocation of the ventricular catheter or in cases of progressively narrowing ventricles caused by brain edema. Clinical tests in various situations at different pressure ranges (total recording time, 1356 h in 13 patients) gave excellent correlations of both pressures. Application of the device is especially indicated in clinical situations in which pressure-controlled drainage is desirable, occlusion of ventricular bolts is likely, or pressure-volume tests are needed.

  14. Flow Cage Assemblies

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bao, Xiaoqi (Inventor)

    2017-01-01

    Apparatus, systems and methods for implementing flow cages and flow cage assemblies in association with high pressure fluid flows and fluid valves are provided. Flow cages and flow assemblies are provided to dissipate the energy of a fluid flow, such as by reducing fluid flow pressure and/or fluid flow velocity. In some embodiments the dissipation of the fluid flow energy is adapted to reduce erosion, such as from high-pressure jet flows, to reduce cavitation, such as by controllably increasing the flow area, and/or to reduce valve noise associated with pressure surge.

  15. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  16. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  17. Pressure variable orifice for hydraulic control valve

    NASA Technical Reports Server (NTRS)

    Ammerman, R. L.

    1968-01-01

    Hydraulic valve absorbs impact energy generated in docking or joining of two large bodies by controlling energy release to avoid jarring shock. The area of exit porting presented to the hydraulic control fluid is directly proportional to the pressure acting on the fluid.

  18. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  19. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOEpatents

    Hubbell, J.M.; Mattson, E.D.; Sisson, J.B.

    1998-06-02

    A tensiometer to in-situ determine below-grade soil moisture, potential of earthen soil includes, (a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; (b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; (c) a first fluid conduit extending outwardly of the first fluid chamber; (d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and (e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: (1) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and (2) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus. 6 figs.

  20. Tensiometer and method of determining soil moisture potential in below-grade earthen soil

    DOEpatents

    Hubbell, Joel M.; Mattson, Earl D.; Sisson, James B.

    1998-01-01

    A tensiometer to in situ determine below-grade soil moisture, potential of earthen soil includes, a) an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and, comprising; b) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; c) a first fluid conduit extending outwardly of the first fluid chamber; d) a first controllable isolation valve provided within the first fluid conduit, the first controllable isolation valve defining a second fluid chamber in fluid communication with the first fluid chamber through the first fluid conduit and the isolation valve, the first controllable isolation valve being received within the below-grade portion; and e) a pressure transducer in fluid communication with the first fluid chamber, the pressure transducer being received within the below-grade portion. An alternate embodiment includes an apparatus adapted for insertion into earthen soil below grade, the apparatus having a below-grade portion, and including: i) a porous material provided in the below-grade portion, the porous material at least in part defining a below-grade first fluid chamber; and ii) a pressure sensing apparatus in fluid communication with the first fluid chamber, the pressure sensing apparatus being entirely received within the below-grade portion. A method is also disclosed using the above and other apparatus.

  1. Zero-Boil-Off Tank (ZBOT) Experiment: Ground-Based Validation of Self-Pressurization and Pressure Control Two-Phase CFD Model

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga

    2017-01-01

    Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.

  2. Low-g fluid mixing - Further results from the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Knoll, R. H.; Hasan, M. M.; Lin, C. S.

    1993-01-01

    The Tank Pressure Control Experiment (TPCE) made its first space flight on STS-43 in 1991. Its objective was to test the effectiveness of low-energy axial jet mixing at controlling pressures in low gravity. The experiment used refrigerant 113 at near-saturation conditions, at an 83 percent fill level, to simulate the fluid dynamics and thermodynamics of cryogenic fluids in future space applications. Results from this flight were reported previously. TPCE was again flown in space on STS-52 in 1992, this time primarily to study boiling and related thermal phenomena which will be reported elsewhere. However additional mixing and pressure control data were obtained from the reflight that supplement the data from the first flight.

  3. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  4. Cavitation-based hydro-fracturing simulator

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2016-11-22

    An apparatus 300 for simulating a pulsed pressure induced cavitation technique (PPCT) from a pressurized working fluid (F) provides laboratory research and development for enhanced geothermal systems (EGS), oil, and gas wells. A pump 304 is configured to deliver a pressurized working fluid (F) to a control valve 306, which produces a pulsed pressure wave in a test chamber 308. The pulsed pressure wave parameters are defined by the pump 304 pressure and control valve 306 cycle rate. When a working fluid (F) and a rock specimen 312 are included in the apparatus, the pulsed pressure wave causes cavitation to occur at the surface of the specimen 312, thus initiating an extensive network of fracturing surfaces and micro fissures, which are examined by researchers.

  5. Modular robot

    DOEpatents

    Ferrante, Todd A.

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  6. Apparatus for controlling fluid flow in a conduit wall

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2003-05-13

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  7. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  8. Tank Pressure Control Experiment on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  9. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.

  10. Valve for fluid control

    DOEpatents

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  11. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  12. Seismic and aseismic fault slip in response to fluid injection observed during field experiments at meter scale

    NASA Astrophysics Data System (ADS)

    Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.

    2017-12-01

    During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.

  13. Torsemide

    MedlinePlus

    ... high blood pressure. Torsemide is used to treat edema (fluid retention; excess fluid held in body tissues) ... your doctor.Torsemide controls high blood pressure and edema but does not cure these conditions. Continue to ...

  14. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  15. Pore fluid pressure and the seismic cycle

    NASA Astrophysics Data System (ADS)

    French, M. E.; Zhu, W.; Hirth, G.; Belzer, B.

    2017-12-01

    In the brittle crust, the critical shear stress required for fault slip decreases with increasing pore fluid pressures according to the effective stress criterion. As a result, higher pore fluid pressures are thought to promote fault slip and seismogenesis, consistent with observations that increasing fluid pressure as a result of wastewater injection is correlated with increased seismicity. On the other hand, elevated pore fluid pressure is also proposed to promote slow stable failure rather than seismicity along some fault zones, including during slow slip in subduction zones. Here we review recent experimental evidence for the roles that pore fluid pressure and the effective stress play in controlling fault slip behavior. Using two sets of experiments on serpentine fault gouge, we show that increasing fluid pressure does decrease the shear stress for reactivation under brittle conditions. However, under semi-brittle conditions as expected near the base of the seismogenic zone, high pore fluid pressures are much less effective at reducing the shear stress of reactivation even though deformation is localized and frictional. We use an additional study on serpentinite to show that cohesive fault rocks, potentially the product of healing and cementation, experience an increase in fracture energy during faulting as fluid pressures approach lithostatic, which can lead to more stable failure. Structural observations show that the increased fracture energy is associated with a greater intensity of transgranular fracturing and delocalization of deformation. Experiments on several lithologies indicate that the stabilizing effect of fluid pressure occurs independent of rock composition and hydraulic properties. Thus, high pore fluid pressures have the potential to either enhance seismicity or promote stable faulting depending on pressure, temperature, and fluid pressure conditions. Together, the results of these studies indicate that pore fluid pressure promotes seismogenesis in the brittle shallow crust where fluid pressures are elevated but sub-lithostatic and promote slow, stable failure near seismic to aseismic transitions and under near-lithostatic fluid pressures.

  16. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    PubMed Central

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy

    2009-01-01

    Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652

  17. Triamterene and Hydrochlorothiazide

    MedlinePlus

    ... is used to treat high blood pressure and edema (fluid retention; excess fluid held in body tissues) ... doctor.This medication controls high blood pressure and edema but does not cure these conditions. Continue to ...

  18. Jet mixing in low gravity - Results of the Tank Pressure Control Experiment

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. H.

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is discussed with attention given to the results for controlling storage-tank pressures by forced-convective mixing in microgravitational environments. The fluid dynamics of cryogenic fluids in space is simulated with freon-113 during axial-jet-induced mixing. The experimental flow-pattern data are found to confirm previous data as well as existing mixing correlations. Thermal nonuniformities and tank pressure can be reduced by employing low-energy mixing jets which are useful for enhancing heat/mass transfer between phases. It is found that space cryogenic systems based on the principle of active mixing can be more reliable and predictable than other methods, and continuous or periodic mixing can be accomplished with only minor energy addition to the fluid.

  19. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German

    1999-01-01

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.

  20. CMC blade with pressurized internal cavity for erosion control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interiormore » fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.« less

  1. Yield-stress fluids foams: flow patterns and controlled production in T-junction and flow-focusing devices.

    PubMed

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2016-11-23

    We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.

  2. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space

    NASA Technical Reports Server (NTRS)

    Baisch, J. F.; Wolfram, G.; Beck, L.; Drummer, C.; Stormer, I.; Buckey, J.; Blomqvist, G.

    2000-01-01

    In the upright position, gravity fills the low-pressure systems of human circulation with blood and interstitial fluid in the sections below the diaphragm. Without gravity one pressure component in the vessels disappears and the relationship between hydrostatic pressure and oncotic pressure, which regulates fluid passage across the capillary endothelium in the terminal vascular bed, shifts constantly. The visible consequences of this are a puffy face and "bird" legs. The plasma volume shrinks in space and the range of cardiovascular control is reduced. When they stand up for the first time after landing, 30-50% of astronauts suffer from orthostatic intolerance. It remains unclear whether microgravity impairs cardiovascular reflexes, or whether it is the altered volume status that causes the cardiovascular instability following space flight. Lower body negative pressure was used in several space missions to stimulate the cardiovascular reflexes before, during and after a space flight. The results show that cardiovascular reflexes are maintained in microgravity. However, the astronauts' volume status changed in space, towards a volume-retracted state, as measurements of fluid-regulating hormones have shown. It can be hypothesized that the control of circulation and body fluid homeostasis in humans is adapted to their upright posture in the Earth's gravitational field. Autonomic control regulates fluid distribution to maintain the blood pressure in that posture, which most of us have to cope with for two-thirds of the day. A determined amount of interstitial volume is necessary to maintain the dynamic range of cardiovascular control in the upright posture; otherwise orthostatic intolerance may occur more often.

  3. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  4. Fluid-driven reciprocating apparatus and valving for controlling same

    DOEpatents

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  5. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  6. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Moreno, Marcos; Haberland, Christian; Oncken, Onno; Rietbrock, Andreas; Angiboust, Samuel; Heidbach, Oliver

    2014-04-01

    Constraints on the potential size and recurrence time of strong subduction-zone earthquakes come from the degree of locking between the down-going and overriding plates, in the period between large earthquakes. In many cases, this interseismic locking degree correlates with slip during large earthquakes or is attributed to variations in fluid content at the plate interface. Here we use geodetic and seismological data to explore the links between pore-fluid pressure and locking patterns at the subduction interface ruptured during the magnitude 8.8 Chile earthquake in 2010. High-resolution three-dimensional seismic tomography reveals variations in the ratio of seismic P- to S-wave velocities (Vp/Vs) along the length of the subduction-zone interface. High Vp/Vs domains, interpreted as zones of elevated pore-fluid pressure, correlate spatially with parts of the plate interface that are poorly locked and slip aseismically. In contrast, low Vp/Vs domains, interpreted as zones of lower pore-fluid pressure, correlate with locked parts of the plate interface, where unstable slip and earthquakes occur. Variations in pore-fluid pressure are caused by the subduction and dehydration of a hydrothermally altered oceanic fracture zone. We conclude that variations in pore-fluid pressure at the plate interface control the degree of interseismic locking and therefore the slip distribution of large earthquake ruptures.

  7. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  8. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.

  9. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  10. System and method for bidirectional flow and controlling fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.

    1999-03-23

    A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.

  11. Recent studies of float and stall curves in controlled-clearance deadweight testers with a simple piston.

    PubMed

    Newhall, D H; Ogawa, I; Zilberstein, V

    1979-08-01

    The effect of piston rotation speed and fluid viscosity on the performance of free-piston gauges with a controlled clearance was studied as part of an experimental program aiming at the better evaluation of pressure by these primary pressure standards. Calculated effective area is shown to be greatly influenced by both speed of rotation and choice of a fluid. An optimum rpm resulting in the smallest possible uncertainty in effective area should be determined experimentally for each fluid and pressure range involved. When all the pertinent parameters are properly selected an appreciable improvement in accuracy can be achieved.

  12. 30 CFR 250.1623 - Well-control fluids, equipment, and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...

  13. Slip behaviour of carbonate-bearing faults subjected to fluid pressure stimulations

    NASA Astrophysics Data System (ADS)

    Collettini, Cristiano; Scuderi, Marco; Marone, Chris

    2017-04-01

    Earthquakes caused by fluid injection within reservoir have become an important topic of political and social discussion as new drilling and improved technologies enable the extraction of oil and gas from previously unproductive formations. During reservoir stimulation, the coupled interactions of frictional and fluid flow properties together with the stress state control both the onset of fault slip and fault slip behaviour. However, currently, there are no studies under controlled, laboratory conditions for which the effect of fluid pressure on fault slip behaviour can be deduced. To cover this gap, we have developed laboratory experiments where we monitor fault slip evolution at constant shear stress but with increasing fluid pressure, i.e. reducing the effective normal stress. Experiments have been conducted in the double direct shear configuration within a pressure vessel on carbonate fault gouge, characterized by a slightly velocity strengthening friction that is indicative of stable aseismic creep. In our experiments fault slip history can be divided in three main stages: 1) for high effective normal stress the fault is locked and undergoes compaction; 2) when the shear and effective normal stress reach the failure condition, accelerated creep is associated to fault dilation; 3) further pressurization leads to an exponential acceleration during fault compaction and slip localization. Our results indicate that fault weakening induced by fluid pressurization overcomes the velocity strengthening behaviour of calcite gouge, resulting in fast acceleration and earthquake slip. As applied to tectonic faults our results suggest that a larger number of crustal faults, including those slightly velocity strengthening, can experience earthquake slip due to fluid pressurization.

  14. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  15. Valving for controlling a fluid-driven reciprocating apparatus

    DOEpatents

    Whitehead, J.C.

    1995-06-27

    A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.

  16. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  17. A dynamic pressure calibration standard

    NASA Technical Reports Server (NTRS)

    Schutte, P. C.; Cate, K. H.; Young, S. D.

    1985-01-01

    A dynamic pressure calibration standard has been developed for calibrating flush diaphragm mounted pressure transducers. Pressures up to 20 kPa (3 psi) have been accurately generated over a frequency range of 50 to 1800 hz. The uncertainty of the standard is +/-5 pct to 5kPa (.75 psi) and +/-10 pct from 5 kPa (.75 psi) to 20 kPa (3 psi). The system consists of two conically shaped, aluminum columns, one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with a viscous fluid. A column is mounted on the armature of a vibration exciter which imparts a sinusoidally varying acceleration to the fluid column. Two pressure transducers mounted at the base of the column sense the sinusoidally varying pressure. This pressure is determined from measurements of the density of the fluid, the height of the fluid, and the acceleration of the column. A section of the taller column is filled with steel balls to control the damping of the fluid to extend its useful frequency range.

  18. An optimal control method for fluid structure interaction systems via adjoint boundary pressure

    NASA Astrophysics Data System (ADS)

    Chirco, L.; Da Vià, R.; Manservisi, S.

    2017-11-01

    In recent year, in spite of the computational complexity, Fluid-structure interaction (FSI) problems have been widely studied due to their applicability in science and engineering. Fluid-structure interaction systems consist of one or more solid structures that deform by interacting with a surrounding fluid flow. FSI simulations evaluate the tensional state of the mechanical component and take into account the effects of the solid deformations on the motion of the interior fluids. The inverse FSI problem can be described as the achievement of a certain objective by changing some design parameters such as forces, boundary conditions and geometrical domain shapes. In this paper we would like to study the inverse FSI problem by using an optimal control approach. In particular we propose a pressure boundary optimal control method based on Lagrangian multipliers and adjoint variables. The objective is the minimization of a solid domain displacement matching functional obtained by finding the optimal pressure on the inlet boundary. The optimality system is derived from the first order necessary conditions by taking the Fréchet derivatives of the Lagrangian with respect to all the variables involved. The optimal solution is then obtained through a standard steepest descent algorithm applied to the optimality system. The approach presented in this work is general and could be used to assess other objective functionals and controls. In order to support the proposed approach we perform a few numerical tests where the fluid pressure on the domain inlet controls the displacement that occurs in a well defined region of the solid domain.

  19. Fluid-injection and the mechanics of frictional stability of shale-bearing faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Collettini, Cristiano; Marone, Chris

    2017-04-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. However, current models of earthquake nucleation, based on rate- and state- friction, imply that stable sliding is favored by the increase of pore fluid pressure. Despite this apparent dilemma, there are a few studies on the role of fluid pressure in frictional stability under controlled, laboratory conditions. Here, we describe laboratory experiments on shale fault gouge, conducted in the double direct shear configuration in a true-triaxial machine. To characterize frictional stability and hydrological properties we performed three types of experiments: 1) stable sliding shear experiment to determine the material failure envelope resulting in fault strength of µ=0.28 and fault zone permeability (k 10-19m2); 2) velocity step experiments to determine the rate- and state- frictional properties, characterized by a velocity strengthening behavior with a negative rate parameter b, indicative of stable aseismic creep; 3) creep experiment to study fault slip evolution with increasing pore-fluid pressure. In these creep experiments fault slip history can be divided in three main stages: a) for low fluid pressure the fault is locked and undergoes compaction; b) with increasing fluid pressurization, we observe aseismic creep (i.e. v=0.0001 µm/s) associated with fault dilation, with maintained low permeability; c) As fluid pressure is further increased and we approach the failure criteria fault begins to accelerate, the dilation rate increases causing an increase in permeability. Following the first acceleration we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Surprisingly, this complex slip behavior is associated with fault zone compaction and permeability increase as opposite to the dilation hardening mechanism that is usually invoked to quench the instability. We relate this complex fault slip behaviour to the interplay between fault weakening induced by fluid pressurization and the strong rate-strengthening behaviour of shales. Our data show that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  20. Zero Boil-OFF Tank Hardware Setup

    NASA Image and Video Library

    2017-09-19

    iss053e027051 (Sept. 19, 2017) --- Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. ZBOT uses an experimental fluid to test active heat removal and forced jet mixing as alternative means for controlling tank pressure for volatile fluids. Rocket fuel, spacecraft heating and cooling systems, and sensitive scientific instruments rely on very cold cryogenic fluids. Heat from the environment around cryogenic tanks can cause their pressures to rise, which requires dumping or "boiling off" fluid to release the excess pressure, or actively cooling the tanks in some way.

  1. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  2. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  3. Explosion proof vehicle for tank inspection

    DOEpatents

    Zollinger, William T [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Bauer, Scott G [Idaho Falls, ID

    2012-02-28

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  4. Engine control system having pressure-based timing

    DOEpatents

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  5. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.

    1990-01-01

    A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

  6. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less

  7. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  8. Effect of intraoperative transesophageal Doppler-guided fluid therapy versus central venous pressure-guided fluid therapy on renal allograft outcome in patients undergoing living donor renal transplant surgery: a comparative study.

    PubMed

    Srivastava, Divya; Sahu, Sandeep; Chandra, Abhilash; Tiwari, Tanmay; Kumar, Sanjay; Singh, P K

    2015-12-01

    Transesophageal Doppler (TED)-guided intraoperative fluid therapy has shown to noninvasively optimize intravascular volume and reduce postoperative morbidity. The aim of this study was to compare the effects of Doppler-guided intraoperative fluid administration and central venous pressure (CVP)-guided fluid therapy on renal allograft outcome and postoperative complications. A prospective nonrandomized active controlled study was conducted on end-stage renal disease patients scheduled for living donor renal transplant surgery. 110 patients received intraoperative fluid guided by corrected flow time (FTc) and variation in stroke volume values obtained by continuous TED monitoring. Data of 104 patients in whom intraoperative fluid administration was guided by CVP values were retrospectively obtained for a control. The amount of intraoperative fluid given in the study group (12.20 ± 4.24 ml/kg/h) was significantly lower than in the controls (22.21 ± 4.67 ml/kg/h). The amount of colloid used was also significantly less and fewer recipients were seen to require colloid (69 vs 85%). The mean arterial pressures were comparable throughout. CVP reached was 7.18 ± 3.17 mmHg in the study group. It was significantly higher in the controls (13.42 ± 3.12 mmHg). The postoperative graft function and rate of dysfunction were comparable. Side-effects like postoperative dyspnoea (4.8 vs 0%) and tissue edema (9.6 vs 2.7%) were higher in the controls. FTc-guided intraoperative fluid therapy achieved the same rate of immediate graft function as CVP-guided fluid therapy but used a significantly less amount of fluid. The incidence of postoperative complications related to fluid overload was also reduced. The use of TED may replace invasive central line insertions in the future.

  9. Control volume based hydrocephalus research; analysis of human data

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer

    2010-11-01

    Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.

  10. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  11. Pressurized tundish for controlling a continuous flow of molten metal

    DOEpatents

    Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

    1990-07-24

    A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

  12. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  13. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  14. Negative-Pressure Hydrocephalus: A Case Report on Successful Treatment Under Intracranial Pressure Monitoring with Bilateral Ventriculoperitoneal Shunts.

    PubMed

    Pandey, Sajan; Jin, Yi; Gao, Liang; Zhou, Cheng Cheng; Cui, Da Ming

    2017-03-01

    Negative-pressure hydrocephalus (NegPH), a very rare condition of unknown etiology and optimal treatment, usually presents postneurosurgery with clinical and imaging features of hydrocephalus, but with negative cerebrospinal fluid pressure. We describe a NegPH case of -3 mm Hg intracranial pressure that was successfully treated to achieve 5 mm Hg under continuous intracranial pressure monitoring with horizontal positioning, head down and legs elevated to 10°-15°, neck wrapping for controlled venous drainage, chest and abdomen bandages, infusion of 5% dextrose fluid to lower plasma osmolarity (Na + , 130-135 mmol/L), daily cerebrospinal fluid drainage >200 mL, and arterial blood gas partial pressure of carbon dioxide >40 mm Hg. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Validation of two-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2018-01-01

    This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.

  16. Microfluidic valve with cored glass microneedle for microinjection.

    PubMed

    Lee, Sanghoon; Jeong, Wonje; Beebe, David J

    2003-08-01

    In this paper, a new microinjection device was constructed by fusing a glass microneedle and a PDMS-based microvalve. The microneedle was fabricated via traditional micropipette pulling. The PDMS-based microvalve regulates the fluid flow in the microchannel and microneedle. The 'ON/OFF' operation of the valve was controlled by manually supplied pneumatic pressure. The valve membrane utilized a two level geometry to improve control at low flow rates. The relation between pressure and flow was measured and the results showed that very small volumes of fluid (>1 nl) could be controlled. The valve operation was investigated by monitoring the tip of the needle and pneumatic pressure simultaneously and it demonstrated very stable 'ON/OFF' operation to the pressure change.

  17. Pneumatic load compensating or controlling system

    NASA Technical Reports Server (NTRS)

    Rogers, J. R. (Inventor)

    1975-01-01

    A pneumatic load compensating or controlling system for restraining a load with a predetermined force or applying a predetermined force to the load is described; it includes a source of pressurized air, a one-way pneumatic actuator operatively connected to a load, and a fluid conduit fluidically connecting the actuator with the source of pressurized air. The actuator is of the piston and cylinder type, and the end of the fluid conduit is connected to the upper or lower portion of the cylinder whereby the actuator alternatively and selectively restrains the load with a predetermined force or apply a predetermined force to the load. Pressure regulators are included within the system for variably selectively adjusting the pressurized fluid to predetermined values as desired or required; a pressure amplifier is included within the system for multiplying the pressurized values so as to achieve greater load forces. An accumulator is incorporated within the system as a failsafe operating mechanism, and visual and aural alarm devices, operatively associated with pressure detecting apparatus, readily indicate the proper or improper functioning of the system.

  18. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  19. Frictional stability and earthquake triggering during fluid pressure stimulation of an experimental fault

    NASA Astrophysics Data System (ADS)

    Scuderi, M. M.; Collettini, C.; Marone, C.

    2017-11-01

    It is widely recognized that the significant increase of M > 3.0 earthquakes in Western Canada and the Central United States is related to underground fluid injection. Following injection, fluid overpressure lubricates the fault and reduces the effective normal stress that holds the fault in place, promoting slip. Although, this basic physical mechanism for earthquake triggering and fault slip is well understood, there are many open questions related to induced seismicity. Models of earthquake nucleation based on rate- and state-friction predict that fluid overpressure should stabilize fault slip rather than trigger earthquakes. To address this controversy, we conducted laboratory creep experiments to monitor fault slip evolution at constant shear stress while the effective normal stress was systematically reduced via increasing fluid pressure. We sheared layers of carbonate-bearing fault gouge in a double direct shear configuration within a true-triaxial pressure vessel. We show that fault slip evolution is controlled by the stress state acting on the fault and that fluid pressurization can trigger dynamic instability even in cases of rate strengthening friction, which should favor aseismic creep. During fluid pressurization, when shear and effective normal stresses reach the failure condition, accelerated creep occurs in association with fault dilation; further pressurization leads to an exponential acceleration with fault compaction and slip localization. Our work indicates that fault weakening induced by fluid pressurization can overcome rate strengthening friction resulting in fast acceleration and earthquake slip. Our work points to modifications of the standard model for earthquake nucleation to account for the effect of fluid overpressure and to accurately predict the seismic risk associated with fluid injection.

  20. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat [NE Albuquerque, NM

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  1. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  2. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    NASA Astrophysics Data System (ADS)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  3. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise.

    PubMed

    Chaves, Esteban J; Schwartz, Susan Y

    2016-01-01

    In subduction zones, elevated pore fluid pressure, generally linked to metamorphic dehydration reactions, has a profound influence on the mechanical behavior of the plate interface and forearc crust through its control on effective stress. We use seismic noise-based monitoring to characterize seismic velocity variations following the 2012 Nicoya Peninsula, Costa Rica earthquake [M w (moment magnitude) 7.6] that we attribute to the presence of pressurized pore fluids. Our study reveals a strong velocity reduction (~0.6%) in a region where previous work identified high forearc pore fluid pressure. The depth of this velocity reduction is constrained to be below 5 km and therefore not the result of near-surface damage due to strong ground motions; rather, we posit that it is caused by fracturing of the fluid-pressurized weakened crust due to dynamic stresses. Although pressurized fluids have been implicated in causing coseismic velocity reductions beneath the Japanese volcanic arc, this is the first report of a similar phenomenon in a subduction zone setting. It demonstrates the potential to identify pressurized fluids in subduction zones using temporal variations of seismic velocity inferred from ambient seismic noise correlations.

  4. Fluidics cube for biosensor miniaturization

    NASA Technical Reports Server (NTRS)

    Dodson, J. M.; Feldstein, M. J.; Leatzow, D. M.; Flack, L. K.; Golden, J. P.; Ligler, F. S.

    2001-01-01

    To create a small, portable, fully automated biosensor, a compact means of fluid handling is required. We designed, manufactured, and tested a "fluidics cube" for such a purpose. This cube, made of thermoplastic, contains reservoirs and channels for liquid samples and reagents and operates without the use of any internal valves or meters; it is a passive fluid circuit that relies on pressure relief vents to control fluid movement. We demonstrate the ability of pressure relief vents to control fluid movement and show how to simply manufacture or modify the cube. Combined with the planar array biosensor developed at the Naval Research Laboratory, it brings us one step closer to realizing our goal of a handheld biosensor capable of analyzing multiple samples for multiple analytes.

  5. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  6. Experimental Analysis of the Role of Fluid Transport Properties in Fluid-Induced Fracture Initiation and Propagation

    NASA Astrophysics Data System (ADS)

    Boutt, D.; McPherson, B. J.; Cook, B. K.; Goodwin, L. B.; Williams, J. R.; Lee, M. Y.; Patteson, R.

    2003-12-01

    It is well known that pore fluid pressure fundamentally influences a rock's mechanical response to stress. However, most measures of the mechanical behavior of rock (e.g. shear strength, Young's modulus) do not incorporate, either explicitly or implicitly, pore fluid pressure or transport properties of rock. Current empirical and theoretical criteria that define the amount of stress a given body of rock can support before fracturing also lack a direct connection between fluid transport and mechanical properties. Our research goal is to use laboratory experimental results to elucidate correlations between rock transport properties and fracture behavior under idealized loading conditions. In strongly coupled fluid-solid systems the evolution of the solid framework is influenced by the fluid and vice versa. These couplings often result in changes of the bulk material properties (i.e. permeability and failure strength) with respect to the fluid's ability to move through the solid and the solids ability to transmit momentum. Feedbacks between fluid and solid framework ultimately play key roles in understanding the spatial and temporal evolution of the coupled fluid-solid system. Discretely coupled models of fluid and solid mechanics were developed a priori to design an experimental approach for testing the role of fluid transport parameters in rock fracture. The experimental approach consists of first loading a fluid saturated cylindrical rock specimen under hydrostatic conditions and then applying a differential stress such that the maximum stress is perpendicular to the cylinder long axis. At the beginning of the test the minimum stress and the fluid pressure are dropped at the same time such that the resulting difference in the initial fluid pressure and the final fluid pressure is greater than the final minimum stress. These loading conditions should produce a fluid driven tensile fracture that is perpendicular to the cylinder long axis. Initial analyses using numerical simulations with similar boundary conditions suggest that resulting fracture propagation rates and fracture spacing are controlled by the rocks hydraulic diffusivity. Modeled rocks with higher permeability had fractures with larger apertures, more localized deformation, and greater fracture spacing. Intuitively, these results are consistent with permeability controlling the time required for pressure to come to equilibrium with the new boundary conditions. Finally, more general goals of this research include using these core-scale experimental data and discrete simulation results to calibrate larger-scale, more traditional continuum models of geologic deformation.

  7. Pleural pressure theory revisited: a role for capillary equilibrium.

    PubMed

    Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco

    2017-04-01

    Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.

  8. Ex-Vivo Lymphatic Perfusion System for Independently Controlling Pressure Gradient and Transmural Pressure in Isolated Vessels

    PubMed Central

    Kornuta, Jeffrey A.; Dixon, J. Brandon

    2015-01-01

    In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex-vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, ΔP, which governs fluid shear stress; and average transmural pressure, Pavg, which governs circumferential stress. Hence, the authors describe a novel ex-vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying ΔP with a constant Pavg, time-varying ΔP and Pavg, and a constant ΔP with a time-varying Pavg. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 sec) time windows is also described. PMID:24809724

  9. Apparatus for stopping a vehicle

    DOEpatents

    Wattenburg, Willard H [Walnut Creek, CA; McCallen, David B [Livermore, CA

    2007-03-20

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  10. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar

    2005-06-07

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  11. Waterflood control system for maximizing total oil recovery

    DOEpatents

    Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA

    2007-07-24

    A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

  12. Transcapillary fluid shifts in head and neck tissues during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Parazynski, S. E.; Hargens, Alan R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during, and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip: capillary pressures increased from 27.2 +/- 5 mm Hg pre-HDT to 33.9 +/- 1.7 mm Hg by the end of tilt. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values, despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr. These results indicate that facial edema resulting from HDT is primarily caused by elevated capillary pressures and decreased plasma colloid osmotic pressures. Elevation of cephalic capillary pressures sustained for 4 hr after HDT suggests that there is a compensatory vasodilation to maintain microvascular perfusion. The negativity of interstitial fluid pressures above heart level also has implications for the maintenance of tissue fluid balance in upright posture.

  13. Device to lower NOx in a gas turbine engine combustion system

    DOEpatents

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  14. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).

    PubMed

    Yu, Zeta Tak For; Cheung, Mei Ki; Liu, Shirley Xiaosu; Fu, Jianping

    2016-09-01

    Rapid fluid transport and exchange are critical operations involved in many microfluidic applications. However, conventional mechanisms used for driving fluid transport in microfluidics, such as micropumping and high pressure, can be inaccurate and difficult for implementation for integrated microfluidics containing control components and closed compartments. Here, a technology has been developed termed Vacuum-Pressure Accelerated Movement (V-PAM) capable of significantly enhancing biofluid transport in complex microfluidic environments containing dead-end channels and closed chambers. Operation of the V-PAM entails a pressurized fluid loading into microfluidic channels where gas confined inside can rapidly be dissipated through permeation through a thin, gas-permeable membrane sandwiched between microfluidic channels and a network of vacuum channels. Effects of different structural and operational parameters of the V-PAM for promoting fluid filling in microfluidic environments have been studied systematically. This work further demonstrates the applicability of V-PAM for rapid filling of temperature-sensitive hydrogels and unprocessed whole blood into complex irregular microfluidic networks such as microfluidic leaf venation patterns and blood circulatory systems. Together, the V-PAM technology provides a promising generic microfluidic tool for advanced fluid control and transport in integrated microfluidics for different microfluidic diagnosis, organs-on-chips, and biomimetic studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shuttle cryogenics supply system optimization study. Volume 5, B-3, part 2: Appendix to programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.

  16. Method and apparatus for controlling cross contamination of microfluid channels

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Paul, Phillip H [Livermore, CA; Arnold, Don W [Livermore, CA

    2006-02-07

    A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.

  17. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  18. Tremor activity inhibited by well-drained conditions above a megathrust

    PubMed Central

    Nakajima, Junichi; Hasegawa, Akira

    2016-01-01

    Tremor occurs on megathrusts under conditions of near-lithostatic pore-fluid pressures and extremely weakened shear strengths. Although metamorphic reactions in the slab liberate large amounts of fluids, the mechanism for enhancing pore-fluid pressures along the megathrust to near-lithostatic values remains poorly understood. Here we show anti-correlation between low-frequency earthquake (LFE) activity and properties that are markers of the degree of metamorphism above the megathrust, whereby LFEs occur beneath the unmetamorphosed overlying plate but are rare or limited below portions that are metamorphosed. The extent of metamorphism in the overlying plate is likely controlled by along-strike contrasts in permeability. Undrained conditions are required for pore-fluid pressures to be enhanced to near-lithostatic values and for shear strength to reduce sufficiently for LFE generation, whereas well-drained conditions reduce pore-fluid pressures at the megathrust and LFEs no longer occur at the somewhat strengthened megathrust. Our observations suggest that undrained conditions are a key factor for the genesis of LFEs. PMID:27991588

  19. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    NASA Astrophysics Data System (ADS)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  20. Pleural pressure theory revisited: a role for capillary equilibrium

    PubMed Central

    Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca

    2017-01-01

    Background Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. Methods A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. Results The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes’ hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. Conclusions This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation. PMID:28523153

  1. Uncontrolled Hemorrhage Differs From Volume- or Pressure-Matched Controlled Hemorrhage in Swine

    DTIC Science & Technology

    2007-10-01

    differences between these models, we evaluated the relationship between blood volume loss and blood pressure in controlled versus uncontrolled hemorrhage...aortotomy; (2) group P, controlled hemorrhage matched to the blood pressure profile of group U; or (3) group V, controlled hemorrhage matched to the...hemorrhage and received no fluid resuscitation. Group U resulted in a blood loss of 17.6 T 0.7 mL kgj1 and a reduction in blood pressure to 28 T 3 mmHg at

  2. Apparatus for downward transport of heat

    DOEpatents

    Neeper, D.A.; Hedstrom, J.C.

    1985-08-05

    An apparatus for the downward transport of heat by vaporization of a working fluid, usually from a collector which can be powered by the sun to a condenser which drains the condensed working fluid to a lower reservoir, is controled by a control valve which is operationally dependent upon the level of working fluid in either the lower reservoir or an upper reservoir which feeds the collector. Condensed working fluid is driven from the lower to the upper reservoir by vaporized working fluid whose flow is controled by the controll valve. The upper reservoir is in constant communication with the condenser which prevents a buildup in temperature/pressure as the apparatus goes through successive pumping cycles.

  3. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  4. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  5. Role of hyaluronan chain length in buffering interstitial flow across synovium in rabbits

    PubMed Central

    Coleman, P J; Scott, D; Mason, R M; Levick, J R

    2000-01-01

    Synovial fluid drains out of joints through an interstitial pathway. Hyaluronan, the major polysaccharide of synovial fluid, attenuates this fluid drainage; it creates a graded opposition to outflow that increases with pressure (outflow ‘buffering’). This has been attributed to size-related molecular reflection at the interstitium-fluid interface. Chain length is reduced in inflammatory arthritis. We therefore investigated the dependence of outflow buffering on hyaluronan chain length.Hyaluronan molecules of mean molecular mass ≈2200, 530, 300 and 90 kDa and concentration 3.6 mg ml−1 were infused into the knees of anaesthetized rabbits, with Ringer solution as control in the contralateral joint. Trans-synovial drainage rate was recorded at known joint pressures. Pressure was raised in steps every 30–60 min (range 2–24 cmH2O).With hyaluronan-90 and hyaluronan-300 the fluid drainage rate was reduced relative to Ringer solution (P < 0.001, ANOVA) but increased steeply with pressure. The opposition to outflow, defined as the pressure required to drive unit outflow, did not increase with pressure, i.e. there was no outflow buffering.With hyaluronan-530 and hyaluronan-2000 the fluid drainage rate became relatively insensitive to pressure, causing a near plateau of flow. Opposition to outflow increased markedly with pressure, by up to 3.3 times over the explored pressures.Hyaluronan concentration in the joint cavity increased over the drainage period, indicating partial reflection of hyaluronan by synovial interstitium. Reflected fractions were 0.12, 0.33, 0.25 and 0.79 for hyaluronan-90, -300, -530 and -2200, respectively.Thus the flow-buffering effect of hyaluronan depended on chain length, and shortening the chains reduced the degree of molecular reflection. The latter should reduce the concentration polarization at the tissue interface, and hence the local osmotic pressure opposing fluid drainage. In rheumatoid arthritis the reduced chain length will facilitate the escape of hyaluronan and fluid. PMID:10896731

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greener, J.M.; Trimble, G.E.; Singer, G.M.

    This paper describes the Opon Gas Field development drilling case history in the Middle Magdalena Basin of north-central Colombia, South America. World class levels of drilling fluid and cementing densities in excess of 22.0 ppg were required to control the extreme pressures encountered. A continuous improvement process is detailed in regard to casing, drilling fluid, cement and related drilling mechanics programs in a severely pressured and environmentally sensitive operation.

  7. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, Terry D.

    1997-01-01

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  8. Multiple source/multiple target fluid transfer apparatus

    DOEpatents

    Turner, T.D.

    1997-08-26

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  9. Transcapillary fluid shifts in tissues of the head and neck during and after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Tucker, B.; Aratow, M.; Styf, J.; Crenshaw, A.; Parazynski, S. E.

    1991-01-01

    To understand the mechanism, magnitude, and time course of facial puffiness that occurs in microgravity, seven male subjects were tilted 6 degrees head down for 8 hr, and all four Starling transcapillary pressures were directly measured before, during , and after tilt. Head-down tilt (HDT) caused facial edema and a significant elevation of microvascular pressures measured in the lower lip. Subcutaneous and intramuscular interstitial fluid pressures in the neck also increased as a result of HDT, while interstitial fluid colloid osmotic pressures remained unchanged. Plasma colloid osmotic pressures dropped significantly after 4 hr of HDT, suggesting a transition from fluid filtration to absorption in capillary beds between the heart and feet during HDT. After 4 hr of seated recovery from HDT, microvascular pressures remained significantly elevated by 5 to 8 mm Hg above baseline values despite a significant HDT diuresis and the orthostatic challenge of an upright, seated posture. During the control (baseline) period, urine output was 46.7 ml/hr; during HDT, it was 126.5 ml/hr.

  10. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex and poorly understood and (2) the architecture, mechanical properties and boundary conditions, and deformation history of most geologic systems are not well known. Much of what is known about hydromechanical processes in geologic systems is derived from simpler analyses that ignore certain aspects of solid-fluid coupling. The simplifications introduce error, but more complete analyses usually are not warranted. Hydromechanical analyses should thus be interpreted judiciously, with an appreciation for their limitations. Innovative approaches to hydromechanical modeling and obtaining critical data may circumvent some current limitations and provide answers to remaining questions about crustal processes and fluid behavior in the crust.

  11. Fluid Power Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2008-01-01

    Fluid power technicians, sometimes called hydraulic and pneumatic technicians, work with equipment that utilizes the pressure of a liquid or gas in a closed container to transmit, multiply, or control power. Working under the supervision of an engineer or engineering staff, they assemble, install, maintain, and test fluid power equipment.…

  12. Small-Portion Water Dispenser

    NASA Technical Reports Server (NTRS)

    Joerns, J. C.

    1986-01-01

    Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.

  13. Microfluidic pressure amplifier circuits and electrostatic gates for pneumatic microsystems

    DOEpatents

    Tice, Joshua D.; Bassett, Thomas A.; Desai, Amit V.; Apblett, Christopher A.; Kenis, Paul J. A.

    2016-09-20

    An electrostatic actuator is provide that can include a fluidic line, a first electrode, and a second electrode such that a gate chamber portion of the fluidic line is sandwiched between the first electrode and the second electrode. The electrostatic actuator can also include a pressure-balancing channel in fluid communication with the gate chamber portion where the first electrode is sandwiched between the pressure-balancing channel and the gate chamber portion. A pneumatic valve system is provided which includes an electrostatic gate and a fluidic channel fluidly separate from a fluidic control line. A pneumatic valve portion of the fluidic control line can be positioned relative to a portion of the fluidic channel such that expansion of the pneumatic valve portion restricts fluid flow through the fluidic channel. Methods of using an electrostatic actuator and a pneumatic valve system are also provided.

  14. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    PubMed Central

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime. PMID:24526896

  15. Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.

    PubMed

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

  16. TankSIM: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  17. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    PubMed

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  18. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.

    2004-08-31

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  19. Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.

    2006-01-24

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  20. Mobile monolithic polymer elements for flow control in microfluidic devices

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Shepodd, Timothy J [Livermore, CA; Kirby, Brian J [San Francisco, CA

    2005-11-11

    A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.

  1. Permeability Measurements of Rock Samples from Conduit Drilling at Unzen Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Shimizu, Y.; Noguchi, S.; Nakada, S.

    2006-12-01

    The last eruption of Unzen Volcano (1990-1995) was effusive to form lava domes, though magmas at depths are estimated to have contained volatile materials enough to cause explosive eruptions [e.g., Sato et al., 1995]. Most of volatile materials should have escaped from ascending magmas. The escape of gas is controlled by permeability of magmas and country rocks. Unzen Scientific Drilling Project sampled both the latest conduit and its country rock (USDP-4). In order to understand degassing processes, we have measured the permeability of these rock samples. Four cube samples with edges of 25 mm were cut from USDP-4 cores C1, C12 (country rock), C13 and C14 (conduit). Sample C1 is considered as Old Unzen Lava, and Sample C12 volcanic breccia. The transient pulse method was employed to measure the permeability. It applies a step of the fluid pressure difference across a specimen, and measures the decay rate of the fluid pressure difference. This method can be applied to samples with very low permeability, since it determines the permeability without measuring the fluid flux. Nitrogen gas was used as a pore fluid. Our permeametry system is built in a pressure vessel, and the confining pressure and the pore fluid pressure can be controlled independently. The temperature of the measurement system is kept constant within 0.1 degree. The temperature control and the background leak rate limit the measurable permeability to be higher than 10^{-20} m2. Measurements were first conducted under the atmospheric pressure. The permeability in a rock sample varies with the direction by a factor less than 5. Sample C1 has the lowest permeability (10^{-19} m2), and Sample C12 the highest value (10^{-17 m2). The permeability of C13 and C14 is of the order of 10^{- 18} m2. Though only a trace of vesicles can be seen in conduit samples, the interconnection is still maintained. The pressure dependence of the permeability is now investigated up to 50 MPa. The permeability of C13 and C14 (conduit samples) decreases by around one order of magnitude as the confining pressure increases from the atmospheric pressure to 50 MPa. The pressure dependence sensitively reflects the geometry of pores that control the interconnection of pores. Implications for degassing processes will be discussed on the basis of measured permeability and SEM images.

  2. Body fluid volumes in rats with mestranol-induced hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, W.L. Jr.; Johnson, J.A.; Kurz, K.D.

    Because estrogens have been reported to produce sodium retention, this study investigated the possibility that hypertension in rats resulting from the ingestion of an estrogen used as an oral contraceptive could be due to increases in body fluid volumes. Female rats were given feed containing mestranol for 1, 3, and 6 mo; control rats were given the feed without mestranol. The mestranol-treated rats had higher arterial pressures than the controls only after 6 mo of treatment. Plasma volume, extracellular fluid volume, and total body water were measured in each rat by the distribution volumes of radioiodinated serum albumin, /sup 32/SO/submore » 4/, and tritiated water, respectively. The body fluid volumes, expressed per 100 g of body weight, were not different between the mestranol-treated rats and their controls at any of the three treatment times. Due to differences in body weight and lean body mass between the mestranol-treated and the control rats, these volumes also were expressed per 100 g of lean body mass. Again, no differences were observed between the mestranol-treated rats and the control rats for any of these body fluid compartments at any of the treatment times. These studies, therefore, were unable to provide evidence that increases in body fluid volumes contributed to the elevated arterial pressure in this rat model of oral contraceptive hypertension.« less

  3. Pulse pressure variation-guided fluid therapy after cardiac surgery: a pilot before-and-after trial.

    PubMed

    Suzuki, Satoshi; Woinarski, Nicholas C Z; Lipcsey, Miklos; Candal, Cristina Lluch; Schneider, Antoine G; Glassford, Neil J; Eastwood, Glenn M; Bellomo, Rinaldo

    2014-12-01

    The aim of this study is to study the feasibility, safety, and physiological effects of pulse pressure variation (PPV)-guided fluid therapy in patients after cardiac surgery. We conducted a pilot prospective before-and-after study during mandatory ventilation after cardiac surgery in a tertiary intensive care unit. We introduced a protocol to deliver a fluid bolus for a PPV≥13% for at least >10 minutes during the intervention period. We studied 45 control patients and 53 intervention patients. During the intervention period, clinicians administered a fluid bolus on 79% of the defined PPV trigger episodes. Median total fluid intake was similar between 2 groups during mandatory ventilation (1297 mL [interquartile range 549-1968] vs 1481 mL [807-2563]; P=.17) and the first 24 hours (3046 mL [interquartile range 2317-3982] vs 3017 mL [2192-4028]; P=.73). After adjusting for several baseline factors, PPV-guided fluid management significantly increased fluid intake during mandatory ventilation (P=.004) but not during the first 24 hours (P=.47). Pulse pressure variation-guided fluid therapy, however, did not significantly affect hemodynamic, renal, and metabolic variables. No serious adverse events were noted. Pulse pressure variation-guided fluid management was feasible and safe during mandatory ventilation after cardiac surgery. However, its advantages may be clinically small. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity

    NASA Technical Reports Server (NTRS)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.

  5. Extreme hydrothermal conditions at an active plate-bounding fault.

    PubMed

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G R; Janku-Capova, Lucie; Carpenter, Brett M; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  6. Extreme hydrothermal conditions at an active plate-bounding fault

    NASA Astrophysics Data System (ADS)

    Sutherland, Rupert; Townend, John; Toy, Virginia; Upton, Phaedra; Coussens, Jamie; Allen, Michael; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin; Boles, Austin; Boulton, Carolyn; Broderick, Neil G. R.; Janku-Capova, Lucie; Carpenter, Brett M.; Célérier, Bernard; Chamberlain, Calum; Cooper, Alan; Coutts, Ashley; Cox, Simon; Craw, Lisa; Doan, Mai-Linh; Eccles, Jennifer; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Howarth, Jamie; Jacobs, Katrina; Jeppson, Tamara; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Timothy; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Massiot, Cécile; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, Andre; Nishikawa, Osamu; Prior, David; Sauer, Katrina; Savage, Martha; Schleicher, Anja; Schmitt, Douglas R.; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Williams, Jack; Woodman, Nick; Zimmer, Martin

    2017-06-01

    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.

  7. Note: A micro-perfusion system for use during real-time physiological studies under high pressure

    NASA Astrophysics Data System (ADS)

    Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul

    2014-10-01

    We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.

  8. Note: A micro-perfusion system for use during real-time physiological studies under high pressure.

    PubMed

    Maltas, Jeff; Long, Zac; Huff, Alison; Maloney, Ryan; Ryan, Jordan; Urayama, Paul

    2014-10-01

    We construct a micro-perfusion system using piston screw pump generators for use during real-time, high-pressure physiological studies. Perfusion is achieved using two generators, with one generator being compressed while the other is retracted, thus maintaining pressurization while producing fluid flow. We demonstrate control over perfusion rates in the 10-μl/s range and the ability to change between fluid reservoirs at up to 50 MPa. We validate the screw-pump approach by monitoring the cyanide-induced response of UV-excited autofluorescence from Saccharomyces cerevisiae under pressurization.

  9. A novel pressure-driven piezodispenser for nanoliter volumes.

    PubMed

    McGuire, Shawn; Fisher, Charles; Holl, Mark; Meldrum, Deirdre

    2008-08-01

    A successful dispensing device has been built for use in biotechnology applications requiring nanoliter volume liquid transfer. Air pressure is used as the primary driving force and is controlled via a high speed miniature solenoid valve as opposed to many existing systems that use a valve in line with constantly pressurized fluid to start and stop the dispensing action. This automated pressure-driven system is used to improve a typical piezodriven microdispenser. The resulting system is much less prone to failures resulting from air entrainment and can dispense much higher viscosity fluids than the microdispenser alone.

  10. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  11. A liquid-delivery device that provides precise reward control for neurophysiological and behavioral experiments.

    PubMed

    Mitz, Andrew R

    2005-10-15

    Behavioral neurophysiology and other kinds of behavioral research often involve the delivery of liquid rewards to experimental subjects performing some kind of operant task. Available systems use gravity or pumps to deliver these fluids, but such methods are poorly suited to moment-to-moment control of the volume, timing, and type of fluid delivered. The design described here overcomes these limitations using an electronic control unit, a pressurized reservoir unit, and an electronically controlled solenoid. The control unit monitors reservoir pressure and provides precisely timed solenoid activation signals. It also stores calibration tables and does on-the-fly interpolation to support computer-controlled delivery calibrated directly in milliliters. The reservoir provides pressurized liquid to a solenoid mounted near the subject. Multiple solenoids, each supplied by a separate reservoir unit and control unit, can be stacked in close proximity to allow instantaneous selection of which liquid reward is delivered. The precision of droplet delivery was verified by weighing discharged droplets on a commercial analytical balance.

  12. Stirling cycle engine and refrigeration systems

    NASA Technical Reports Server (NTRS)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  13. 2D Simulations of Earthquake Cycles at a Subduction Zone Based on a Rate and State Friction Law -Effects of Pore Fluid Pressure Changes-

    NASA Astrophysics Data System (ADS)

    Mitsui, Y.; Hirahara, K.

    2006-12-01

    There have been a lot of studies that simulate large earthquakes occurring quasi-periodically at a subduction zone, based on the laboratory-derived rate-and-state friction law [eg. Kato and Hirasawa (1997), Hirose and Hirahara (2002)]. All of them assume that pore fluid pressure in the fault zone is constant. However, in the fault zone, pore fluid pressure changes suddenly, due to coseismic pore dilatation [Marone (1990)] and thermal pressurization [Mase and Smith (1987)]. If pore fluid pressure drops and effective normal stress rises, fault slip is decelerated. Inversely, if pore fluid pressure rises and effective normal stress drops, fault slip is accelerated. The effect of pore fluid may cause slow slip events and low-frequency tremor [Kodaira et al. (2004), Shelly et al. (2006)]. For a simple spring model, how pore dilatation affects slip instability was investigated [Segall and Rice (1995), Sleep (1995)]. When the rate of the slip becomes high, pore dilatation occurs and pore pressure drops, and the rate of the slip is restrained. Then the inflow of pore fluid recovers the pore pressure. We execute 2D earthquake cycle simulations at a subduction zone, taking into account such changes of pore fluid pressure following Segall and Rice (1995), in addition to the numerical scheme in Kato and Hirasawa (1997). We do not adopt hydrostatic pore pressure but excess pore pressure for initial condition, because upflow of dehydrated water seems to exist at a subduction zone. In our model, pore fluid is confined to the fault damage zone and flows along the plate interface. The smaller the flow rate is, the later pore pressure recovers. Since effective normal stress keeps larger, the fault slip is decelerated and stress drop becomes smaller. Therefore the smaller flow rate along the fault zone leads to the shorter earthquake recurrence time. Thus, not only the frictional parameters and the subduction rate but also the fault zone permeability affects the recurrence time of earthquake cycle. Further, the existence of heterogeneity in the permeability along the plate interface can bring about other slip behaviors, such as slow slip events. Our simulations indicate that, in addition to the frictional parameters, the permeability within the fault damage zone is one of essential parameters, which controls the whole earthquake cycle.

  14. Fail-fixed servovalve with positive fluid feedback

    NASA Technical Reports Server (NTRS)

    Kast, Howard B. (Inventor)

    1984-01-01

    The servovalve includes a primary jet of fluid. A variable control signal is adapted to vary the angular position of the primary jet from its maximum recovery position. A first fluid path is adapted to supply fluid to a servopiston at a variable pressure determined at least in part by the control signal. A second fluid path is adapted to receive a predetermined portion of the primary jet fluid when the control signal reaches a predetermined value. The second fluid path terminates in the vicinity of the primary jet and is adapted to direct a secondary jet of fluid at the primary jet to deflect the primary jet toward the input orifice of the second fluid path. The resultant positive fluid feedback in the second fluid path causes the primary jet to latch in a first angular position relative to the maximum recovery position when the control signal reaches a predetermined value. The servovalve may further include a means to discharge the fluid and a means to block the first fluid path to the servopiston when the control signal falls below a second predetermined value. A method of operating a fail-fixed servovalve is also described.

  15. Hydroforming device and method

    DOEpatents

    Guza, David E.

    2007-09-11

    An apparatus (10, 110) and method to form a workpiece (32, 132) into a useful product (28, 128) using a pressurized fluid (14), also termed as "hydroforming". The workpiece may be a tube or may be one or a plurality of sheets of a material. The apparatus has a chamber (12) adapted to contain a quantity of a fluid, a hydroforming means positioned within the chamber, and means for substantially immersing the workpiece in the fluid before, during and after the hydroforming operation. Dies (16, 18) enclose the workpiece and provide a cavity of desired shape against which the workpiece is expanded by the pressurized fluid. The chamber may be open or closed to the atmosphere during operation and the fluid temperature and/or level may be controlled.

  16. Application of microturbines to control emissions from associated gas

    DOEpatents

    Schmidt, Darren D.

    2013-04-16

    A system for controlling the emission of associated gas produced from a reservoir. In an embodiment, the system comprises a gas compressor including a gas inlet in fluid communication with an associated gas source and a gas outlet. The gas compressor adjusts the pressure of the associated gas to produce a pressure-regulated associated gas. In addition, the system comprises a gas cleaner including a gas inlet in fluid communication with the outlet of the gas compressor, a fuel gas outlet, and a waste product outlet. The gas cleaner separates at least a portion of the sulfur and the water from the associated gas to produce a fuel gas. Further, the system comprises a gas turbine including a fuel gas inlet in fluid communication with the fuel gas outlet of the gas cleaner and an air inlet. Still further, the system comprises a choke in fluid communication with the air inlet.

  17. Feasibility study for a Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) satellite

    NASA Technical Reports Server (NTRS)

    Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.

    1990-01-01

    This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.

  18. Decision-Assist and Closed-Loop Control of Fluid Therapy

    DTIC Science & Technology

    2012-03-30

    achieve target endpoints while reducing fluid needs in experimental models of hemorrhage. During the previous funding cycle, along with our... IABP ) (standard of care blood pressure monitor "gold standard") in cardiac surgical patients to blood pressure recorded by the WVSM. Rational for...WVSM vs Gold standard IABP 2) History of neuropraxia 3) Refusal to consent 4) Failure to obtain radial artery cannulation Ten CPB Patients were

  19. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

  20. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.

    PubMed

    Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg

    2016-12-01

    Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.

  1. Study of low gravity propellant transfer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented of a program to perform an analytical assessment of potential methods for replenishing the auxiliary propulsion, fuel cell and life support cryogens which may be aboard an orbiting space station. The fluids involved are cryogenic H2, O2, and N2. A complete transfer system was taken to consist of supply storage, transfer, and receiver tank fluid conditioning (pressure and temperature control). In terms of supply storage, the basic systems considered were high pressure (greater than critical), intermediate pressure (less than critical), and modular (transfer of the tanks). Significant findings are included.

  2. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2008-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  3. Localized arc filament plasma actuators for noise mitigation and mixing enhancement

    NASA Technical Reports Server (NTRS)

    Samimy, Mohammad (Inventor); Adamovich, Igor (Inventor)

    2010-01-01

    A device for controlling fluid flow. The device includes an arc generator coupled to electrodes. The electrodes are placed adjacent a fluid flowpath such that upon being energized by the arc generator, an arc filament plasma adjacent the electrodes is formed. In turn, this plasma forms a localized high temperature, high pressure perturbation in the adjacent fluid flowpath. The perturbations can be arranged to produce vortices, such as streamwise vortices, in the flowing fluid to control mixing and noise in such flows. The electrodes can further be arranged within a conduit configured to contain the flowing fluid such that when energized in a particular frequency and sequence, can excite flow instabilities in the flowing fluid. The placement of the electrodes is such that they are unobtrusive relative to the fluid flowpath being controlled.

  4. Sample preparation system for microfluidic applications

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA; Harnett, Cindy K [Livermore, CA

    2007-05-08

    An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

  5. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    van Boeyen, Roger W. (Inventor); Reeh, Jonathan A. (Inventor); Kesmez, Mehmet (Inventor); Heselmeyer, Eric A. (Inventor); Parkey, Jeffrey S. (Inventor)

    2016-01-01

    An electrochemically actuated pump and an electrochemical actuator for use with a pump. The pump includes one of various stroke volume multiplier configurations with the pressure of a pumping fluid assisting actuation of a driving fluid bellows. The electrochemical actuator has at least one electrode fluidically coupled to the driving fluid chamber of the first pump housing and at least one electrode fluidically coupled to the driving fluid chamber of the second pump housing. Accordingly, the electrochemical actuator selectively pressurizes hydrogen gas within a driving fluid chamber. The actuator may include a membrane electrode assembly including an ion exchange membrane with first and second catalyzed electrodes in contact with opposing sides of the membrane, and first and second hydrogen gas chambers in fluid communication with the first and second electrodes, respectively. A controller may reverse the polarity of a voltage source electrically coupled to the current collectors.

  6. Recommendation of Sensors for Vehicle Transmission Diagnostics

    DTIC Science & Technology

    2012-05-01

    and a pressure switch module form the Control value module. A thermistor is contained within the pressure switch module in order to monitor the sump...fluid temperature. Sensor information is provided to the TCM through various sensors such as throttle position, speed sensor, pressure switch module

  7. Flow of Gas and Water in Hydraulically Fractured Shale Gas Reservoirs, March 28-29, 2011

    EPA Pesticide Factsheets

    Underground fluid flow is primarily controlled by two physical factors: hydraulic conduits and pressure gradients. Both are required, or fluids will not move. In their natural state, shale formations are very impermeable.

  8. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  9. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  10. Use of the Esophageal Doppler Machine to help guide the intraoperative management of two children with pheochromocytoma.

    PubMed

    Hack, Henrik

    2006-08-01

    The anesthetic management of pheochromocytoma has been based upon the intraoperative control of blood pressure and fluid balance following adequate preoperative preparation. This can be difficult, especially in the presence of significant comorbidity such as cardiac or renal dysfunction. Two cases of children with pheochromocytoma are reported where the introperative management of fluid balance and blood pressure control were guided by measurement of changes in descending aortic blood flow using an esophageal Doppler probe. The advantages of such a technique compared with more invasive monitors are discussed.

  11. Attack on centrifugal costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, P.F.

    1986-03-01

    The Monsanto Chocolate Bayou plant has had an aggressive and successful energy conservation program. The combined efforts have resulted in a 80% reduction in unit energy consumption compared to 1972. The approach of using system audits to optimize fluid systems was developed. Since most of the fluid movers are centrifugal, the name Centrifugal Savings Task Force was adopted. There are three tools that are particularly valuable in optimizing fluid systems. First, a working level understanding of the Affinity Laws seems a must. In addition, the performance curves for the fluid movers is needed. The last need is accurate system fieldmore » data. Systems effectively managed at the Chocolate Bayou plant were process air improvement, feed-water pressure reduction, combustion air blower turbine speed control, and cooling tower pressure reduction. Optimization of centrifugal systems is an often-overlooked opportunity for energy savings. The basic guidelines are to move only the fluid needed, and move it at as low a pressure as possible.« less

  12. Fluid Distribution in Synthetic Wet Halite Rocks : Inference from Measured Elastic Wave Velocity and Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Kitano, M.

    2011-12-01

    Intercrystalline fluid can significantly affect rheological and transport properties of rocks. Its influences are strongly dependent on its distribution. The dihedral angle between solid and liquid phases has been widely accepted as a key parameter that controls solid-liquid textures. The liquid phase is not expected to be interconnected if the dihedral angle is larger than 60 degree. However, observations contradictory to dihedral angle values have been reported. Watanabe (2010) suggested the coexistence of grain boundary fluid with a positive dihedral angle. For good understanding of fluid distribution, it is thus critical to study the nature of grain boundary fluid. We have developed a high pressure and temperature apparatus for study of intercrystalline fluid distribution. It was specially designed for measurements of elastic wave velocities and electrical conductivity. The apparatus mainly consists of a conventional cold-seal vessel with an external heater. The pressure medium is silicon oil of the viscosity of 0.1 Pa s. The pressure and temperature can be controlled from 0 to 200 MPa and from 20 to 200 C, respectively. Dimensions of a sample are 9 mm in diameter, and 15 mm in length. Halite-water system is used as an analog for crustal rocks. The dihedral angle has been studied systematically at various pressure and temperature conditions [Lewis and Holness, 1996]. The dihedral angle is larger than 60 degree at lower pressure and temperature. It decreases to be smaller than 60 degree with increasing pressure and temperature. A sample is prepared by cold-pressing and annealing of wet NaCl powder. Optical examination has shown that synthesized samples are microstructurally homogeneous. Grains are polygonal and equidimensional with a mean diameter of 100 micrometer. Grain boundaries vary from straight to bowed and 120 degree triple junctions are common. Gas and fluid bearing inclusions are visible on the grain boundaries. There are spherical inclusions or isolated worm-like channels. In this presentation, we will report preliminary results of compressional wave velocity and electrical conductivity measurements.

  13. Simulations of the origin of fluid pressure, fracture gen­ eration, and the movement of fluids in the Uinta Basin, Utah

    USGS Publications Warehouse

    Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.

    1994-01-01

    The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.

  14. Variable Geometry Aircraft Pylon Structure and Related Operation Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Parthiv N. (Inventor)

    2014-01-01

    An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.

  15. Applications of Modern Hydrodynamics to Aeronautics. Part 1: Fundamental Concepts and the Most Important Theorems. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Prandtl, L.

    1979-01-01

    A discussion of the principles of hydrodynamics of nonviscous fluids in the case of motion of solid bodies in a fluid is presented. Formulae are derived to demonstrate the transition from the fluid surface to a corresponding 'control surface'. The external forces are compounded of the fluid pressures on the control surface and the forces which are exercised on the fluid by any solid bodies which may be inside of the control surfaces. Illustrations of these formulae as applied to the acquisition of transformations from a known simple flow to new types of flow for other boundaries are given. Theoretical and experimental investigations of models of airship bodies are presented.

  16. Fluid balance within the canine anterolateral compartment and its relationship to compartment syndromes.

    PubMed

    Hargens, A R; Akeson, W H; Mubarak, S J; Owen, C A; Evans, K L; Garetto, L P; Gonsalves, M R; Schmidt, D A

    1978-06-01

    Fluid homeostasis within muscle compartments is maintained by four pressures: capillary blood pressure, capillary blood oncotic pressure, tissue-fluid pressure, and tissue fluid oncotic pressure. As determined in the canine anterolateral compartment, capillary blood pressure is 25 +/- 3 millimeters of mercury; capillary blood oncotic pressure, 26 +/- 3 millimeters of mercury, tissue-pbessure, -2 +/- 2 millimeters of mercury; and tissue-fluid oncotic pressure, 11 +/- 1 millimeters of mercury. The wick technique allows direct measurement of tissue-fluid pressure in skeletal muscle and, with minor modifications, is adapted to collect microsamples of interstitial fluid for determinations of tissue-fluid oncotic pressure. The wick technique detects very slight fluctuations in intracompartmental pressure such as light finger compression, injection of small volumes of fluid, and even pulsation due to adjacent arterial pressure. Adjacent muscle compartments may contain different tissue-fluid pressure due to impermeable osseofascial barriers. Our results obtained in canine muscle compartments pressurized by infusion of autologous plasma suggest that risks of muscle damage are significant at intracompartmental pressures greater than thirty millimeters of mercury.

  17. Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales

    NASA Astrophysics Data System (ADS)

    Collettini, C.; Scuderi, M. M.; Marone, C.

    2017-12-01

    Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.

  18. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  19. Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.

    PubMed

    Barclay, Paul L; Lukes, Jennifer R

    2016-12-01

    A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.

  20. The Effect of Electrokinetic Controlled Wettability on Externally Measured Pressures for a Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.

    2017-12-01

    The hysteretic relationship between capillary pressure (Pc) on saturation (S) has been shown to be a projection of a higher-dimensional surface that depends on interfacial area per volume (IAV) as the additional state variable. Most studies that validate the capillary-pressure-saturation-IAV relationship are performed on 2D micro-models or cores where scanning is performed in pressure and not in saturation. We have developed an EWOD technique (electro-wetting on dielectric) to internally manipulate fluid saturation to determine the effect on externally measured pressures. Applying electric fields to electrolytic fluids changes the contact angle among the fluids and the solid. For a parallel-plate electro-wetting set-up, the pressure difference is given by gsl (cosq'EW - cosqEW )/d', where d' is the aperture, qEQ and q'EW are the contact angles before and after the application of voltage, V, and gsl is the interfacial tension between the solid and liquid phases. This pressure difference enables direct control over internal fluid distributions. The contact angle reverts to the original value when V = 0. A sealed micro-model with Electro-Wetting on Dielectric (EWOD) electrodes was fabricated using a PDMS wedge-shaped channel with an entrance width of 1 mm and an exit width of 2 mm. The channel length was 2 mm, and had a depth of 0.9 mm. The PDMS channel was attached to an aluminum plate that served as the ground electrode. An ITO slide coated with PDMS formed the high voltage electrode and was used to seal the micro-model. X-ray Micro-CT scans showed that the contact angle between electrodes changes from from 110˚ (non-wetting) to 70˚ (wetting) for an applied voltage of 318 V AC. By applying voltage to the wedge-shaped micromodel, with the inlet and the outlet opened to the atmosphere, the externally measured capillary pressure remained constant even though the fluid-air interface moved and the saturation increased. For a closed system, the externally measured change in capillary pressure was 30 Pa and the saturation in the channel increased. EWOD provides method to assess the contributions of wettability to the fundamental physics of immiscible fluids in analog porous media. Acknowledgment: This research was supported by the National Science Foundation (1314663-EAR).

  1. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOEpatents

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  2. Why have hydrostatic bearings been avoided as a stabilizing element for rotating machines

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    The advantages are discussed of hydrostatic, high pressure bearings as providers of higher margin of stability to the rotor/bearing systems. It is apparent that deliberate use of hydrostatic bearing high pressure lubricated (any gas or liquid) can easily be used to build higher stability margin into rotating machinery, in spite of the thirty years bias against high pressure lubrication. Since this supply pressure is controllable (the Direct Dynamic Stiffness at lower eccentricity is also controllable) so that within some rotor system limits, the stability margin and dynamic response of the rotor system is more readily controllable. It may be possible to take advantage of this effect in the various seals, as well as the bearings, to assist with stability margin and dynamic response of rotating machinery. The stability of the bearing can be additionally improved by taking advantage of the anti-swirling concept. The high pressure fluid supply inlets should be located tangentially at the bearing circumference and directed against rotation. The incoming fluid flow creates stability by reducing the swirling rate.

  3. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight

    NASA Technical Reports Server (NTRS)

    Baisch, F.; Beck, L.; Blomqvist, G.; Wolfram, G.; Drescher, J.; Rome, J. L.; Drummer, C.

    2000-01-01

    BACKGROUND: It is well known that space travel cause post-flight orthostatic hypotension and it was assumed that autonomic cardiovascular control deteriorates in space. Lower body negative pressure (LBNP) was used to assess autonomic function of the cardiovascular system. METHODS: LBNP tests were performed on six crew-members before and on the first days post-flight in a series of three space missions. Additionally, two of the subjects performed LBNP tests in-flight. LBNP mimics fluid distribution of upright posture in a gravity independent way. It causes an artificial sequestration of blood, reduces preload, and filtrates plasma into the lower part of the body. Fluid distribution was assessed by bioelectrical impedance and anthropometric measurements. RESULTS: Heart rate, blood pressure, and total peripheral resistance increased significantly during LBNP experiments in-flight. The decrease in stroke volume, the increased pooling of blood, and the increased filtration of plasma into the lower limbs during LBNP indicated that a plasma volume reduction and a deficit of the interstitial volume of lower limbs rather than a change in cardiovascular control was responsible for the in-flight response. Post-flight LBNP showed no signs of cardiovascular deterioration. The still more pronounced haemodynamic changes during LBNP reflected the expected behaviour of cardiovascular control faced with less intravascular volume. In-flight, the status of an intra-and extravascular fluid deficit increases sympathetic activity, the release of vasoactive substances and consequently blood pressure. Post-flight, blood pressure decreases significantly below pre-flight values after restoration of volume deficits. CONCLUSION: We conclude that the cardiovascular changes in-flight are a consequence of a fluid deficit rather than a consequence of changes in autonomic signal processing.

  4. Prospects for earthquake prediction and control

    USGS Publications Warehouse

    Healy, J.H.; Lee, W.H.K.; Pakiser, L.C.; Raleigh, C.B.; Wood, M.D.

    1972-01-01

    The San Andreas fault is viewed, according to the concepts of seafloor spreading and plate tectonics, as a transform fault that separates the Pacific and North American plates and along which relative movements of 2 to 6 cm/year have been taking place. The resulting strain can be released by creep, by earthquakes of moderate size, or (as near San Francisco and Los Angeles) by great earthquakes. Microearthquakes, as mapped by a dense seismograph network in central California, generally coincide with zones of the San Andreas fault system that are creeping. Microearthquakes are few and scattered in zones where elastic energy is being stored. Changes in the rate of strain, as recorded by tiltmeter arrays, have been observed before several earthquakes of about magnitude 4. Changes in fluid pressure may control timing of seismic activity and make it possible to control natural earthquakes by controlling variations in fluid pressure in fault zones. An experiment in earthquake control is underway at the Rangely oil field in Colorado, where the rates of fluid injection and withdrawal in experimental wells are being controlled. ?? 1972.

  5. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.

    2005-01-01

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  6. Externally controlled pressure and temperature microreactor for in situ x-ray diffraction, visual and spectroscopic reaction investigations under supercritical and subcritial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.

    2010-07-13

    A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less

  7. Scaling behavior of immersed granular flows

    NASA Astrophysics Data System (ADS)

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-06-01

    The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.

  8. Acceleration of tendon-bone healing of anterior cruciate ligament graft using intermittent negative pressure in rabbits.

    PubMed

    Sun, Zhengming; Wang, Xiaoqing; Ling, Ming; Wang, Wei; Chang, Yanhai; Yang, Guang; Dong, Xianghui; Wu, Shixun; Wu, Xueyuan; Yang, Bo; Chen, Ming

    2017-04-18

    The purpose of this study was to test effects of negative pressure on tendon-bone healing after reconstruction of anterior cruciate ligament (ACL) in rabbits. Hind legs of 24 New Zealand White rabbits were randomly selected as negative pressure group and the contralateral hind legs as control. Reconstruction of the ACL was done. Joints of the negative pressure side were placed with drainage tubes connecting the micro-negative pressure aspirator. Control side was placed with ordinary drainage tubes. Drainage tubes on both sides were removed at the same time 5 days after operation. After 6 weeks, joint fluid was drawn to detect the expression levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α); at the same time, femur-ligament-tibia complex was obtained to determine tendon graft tension and to observe the histomorphology, blood vessels of the tendon-bone interface, and expression of vascular endothelial growth factor (VEGF). The maximum load breakage of tendon graft was significantly greater in the negative pressure group than in the control group (P < 0.05). Histological studies of the tendon-bone interface found that there was more new bone formation containing chondroid cells and aligned connective tissue in the negative pressure group than in the control group. Expression of VEGF was higher in the negative pressure group than in the control group (P < 0.01). Content of IL-1β and TNF-α in synovial fluid is lower in the negative pressure group than in the control group (P < 0.01). Intermittent negative pressure plays an active role in tendon-bone healing and creeping substitution of ACL reconstruction in the rabbits.

  9. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to themore » identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  10. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  11. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs

    NASA Astrophysics Data System (ADS)

    Gischig, Valentin S.

    2015-09-01

    Earthquakes caused by fluid injection into deep underground reservoirs constitute an increasingly recognized risk to populations and infrastructure. Quantitative assessment of induced seismic hazard, however, requires estimating the maximum possible magnitude earthquake that may be induced during fluid injection. Here I seek constraints on an upper limit for the largest possible earthquake using source-physics simulations that consider rate-and-state friction and hydromechanical interaction along a straight homogeneous fault. Depending on the orientation of the pressurized fault in the ambient stress field, different rupture behaviors can occur: (1) uncontrolled rupture-front propagation beyond the pressure front or (2) rupture-front propagation arresting at the pressure front. In the first case, fault properties determine the earthquake magnitude, and the upper magnitude limit may be similar to natural earthquakes. In the second case, the maximum magnitude can be controlled by carefully designing and monitoring injection and thus restricting the pressurized fault area.

  12. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  13. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  14. Comparative thermal analysis of alternate Cryogenic Fluid Management Experiment (CFME) configurations

    NASA Technical Reports Server (NTRS)

    Merino, F.; Oneill, R. F.

    1980-01-01

    The Cryogenic Fluid Management Experiment (CFME) was analyzed to assess the feasibility and advisability of deleting the vapor cooled shield (VCS) from the baseline CFME insulation and pressure control system. Two alternate concepts of CFME insulation and pressure control, neither of which incorporated the VCS, were investigated. The first concept employed a thermodynamic vent system (TVS) to throttle the flow through an internal wall mounted heat exchanger (HX) within the pressure vessel to decrease boiloff and pressure rise rate, while the second concept utilized a TVS without an internal heat exchanger. Only the first concept was viable. Its performance was assessed for a seven day mission and found to be satisfactory. It was also concluded that VCS development costs would be greater than for an internal HX installation. Based upon the above comparisons, the HX was recommended as a replacement for the VCS.

  15. Physiology of Fluid and Electrolyte Responses During Inactivity: Water Immersion and Bed Rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1984-01-01

    This manuscript emphasizes the physiology of fluid-electrolyte-hormonal responses during the prolonged inactivity of bed rest and water immersion. An understanding of the total mechanism of adaptation (deconditioning) should provide more insight into the conditioning process. Findings that need to be confirmed during bed rest and immersion are: (1) the volume and tissues of origin of fluid shifted to the thorax and head; (2) interstitial fluid pressure changes in muscle and subcutaneous tissue, particularly during immersion; and (3) the composition of the incoming presumably interstitial fluid that contributes to the early hypervolemia. Better resolution of the time course and source of the diuretic fluid is needed. Important data will be forthcoming when hypotheses are tested involving the probable action of the emerging diuretic and natriuretic hormones, between themselves and among vasopressin and aldosterone, on diuresis and blood pressure control.

  16. Flap Edge Noise Reduction Fins

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Choudhan, Meelan M. (Inventor)

    2015-01-01

    A flap of the type that is movably connected to an aircraft wing to provide control of an aircraft in flight includes opposite ends, wherein at least a first opposite end includes a plurality of substantially rigid, laterally extending protrusions that are spaced apart to form a plurality of fluidly interconnected passageways. The passageways have openings adjacent to upper and lower sides of the flap, and the passageways include a plurality of bends such that high pressure fluid flows from a high pressure region to a low pressure region to provide a boundary condition that inhibits noise resulting from airflow around the end of the flap.

  17. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  18. Enhanced heat transfer using nanofluids

    DOEpatents

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  19. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    NASA Astrophysics Data System (ADS)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  20. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 3 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 3 of 4.

  1. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 4 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 4 of 4.

  2. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 1 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 1 of 4.

  3. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 2 of 4

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 2 of 4.

  4. Determining the Partial Pressure of Volatile Components via Substrate-Integrated Hollow Waveguide Infrared Spectroscopy with Integrated Microfluidics.

    PubMed

    Kokoric, Vjekoslav; Theisen, Johannes; Wilk, Andreas; Penisson, Christophe; Bernard, Gabriel; Mizaikoff, Boris; Gabriel, Jean-Christophe P

    2018-04-03

    A microfluidic system combined with substrate-integrated hollow waveguide (iHWG) vapor phase infrared spectroscopy has been developed for evaluating the chemical activity of volatile compounds dissolved in complex fluids. Chemical activity is an important yet rarely exploited parameter in process analysis and control. Access to chemical activity parameters enables systematic studies on phase diagrams of complex fluids, the detection of aggregation processes, etc. The instrumental approach developed herein uniquely enables controlled evaporation/permeation from a sample solution into a hollow waveguide structure and the analysis of the partial pressures of volatile constituents. For the example of a binary system, it was shown that the chemical activity may be deduced from partial pressure measurements at thermodynamic equilibrium conditions. The combined microfluidic-iHWG midinfrared sensor system (μFLUID-IR) allows the realization of such studies in the absence of any perturbations provoked by sampling operations, which is unavoidable using state-of-the-art analytical techniques such as headspace gas chromatography. For demonstration purposes, a water/ethanol mixture was investigated, and the derived data was cross-validated with established literature values at different mixture ratios. Next to perturbation-free measurements, a response time of the sensor <150 s ( t 90 ) at a recovery time <300 s ( t recovery ) has been achieved, which substantiates the utility of μFLUID-IR for future process analysis-and-control applications.

  5. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain

    An electrophilic acid gas-reactive fracturing fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. The proppant stabilizes fracture openings in the bedrock to enhance recovery of energy-producing materials.

  6. Combined Effect of Fluid and Pressure on Middle Ear Function

    PubMed Central

    Dai, Chenkai; Wood, Mark W.; Gan, Rong Z.

    2008-01-01

    In our previous studies, the effects of effusion and pressure on sound transmission were investigated separately. The aim of this study is to investigate the combined effect of fluid and pressure on middle ear function. An otitis media with effusion model was created by injecting saline solution and air pressure simultaneously into the middle ear of human temporal bones. Tympanic membrane displacement in response to 90 dB SPL sound input was measured by a laser vibrometer and the compliance of the middle ear was measured by a tympanometer. The movement of the tympanic membrane at the umbo was reduced up to 17 dB by the combination of fluid and pressure in the middle ear over the auditory frequency range. The fluid and pressure effects on the umbo movement in the fluid-pressure combination are not additive. The combined effect of fluid and pressure on the umbo movement is different compared with that of only fluid or pressure change in the middle ear. Negative pressure in fluid-pressure combination had more effect on middle ear function than positive pressure. Tympanometry can detect the middle ear pressure of the fluid-pressure combination. This study provides quantitative information for analysis of the combined effect of fluid and pressure on tympanic membrane movement. PMID:18162348

  7. Comparison of Cerebrospinal Fluid Opening Pressure in Children With Demyelinating Disease to Children With Primary Intracranial Hypertension.

    PubMed

    Morgan-Followell, Bethanie; Aylward, Shawn C

    2017-03-01

    The authors aimed to compare the opening pressures of children with demyelinating disease to children with primary intracranial hypertension. Medical records were reviewed for a primary diagnosis of demyelinating disease, or primary intracranial hypertension. Diagnosis of demyelinating disease was made according to either the 2007 or 2012 International Pediatric Multiple Sclerosis Study Group criteria. Primary intracranial hypertension diagnosis was confirmed by presence of elevated opening pressure, normal cerebrospinal fluid composition and neuroimaging. The authors compared 14 children with demyelinating disease to children with primary intracranial hypertension in 1:1 and 1:2 fashions. There was a statistically significant higher BMI in the primary intracranial hypertension group compared to the demyelinating group ( P = .0203). The mean cerebrospinal fluid white blood cell count was higher in the demyelinating disease group compared to primary intracranial hypertension ( P = .0002). Among both comparisons, the cerebrospinal fluid opening pressure, glucose, protein and red blood cell counts in children with demyelinating disease were comparable to age- and sex-matched controls with primary intracranial hypertension.

  8. A Classic Test of the Hubbert-Rubey Weakening Mechanism: M7.6 Thrust-Belt Earthquake Taiwan

    NASA Astrophysics Data System (ADS)

    Yue, L.; Suppe, J.

    2005-12-01

    The Hubbert-Rubey (1959) fluid-pressure hypothesis has long been accepted as a classic solution to the problem of the apparent weakness of long thin thrust sheets. This hypothesis, in its classic form argues that ambient high pore-fluid pressures, which are common in sedimentary basins, reduce the normalized shear traction on the fault τb/ρ g H = μb(1-λb) where λb=Pf/ρ g H is the normalized pore-fluid pressure and μb is the coefficient of friction. Remarkably, there have been few large-scale tests of this classic hypothesis. Here we document ambient pore-fluid pressures surrounding the active frontal thrusts of western Taiwan, including the Chulungpu thrust that slipped in the 1999 Mw7.6 Chi-Chi earthquake. We show from 3-D mapping of these thrusts that they flatten to a shallow detachment at about 5 km depth in the Pliocene Chinshui Shale. Using critical-taper wedge theory and the dip of the detachment and surface slope we constrain the basal shear traction τb/ρ g H ≍ 0.1 which is substantially weaker than common lab friction values of of Byerlee's law (μb= 0.85-0.6). We have determined the pore-fluid pressures as a function of depth in 76 wells, based on in-situ formation tests, sonic logs and mud densities. Fluid pressures are regionally controlled stratigraphically by sedimentary facies. The top of overpressures is everywhere below the base of the Chinshui Shale, therefore the entire Chinshui thrust system is at ambient hydrostatic pore-fluid pressures (λb ≍ 0.4). According to the classic Hubbert-Rubey hypothesis the required basal coefficient of friction is therefore μb ≍ 0.1-0.2. Therefore the classic Hubbert & Rubey mechanism involving static ambient excess fluid pressures is not the cause of extreme fault weakening in this western Taiwan example. We must look to other mechanisms of large-scale fault weakening, many of which are difficult to test.

  9. Internally supported flexible duct joint. [device for conducting fluids in high pressure systems

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F., Jr. (Inventor)

    1975-01-01

    An internally supported, flexible duct joint for use in conducting fluids under relatively high pressures in systems where relatively large deflection angles must be accommodated is presented. The joint includes a flexible tubular bellows and an elongated base disposed within the bellows. The base is connected through radiating struts to the bellows near mid-portion and to each of the opposite end portions of the bellows through a pivotal connecting body. A motion-controlling linkage is provided for linking the connecting bodies, whereby angular displacement of the joint is controlled and uniformity in the instantaneous bend radius of the duct is achieved as deflection is imposed.

  10. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2008-10-28

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  11. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, TX; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  14. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Gonzalez, Manuel E [Kingwood, NM; Llewellyn, Brian C [Kingwood, TX; Bloys, James B [Katy, TX; Coates, Don M [Santa Fe, NM

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  15. Computation of thermodynamic equilibrium in systems under stress

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.

    2016-04-01

    Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic pressure. To compute a case of high and low pressure around a stressed inclusion we first did a Finite Element Method calculation of a rigid inclusion in a viscous matrix under simple shear. From the computed stress distribution we took the local pressure (mean stress) in each grid point of the FEM calculation. This was used as input thermodynamic pressure in the Gibbs minimization and the result showed it is possible to have an equilibrium situation in which chlorite-amphibole is stable in the low pressure domain and kyanite in the high pressure domain of the stress field around the inclusion. Interestingly, the calculation predicts the redistribution of fluid from an average content of fluid in the system. The fluid in equilibrium tends to accumulate in the low pressure areas whereas it leaves the high pressure areas dry. Transport of fluid components occurs not necessarily by fluid flow, but may happen for example by diffusion. We conclude that an apparent disequilibrium texture may be explained by equilibrium under pressure variations, and apparent fluid addition by redistribution of fluid controlled by the local stress distribution. [1] Mukai et al. (2014), Journal of Petrology, 55 (8), p. 1457-1477. [2] Holland and Powell (1998), Journal of Metamorphic Geology, 16, p. 309-343 [3] Johnson et al. (1992), Computers & Geosciences, 18 (7), p. 899-947 [4] Connolly (2005), Earth and Planetary Science Letters, 236, p. 524-541

  16. Deciphering the 3-D distribution of fluid along the shallow Hikurangi subduction zone using P- and S-wave attenuation

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin

    2017-11-01

    We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.

  17. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. Themore » result of measurements can be altered by varying brake fluid pressure.« less

  18. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    NASA Astrophysics Data System (ADS)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  19. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    PubMed Central

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  20. Hormonal regulation of fluid and electrolyte metabolism during periods of headward fluid shifts

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.; Severs, W. B.; Thrasher, T.; Ramsay, D. J.

    1991-01-01

    In the broadest sense, this project evaluates how spaceflight induced shifts of blood and interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related to salt/water balance and their potential function in the control of intracranial pressure and cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spaceflight gradually equilibrates, with a reduction in all body fluid compartments. Related to this is the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as orthostatic intolerance.

  1. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. PMID:26093261

  2. Activation of G protein-coupled estrogen receptor 1 (GPER-1) decreases fluid intake in female rats.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-07-01

    Estradiol (E2) decreases fluid intake in the female rat and recent studies from our lab demonstrate that the effect is at least in part mediated by membrane-associated estrogen receptors. Because multiple estrogen receptor subtypes can localize to the cell membrane, it is unclear which receptor(s) is generating the anti-dipsogenic effect of E2. The G protein-coupled estrogen receptor 1 (GPER-1) is a particularly interesting possibility because it has been shown to regulate blood pressure; many drinking-regulatory systems play overlapping roles in the control of blood pressure. Accordingly, we tested the hypothesis that activation of GPER-1 is sufficient to decrease fluid intake in female rats. In support of this hypothesis we found that treatment with the selective GPER-1 agonist G1 reduced AngII-stimulated fluid intake in OVX rats. Given the close association between food and fluid intakes in rats, and previous reports suggesting GPER-1 plays a role in energy homeostasis, we tested the hypothesis that the effect of GPER-1 on fluid intake was caused by a more direct effect on food intake. We found, however, that G1-treatment did not influence short-term or overnight food intake in OVX rats. Together these results reveal a novel effect of GPER-1 in the control of drinking behavior and provide an example of the divergence in the controls of fluid and food intakes in female rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  4. Controlling Viscous Fingering Using Time-Dependent Strategies

    DOE PAGES

    Stone, Howard; Zheng, Zhong; Kim, Hyoungsoo

    2015-10-20

    Control and stabilization of viscous fingering of immiscible fluids impacts a wide variety of pressure-driven multiphase flows. Here, we report theoretical and experimental results on time-dependent control strategy by manipulating the gap thickness b(t) in a lifting Hele-Shaw cell in the power-law form b(t) = b 1t 1/7. Experimental results show good quantitative agreement with the predictions of linear stability analysis. Furthermore, by choosing the value of a single time-independent control parameter we can either totally suppress the viscous fingering instability or maintain a series of non-splitting viscous fingers during the fluid displacement process. Besides the gap thickness of amore » Hele-Shaw cell, in principle, time-dependent control strategies can also be placed on the injection rate, viscosity of the displaced fluid, and interfacial tensions between the two fluids.« less

  5. Fluid Pressure in the Shallow Plate Interface at the Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D.

    2003-12-01

    The factors controlling the occurrence, magnitude, and other characteristics of great earthquakes is a fundamental outstanding question in fault physics. Pore fluid pressure is perhaps the most critical yet poorly known parameter governing the strength and seismogenic character of plate boundary faults, but unfortunately cannot be directly inferred through available geophysical sensing methods. Moreover, true in situ fluid pressure has proven difficult to measure even in boreholes. At the Nankai Trough, several hundred meters of sediment are subducted beneath the frontal portion of the accretionary prism. The up-dip portion of the plate interface is therefore hosted in these fine-grained marine sedimentary rocks. ODP Leg 190 and 196 showed that these rapidly-loaded underthrust sediments are significantly overpressured near the deformation front. Here, we attempt to quantitatively infer porosity, pore pressure, and effective normal stress at the plate interface at depths currently inaccessible to drilling. Using seismic reflection interval velocity calibrated at the boreholes to porosity, we quantitatively infer pore pressure to ˜ 20 km down-dip of the deformation front, to a plate interface depth of ˜ 6 km. We have developed a Nankai-specific velocity-porosity transform using ODP cores and logs. We use this function to derive a porosity profile for each of two down-dip seismic sections extracted from a 3-D dataset from the Cape Muroto region. We then calculate pore fluid pressure and effective vertical (fault-normal) stress for the underthrust sediment section using a compaction disequilibrium approach and core-based consolidation test data. Because the pore fluid pressure at the fault interface is likely controlled by that of the top of the underthrust section, this calculation represents a quantitative profile of effective stress and pore pressure at the plate interface. Results show that seismic velocity and porosity increase systematically downdip in the underthrust section, but the increase is suppressed relative to that expected from normally consolidating sediments. The computed pore pressure increases landward from an overpressure ratio (λ * = hydrostatic pressure divided by the lithostatic overburden) of ˜ 0.6 at the deformation front to ˜ 0.77 where sediments have been subducted 15 km. The results of this preliminary analysis suggest that a 3-dimensional mapping of predicted effective normal stress in the seismic data volume is possible.

  6. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    PubMed

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  7. Double-reed exhaust valve engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Charles L.

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  8. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  9. Fluid relief and check valve

    DOEpatents

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  10. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.

    PubMed

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L

    2018-03-13

    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  11. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  12. Hydrogen gas inhalation inhibits progression to the "irreversible" stage of shock after severe hemorrhage in rats.

    PubMed

    Matsuoka, Tadashi; Suzuki, Masaru; Sano, Motoaki; Hayashida, Kei; Tamura, Tomoyoshi; Homma, Koichiro; Fukuda, Keiichi; Sasaki, Junichi

    2017-09-01

    Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p < 0.05). The volume of blood that was removed through a catheter to induce shock was significantly larger in the H2 gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

  13. A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks

    NASA Astrophysics Data System (ADS)

    Miller, S. A.

    2015-12-01

    Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very strong spatial correlations of the simulated evolved permeability and fluid pressure field with aftershock hypocenters from this 1992 Landers and 1994 Northridge aftershock sequences, and reproduce the observed aftershock decay rates. Controls on the decay rates (p-value) will also be discussed.

  14. A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C

    NASA Astrophysics Data System (ADS)

    Higgins, Steven R.; Eggleston, Carrick M.; Knauss, Kevin G.; Boro, Carl O.

    1998-08-01

    We present the design of a contact atomic force microscope (AFM) that can be used to image solid surfaces in aqueous solution up to 150 °C and 6 atm. The main features of this unique AFM are: (1) an inert gas pressurized microscope base containing stepper motor for coarse advance and the piezoelectric tube scanner; (2) a chemically inert membrane separating these parts from the fluid cell; (3) a titanium fluid cell with fluid inlet-outlet ports, a thermocouple port, and a sapphire optical window; (4) a resistively heated ceramic booster heater for the fluid cell to maintain the temperature of solutions sourced from a hydrothermal bomb; and (5) mass flow control. The design overcomes current limitations on the temperature and pressure range accessible to AFM imaging in aqueous solutions. Images taken at temperature and pressure are presented, demonstrating the unit-cell scale (<1 nm) vertical resolution of the AFM under hydrothermal conditions.

  15. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore,more » the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.« less

  16. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  17. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  18. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  19. 40 CFR 147.3013 - Information to be considered for Class I wells.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL... pressure changes, native fluid displacement, and direction of movement of the injected fluid; and (2) Methods to be used for sampling, and for measurement and calculation of flow. (b) In addition to the...

  20. Zero-leak valve

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F., Jr.

    1980-01-01

    Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.

  1. Liquid cooled brassiere and method of diagnosing malignant tumors therewith

    NASA Technical Reports Server (NTRS)

    Elkins, W.; Williams, B. A.; Tickner, E. G. (Inventor)

    1976-01-01

    A device for enhancing the detection of malignant tissue in the breasts of a woman was described. A brassiere-like garment which is fitted with a pair of liquid-perfused cooling panels which completely and compliantly cover the breasts and upper torso was studied. The garment is connected by plastic tubing to a liquid cooling system comprising a fluid pump, a solenoid control valve for controlling the flow of fluid to either the cooling unit or the heating unit, a fluid reservoir, a temperature sensor in the reservoir, and a restrictor valve to control the pressure in the garment inlet cooling line.

  2. Cold-induced fluid extravasation during cardiopulmonary bypass in piglets can be counteracted by use of iso-oncotic prime.

    PubMed

    Farstad, Marit; Kvalheim, Venny Lise; Husby, Paul

    2005-08-01

    Hypothermic cardiopulmonary bypass is associated with increased fluid extravasation. This study aimed to compare whether iso-oncotic priming solutions, in contrast to crystalloids, could reduce the cold-induced fluid extravasation during cardiopulmonary bypass in piglets. Three groups were studied: the control group (CT group; n = 10), the albumin group (Alb group; n = 7), and the hydroxyethyl starch group (HES group; n = 7). Prime (1000 mL) and supplemental fluid were acetated Ringer solution, 4% albumin, and 6% hydroxyethyl starch, respectively. After 1 hour of normothermic cardiopulmonary bypass, hypothermic cardiopulmonary bypass (cooling to 28 degrees C within 15 minutes) was initiated and continued to 90 minutes. Fluid needs, plasma volume, changes in colloid osmotic pressure in plasma and interstitial fluid, hematocrit levels, and tissue water content were recorded, and protein masses and fluid extravasation rates were calculated. Colloid osmotic pressure in plasma decreased immediately after the start of cardiopulmonary bypass in the CT group but remained stable in the Alb and HES groups. Colloid osmotic pressure in interstitial fluid tended to decrease in the CT group and remained unchanged in the Alb group, whereas a slight increase was observed in the HES group. Immediately after the start of cooling, fluid extravasation rates increased from 0.15 +/- 0.10 to 0.64 +/- 0.12 mL . kg -1 . min -1 in the CT group, whereas no such increase was observed in the Alb and HES groups. The changes in fluid extravasation rates were reflected by corresponding changes in tissue water content. The use of albumin or hydroxyethyl starch as prime to preserve the colloid osmotic pressure during cardiopulmonary bypass causes a reduction in the cold-induced fluid extravasation compared with that seen with crystalloids. Albumin seems more effective than hydroxyethyl starch to limit cold-induced fluid shifts during cardiopulmonary bypass.

  3. Generalized Fluid System Simulation Program (GFSSP) - Version 6

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul

    2015-01-01

    The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.

  4. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOEpatents

    Heller, John P.; Dandge, Dileep K.

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  5. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, Kevin M.

    1994-01-01

    An apparatus for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device.

  6. Fuel supply device for supplying fuel to an engine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, M.H.; Kerr, W.B.

    1990-05-29

    This patent describes a variable flow rate fuel supply device for supplying fuel to an engine combustor. It comprises: fuel metering means having a fuel valve means for controlling the flow rate of fuel to the combustor; piston means for dividing a first cooling fluid chamber from a second cooling fluid chamber; coupling means for coupling the piston means to the fuel valve means; and cooling fluid supply means in communication with the first and second cooling fluid chamber for producing a first pressure differential across the piston means for actuating the fuel valve means in a first direction, andmore » for producing a second pressure differential across the piston means for actuating the valve means in a second direction opposite the first direction, to control the flow rate of the fuel through the fuel metering means and into the engine combustor; and means for positioning the fuel metering means within the second cooling air chamber enabling the cooling air supply means to both cool the fuel metering means and control the fuel supply rate of fuel supplied by the fuel metering means to the combustor.« less

  7. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  8. Freeform Fluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J; Richardson, Bradley S; Lind, Randall F

    This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of thesemore » two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.« less

  9. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  10. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elmiligui, Alaa A. (Inventor)

    2017-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  11. Production and delivery of a fluid mixture to an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E [Los Alamos, NM; Bland, Ronald Gene [Houston, TX; Foley, Ron Lee [Magnolia, TX; Bloys, James B [Katy, TX; Gonzalez, Manuel E [Kingwood, NM; Daniel, John M [Germantown, TN; Robinson, Ian M [Guisborough, GB; Carpenter, Robert B [Tomball, TX

    2012-01-24

    The methods described herein generally relate to preparing and delivering a fluid mixture to a confined volume, specifically an annular volume located between two concentrically oriented casing strings within a hydrocarbon fluid producing well. The fluid mixtures disclosed herein are useful in controlling pressure in localized volumes. The fluid mixtures comprise at least one polymerizable monomer and at least one inhibitor. The processes and methods disclosed herein allow the fluid mixture to be stored, shipped and/or injected into localized volumes, for example, an annular volume defined by concentric well casing strings.

  12. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  13. Untangling Topographic and Climatic Forcing of Earthflow Motion

    NASA Astrophysics Data System (ADS)

    Finnegan, N. J.; Nereson, A. L.

    2017-12-01

    Earthflows commonly form in steep river canyons and are argued to initiate from rapid incision that destabilizes hill slope toes. At the same time, earthflows are known to exhibit a temporal pattern of movement that is correlated with seasonal precipitation and associated changes in effective stress. In this contribution, we use infinite slope analysis to illuminate the relative roles of topographic slope and climate (via its control on pore fluid pressure) in influencing earthflow motion at Oak Ridge earthflow, near San Jose, CA. To this end, we synthesize two years of shallow (2.7 m depth) pore fluid pressure data and continuous GPS-derived velocities with an 80-year record of historical deformation derived from tracking of trees and rocks on orthophotos along much of the 1.4 km length and 400 m relief of the earthflow. Multiple lines of evidence suggest that motion of Oak Ridge earthflow occurs as frictional sliding along a discrete failure surface, as argued for other earthflows. Spatial patterns of sliding velocity along the earthflow show the same sensitivity to topographic slope for five discrete periods of historical sliding, accelerating by roughly an order of magnitude along a 20 degree increase in earthflow gradient. In contrast, during the 2016-2017 winter, velocity increased much more rapidly for an equivalent increase in driving stress due to pore-fluid pressure rise at our GPS antenna. During this time period, Oak Ridge earthflow moved approximately 30 cm and we observed a relatively simple, non-linear relationship between GPS-derived sliding velocity and shallow pore fluid pressure. Rapid sliding in 2016-2017 (> 0.6 cm/day) occurred exclusively during the week following a large winter storm event that raised pore pressures to seasonal highs within only 1-2 days of the storm peak. These observations suggests that a mechanism, such as dilatant strengthening, acts to stabilize velocities for a given value of pore fluid pressure in the landslide mass. They also suggest that earthflow motion is more sensitive to pore-fluid pressure forcing than to topographic forcing and challenge the view that attenuation of pore fluid pressure with depth renders large landslides relatively insensitive to high frequency climate variability.

  14. Fluid-Solid Interaction and Multiscale Dynamic Processes: Experimental Approach

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, Alejandra; Spina, Laura; Mendo-Pérez, Gerardo M.; Guzmán-Vázquez, Enrique; Scheu, Bettina; Sánchez-Sesma, Francisco J.; Dingwell, Donald B.

    2017-04-01

    The speed and the style of a pressure drop in fluid-filled conduits determines the dynamics of multiscale processes and the elastic interaction between the fluid and the confining solid. To observe this dynamics we performed experiments using fluid-filled transparent tubes (15-50 cm long, 2-4 cm diameter and 0.3-1 cm thickness) instrumented with high-dynamic piezoelectric sensors and filmed the evolution of these processes with a high speed camera. We analyzed the response of Newtonian fluids to slow and sudden pressure drops from 3 bar-10 MPa to ambient pressure. We used fluids with viscosities of mafic to intermediate silicate melts of 1 to 1000 Pa s and water. The processes observed are fluid mass expansion, fluid flow, jets, bubbles nucleation, growth, coalescence and collapse, degassing, foam building at the surface and vertical wagging. All these processes (in fine and coarse scales) are triggered by the pressure drop and are sequentially coupled in time while interacting with the solid. During slow decompression, the multiscale processes are recognized occurring within specific pressure intervals, and exhibit a localized distribution along the conduit. In this, degassing predominates near the surface and may present piston-like oscillations. In contrast, during sudden decompression the fluid-flow reaches higher velocities, the dynamics is dominated by a sequence of gas-packet pulses driving jets of the gas-fluid mixture. The evolution of this multiscale phenomenon generates complex non-stationary microseismic signals recorded along the conduit. We discuss distinctive characteristics of these signals depending on the decompression style and compare them with synthetics. These synthetics are obtained numerically under an averaging modeling scheme, that accounted for the stress-strain of the cyclic dynamic interaction between the fluid and the solid wall, assuming an incompressible and viscous fluid that flows while the elastic solid responds oscillating. Analysis of time series, both experimental and synthetics, synchronized with high-speed imaging enables the explanation and interpretation of distinct phases of the dynamics of these fluids and the extraction of time and frequency characteristics of the individual processes. We observed that the effects of both, pressure drop triggering function and viscosity, control the characteristics of the micro-signals in time and frequency. This suggests the great potential that experimental and numerical approaches provide to untangle from field volcanic seismograms the multiscale processes of the stress field, driving forces and fluid-rock interaction that determine the volcanic conduit dynamics.

  15. An earthquake instability model based on faults containing high fluid-pressure compartments

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1995-01-01

    It has been proposed that large strike-slip faults such as the San Andreas contain water in seal-bounded compartments. Arguments based on heat flow and stress orientation suggest that in most of the compartments, the water pressure is so high that the average shear strength of the fault is less than 20 MPa. We propose a variation of this basic model in which most of the shear stress on the fault is supported by a small number of compartments where the pore pressure is relatively low. As a result, the fault gouge in these compartments is compacted and lithified and has a high undisturbed strength. When one of these locked regions fails, the system made up of the neighboring high and low pressure compartments can become unstable. Material in the high fluid pressure compartments is initially underconsolidated since the low effective confining pressure has retarded compaction. As these compartments are deformed, fluid pressure remains nearly unchanged so that they offer little resistance to shear. The low pore pressure compartments, however, are overconsolidated and dilate as they are sheared. Decompression of the pore fluid in these compartments lowers fluid pressure, increasing effective normal stress and shear strength. While this effect tends to stabilize the fault, it can be shown that this dilatancy hardening can be more than offset by displacement weakening of the fault (i.e., the drop from peak to residual strength). If the surrounding rock mass is sufficiently compliant to produce an instability, slip will propagate along the fault until the shear fracture runs into a low-stress region. Frictional heating and the accompanying increase in fluid pressure that are suggested to occur during shearing of the fault zone will act as additional destabilizers. However, significant heating occurs only after a finite amount of slip and therefore is more likely to contribute to the energetics of rupture propagation than to the initiation of the instability. We present results of a one-dimensional dynamic Burridge-Knopoff-type model to demonstrate various aspects of the fluid-assisted fault instability described above. In the numerical model, the fault is represented by a series of blocks and springs, with fault rheology expressed by static and dynamic friction. In addition, the fault surface of each block has associated with it pore pressure, porosity and permeability. All of these variables are allowed to evolve with time, resulting in a wide range of phenomena related to fluid diffusion, dilatancy, compaction and heating. These phenomena include creep events, diffusion-controlled precursors, triggered earthquakes, foreshocks, aftershocks, and multiple earthquakes. While the simulations have limitations inherent to 1-D fault models, they demonstrate that the fluid compartment model can, in principle, provide the rich assortment of phenomena that have been associated with earthquakes. ?? 1995 Birkha??user Verlag.

  16. Porous media deformation due to fluid flow: From hydrofracture formation to seismic liquefaction, a numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Turkaya, S.; Eriksen, F.; Clément, C.; Sanchez-Colina, G.; Maloy, K. J.; Flekkoy, E.; Aharonov, E.; Lengliné, O.; Daniel, G.; Altshuler, E.; Batista-Leyva, A.; Niebling, M.

    2016-12-01

    We present here the deformation of porous media in two different situations: 1. The formation of channels and fracture during pressurization of pore fluids, as happens during eruptions or injection of fluids and gas into soils and rocks. 2. The liquefaction of soils at different degrees of saturations during Earthquakes. The formation of channels during hydrofracture and pneumatic fractures is studied in laboratory experiments and in numerical models. The experiments are done on different types of porous media in Hele-Shaw cells, where fluid is injected at controlled overpressures, and various boundary conditions are used. Using fast cameras, we determine the strain and velocity fields from the images. We also record the characteristics of micro-seismic emissions during the process, and link this seismic record features and the direct image of the displacement responsible for the seismic sources in the medium. We also carry out numerical simulations, using coupled fluid/solid hydrid models that capture solid stress, pore pressure, solid and fluid elasticity - a full poro-elasto-plastic model using granular representation of the solid and a continuous one for the fluid.Next, Soil liquefaction is a significant natural hazard associated with earthquakes. Some of its devastating effects include tilting and sinking of buildings and bridges, and destruction of pipelines. Conventional geotechnical engineering assumes liquefaction occurs via elevated pore pressure. This assumption guides construction for seismically hazardous locations, yet evidence suggests that liquefaction strikes also under currently unpredicted conditions. We show, using theory, simulations and experiments, another mechanism for liquefaction in saturated soils, without high pore fluid pressure and without special soils, whereby liquefaction is controlled by buoyancy forces. This new mechanism enlarges the window of conditions under which liquefaction is predicted to occur, and may explain previously not understood cases such as liquefaction in well-compacted soils, under drained conditions, repeated liquefaction cases, far-field liquefaction and the basics of sinking in quicksand. These results may greatly impact hazard assessment and mitigation in seismically active areas.

  17. Intrinsically safe moisture blending system

    DOEpatents

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  18. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less

  19. Vortex servovalve for fluidic or electrical input

    NASA Technical Reports Server (NTRS)

    Honda, T. S.

    1972-01-01

    Proportional-pressure control servovalve consisting of fluid amplifier bellows-driven jet-pipe and two vortex valves operating in push-pull, with a pair of bellows for pressure feedback is tolerant to comtaminant particles and meets minimum standby flow requirements for applications such as rocket thruster nozzles.

  20. Internal Thermal Control System Hose Heat Transfer Fluid Thermal Expansion Evaluation Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.; Hawk, H. D.

    2001-01-01

    During assembly of the International Space Station, the Internal Thermal Control Systems in adjacent modules are connected by jumper hoses referred to as integrated hose assemblies (IHAs). A test of an IHA has been performed at the Marshall Space Flight Center to determine whether the pressure in an IHA filled with heat transfer fluid would exceed the maximum design pressure when subjected to elevated temperatures (up to 60 C (140 F)) that may be experienced during storage or transportation. The results of the test show that the pressure in the IHA remains below 227 kPa (33 psia) (well below the 689 kPa (100 psia) maximum design pressure) even at a temperature of 71 C (160 F), with no indication of leakage or damage to the hose. Therefore, based on the results of this test, the IHA can safely be filled with coolant prior to launch. The test and results are documented in this Technical Memorandum.

  1. Triple-layer configuration for stable high-speed lubricated pipeline transport

    NASA Astrophysics Data System (ADS)

    Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.

    2017-04-01

    Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.

  2. Cerebral hypoxia

    MedlinePlus

    ... support is most important. Treatment involves: Breathing assistance (mechanical ventilation) and oxygen Controlling the heart rate and rhythm Fluids, blood products, or medicines to raise blood pressure ...

  3. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to Mars for an August 2012 landing.

  4. Interface fluid syndrome in human eye bank corneas after LASIK: causes and pathogenesis.

    PubMed

    Dawson, Daniel G; Schmack, Ingo; Holley, Glenn P; Waring, George O; Grossniklaus, Hans E; Edelhauser, Henry F

    2007-10-01

    To evaluate the effects of corneal edema on human donor corneas that had previous LASIK using a laboratory model with histologic and ultrastructural correlations. Experimental study. Thirty human eye bank corneas from 15 donors (mean age +/- standard deviation, 49.9+/-8.9 years) who had had previous LASIK surgery (2-8 years before death). The corneas were mounted in an artificial anterior chamber and the corneal endothelium was perfused for up to 5.0 hours with 0.9% saline solution (endothelial cell damage group) or BSS Plus at a pressure of 15 mmHg (control group), or BSS Plus at a pressure of 55 mmHg (high-pressure group). The corneas were evaluated by confocal and specular microscopy before, during, and at the end of the experimental period. Subsequently, the specimens were evaluated by light and electron microscopy. Corneal thickness, reflectivity, histology, and ultrastructure. Endothelial cell damage resulted in an increased (141.5+/-38.8 microm) total corneal thickness relative to controls (52.3+/-33.7 microm), whereas high pressure resulted in a decreased thickness (24.8+/-14.1 microm) relative to controls. This ultimately was due to swelling of the LASIK interface in both groups and swelling of the residual stromal bed (RSB) in the endothelial cell damage group or compression of the RSB and, possibly, the flap in the high-pressure group. A significant increase in corneal reflectivity at the LASIK interface occurred in both groups, primarily due to varying degrees of fluid accumulation and associated hydropic keratocyte degeneration, as well as increased corneal reflectivity in the RSB only in the endothelial cell damage group. After LASIK surgery, edematous corneas preferentially hydrate and swell in the paracentral and central interface wound, commonly resulting in a hazy corneal appearance primarily due to keratocyte hydropic degeneration. More severe corneal edema is characterized by the formation of an optically empty space corresponding to an interface fluid pocket. The spectrum of interface fluid syndrome can be described in 3 stages.

  5. BOAST 2 for the IBM 3090 and RISC 6000

    NASA Astrophysics Data System (ADS)

    Hebert, P.; Bourgoyne, A. T., Jr.; Tyler, J.

    1993-05-01

    BOAST 2 simulates isothermal, darcy flow in three dimensions. It assumes that reservoir liquids can be described in three fluid phases (oil, gas, and water) of constant composition, with physical properties that depend on pressure, only. These reservoir fluid approximations are acceptable for a large percentage of the world's oil and gas reservoirs. Consequently, BOAST 2 has a wide range of applicability. BOAST 2 can simulate oil and/or gas recovery by fluid expansion, displacement, gravity drainage, and capillary imhibition mechanisms. Typical field production problems that BOAST 2 can handle include primary depletion studies, pressure maintenance by water and/or gas injection, and evaluation of secondary recovery waterflooding and displacement operations. Technically, BOAST 2 is a finite, implicit pressure, explicit saturation (IMPES) numerical simulator. It applies both direct and iterative solution techniques for solving systems of algebraic equations. The well model allows specification of rate or pressure constraints on well performance, and the user is free to add or to recomplete wells during the simulation. In addition, the user can define multiple rock and PVT regions and can choose from three aquifer models. BOAST 2 also provides flexible initialization, a bubble-point tracking scheme, automatic time-step control, and a material balance check on solution stability. The user controls output, which includes a run summary and line-printer plots of fieldwide performance.

  6. Controls on Permeability Evolution in Fractured-Sorbing Media

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2017-12-01

    A critical component in the desire to recover energy and fuels from the subsurface, or to sequester energy-related and other wastes, is the ability to control properties that influence the transport and storage of mass, fluids and energy. In fractured media, permeabilities are strongly dependent on effective stresses. In turn, effective stresses (M) are mediated by changes in fluid pressures (H), compositions of the permeating fluids and permeated rocks (C) and changes in temperature (T) - and sometimes influenced by biological (B) processes. First we explore the role of specific complex THMC(B) interactions in mediating changes in permeability in response to a change in spherical stress. These include the roles of differential strains, induced within shales by changes in pressure (H), gas concentration (C) or temperature (T), in driving changes in permeability, in particular where the effects of sorption are pronounced. We show that the influence of such pressure-, sorption- and thermally-induced changes in damage and porosity are countered, by the first order resetting effects of creep that influence the crack distribution within the fractured aggregate. Second, we explore linkages where friction and instability control the response to changes in differential stress. Changes in permeability are controlled by styles of deformation - brittle versus ductile - with modes of deformation in turn mediated by mineralogy of both native and altered mineral constituents, the evolving scale of deformation and in the progress of deformation through the dynamic loading cycle.

  7. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  8. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure. Elastic wave velocities and electrical conductivity showed reproducibly contrasting changes for a small increase in the confining pressure. The elastic wave velocities increased only by 5% as the confining pressure increased from 0.1 MPa to 25 MPa, while the electrical conductivity decreased by an order of magnitude. Based on the SEM examinations, open grain boundaries work as cracks. The changes in elastic wave velocities and electrical conductivity must be caused by the closure of open grain boundaries. Most (˜80%) of the decrease in electrical conductivity occurred below the confining pressure of 5 MPa. As the confining pressure increased from 0.1 MPa to 5 MPa, cracks with the aspect ratio smaller than 7.5×10-5 were closed. The decrease in porosity was only 0.0005%. Such a small change in porosity caused a large change in electrical conductivity. The connectivity of fluid was maintained at the confining pressure of 25 MPa by cracks with the aspect ratio larger than 3.7×10-4. Simultaneous measurements have provided us a lot of information on the microstructure of fluid-bearing rocks.

  9. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  10. Abrupt contraction flow of magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Kuzhir, P.; López-López, M. T.; Bossis, G.

    2009-05-01

    Contraction and expansion flows of magnetorheological fluids occur in a variety of smart devices. It is important therefore to learn how these flows can be controlled by means of applied magnetic fields. This paper presents a first investigation into the axisymmetric flow of a magnetorheological fluid through an orifice (so-called abrupt contraction flow). The effect of an external magnetic field, longitudinal or transverse to the flow, is examined. In experiments, the pressure-flow rate curves were measured, and the excess pressure drop (associated with entrance and exit losses) was derived from experimental data through the Bagley correction procedure. The effect of the longitudinal magnetic field is manifested through a significant increase in the slope of the pressure-flow rate curves, while no discernible yield stress occurs. This behavior, observed at shear Mason numbers 10

  11. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, Marcos German; Kidd, Terrel G.

    1999-01-01

    A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.

  12. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  13. Fast circulation of cerebrospinal fluid: an alternative perspective on the protective role of high intracranial pressure in ocular hypertension.

    PubMed

    Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2016-05-01

    As ocular hypertension refers to a condition in which the intraocular pressure is consistently elevated but without development of glaucoma, study of it may provide important clues to factors that may play a protective role in glaucoma. β-amyloid, one of the key histopathological findings in Alzheimer's disease, has been reported to increase by chronic elevation of intraocular pressure in animals with experimentally induced ocular hypertension and to cause retinal ganglion cell death, pointing to similarities in molecular cell death mechanisms between glaucoma and Alzheimer's disease. On the other hand, recent studies have reported that intracranial pressure is higher in patients with ocular hypertension compared with controls, giving rise to the idea that elevated intracranial pressure may provide a protective effect for the optic nerve by decreasing the trans-lamina cribrosa pressure difference. The speculation that the higher intracranial pressure reported in ocular hypertension patients may protect against glaucoma mainly through a lower trans-lamina cribrosa pressure difference remains at least questionable. Here, we present an alternative viewpoint, according to which the protective effect of higher intracranial pressure could be due, at least in part, to a pressure-independent mechanism, namely faster cerebrospinal fluid production leading to increased cerebrospinal fluid turnover with enhanced removal of potentially neurotoxic waste products that accumulate in the optic nerve. This suggests a new hypothesis for glaucoma, which, just like Alzheimer's disease, may be considered then as an imbalance between production and clearance of neurotoxins, including β-amyloid. If confirmed, then strategies to improve cerebrospinal fluid flow are reasonable and could provide a new therapeutic approach for stopping the neurotoxic β-amyloid pathway in glaucoma. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  14. Computational Modeling of Cephalad Fluid Shift for Application to Microgravity-Induced Visual Impairment

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2013-01-01

    An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.

  15. Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Lin; Ward, Thomas; Grant, Christine

    2012-02-01

    We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.

  16. The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver

    Rutile (TiO 2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C).more » In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. Here, the Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥ 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.« less

  17. The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver

    Rutile (TiO₂) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C). Inmore » this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300–500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at ~1 GPa and 700–800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 μg/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 μg/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 μg/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.« less

  18. The mobility of Nb in rutile-saturated NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800 °C

    DOE PAGES

    Tanis, Elizabeth A.; Simon, Adam; Tschauner, Oliver; ...

    2015-07-01

    Rutile (TiO 2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 °C).more » In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 °C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 °C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 °C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 °C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. Here, the Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 °C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 °C at ≥ 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.« less

  19. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  20. Implantable device for in-vivo intracranial and cerebrospinal fluid pressure monitoring

    DOEpatents

    Ericson, Milton N.; McKnight, Timothy E.; Smith, Stephen F.; Hylton, James O.

    2003-01-01

    The present invention relates to a completely implantable intracranial pressure monitor, which can couple to existing fluid shunting systems as well as other internal monitoring probes. The implant sensor produces an analog data signal which is then converted electronically to a digital pulse by generation of a spreading code signal and then transmitted to a location outside the patient by a radio-frequency transmitter to an external receiver. The implanted device can receive power from an internal source as well as an inductive external source. Remote control of the implant is also provided by a control receiver which passes commands from an external source to the implant system logic. Alarm parameters can be programmed into the device which are capable of producing an audible or visual alarm signal. The utility of the monitor can be greatly expanded by using multiple pressure sensors simultaneously or by combining sensors of various physiological types.

  1. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number.

  2. Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling

    NASA Astrophysics Data System (ADS)

    Coulon, C. A.; Hsieh, P. A.; White, R.; Lowenstern, J. B.; Ingebritsen, S. E.

    2017-10-01

    Distal volcano-tectonic (dVT) seismicity typically precedes eruption at long-dormant volcanoes by days to years. Precursory dVT seismicity may reflect magma-induced fluid-pressure pulses that intersect critically stressed faults. We explored this hypothesis using an open-source magmatic-hydrothermal code that simulates multiphase fluid and heat transport over the temperature range 0 to 1200 °C. We calculated fluid-pressure changes caused by a small (0.04 km3) intrusion and explored the effects of flow geometry (channelized vs. radial flow), magma devolatilization rates (0-15 kg/s), and intrusion depths (5 and 7.5 km, above and below the brittle-ductile transition). Magma and host-rock permeabilities were key controlling parameters and we tested a wide range of permeability (k) and permeability anisotropies (kh/kv), including k constant, k(z), k(T), and k(z, T, P) distributions, examining a total of 1600 realizations to explore the relevant parameter space. Propagation of potentially causal pressure changes (ΔP ≥ 0.1 bars) to the mean dVT location (6 km lateral distance, 6 km depth) was favored by channelized fluid flow, high devolatilization rates, and permeabilities similar to those found in geothermal reservoirs (k 10- 16 to 10- 13 m2). For channelized flow, magma-induced thermal pressurization alone can generate cases of Δ P ≥ 0.1 bars for all permeabilities in the range 10- 16 to 10- 13 m2, whereas in radial flow regimes thermal pressurization causes Δ P < 0.1 bars for all permeabilities. Changes in distal fluid pressure occurred before proximal pressure changes given modest anisotropies (kh/kv 10-100). Invoking k(z,T,P) and high, sustained devolatilization rates caused large dynamic fluctuations in k and P in the near-magma environment but had little effect on pressure changes at the distal dVT location. Intrusion below the brittle-ductile transition damps but does not prevent pressure transmission to the dVT site.

  3. Glacial uplift: fluid injection beneath an elastic sheet on a poroelastic substrate

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Hewitt, Duncan; Chini, Greg

    2016-11-01

    Supraglacial lakes can drain to the base of glaciers extremely rapidly, causing localised uplift of the surrounding glacier and affecting its sliding velocity. The means by which large volumes of drained water interact with and leak into the subglacial hydrological system is unclear, as is the role of the basal till. A theoretical study of the spread of fluid injected below an elastic sheet (the ice) is presented, where the ice lies above, and initially compresses, a deformable poroelastic layer. As pressurized fluid is injected, the deformable layer swells to accommodate more fluid. If sufficient fluid is injected, a 'blister' of fluid forms above the layer, causing the overburden to lift off the base. The flow is controlled by the local pressure drop across the tip of this blister, which depends subtly on both the flow of fluid through the porous layer below the tip, and on poroelastic deformation in the till ahead of the tip. The spreading behaviour and dependence on key parameters is analysed. Predictions of the model are compared to field measurements of uplift from draining glacial lakes in Greenland.

  4. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  5. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  6. Labyrinth and cerebral-spinal fluid pressure changes in guinea pigs and monkeys during simulated zero G

    NASA Technical Reports Server (NTRS)

    Parker, D. E.

    1977-01-01

    This study was undertaken to explore the hypothesis that shifts of body fluids from the legs and torso toward the head contribute to the motion sickness experienced by astronauts and cosmonauts. The shifts in body fluids observed during zero-G exposure were simulated by elevating guinea pigs' and monkeys' torsos and hindquarters. Cerebral-spinal fluid pressure was recorded from a transducer located in a brain ventricle; labyrinth fluid pressure was recorded from a pipette cemented in a hole in a semicircular canal. An anticipated divergence in cerebral-spinal fluid pressure and labyrinth fluid pressure during torso elevation was not observed. The results of this study do not support a fluid shift mechanism of zero-G-induced motion sickness. However, a more complete test of the fluid shift mechanism would be obtained if endolymph and perilymph pressure changes were determined separately; we have been unable to perform this test to date.

  7. System and method measuring fluid flow in a conduit

    DOEpatents

    Ortiz, M.G.; Kidd, T.G.

    1999-05-18

    A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.

  8. Pore Fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M.

    2018-01-01

    The strength of fault zones is strongly dependent on pore fluid pressures within them. Moreover, transient changes in pore fluid pressure can lead to a variety of slip behavior from creep to unstable slip manifested as earthquakes or slow slip events. The frictional properties of low-permeability fault gouge in nature and experiment can be affected by pore fluid pressure development through compaction within the gouge layer, even when the boundaries are drained. Here the conditions under which significant pore fluid pressures develop are analyzed analytically, numerically, and experimentally. Friction experiments on low-permeability fault gouge at different sliding velocities show progressive weakening as slip rate is increased, indicating that faster experiments are incapable of draining the pore fluid pressure produced by compaction. Experiments are used to constrain the evolution of the permeability and pore volume needed for numerical modeling of pore fluid pressure build up. The numerical results are in good agreement with the experiments, indicating that the principal physical processes have been considered. The model is used to analyze the effect of pore fluid pressure transients on the determination of the frictional properties, illustrating that intrinsic velocity-strengthening behavior can appear velocity weakening if pore fluid pressure is not given sufficient time to equilibrate. The results illustrate that care must be taken when measuring experimentally the frictional characteristics of low-permeability fault gouge. The contribution of compaction-induced pore fluid pressurization leading to weakening of natural faults is considered. Cyclic pressurization of pore fluid within fault gouge during successive earthquakes on larger faults may reset porosity and hence the capacity for compaction weakening.

  9. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  10. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  11. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  12. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  13. Dual mode fuel injection system and fuel injector for same

    DOEpatents

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  14. Role of fluids in experimental calcite-bearing faults at seismic deformation conditions.

    NASA Astrophysics Data System (ADS)

    Violay, M.; Nielsen, S.; Cinti, D.; Spagnuolo, E.; Di Toro, G.; Smith, S.

    2012-04-01

    Fluids play a fundamental physical (fluid pressure, temperature buffering, etc.) and chemical (dissolution, hydrolytic weakening, etc.) role in controlling fault strength and earthquake nucleation, propagation and arrest. However, due to technical challenges, the influence of water at deformation conditions typical of earthquakes (i.e., slip rates of 1 m/s, displacements of 0.1-5 m, normal stress of tens of MPa) remains poorly constrained experimentally. Here we present results from high velocity friction experiments performed with a rotary shear apparatus (SHIVA: Slow to HIgh Velocity (friction) Apparatus) on Carrara marble. SHIVA is equipped with (1) an environmental/vacuum chamber to perform experiments in the absence of room-humidity, (2) a pressure vessel to perform experiments with fluids (up to 15 MPa confining pressure), including devices to determine fluid composition (Ca2+, Mg2+, HCO3-, etc). Experiments were conducted on hollow cylinders (50/30 mm ext/int diameter) of Carrara (98% calcite) marble at velocities of 1-6.5 m/s, displacements up to a few meters, normal stresses up to 40 MPa and fluid pressures between 0 (under vacuum) and 15 MPa (fluid-saturated conditions, with H2O in chemical equilibrium with the marble). Rock and fluid samples were recovered for post-run analysis to determine deformation mechanisms and changes in fluid composition. Under these deformation conditions: 1) the friction coefficient decays rapidly from a peak (= static) μp ~ 0.8 at the initiation of sliding towards a steady-state μss ~ 0.1. The absolute values of both peak and steady-state friction are not significantly influenced by the presence of fluids; 2) the decay from peak to steady-state friction is more abrupt in presence of fluids; 3) during deceleration of the friction apparatus, the friction coefficient recovers almost instantaneously to a value, μr, of 0.2-0.6 ( strength recovery) resulting in a small static stress drop. Strength recovery is smaller in the presence of fluids. 4) the fluid (H2O) after the experiment is enriched in Ca2+, Mg2+ and HCO3-. This chemical evolution suggests breakdown reactions (decarbonation of calcite) promoted by frictional heating and controlled by the presence of H2O. We conclude that the large decrease in friction and abrupt weakening, especially in the presence of fluids, indicates that calcite-bearing rocks are prone to earthquake nucleation and seismic rupture propagation (see the L'Aquila 2009 earthquake sequence). The chemical changes observed in water springs after large earthquakes in carbonatic rocks is similar to those found in these experiments, suggesting that the weakening mechanisms triggered in the experiments might occur in nature.

  15. 21 CFR 880.2460 - Electrically powered spinal fluid pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrically powered spinal fluid pressure monitor... Personal Use Monitoring Devices § 880.2460 Electrically powered spinal fluid pressure monitor. (a) Identification. An electrically powered spinal fluid pressure monitor is an electrically powered device used to...

  16. Flow Separation Control Over a Ramp Using Sweeping Jet Actuators

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Owens, Lewis R.

    2014-01-01

    Flow separation control on an adverse-pressure-gradient ramp model was investigated using various flow-control methods in the NASA Langley 15-Inch Wind Tunnel. The primary flow-control method studied used a sweeping jet actuator system to compare with more classic flow-control techniques such as micro-vortex generators, steady blowing, and steady- and unsteady-vortex generating jets. Surface pressure measurements and a new oilflow visualization technique were used to characterize the effects of these flow-control actuators. The sweeping jet actuators were run in three different modes to produce steady-straight, steady-angled, and unsteady-oscillating jets. It was observed that all of these flow-control methods are effective in controlling the separated flows on the ramp model. The steady-straight jet energizes the boundary layer by momentum addition and was found to be the least effective method for a fixed momentum coefficient. The steady-angled jets achieved better performance than the steady-straight jets because they generate streamwise vortices that energize the boundary layer by mixing high-momentum fluid with near wall low-momentum fluid. The unsteady-oscillating jets achieved the best performance by increasing the pressure recovery and reducing the downstream flow separation. Surface flow visualizations indicated that two out-of-phase counter-rotating vortices are generated per sweeping jet actuator, while one vortex is generated per vortex-generating jets. The extra vortex resulted in increased coverage, more pressure recovery, and reduced flow separation.

  17. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  18. Thresholds of Transient Cavitation Produced by Pulsed Ultrasound in a Controlled Nuclei Environment.

    NASA Astrophysics Data System (ADS)

    Holland, Christy Katherine Smith

    The possibility of hazardous bioeffects from medical ultrasound examinations and therapy, although not demonstrated in current epidemiologic data, is still of interest to the medical community. In particular, concern persists over the potential of damage at the cellular level due to transient cavitation produced by diagnostic and high intensity therapeutic ultrasound. Transient cavitation is a discrete phenomenon which relies on the existence of stabilized nuclei, or pockets of gas within a host fluid, for its genesis. A convenient descriptor for assessing the likelihood of transient cavitation is the threshold pressure, or the minimum acoustic pressure necessary to initiate bubble growth and subsequent collapse. Experimental measurements of cavitation thresholds are presented here which elucidate the importance of ultrasound host fluid and nuclei parameters in determining these thresholds. These results are interpreted in the context of an approximate theory, included as an appendix, describing the relationship between these parameters and cavitation threshold pressures. An automated experimental apparatus has been developed to determine thresholds for cavitation produced in a fluid by short tone bursts of ultrasound at 0.76, 0.99, and 2.30 MHz. A fluid jet was used to convect potential cavitation nuclei through the focal region of the insonifying transducer. Potential nuclei tested include 1mum polystyrene spheres, microbubbles in the 1-10 μm range that are stabilized with human serum albumin, and whole blood constituents. Cavitation was detected by a passive acoustical technique which is sensitive to sound scattered from cavitation bubbles. Measurements of the transient cavitation threshold in water, in a fluid of higher viscosity, and in diluted whole blood are presented. Results from these experiments which permit the control of nuclei and host fluid properties are compared to the approximate analytical theory for the prediction of the onset of cavitation.

  19. A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1971-01-01

    An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.

  20. Rutile solubility in NaF–NaCl–KCl-bearing aqueous fluids at 0.5–2.79GPa and 250–650°C

    DOE PAGES

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; ...

    2016-01-14

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nbmore » and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 degrees C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at similar to 300 degrees C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 degrees C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log D-Zr similar to 10(-25) m(2)/s at 650 degrees C and similar to 10(-30) m(2)/s at 250 degrees C) with diffusion length-scales of <0.2 mu m in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change during the experiment, and the measured concentration of Zr in the fluid was used to calculate the concentration of Ti (i.e., the solubility of rutile) in the fluid. The salts NaF, NaCl, and KCl were systematically added to the aqueous fluid, and the relative effects of fluid composition, pressure, and temperature on rutile solubility were quantified. The results indicate that fluid composition exerts the greatest control on rutile solubility in aqueous fluid, consistent with previous studies, and that increasing temperature has a positive, albeit less pronounced, effect. The solubility of Zr-rutile in aqueous fluid increases with the addition of halides in the following order: 2 wt% NaF < 30 wt% KCl < 30 wt% NaCl < 3 wt% NaF < (10 wt% NaCl + 2 wt% NaF) < 4 wt% NaF. The solubility of rutile in the fluid increases with the 2nd to 3rd power of the Cl- concentration, and the 3rd to 4th power of the F- concentration. These new data are consistent with observations from field studies of exhumed terranes that indicate that rutile is soluble in complex aqueous fluids, and that fluid composition is the primary control on rutile solubility and HFSE mobility« less

  1. Rutile solubility in NaF-NaCl-KCl-bearing aqueous fluids at 0.5-2.79 GPa and 250-650 °C

    NASA Astrophysics Data System (ADS)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue; Chow, Paul; Xiao, Yuming; Hanchar, John M.; Tschauner, Oliver; Shen, Guoyin

    2016-03-01

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nb and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 °C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at ∼300 °C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 °C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log DZr ∼10-25 m2/s at 650 °C and ∼10-30 m2/s at 250 °C) with diffusion length-scales of <0.2 μm in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change during the experiment, and the measured concentration of Zr in the fluid was used to calculate the concentration of Ti (i.e., the solubility of rutile) in the fluid. The salts NaF, NaCl, and KCl were systematically added to the aqueous fluid, and the relative effects of fluid composition, pressure, and temperature on rutile solubility were quantified. The results indicate that fluid composition exerts the greatest control on rutile solubility in aqueous fluid, consistent with previous studies, and that increasing temperature has a positive, albeit less pronounced, effect. The solubility of Zr-rutile in aqueous fluid increases with the addition of halides in the following order: 2 wt% NaF < 30 wt% KCl < 30 wt% NaCl < 3 wt% NaF < (10 wt% NaCl + 2 wt% NaF) < 4 wt% NaF. The solubility of rutile in the fluid increases with the 2nd to 3rd power of the Cl- concentration, and the 3rd to 4th power of the F- concentration. These new data are consistent with observations from field studies of exhumed terranes that indicate that rutile is soluble in complex aqueous fluids, and that fluid composition is the primary control on rutile solubility and HFSE mobility.

  2. Pore pressure control on faulting behavior in a block-gouge system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  3. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.

    2017-12-01

    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can increase by up to 10 MPa (assuming frictional coefficient = 0.6). 10 MPa is almost equivalent to the stress drop values in large trench type earthquakes. Hence, we suggest that the fluid loss caused by the formation of mode I cracks in the post-seismic period may play an important role by increasing frictional strength along the megasplay fault.

  4. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  5. Control volume based hydrocephalus research; a phantom study

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  6. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation

    PubMed Central

    Li, Suyi; Wang, K. W.

    2015-01-01

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid ‘snap-through’ type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. PMID:26400197

  7. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    PubMed

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  8. Therapeutic Options for Controlling Fluids in the Visual System

    NASA Technical Reports Server (NTRS)

    Curry, Kristina M.; Wotring, Virginia E.

    2014-01-01

    Visual Impairment/Intracranial Pressure (VIIP) is a newly recognized risk at NASA. The VIIP project examines the effect of long-term exposure to microgravity on vision of crewmembers before and after they return to Earth. Diamox (acetazolamide) is a medication which is used to decrease intraocular pressure; however, it carries a 3% risk of kidney stones. Astronauts are at a higher risk of kidney stones during spaceflight and the use Diamox would only increase the risk; therefore alternative therapies were investigated. Histamine 2 (H2) antagonist acid blockers such as cimetidine, ranitidine, famotidine and nizatidine are typically used to relieve the symptoms of gastroesophageal reflux disease (GERD). H2 receptors have been found in the human visual system, which has led to research on the use of H2 antagonist blockers to control fluid production in the human eye. Another potential therapeutic strategy is targeted at aquaporins, which are water channels that help maintain fluid homeostasis. Aquaporin antagonists are also known to affect intracranial pressure which can in turn alter intraocular pressure. Studies on aquaporin antagonists suggest high potential for effective treatment. The primary objective of this investigation is to review existing research on alternate medications or therapy to significantly reduce intracranial and intraocular pressure. A literature review was conducted. Even though we do not have all the answers quite yet, a considerable amount of information was discovered, and findings were narrowed, which should allow for more conclusive answers to be found in the near future.

  9. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  10. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  11. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study.

    PubMed

    Wang, Ningli; Xie, Xiaobin; Yang, Diya; Xian, Junfang; Li, Yong; Ren, Ruojin; Peng, Xiaoxia; Jonas, Jost B; Weinreb, Robert N

    2012-10-01

    Low cerebrospinal fluid pressure (CSF-P) may be involved in the pathogenesis of glaucoma. We measured the optic nerve subarachnoid space width (ONSASW) as a surrogate for orbital CSF-P in patients with primary open-angle glaucoma (POAG) with normal and high pressure and a control group. Prospective observational study. The study included 39 patients with POAG; 21 patients had normal pressure (intraocular pressure [IOP] 21 mmHg), and 18 patients had high pressure (IOP >21 mmHg); 21 subjects formed the control group. By using magnetic resonance imaging (MRI) with fat-suppressed fast recovery fast spin echo (FRFSE) T2-weighted sequence, we determined the ONSASW at 3, 9, and 15 mm posterior to the globe. The ONSASW and optic nerve diameter. At all 3 measurement locations of 3, 9, and 15 mm, the ONSASW was significantly (P<0.001, P<0.001, and P = 0.003, respectively) narrower in the normal-pressure group (0.67±0.16, 0.55±0.09, and 0.51±0.12 mm, respectively) than in the high-pressure group (0.93±0.21, 0.70±0.12, and 0.62±0.11 mm, respectively) or the control group (0.87±0.15, 0.67±0.07, and 0.61±0.07 mm, respectively). The high-pressure and control groups did not vary significantly at 3, 9, and 15 mm (P = 0.31, P = 0.39, and P = 0.44, respectively). At all 3 measurement locations, ONSASW was narrower in the normal-pressure group compared with the high-pressure and control groups after adjustment for optic nerve diameter (P<0.01). Correspondingly, the width of the optic nerve subarachnoid space measured at 3, 9, and 15 mm behind the globe, respectively, was significantly (all P<0.05) associated with IOP after adjustment for optic nerve diameter and visual field defect. The narrower orbital optic nerve subarachnoid space in patients with POAG with normal pressure compared with high pressure suggests a lower orbital CSF-P in patients with POAG with normal pressure. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  12. Methodology for Assessing a Boiling Liquid Expanding Vapor Explosion (BLEVE) Blast Potential

    NASA Technical Reports Server (NTRS)

    Keddy, Chris P.

    2012-01-01

    Composite Vessels are now used to store a variety of fluids or gases including cryogenic fluids under pressure. Sudden failure of these vessels under certain conditions can lead to a potentially catastrophic vapor expansion if thermal control is not maintained prior to failure. This can lead to a "Boiling Liquid Expanding Vapor Explosion" or BLEVE.

  13. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952

  14. Deformation of volcanic materials by pore pressurization: analog experiments with simplified geometry

    NASA Astrophysics Data System (ADS)

    Hyman, David; Bursik, Marcus

    2018-03-01

    The pressurization of pore fluids plays a significant role in deforming volcanic materials; however, understanding of this process remains incomplete, especially scenarios accompanying phreatic eruptions. Analog experiments presented here use a simple geometry to study the mechanics of this type of deformation. Syrup was injected into the base of a sand medium, simulating the permeable flow of fluids through shallow volcanic systems. The experiments examined surface deformation over many source depths and pressures. Surface deformation was recorded using a Microsoft® Kinect™ sensor, generating high-spatiotemporal resolution lab-scale digital elevation models (DEMs). The behavior of the system is controlled by the ratio of pore pressure to lithostatic loading (λ =p/ρ g D). For λ <10, deformation was accommodated by high-angle, reversed-mechanism shearing along which fluid preferentially flowed, leading to a continuous feedback between deformation and pressurization wherein higher pressure ratios yielded larger deformations. For λ >10, fluid expulsion from the layer was much faster, vertically fracturing to the surface with larger pressure ratios yielding less deformation. The temporal behavior of deformation followed a characteristic evolution that produced an approximately exponential increase in deformation with time until complete layer penetration. This process is distinguished from magmatic sources in continuous geodetic data by its rapidity and characteristic time evolution. The time evolution of the experiments compares well with tilt records from Mt. Ontake, Japan, in the lead-up to the deadly 2014 phreatic eruption. Improved understanding of this process may guide the evolution of magmatic intrusions such as dikes, cone sheets, and cryptodomes and contribute to caldera resurgence or deformation that destabilizes volcanic flanks.

  15. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging

    PubMed Central

    Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian

    2017-01-01

    Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of “true” normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations. PMID:29190788

  16. Non-invasive assessment of pulsatile intracranial pressure with phase-contrast magnetic resonance imaging.

    PubMed

    Ringstad, Geir; Lindstrøm, Erika Kristina; Vatnehol, Svein Are Sirirud; Mardal, Kent-André; Emblem, Kyrre Eeg; Eide, Per Kristian

    2017-01-01

    Invasive monitoring of pulsatile intracranial pressure can accurately predict shunt response in patients with idiopathic normal pressure hydrocephalus, but may potentially cause complications such as bleeding and infection. We tested how a proposed surrogate parameter for pulsatile intracranial pressure, the phase-contrast magnetic resonance imaging derived pulse pressure gradient, compared with its invasive counterpart. In 22 patients with suspected idiopathic normal pressure hydrocephalus, preceding invasive intracranial pressure monitoring, and any surgical shunt procedure, we calculated the pulse pressure gradient from phase-contrast magnetic resonance imaging derived cerebrospinal fluid flow velocities obtained at the upper cervical spinal canal using a simplified Navier-Stokes equation. Repeated measurements of the pulse pressure gradient were also undertaken in four healthy controls. Of 17 shunted patients, 16 responded, indicating high proportion of "true" normal pressure hydrocephalus in the patient cohort. However, there was no correlation between the magnetic resonance imaging derived pulse pressure gradient and pulsatile intracranial pressure (R = -.18, P = .43). Pulse pressure gradients were also similar in patients and healthy controls (P = .26), and did not differ between individuals with pulsatile intracranial pressure above or below established thresholds for shunt treatment (P = .97). Assessment of pulse pressure gradient at level C2 was therefore not found feasible to replace invasive monitoring of pulsatile intracranial pressure in selection of patients with idiopathic normal pressure hydrocephalus for surgical shunting. Unlike invasive, overnight monitoring, the pulse pressure gradient from magnetic resonance imaging comprises short-term pressure fluctuations only. Moreover, complexity of cervical cerebrospinal fluid flow and -pulsatility at the upper cervical spinal canal may render the pulse pressure gradient a poor surrogate marker for intracranial pressure pulsations.

  17. Bernoulli's Principle Applied to Brain Fluids: Intracranial Pressure Does Not Drive Cerebral Perfusion or CSF Flow.

    PubMed

    Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal

    2016-01-01

    In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.

  18. Soil-Moisture Retention Curves, Capillary Pressure Curves, and Mercury Porosimetry: A Theoretical and Computational Investigation of the Determination of the Geometric Properties of the Pore Space

    NASA Astrophysics Data System (ADS)

    Strand, T. E.; Wang, H. F.

    2003-12-01

    Immiscible displacement protocols have long been used to infer the geometric properties of the void space in granular porous media. The three most commonly used experimental techniques are the measurement of soil-moisture retention curves and relative permeability-capillary pressure-saturation relations, as well as mercury intrusion porosimetry experiments. A coupled theoretical and computational investigation was performed that provides insight into the limitations associated with each technique and quantifies the relationship between experimental observations and the geometric properties of the void space. It is demonstrated that the inference of the pore space geometry from both mercury porosimetry experiments and measurements of capillary pressure curves is influenced by trapping/mobilization phenomena and subject to scaling behavior. In addition, both techniques also assume that the capillary pressure at a location on the meniscus can be approximated by a pressure difference across a region or sample. For example, when performing capillary pressure measurements, the capillary pressure, taken to be the difference between the injected fluid pressure at the inlet and the defending fluid pressure at the outlet, is increased in a series of small steps and the fluid saturation is measured each time the system reaches steady. Regions of defending fluid that become entrapped by the invading fluid can be subsequently mobilized at higher flow rates (capillary pressures), contributing to a scale-dependence of the capillary pressure-saturation curve that complicates the determination of the properties of the pore space. This scale-dependence is particularly problematic for measurements performed at the core scale. Mercury porosimetry experiments are subject to similar limitations. Trapped regions of defending fluid are also present during the measurement of soil-moisture retention curves, but the effects of scaling behavior on the evaluation of the pore space properties from the immiscible displacement structure are much simpler to account for due to the control of mobilization phenomena. Some mobilization may occur due to film flow, but this can be limited by keeping time scales relatively small or exploited at longer time scales in order to quantify the rate of film flow. Computer simulations of gradient-stabilized drainage and imbibition to the (respective) equilibrium positions were performed using a pore-scale modified invasion percolation (MIP) model in order to quantify the relationship between the saturation profile and the geometric properties of the void space. These simulations are similar to the experimental measurement of soil-moisture retention curves. Results show that the equilibrium height and the width of the equilibrium fringe depend on two length scale distributions, one controlling the imbibition equilibrium structure and the other controlling the drainage structure. The equilibrium height is related to the mean value of the appropriate distribution as described by Jurin's law, and the width of the equilibrium fringe scales as a function of a combined parameter, the Bond number, Bo, divided by the coefficient of variation (cov). Simulations also demonstrate that the apparent radius distribution obtained from saturation profiles using direct inversion by Jurin's law is a subset of the actual distribution in the porous medium. The relationship between the apparent and actual radius distributions is quantified in terms of the combined parameter, Bo/cov, and the mean coordination number of the porous medium.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanis, Elizabeth A.; Simon, Adam; Zhang, Youxue

    The complex nature of trace element mobility in subduction zone environments is thought to be primarily controlled by fluid-rock interactions, episodic behavior of fluids released, mineral assemblages, and element partitioning during phase transformations and mineral breakdown throughout the transition from hydrated basalt to blueschist to eclogite. Quantitative data that constrain the partitioning of trace elements between fluid(s) and mineral(s) are required in order to model trace element mobility during prograde and retrograde metamorphic fluid evolution in subduction environments. The stability of rutile has been proposed to control the mobility of HFSE during subduction, accounting for the observed depletion of Nbmore » and Ta in arc magmas. Recent experimental studies demonstrate that the solubility of rutile in aqueous fluids at temperatures >700 degrees C and pressures <2 GPa increases by several orders of magnitude relative to pure H2O as the concentrations of ligands (e.g., F and Cl) in the fluid increase. Considering that prograde devolatilization in arcs begins at similar to 300 degrees C, there is a need for quantitative constraints on rutile solubility and the partitioning of HFSE between rutile and aqueous fluid over a wider range of temperature and pressure than is currently available. In this study, new experimental data are presented that quantify the solubility of rutile in aqueous fluids from 0.5 to 2.79 GPa and 250 to 650 degrees C. Rutile solubility was determined by using synchrotron X-ray fluorescence to measure the concentration of Zr in an aqueous fluid saturated with a Zr-bearing rutile crystal within a hydrothermal diamond anvil cell. At the PT conditions of the experiments, published diffusion data indicate that Zr is effectively immobile (log D-Zr similar to 10(-25) m(2)/s at 650 degrees C and similar to 10(-30) m(2)/s at 250 degrees C) with diffusion length-scales of <0.2 mu m in rutile for our run durations (<10 h). Hence, the Zr/Ti ratio of the starting rutile, which was quantified, does not change during the experiment, and the measured concentration of Zr in the fluid was used to calculate the concentration of Ti (i.e., the solubility of rutile) in the fluid. The salts NaF, NaCl, and KCl were systematically added to the aqueous fluid, and the relative effects of fluid composition, pressure, and temperature on rutile solubility were quantified. The results indicate that fluid composition exerts the greatest control on rutile solubility in aqueous fluid, consistent with previous studies, and that increasing temperature has a positive, albeit less pronounced, effect. The solubility of Zr-rutile in aqueous fluid increases with the addition of halides in the following order: 2 wt% NaF < 30 wt% KCl < 30 wt% NaCl < 3 wt% NaF < (10 wt% NaCl + 2 wt% NaF) < 4 wt% NaF. The solubility of rutile in the fluid increases with the 2nd to 3rd power of the Cl- concentration, and the 3rd to 4th power of the F- concentration. These new data are consistent with observations from field studies of exhumed terranes that indicate that rutile is soluble in complex aqueous fluids, and that fluid composition is the primary control on rutile solubility and HFSE mobility« less

  20. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  1. Current concepts of space flight induced changes in hormonal control of fluid and electrolyte metabolism

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Johnson, P. C.; Suki, W. N.

    1983-01-01

    A systematic analysis of body fluid and renal dynamics during simulated space flight (head-down bedrest) was undertaken to increase understanding of the physiologic effects of acute cephalad fluid shifts. The earliest effects were increases in central venous pressure and decreases in plasma aldosterone, epinephrine and norepinephrine and glomerular filtration rate, 2 h after the beginning of bedrest. Decreases in plasma angiotensin I at 6 h may have resulted from the increased effective pressure and decreased sympathetic activity seen earlier in bedrest. The early decrease in aldosterone and ADH is thought to contribute to an increase, by 6 h, in urinary excretion of salt and water. Fluid and electrolyte losses occur during space flight, and analysis of body fluids from Space Shuttle crewmembers has indicated that conservation of these substances is begun almost immediately upon cessation of weightlessness. Operational medicine measures to counteract dehydration and electrolyte loss resulted in a less extreme physiologic response to the flight.

  2. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  3. Leak Mitigation in Mechanically Pumped Fluid Loops for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer R.; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Bhandari, Pradeep; Lee, Darlene; Karlmann, Paul; Liu, Yuanming

    2013-01-01

    Mechanically pumped fluid loops (MPFLs) are increasingly considered for spacecraft thermal control. A concern for long duration space missions is the leak of fluid leading to performance degradation or potential loop failure. An understanding of leak rate through analysis, as well as destructive and non-destructive testing, provides a verifiable means to quantify leak rates. The system can be appropriately designed to maintain safe operating pressures and temperatures throughout the mission. Two MPFLs on the Mars Science Laboratory Spacecraft, launched November 26, 2011, maintain the temperature of sensitive electronics and science instruments within a -40 deg C to 50 deg C range during launch, cruise, and Mars surface operations. With over 100 meters of complex tubing, fittings, joints, flex lines, and pumps, the system must maintain a minimum pressure through all phases of the mission to provide appropriate performance. This paper describes the process of design, qualification, test, verification, and validation of the components and assemblies employed to minimize risks associated with excessive fluid leaks from pumped fluid loop systems.

  4. Time-variable stress transfer across a megathrust from seismic to Wilson cycle scale

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Angiboust, Samuel; Moreno, Marcos; Schurr, Bernd; Oncken, Onno

    2013-04-01

    During the lifetime of a convergent plate margin stress transfer across the plate interface (a megathrust) can be expected to vary at multiple timescales. At short time scales (years to decades), a subduction megathrust interface appears coupled (accumulating shear stress) at shallow depth (seismogenic zone <350°C) in a laterally heterogeneous fashion. Highly coupled areas are prerequisite to areas of large slip (asperities) during future earthquakes but the correlation is rarely unequivocal suggesting that the coupling pattern is transient during the interseismic period. As temperature, structure and material properties are unlike to change at short time scales as well as at short distance along strike, fluid pressure change is invoked as the prime agent of lateral and time-variable stress transfer at short time (seismic cycle) scale and beyond. On longer time scales (up to Wilson cycles), additional agents of time-variable stress change are discussed. Shear tests using velocity weakening rock analogue material suggest that in a conditionally stable regime the effective normal load controls both the geodetic and the seismic coupling (fraction of convergence velocity accommodated by interseismic backslip/seismic slip). Accordingly seismic coupling decreases from 80% to 20% as the pore fluid pressure increases from hydrostatic to near-lithostatic. Moreover, the experiments demonstrate that at sub-seismic cycle scale the geodetic coupling (locking) is not only proportional to effective normal load but also to relative shear stress. For areas of near complete stress drop locking might systematically decrease over the interseismic period from >80-95 % shortly after an earthquake to backslip at significant fractions of plate convergence rate (<5-45 % locking) later in the seismic cycle. If we allow pore fluid pressures to change at sub-seismic cycle scale a single location along a megathrust may thus appear fully locked after an earthquake while fully unlocked before an earthquake. The mechanisms and timescales of fluid pressure changes along a megathrust are yet to be explored but a valid hypothesis seems to be that non-volcanic tremor and slow slip below the seismogenic zone represent short term episodes of metamorphic fluid infiltration into the shallow megathrust. A megathrust fault valve mechanism clocked by the greatest earthquakes then accounts for cyclic fluid pressure build up and drainage at sub-seismic cycle scale. As pore pressure dynamics are controlled primarily by permeability which in turn is controlled by structure and material properties, then more long term coupling transients associated with structural evolution of the plate margin can be implied. Fluid controlled transients might interfere with transients and secular trends resulting from changes in material strength and plate tectonic forces over the Wilson cycle resulting in a multispectral stress-transfer pattern associated with convergent margin evolution. Because of the viscous damping effect of the underlying asthenosphere, however, only longterm transients (periods >1-10 ka) are transmitted into the engaged plates. We therefore speculate that the multispectral nature of stress transfer across a megathrust filtered through the asthenosphere explains transient fault activity in some intraplate settings.

  5. A Study of the Time Dependence in Fracture Processes Relating to Service Life Prediction of Adhesive Joints and Advanced Composites.

    DTIC Science & Technology

    1981-04-30

    fluid temperature should exceed 145°F. The flow control module contains all the hydraulic circuit elements necessary for both the pressure line to and...are contained in three basic modules : 1) the hydraulic power supply, 2) a flow control module containing valving, accumulators and filters, and 3) the...hydraulic transient overpressures, is located in the flow control module , as are the high and low pressure filters. The load frame (MTS Systems Corp

  6. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  7. Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Tigre Lagoon Field, Vermilion Parish, Louisiana: geology of the Tigre Lagoon Field, Planulina Basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-01

    The geology and hydrology of the Tigre Lagoon Gas Field and the structural and depositional basin in which it occurs, as described, define a hydrodynamic system which has been in operation for millions of years. Fluid entrapment and geopressuring of the deposits has resulted in steepened geothermal gradients, accelerated maturation and thermal degradation (cracking) of fluid hydrocarbons, thermal diagenesis of certain clay minerals with release of much bound and intracrystalline water as free pore water, and a systematic fluid migration history controlled by the sand-bed aquifers in the basin, and by upward leakage at growth faults wherever fluid pressures approachedmore » or exceeded rock pressures. Observed geotemperature, geopressure, water salinity, and natural gas occurrence in the study area conform with the conceptual model developed.« less

  8. Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)

    NASA Technical Reports Server (NTRS)

    Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

    1991-01-01

    An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

  9. Prosthetic urinary sphincter

    NASA Technical Reports Server (NTRS)

    Helms, C. R.; Smyly, H. M. (Inventor)

    1981-01-01

    A pump/valve unit for controlling the inflation and deflation of a urethral collar in a prosthetic urinary sphincter device is described. A compressible bulb pump defining a reservoir was integrated with a valve unit for implantation. The valve unit includes a movable valve member operable by depression of a flexible portion of the valve unit housing for controlling fluid flow between the reservoir and collar; and a pressure sensing means which operates the valve member to relieve an excess pressure in the collar should too much pressure be applied by the patient.

  10. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    NASA Astrophysics Data System (ADS)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  11. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, Toshiko; Miller, Stephen A.; Deichmann, Nicholas

    2012-07-01

    We analyzed 118 well-constrained focal mechanisms to estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland. This technique, termed focal mechanism tomography (FMT), uses the orientations of slip planes within the prevailing regional stress field as an indicator of the fluid pressure along the plane at the time of slip. The maximum value and temporal change of excess pore fluid pressures are consistent with the known history of the wellhead pressure applied at the borehole. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, which are consistent with the spatiotemporal evolution of the induced microseismicity. Our results demonstrate that FMT is a robust approach, being validated at the meso-scale of the Basel stimulation experiment. We found average earthquake triggering excess pore fluid pressures of about 10 MPa above hydrostatic. Overpressured fluids induced many small events (M < 3) along faults unfavorably oriented relative to the tectonic stress pattern, while the larger events tended to occur along optimally oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, and shows that the system is highly permeable along flow paths that allow fast pressure diffusion to the boundaries of the stimulated region.

  12. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  13. Choroidal fissure acts as an overflow device in cerebrospinal fluid drainage: morphological comparison between idiopathic and secondary normal-pressure hydrocephalus

    PubMed Central

    Yamada, Shigeki; Ishikawa, Masatsune; Iwamuro, Yasushi; Yamamoto, Kazuo

    2016-01-01

    To clarify the pathogenesis of two different types of adult-onset normal-pressure hydrocephalus (NPH), we investigated cerebrospinal fluid distribution on the high-field three-dimensional MRI. The subarachnoid spaces in secondary NPH were smaller than those in the controls, whereas those in idiopathic NPH were of similar size to the controls. In idiopathic NPH, however, the basal cistern and Sylvian fissure were enlarged in concurrence with ventricular enlargement towards the z-direction, but the convexity subarachnoid space was severely diminished. In this article, we provide evidence that the key cause of the disproportionate cerebrospinal fluid distribution in idiopathic NPH is the compensatory direct CSF communication between the inferior horn of the lateral ventricles and the ambient cistern at the choroidal fissure. In contrast, all parts of the subarachnoid spaces were equally and severely decreased in secondary NPH. Blockage of CSF drainage from the subarachnoid spaces could cause the omnidirectional ventricular enlargement in secondary NPH. PMID:27941913

  14. Apparatus for unloading pressurized fluid

    DOEpatents

    Rehberger, K.M.

    1994-01-04

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  15. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  16. Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska

    USGS Publications Warehouse

    Leach, David L.; Marsh, Erin E.; Emsbo, Poul; Rombach, Cameron; Kelley, Karen D.; Anthony, Michael W.

    2004-01-01

    The densities of the methane inclusions, together with the temperature of homogenization of coexisting aqueous fluid inclusions, show that these fluid inclusions were trapped between pressures of 800 and 3,400 bars and temperatures between 187° and 214°C. The pressures obtained provide unequivocal evidence that the quartz formed after ore deposition in the Carboniferous because such high fluid pressures could only have been produced from thrust loading during the Mesozoic Brookian orogeny. The observed large variation in pressure is best explained by transient fluid pressures from hydrostatic to lithostatic conditions during thrust loading. The 3,400 bars pressure corresponds with about 12 km of lithostatic burial, whereas the lower pressures (800 bars) correspond with about 8 km of hydrostatic pressure. Because of their low salinity (0-5 wt % NaCl equiv) the electrolyte compositions of the quartz fluid inclusions do not constrain their origin.

  17. Source and sink of fluid in pelagic siliceous sediments along a cold subduction plate boundary

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Asuka; Hina, Shoko; Hamada, Yohei; Kameda, Jun; Hamahashi, Mari; Kuwatani, Tatsu; Shimizu, Mayuko; Kimura, Gaku

    2016-08-01

    Subduction zones where old oceanic plate underthrusting occurs are characterized by thick pelagic sediments originating from planktonic ooze as well as cold thermal conditions. For a better understanding of dehydration from pelagic sediments and fluid behavior, which would play a key role in controlling the dynamics in the shallow portion of the subduction zone, as observed in the 2011 Tohoku earthquake and tsunami, we investigate cherts in a Jurassic accretionary complex in Japan. The microstructure and microchemistry of these cherts indicate dissolution of SiO2 from a pressure solution seam and precipitation of SiO2 to the ;white chert layer,; which would act as a fluid conduit. The amount of water necessary to precipitate SiO2 in the white chert is 102 times larger than that produced by compaction and silica/clay diagenesis. Other fluid sources, such as hydrated oceanic crust or oceanic mantle, are necessary to account for this discrepancy in the fluid budget. A large amount of external fluid likely contributed to rising pore pressure along cold plate boundaries.

  18. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  19. Basic fluid system trainer

    DOEpatents

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  20. Characterization of fluids and fluid-fluid interaction by fiber optic refractive index sensor measurements

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Weiner, M.; Liebscher, A.; Spangenberg, E.

    2009-04-01

    A fiber optic refractive index sensor is tested for continuous monitoring of fluid-fluid and fluid-gas interactions within the frame of laboratory investigations of CO2 storage, monitoring and safety technology research (COSMOS project, "Geotechnologien" program). The sensor bases on a Fabry-Perot white light interferometer technique, where the refractive index (RI) of the solution under investigation is measured by variation of the liquid-filled Fabry-Perot optical cavity length. Such sensor system is typically used for measuring and controlling oil composition and also fluid quality. The aim of this study is to test the application of the fiber optic refractive index sensor for monitoring the CO2 dissolution in formation fluids (brine, oil, gas) of CO2 storage sites. Monitoring and knowledge of quantity and especially rate of CO2 dissolution in the formation fluid is important for any assessment of long-term risks of CO2 storage sites. It is also a prerequisite for any precise reservoir modelling. As a first step we performed laboratory experiments in standard autoclaves on a variety of different fluids and fluid mixtures (technical alcohols, pure water, CO2, synthetic brines, natural formation brine from the Ketzin test site). The RI measurements are partly combined with default electrical conductivity and sonic velocity measurements. The fiber optic refractive index sensor system allows for RI measurements within the range 1.0000 to 1.7000 RI with a resolution of approximately 0.0001 RI. For simple binary fluid mixtures first results indicate linear relationships between refractive indices and fluid composition. Within the pressure range investigated (up to 60 bar) the data suggest only minor changes of RI with pressure. Further, planned experiments will focus on the determination of i) the temperature dependency of RI, ii) the combined effects of pressure and temperature on RI, and finally iii) the kinetics of CO2 dissolution in realistic formation fluids.

  1. ENGINEERING TEST REACTOR

    DOEpatents

    De Boisblanc, D.R.; Thomas, M.E.; Jones, R.M.; Hanson, G.H.

    1958-10-21

    Heterogeneous reactors of the type which is both cooled and moderated by the same fluid, preferably water, and employs highly enriched fuel are reported. In this design, an inner pressure vessel is located within a main outer pressure vessel. The reactor core and its surrounding reflector are disposed in the inner pressure vessel which in turn is surrounded by a thermal shield, Coolant fluid enters the main pressure vessel, fiows downward into the inner vessel where it passes through the core containing tbe fissionable fuel assemblies and control rods, through the reflector, thence out through the bottom of the inner vessel and up past the thermal shield to the discharge port in the main vessel. The fuel assemblles are arranged in the core in the form of a cross having an opening extending therethrough to serve as a high fast flux test facility.

  2. A study on the unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel: A numerical approach

    NASA Astrophysics Data System (ADS)

    Devakar, M.; Raje, Ankush

    2018-05-01

    The unsteady flow of two immiscible micropolar and Newtonian fluids through a horizontal channel is considered. In addition to the classical no-slip and hyper-stick conditions at the boundary, it is assumed that the fluid velocities and shear stresses are continuous across the fluid-fluid interface. Three cases for the applied pressure gradient are considered to study the problem: one with constant pressure gradient and the other two cases with time-dependent pressure gradients, viz. periodic and decaying pressure gradient. The Crank-Nicolson approach has been used to obtain numerical solutions for fluid velocity and microrotation for diverse sets of fluid parameters. The nature of fluid velocities and microrotation with various values of pressure gradient, Reynolds number, ratio of viscosities, micropolarity parameter and time is illustrated through graphs. It has been observed that micropolarity parameter and ratio of viscosities reduce the fluid velocities.

  3. Non-Intrusive Pressure/Multipurpose Sensor and Method

    NASA Technical Reports Server (NTRS)

    Smith, William C. (Inventor)

    2001-01-01

    Method and apparatus are provided for determining pressure using a non-intrusive sensor that is easily attachable to the plumbing of a pressurized system. A bent mode implementation and a hoop mode implementation of the invention are disclosed. Each of these implementations is able to nonintrusively measure pressure while fluid is flowing. As well, each implementation may be used to measure mass flow rate simultaneously with pressure. An ultra low noise control system is provided for making pressure measurements during gas flow. The control system includes two tunable digital bandpass filters with center frequencies that are responsive to a clock frequency. The clock frequency is divided by a factor of N to produce a driving vibrational signal for resonating a metal sensor section.

  4. Testing of a controller for a hybrid capillary pumped loop thermal control system

    NASA Technical Reports Server (NTRS)

    Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave

    1989-01-01

    A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.

  5. Microfluidic Valves Made From Polymerized Polyethylene Glycol Diacrylate

    PubMed Central

    Rogers, Chad I.; Oxborrow, Joseph B.; Anderson, Ryan R.; Tsai, Long-Fang; Nordin, Gregory P.; Woolley, Adam T.

    2013-01-01

    Pneumatically actuated, non-elastomeric membrane valves fabricated from polymerized polyethylene glycol diacrylate (poly-PEGDA) have been characterized for temporal response, valve closure, and long-term durability. A ~100 ms valve opening time and a ~20 ms closure time offer valve operation as fast as 8 Hz with potential for further improvement. Comparison of circular and rectangular valve geometries indicates that the surface area for membrane interaction in the valve region is important for valve performance. After initial fabrication, the fluid pressure required to open a closed circular valve is ~50 kPa higher than the control pressure holding the valve closed. However, after ~1000 actuations to reconfigure polymer chains and increase elasticity in the membrane, the fluid pressure required to open a valve becomes the same as the control pressure holding the valve closed. After these initial conditioning actuations, poly-PEGDA valves show considerable robustness with no change in effective operation after 115,000 actuations. Such valves constructed from non-adsorptive poly-PEGDA could also find use as pumps, for application in small volume assays interfaced with biosensors or impedance detection, for example. PMID:24357897

  6. Measurement of viscosity and elasticity of lubricants at high pressures

    NASA Technical Reports Server (NTRS)

    Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.

    1975-01-01

    The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.

  7. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  8. Hyperdynamic CSF motion profiles found in idiopathic normal pressure hydrocephalus and Alzheimer's disease assessed by fluid mechanics derived from magnetic resonance images.

    PubMed

    Takizawa, Ken; Matsumae, Mitsunori; Hayashi, Naokazu; Hirayama, Akihiro; Yatsushiro, Satoshi; Kuroda, Kagayaki

    2017-10-18

    Magnetic resonance imaging (MRI) does not only ascertain morphological features, but also measures physiological properties such as fluid velocity or pressure gradient. The purpose of this study was to investigate cerebrospinal fluid (CSF) dynamics in patients with morphological abnormalities such as enlarged brain ventricles and subarachnoid spaces. We used a time-resolved three dimensional phase contrast (3D-PC) MRI technique to quantitatively evaluate CSF dynamics in the Sylvian aqueduct of healthy elderly individuals and patients with either idiopathic normal pressure hydrocephalus (iNPH) or Alzheimer's disease (AD) presenting with ventricular enlargement. Nineteen healthy elderly individuals, ten iNPH patients, and seven AD patients (all subjects ≥ 60 years old) were retrospectively evaluated 3D-PC MRI. The CSF velocity, pressure gradient, and rotation in the Sylvian aqueduct were quantified and compared between the three groups using Kolmogorov-Smirnov and Mann-Whitney U tests. There was no statistically significant difference in velocity among the three groups. The pressure gradient was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and the healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Rotation was not significantly different between the iNPH and AD groups, but was significantly different between the iNPH group and healthy controls (p < 0.001), and similarly, between the AD group and the healthy controls (p < 0.001). Quantitative analysis of CSF dynamics with time resolved 3D-PC MRI revealed differences and similarities in the Sylvian aqueduct between healthy elderly individuals, iNPH patients, and AD patients. The results showed that CSF motion is in a hyperdynamic state in both iNPH and AD patient groups compared to healthy elderly individuals, and that iNPH patients and AD patients display similar CSF motion profiles.

  9. Combined pressure regulator and shutoff valve

    NASA Technical Reports Server (NTRS)

    Koch, E. F. (Inventor)

    1974-01-01

    A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.

  10. Self-tuning pressure-feedback control by pole placement for vibration reduction of excavator with independent metering fluid power system

    NASA Astrophysics Data System (ADS)

    Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min

    2017-08-01

    Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.

  11. Systems and methods for the detection of low-level harmful substances in a large volume of fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Michael V.; Roybal, Lyle G.; Lindquist, Alan

    A method and device for the detection of low-level harmful substances in a large volume of fluid comprising using a concentrator system to produce a retentate and analyzing the retentate for the presence of at least one harmful substance. The concentrator system performs a method comprising pumping at least 10 liters of fluid from a sample source through a filter. While pumping, the concentrator system diverts retentate from the filter into a container. The concentrator system also recirculates at least part of the retentate in the container again through the filter. The concentrator system controls the speed of the pumpmore » with a control system thereby maintaining a fluid pressure less than 25 psi during the pumping of the fluid; monitors the quantity of retentate within the container with a control system, and maintains a reduced volume level of retentate and a target volume of retentate.« less

  12. The COLD-SAT Experiment for Cryogenic Fluid Management Technology

    NASA Technical Reports Server (NTRS)

    Schuster, J. R.; Wachter, J. P.; Vento, D. M.

    1990-01-01

    Future national space transportation missions will depend on the use of cryogenic fluid management technology development needs for these missions. In-space testing will be conducted in order to show low gravity cryogenic fluid management concepts and to acquire a technical data base. Liquid H2 is the preferred test fluid due to its propellant use. The design of COLD-SAT (Cryogenic On-orbit Liquid Depot Storage, Acquisition, and Transfer Satellite), an Expendable Launch Vehicle (ELV) launched orbital spacecraft that will perform subcritical liquid H2 storage and transfer experiments under low gravity conditions is studied. An Atlas launch vehicle will place COLD-SAT into a circular orbit, and the 3-axis controlled spacecraft bus will provide electric power, experiment control, and data management, attitude control, and propulsive accelerations for the experiments. Low levels of acceleration will provide data on the effects that low gravity might have on the heat and mass transfer processes used. The experiment module will contain 3 liquid H2 tanks; fluid transfer, pressurization and venting equipment; and instrumentation.

  13. Laboratory investigation of the factors impact on bubble size, pore blocking and enhanced oil recovery with aqueous Colloidal Gas Aphron.

    PubMed

    Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao

    Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.

  14. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    NASA Astrophysics Data System (ADS)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  15. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the direction of σ1. Conversely, the crack plane develops perpendicular to the bedding plane, if the bedding plane is orientated normal to σ1. Fracture initiation pressures are higher in the Divider orientation ( 24MPa) than in the Short-Transverse orientation ( 14MPa) showing a tensile strength anisotropy ( 42%) comparable to ambient tensile strength results. We then use X-Ray Computed Tomography (CT) 3D-images to evaluate the evolved fracture network in terms of fracture pattern, aperture and post-test water permeability. For both fracture orientations, very fine, axial fractures evolve over the entire length of the sample. For the fracturing in the Divider orientation, it has been observed, that in some cases, secondary fractures are branching of the main fracture. Test data from fluid driven fracturing experiments suggest that fracture pattern, fracture propagation trajectories and fracturing fluid pressure (initiation and propagation pressure) are predominantly controlled by the interaction between the anisotropic mechanical properties of the shale and the anisotropic stress environment. The orientation of inherent rock anisotropy relative to the principal stress directions seems to be the main control on fracture orientation and required fracturing pressure.

  16. High speed flow cytometer droplet formation system and method

    DOEpatents

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  17. Multistage deformation of Au-quartz veins (Laurieras, French Massif Central): evidence for late gold introduction from microstructural, isotopic and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Fourcade, S.

    2001-07-01

    The relative chronology of fluid migration, quartz and Au-deposition in a silicified fault from the main Au-district (Laurieras, St Yrieix district) from northern French Massif Central has been determined from microstructural, fluid inclusion, isotopic and ore mineral evidences. Three main stages of fluid circulation, microfracturing and quartz crystallization, and ore deposition were distinguished on the basis of textural relationships and the pressure, temperature and composition of the palaeo-fluids: (1) a series of early fluid events was responsible for the localized drainage of retrograde metamorphic fluids along the main fault and the subsequent sealing by milky and microcrystalline quartz preceeded the main Au-ore stages. Early fluids were aqueous-carbonic, trapped under lithostatic to sublithostatic pressures at temperatures in the range 350-500°C. Subsequently, several types of microstructures were developed in the early quartz matrix. (2) NS microfractures filled by clear quartz, arsenopyrite and boulangerite (I) contain significant refractory gold concentrations. Clear quartz formed from aqueous-carbonic fluids of lower densities than those of the earlier fluids. Significant pressure drops, down to pressures around 55 MPa were responsible for a local immiscibility of the aqueous-carbonic fluids at temperatures of 340±20°C. (3) The main ore stage is characterized by the formation of dense sets of sub-vertical (EW) microfractures, healed fluid inclusion planes in quartz, and filled by ore minerals (native gold, galena and boulangerite II) when they crosscut earlier sulfides. The fluids are aqueous with low and decreasing salinity, and probable trapping temperatures around 230°C. Isotopic data, obtained on microfissured quartz, indicate these dilute aqueous fluids may be considered as meteoric waters that deeply infiltrated the crust. Late microfissuring of a mesothermal quartz vein, originally barren (only with pyrite and arsenopyrite), appears to be the main factor controlling gold enrichment. It can be related to late Hercynian deformational stages, disconnected from the early fault formation and silicification. These late stages which affected the Hercynian basement during its uplift, are of critical importance for the formation of Au-ores. We concluded that this type of Au-ore formed under rather shallow conditions, is distinct from those generally described in most mesothermal Au-veins.

  18. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  19. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial.

    PubMed

    Brar, Somjot S; Aharonian, Vicken; Mansukhani, Prakash; Moore, Naing; Shen, Albert Y-J; Jorgensen, Michael; Dua, Aman; Short, Lindsay; Kane, Kevin

    2014-05-24

    The administration of intravenous fluid remains the cornerstone treatment for the prevention of contrast-induced acute kidney injury. However, no well-defined protocols exist to guide fluid administration in this treatment. We aimed to establish the efficacy of a new fluid protocol to prevent contrast-induced acute kidney injury. In this randomised, parallel-group, comparator-controlled, single-blind phase 3 trial, we assessed the efficacy of a new fluid protocol based on the left ventricular end-diastolic pressure for the prevention of contrast-induced acute kidney injury in patients undergoing cardiac catheterisation. The primary outcome was the occurrence of contrast-induced acute kidney injury, which was defined as a greater than 25% or greater than 0·5 mg/dL increase in serum creatinine concentration. Between Oct 10, 2010, and July 17, 2012, 396 patients aged 18 years or older undergoing cardiac catheterisation with an estimated glomerular filtration rate of 60 mL/min per 1·73 m(2) or less and one or more of several risk factors (diabetes mellitus, history of congestive heart failure, hypertension, or age older than 75 years) were randomly allocated in a 1:1 ratio to left ventricular end-diastolic pressure-guided volume expansion (n=196) or the control group (n=200) who received a standard fluid administration protocol. Four computer-generated concealed randomisation schedules, each with permuted block sizes of 4, were used for randomisation, and participants were allocated to the next sequential randomisation number by sealed opaque envelopes. Patients and laboratory personnel were masked to treatment assignment, but the physicians who did the procedures were not masked. Both groups received intravenous 0·9% sodium chloride at 3 mL/kg for 1 h before cardiac catheterisation. Analyses were by intention to treat. Adverse events were assessed at 30 days and 6 months and all such events were classified by staff who were masked to treatment assignment. This trial is registered with ClinicalTrials.gov, number NCT01218828. Contrast-induced acute kidney injury occurred less frequently in patients in the left ventricular end-diastolic pressure-guided group (6·7% [12/178]) than in the control group (16·3% [28/172]; relative risk 0·41, 95% CI 0·22-0·79; p=0·005). Hydration treatment was terminated prematurely because of shortness of breath in three patients in each group. Left ventricular end-diastolic pressure-guided fluid administration seems to be safe and effective in preventing contrast-induced acute kidney injury in patients undergoing cardiac catheterisation. Kaiser Permanente Southern California regional research committee grant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Electrokinetic effects on motion of submicron particles in microchannel

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Hishida, Koichi

    2006-11-01

    Two-fluid mixing utilizing electrokinetically driven flow in a micro-channel is investigated by micron-resolution particle image velocimetry and an image processing technique. Submicron particles are transported and mixed with deionized water by electrophoresis. The particle electrophoretic velocity that is proportional to an applied electric field is measured in a closed cell, which is used to calculate the electroosmotic flow velocity. At a constant electric field, addition of pressure-driven flow to electrokinetically driven flow in a T-shaped micro-channel enhances two-fluid mixing because the momentum flux is increased. On the other hand, on application of an alternative sinusoidal electric field, the velocity difference between pressure-driven and electroosmotic flows has a significant effect on increasing the length of interface formed between two fluids. It is concluded from the present experiments that the transport and mixing process in the micro-channel will be enhanced by accurate flow-rate control of both pressure-driven and electroosmotic flows.

  1. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  2. Performance of journal bearings with semi-compressible fluids

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.

  3. Integrated hydraulic cooler and return rail in camless cylinder head

    DOEpatents

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  4. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.

  5. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  6. New Laboratory Observations of Thermal Pressurization Weakening

    NASA Astrophysics Data System (ADS)

    Badt, N.; Tullis, T. E.; Hirth, G.

    2017-12-01

    Dynamic frictional weakening due to pore fluid thermal pressurization has been studied under elevated confining pressure in the laboratory, using a rotary-shear apparatus having a sample with independent pore pressure and confining pressure systems. Thermal pressurization is directly controlled by the permeability of the rocks, not only for the initiation of high-speed frictional weakening but also for a subsequent sequence of high-speed sliding events. First, the permeability is evaluated at different effective pressures using a method where the pore pressure drop and the flow-through rate are compared using Darcy's Law as well as a pore fluid oscillation method, the latter method also permitting measurement of the storage capacity. Then, the samples undergo a series of high-speed frictional sliding segments at a velocity of 2.5 mm/s, under an applied confining pressure and normal stress of 45 MPa and 50 MPa, respectively, and an initial pore pressure of 25 MPa. Finally the rock permeability and storage capacity are measured again to assess the evolution of the rock's pore fluid properties. For samples with a permeability of 10-20 m2 thermal pressurization promotes a 40% decrease in strength. However, after a sequence of three high-speed sliding events, the magnitude of weakening diminishes progressively from 40% to 15%. The weakening events coincide with dilation of the sliding interface. Moreover, the decrease in the weakening degree with progressive fast-slip events suggest that the hydraulic diffusivity may increase locally near the sliding interface during thermal pressurization-enhanced slip. This could result from stress- or thermally-induced damage to the host rock, which would perhaps increase both permeability and storage capacity, and so possibly decrease the susceptibility of dynamic weakening due to thermal pressurization in subsequent high-speed sliding events.

  7. Causes of distal volcano-tectonic seismicity inferred from hydrothermal modeling

    USGS Publications Warehouse

    Coulon, Cecile A.; Hsieh, Paul A.; White, Randall A.; Lowenstern, Jacob B.; Ingebritsen, Steven E.

    2017-01-01

    Distal volcano-tectonic (dVT) seismicity typically precedes eruption at long-dormant volcanoes by days to years. Precursory dVT seismicity may reflect magma-induced fluid-pressure pulses that intersect critically stressed faults. We explored this hypothesis using an open-source magmatic-hydrothermal code that simulates multiphase fluid and heat transport over the temperature range 0 to 1200 °C. We calculated fluid-pressure changes caused by a small (0.04 km3) intrusion and explored the effects of flow geometry (channelized vs. radial flow), magma devolatilization rates (0–15 kg/s), and intrusion depths (5 and 7.5 km, above and below the brittle-ductile transition). Magma and host-rock permeabilities were key controlling parameters and we tested a wide range of permeability (k) and permeability anisotropies (kh/kv), including k constant, k(z), k(T), and k(z, T, P) distributions, examining a total of ~ 1600 realizations to explore the relevant parameter space. Propagation of potentially causal pressure changes (ΔP ≥ 0.1 bars) to the mean dVT location (6 km lateral distance, 6 km depth) was favored by channelized fluid flow, high devolatilization rates, and permeabilities similar to those found in geothermal reservoirs (k ~ 10− 16 to 10− 13 m2). For channelized flow, magma-induced thermal pressurization alone can generate cases of ∆ P ≥ 0.1 bars for all permeabilities in the range 10− 16 to 10− 13 m2, whereas in radial flow regimes thermal pressurization causes ∆ P < 0.1 bars for all permeabilities. Changes in distal fluid pressure occurred before proximal pressure changes given modest anisotropies (kh/kv ~ 10–100). Invoking k(z,T,P) and high, sustained devolatilization rates caused large dynamic fluctuations in k and P in the near-magma environment but had little effect on pressure changes at the distal dVT location. Intrusion below the brittle-ductile transition damps but does not prevent pressure transmission to the dVT site.

  8. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  9. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    NASA Astrophysics Data System (ADS)

    Schubnel, A.; Girault, F.; Pili, E.

    2017-12-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture indicates that connection of initially isolated cracks in crustal rocks may occur before rupture and potentially lead to radon transients measurable at the surface in tectonically active regions. This study offers thus an experimental and physical basis for understanding predicted or reported radon anomalies.

  10. Power tong torque control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, D.A.; James, R.N.

    1987-10-20

    Torque controlled powered pipe tongs, are described the apparatus comprises: (a) a power tong powered by a fluid motor; (b) a fluid power source connected to the motor; (c) a force conducting element attached to the power tong, situated to oppose reaction torque from the tongs when torque is applied to pipe; (d) force sensing means operatively associated with the force conducting element situated to sense at least part of the force experienced by the force conducting element, arranged to produce a pressure signal proportional to force sensed; and (e) a fluid by-pass valve, adjustably biased toward a closed position,more » responsive to the signal to tend to move toward an open position, the by-pass valve connected between the fluid power source and the motor.« less

  11. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  12. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  13. Computational fluid dynamics endpoints to characterize obstructive sleep apnea syndrome in children

    PubMed Central

    Luo, Haiyan; Persak, Steven C.; Sin, Sanghun; McDonough, Joseph M.; Isasi, Carmen R.; Arens, Raanan

    2013-01-01

    Computational fluid dynamics (CFD) analysis may quantify the severity of anatomical airway restriction in obstructive sleep apnea syndrome (OSAS) better than anatomical measurements alone. However, optimal CFD model endpoints to characterize or assess OSAS have not been determined. To model upper airway fluid dynamics using CFD and investigate the strength of correlation between various CFD endpoints, anatomical endpoints, and OSAS severity, in obese children with OSAS and controls. CFD models derived from magnetic resonance images were solved at subject-specific peak tidal inspiratory flow; pressure at the choanae was set by nasal resistance. Model endpoints included airway wall minimum pressure (Pmin), flow resistance in the pharynx (Rpharynx), and pressure drop from choanae to a minimum cross section where tonsils and adenoids constrict the pharynx (dPTAmax). Significance of endpoints was analyzed using paired comparisons (t-test or Wilcoxon signed rank test) and Spearman correlation. Fifteen subject pairs were analyzed. Rpharynx and dPTAmax were higher in OSAS than control and most significantly correlated to obstructive apnea-hypopnea index (oAHI), r = 0.48 and r = 0.49, respectively (P < 0.01). Airway minimum cross-sectional correlation to oAHI was weaker (r = −0.39); Pmin was not significantly correlated. CFD model endpoints based on pressure drops in the pharynx were more closely associated with the presence and severity of OSAS than pressures including nasal resistance, or anatomical endpoints. This study supports the usefulness of CFD to characterize anatomical restriction of the pharynx and as an additional tool to evaluate subjects with OSAS. PMID:24265282

  14. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  15. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  16. A numerical simulation of magma motion, crustal deformation, and seismic radiation associated with volcanic eruptions

    USGS Publications Warehouse

    Nishimura, T.; Chouet, B.

    2003-01-01

    The finite difference method is used to calculate the magma dynamics, seismic radiation, and crustal deformation associated with a volcanic eruption. The model geometry consists of a cylindrical reservoir and narrow cylindrical conduit embedded in a homogeneous crust. We consider two models of eruption. In the first model, a lid caps the vent and the magma is overpressurized prior to the eruption. The eruption is triggered by the instantaneous removal of the lid, at which point the exit pressure becomes equal to the atmospheric pressure. In the second model, a plug at the reservoir outlet allows pressurization of only the magmatic fluid in the reservoir before the eruption. Magma transfer between the reservoir and conduit is triggered by the instantaneous removal of the plug, and the eruption occurs when the pressure at the conduit orifice exceeds the material strength of the lid capping the vent. In both models, magma dynamics are expressed by the equations of mass and momentum conservation in a compressible fluid, in which fluid expansion associated with depressurization is accounted for by a constitutive law relating pressure and density. Crustal motions are calculated from the equations of elastodynamics. The fluid and solid are dynamically coupled by applying the continuity of wall velocities and normal stresses across the conduit and reservoir boundaries. Free slip is allowed at the fluid-solid boundary. Both models predict the gradual depletion of the magma reservoir, which causes crustal deformation observed as a long-duration dilatational signal. Superimposed on this very-long-period (VLP) signal generated by mass transport are long-period (LP) oscillations of the magma reservoir and conduit excited by the acoustic resonance of the reservoir-conduit system during the eruption. The volume of the reservoir, vent size, and magma properties control the duration of VLP waves and dominant periods of LP oscillations. The second model predicts that when the magmatic fluid reaches the vent, a high-pressure pulse occurs at this location in accordance with the basic theory of compressible fluid dynamics. This abrupt pressure increase just beneath the vent is consistent with observed seismograms in which pulse-like Rayleigh waves excited by a shallow source are dominant. The strength of the lid plays an important role in the character of the seismograms and in defining the type of eruption observed.

  17. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  18. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    PubMed Central

    Velescu, C.; Popa, N. C.

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance. PMID:26167532

  19. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve.

    PubMed

    Velescu, C; Popa, N C

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance.

  20. Monovalve with integrated fuel injector and port control valve, and engine using same

    DOEpatents

    Milam, David M.

    2001-11-06

    An engine includes an engine casing that defines a hollow piston cavity separated from an exhaust passage and an intake passage by a valve seat. A gas exchange valve member is positioned adjacent the valve seat and is moveable between an open position and a closed position. The gas exchange valve member also defines an opening that opens into the hollow piston cavity. A needle valve member is positioned in the gas exchange valve member adjacent a nozzle outlet and is moveable between an inject position and a blocked position. A port control valve member, which has a hydraulic surface, is mounted around the gas exchange valve member and moveable between an intake position and an exhaust position. A pilot valve is moveable between a first position at which the port control hydraulic surface is exposed to a source of high pressure fluid, and a second position at which the port control hydraulic surface is exposed to a source of low pressure fluid.

  1. Improving blood pressure control in end stage renal disease through a supportive educative nursing intervention.

    PubMed

    Kauric-Klein, Zorica

    2012-01-01

    Hypertension in patients on hemodialysis (HD) contributes significantly to their morbidity and mortality. This study examined whether a supportive nursing intervention incorporating monitoring, goal setting, and reinforcement can improve blood pressure (BP) control in a chronic HD population. A randomized controlled design was used and 118 participants were recruited from six HD units in the Detroit metro area. The intervention consisted of (1) BP education sessions; (2) a 12-week intervention, including monitoring, goal setting, and reinforcement; and (3) a 30-day post-intervention follow-up period. Participants in the treatment were asked to monitor their BP, sodium, and fluid intake weekly for 12 weeks in weekly logs. BP, fluid and sodium logs were reviewed weekly with the researcher to determine if goals were met or not met. Reinforcement was given for goals met and problem solving offered when goals were not met. The control group received standard care. Both systolic and diastolic BPs were significantly decreased in the treatment group.

  2. High-temperature, high-pressure oxygen metering valve

    NASA Technical Reports Server (NTRS)

    Christianson, Rollin C. (Inventor); Lycou, Peter P. (Inventor); Daniel, James A. (Inventor)

    1993-01-01

    A control valve includes a body defining a central cavity arranged between a fluid inlet and outwardly-diverging first and second fluid outlets respectively disposed in a common transverse plane. A valve member is arranged in the cavity for rotation between first and second operating positions where a transverse fluid passage through the valve member alternatively communicates the fluid inlet with one or the other of the fluid outlets. To minimize fluid turbulence when the valve member is rotated to an alternate operating position, the fluid passage has a convergent entrance for maintaining the passage in permanent communication with the fluid inlet as well as an oblong exit opening with spaced side walls for enabling the exit opening to temporarily span the first and second fluid outlets as the valve member is turned between its respective operating positions.

  3. Momentum kill procedure can quickly control blowouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, W.D.; Moore, P.

    1993-08-30

    The momentum kill method can help in quickly regaining control of a blowing well, providing the blowing well rate and fluid properties can be estimated reasonably. The momentum of the kill fluid counteracts and overcomes the flowing momentum of formation fluids. In other words, sufficient mud density pumped at a sufficient rate is directed into the flow stream to force the escaping fluid column back into the well bore. Sufficient kill fluid hydrostatic pressure must be stacked'' in the hole so that the well remains dead after the operation. The momentum kill is not a panacea for all blowouts. Anmore » assessment must be made of the potential problems unique to this method, and certain requirements must be met if the technique is to be successful. The paper discusses some of the considerations for evaluating the use of the momentum kill method.« less

  4. Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas-Liquid Separation in Microfluidics.

    PubMed

    Wang, Shuli; Yu, Nianzuo; Wang, Tieqiang; Ge, Peng; Ye, Shunsheng; Xue, Peihong; Liu, Wendong; Shen, Huaizhong; Zhang, Junhu; Yang, Bai

    2016-05-25

    This article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels. Fluids with different surface tensions show different flowing anisotropy in our microdevice. Moreover, the morphology-patterned surfaces could be used as a microvalve, and gas-water separation in the microchannel was realized using the unidirectional flow of water. Therefore, benefiting from their good performance and simple fabrication process, morphology-patterned surfaces are good candidates to be applied in controlling the fluid behavior in microfluidics.

  5. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, M.W.; Cole, J.H.

    1980-04-23

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  6. Pressure balanced drag turbine mass flow meter

    DOEpatents

    Dacus, Michael W.; Cole, Jack H.

    1982-01-01

    The density of the fluid flowing through a tubular member may be measured by a device comprising a rotor assembly suspended within the tubular member, a fluid bearing medium for the rotor assembly shaft, independent fluid flow lines to each bearing chamber, and a scheme for detection of any difference between the upstream and downstream bearing fluid pressures. The rotor assembly reacts to fluid flow both by rotation and axial displacement; therefore concurrent measurements may be made of the velocity of blade rotation and also bearing pressure changes, where the pressure changes may be equated to the fluid momentum flux imparted to the rotor blades. From these parameters the flow velocity and density of the fluid may be deduced.

  7. The influence of low and high pressure levels during negative-pressure wound therapy on wound contraction and fluid evacuation.

    PubMed

    Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin

    2011-02-01

    Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.

  8. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  9. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  10. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  11. 46 CFR 153.434 - Heat transfer coils within a tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...

  12. Physics based simulation of seismicity induced in the vicinity of a high-pressure fluid injection

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; NicBhloscaidh, M.; Murphy, S.; O'Brien, G. S.; Bean, C. J.

    2013-12-01

    High-pressure fluid injection into subsurface is known, in some cases, to induce earthquakes in the surrounding volume. The increasing importance of ';fracking' as a potential source of hydrocarbons has made the seismic hazard from this effect an important issue the adjudication of planning applications and it is likely that poor understanding of the process will be used as justification of refusal of planning in Ireland and the UK. Here we attempt to understand some of the physical controls on the size and frequency of induced earthquakes using a physics-based simulation of the process and examine resulting earthquake catalogues The driver for seismicity in our simulations is identical to that used in the paper by Murphy et al. in this session. Fluid injection is simulated using pore fluid movement throughout a permeable layer from a high-pressure point source using a lattice Boltzmann scheme. Diffusivities and frictional parameters can be defined independently at individual nodes/cells allowing us to reproduce 3-D geological structures. Active faults in the model follow a fractal size distribution and exhibit characteristic event size, resulting in a power-law frequency-size distribution. The fluid injection is not hydraulically connected to the fault (i.e. fluid does not come into physical contact with the fault); however stress perturbations from the injection drive the seismicity model. The duration and pressure-time function of the fluid injection can be adjusted to model any given injection scenario and the rate of induced seismicity is controlled by the local structures and ambient stress field as well as by the stress perturbations resulting from the fluid injection. Results from the rate and state fault models of Murphy et al. are incorporated to include the effect of fault strengthening in seismically quite areas. Initial results show similarities with observed induced seismic catalogues. Seismicity is only induced where the active faults have not been rotated far from the ambient stress field; the ';structural keel' provided by the geology suppresses induction since the fluid induced stress levels are much smaller than the breaking strain of the host rocks. In addition, we observe a systematic increase in observed biggest magnitude event with time during any injection indicating that in none of our simulations is the maximum magnitude event observed; mmax is in fact not estimable from any of our simulations and is unlikely to be observed in any given injection scenario.

  13. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  14. Effect of Gradual Onset +G(sub z) Acceleration on Rate of Visual Field Collapse and Intraocular Pressure

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.; Rositano, Salvador A.; Greenleaf, John E.

    1976-01-01

    The mechanisms that control the size of the visual field during positive acceleration are poorly understood, but involve mainly the arterial blood pressure at the eye level and intraocular pressure (IOP) (3). Fluid and electrolyte shifts that occur in the general circulation during acceleration may well influence the rate at which the visual field collapses. This could, in turn, suggest the relative influences that arterial blood pressure, IOP, and various compensatory mechanisms have upon acceleration tolerance. Such knowledge could also be of use in the design and development of protective techniques for use in the acceleration environment. The present investigation was performed to study blood withdrawal (hypovolemia) and subsequent reinfusion, oral fluid replacement upon IOP, and the rate at which the visual field collapses during gradual onset +G(sub z) acceleration (0.5 G/min).

  15. High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Miller, S. A.; Deichmann, N.

    2011-12-01

    We estimate the pore fluid pressure field of the stimulated region during the fluid injection experiment in Basel, Switzerland by analyzing 118 well-constrained focal mechanisms. This technique, termed focal mechanism tomography (FMT), uses the orientations of the slip planes within the prevailing regional stress field as indicator of the fluid pressure along the plane at the time of slip. Elevated pore fluid pressures were concentrated within 500 m of the open hole section, and we find average earthquake triggering excess pressures of about 10MPa, with a peak value of 19.3 MPa, consistent with the known wellhead pressure applied at the borehole. Our results demonstrate that FMT is a robust approach, being validated at the macroscopic scale of the Basel stimulation experiment. Over-pressurized fluids induced many small events (M < 3) along faults unfavourably-oriented relative to the tectonic stress pattern, while larger events tended to occur along optimally-oriented faults. This suggests that small-scale hydraulic networks, developed from the high pressure stimulation, interact to load (hydraulically isolated) high strength bridges that produce the larger events. The triggering pore fluid pressures are substantially higher than that predicted from a linear pressure diffusion process from the source boundary, showing that the system is highly permeable along flow paths, allowing fast pressure diffusion to the boundaries of the stimulated region.

  16. A fault constitutive relation accounting for thermal pressurization of pore fluid

    USGS Publications Warehouse

    Andrews, D.J.

    2002-01-01

    The heat generated in a slip zone during an earthquake can raise fluid pressure and thereby reduce frictional resistance to slip. The amount of fluid pressure rise depends on the associated fluid flow. The heat generated at a given time produces fluid pressure that decreases inversely with the square root of hydraulic diffusivity times the elapsed time. If the slip velocity function is crack-like, there is a prompt fluid pressure rise at the onset of slip, followed by a slower increase. The stress drop associated with the prompt fluid pressure rise increases with rupture propagation distance. The threshold propagation distance at which thermally induced stress drop starts to dominate over frictionally induced stress drop is proportional to hydraulic diffusivity. If hydraulic diffusivity is 0.02 m2/s, estimated from borehole samples of fault zone material, the threshold propagation distance is 300 m. The stress wave in an earthquake will induce an unknown amount of dilatancy and will increase hydraulic diffusivity, both of which will lessen the fluid pressure effect. Nevertheless, if hydraulic diffusivity is no more than two orders of magnitude larger than the laboratory value, then stress drop is complete in large earthquakes.

  17. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  18. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  19. Apparatus for moving a pipe inspection probe through piping

    DOEpatents

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  20. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE PAGES

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  1. Endocrine and fluid metabolism in males and females of different ages after bedrest, acceleration and lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Vernikos-Danellis, J.; Krauhs, J. M.; Sandler, H.

    1985-01-01

    Space shuttle flight simulations were conducted to determine the effects of weightlessness, lower body negative pressure (LBNP), and acceleration of fluid and electrolyte excretion and the hormones that control it. Measurements were made on male and female subjects of different ages before and after bedrest. After admission to a controlled environment, groups of 6 to 14 subjects in the age ranges 25 to 35, 35 to 45, 45 to 55 to 65 years were exposed to +3 G sub z for 15 minutes (G1) and to LBNP (LBNP1) on different days. On 3 days during this prebedrest period, no tests were conducted. Six days of bedrest followed, and the G sub z (G2) and LBNP (LBNP2) tests were run again. Hormones, electrolytes, and other parameters were measured in 24-hour urine pools throughout the experiment. During bedrest, cortisol and aldosterone excretion increased. Urine volume decreased, and specific gravity and osmolality increased. Urinary electrolytes were statistically unchanged from levels during the non-stress control period. During G2, cortisol increased significantly over its control and bedrest levels. Urine volume, sodium, and chloride were significantly lower; specific gravity and osmolality were higher during the control period or bedrest. The retention of fluids and electrolytes after +G sub z may at least partially explain decreased urine volume and increased osmolality observed during bedrest in this study. There were some who indicated that space flight would not affect the fluid and electrolyte metabolism of females or older males any more severely than it has affected that of male astronauts.

  2. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturingmore » fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.« less

  3. Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Mavko, G.

    2006-12-01

    A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize the assumptions and limitations described above, we designed a laboratory experiment which used gas as pore fluid medium. Experimental results show that in gas-pressured saturated rocks the Vp/Vs ratio, while remaining lower than values reported for liquid saturation conditions, increases with decreasing differential pressure, similarly to the trend observed in liquid saturated rocks.

  4. In situ study at high pressure and temperature of the environment of water in hydrous Na and Ca aluminosilicate melts and coexisting aqueous fluids

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Dalou, Célia; Mysen, Bjorn O.

    2017-07-01

    The bonding and speciation of water dissolved in Na silicate and Na and Ca aluminosilicate melts were inferred from in situ Raman spectroscopy of the samples, in hydrothermal diamond anvil cells, while at crustal temperature and pressure conditions. Raman data were also acquired on Na silicate and Na and Ca aluminosilicate glasses, quenched from hydrous melts equilibrated at high temperature and pressure in a piston cylinder apparatus. In the hydrous melts, temperature strongly influences O-H stretching ν(O-H) signals, reflecting its control on the bonding of protons between different molecular complexes. Pressure and melt composition effects are much smaller and difficult to discriminate with the present data. However, the chemical composition of the melt + fluid system influences the differences between the ν(O-H) signals from the melts and the fluids and, hence, between their hydrogen partition functions. Quenching modifies the O-H stretching signals: strong hydrogen bonds form in the glasses below the glass transition temperature Tg, and this phenomenon depends on glass composition. Therefore, glasses do not necessarily record the O-H stretching signal shape in melts near Tg. The melt hydrogen partition function thus cannot be assessed with certainty using O-H stretching vibration data from glasses. From the present results, the ratio of the hydrogen partition functions of hydrous silicate melts and aqueous fluids mostly depends on temperature and the bulk melt + fluid system chemical composition. This implies that the fractionation of hydrogen isotopes between magmas and aqueous fluids in water-saturated magmatic systems with differences in temperature and bulk chemical composition will be different.

  5. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  6. A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells.

    PubMed

    Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong; Tien, Joe; Nelson, Celeste M

    2017-01-01

    Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.

  7. Analysis and control of the METC fluid bed gasifier. Final report (includes technical progress report for October 1994--January 1995), September 1994--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-09-01

    This document presents a modeling and control study of the Fluid Bed Gasification (FBG) unit at the Morgantown Energy Technology Center (METC). The work is performed under contract no. DE-FG21-94MC31384. The purpose of this study is to generate a simple FBG model from process data, and then use the model to suggest an improved control scheme which will improve operation of the gasifier. The work first developes a simple linear model of the gasifier, then suggests an improved gasifier pressure and MGCR control configuration, and finally suggests the use of a multivariable control strategy for the gasifier.

  8. Harmonic engine

    DOEpatents

    Bennett, Charles L [Livermore, CA

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  9. Mild hypothermia attenuates changes in respiratory system mechanics and modifies cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation.

    PubMed

    Dostál, P; Senkeřík, M; Pařízková, R; Bareš, D; Zivný, P; Zivná, H; Cerný, V

    2010-01-01

    Hypothermia was shown to attenuate ventilator-induced lung injury due to large tidal volumes. It is unclear if the protective effect of hypothermia is maintained under less injurious mechanical ventilation in animals without previous lung injury. Tracheostomized rats were randomly allocated to non-ventilated group (group C) or ventilated groups of normothermia (group N) and mild hypothermia (group H). After two hours of mechanical ventilation with inspiratory fraction of oxygen 1.0, respiratory rate 60 min(-1), tidal volume 10 ml x kg(-1), positive end-expiratory pressure (PEEP) 2 cm H2O or immediately after tracheostomy in non-ventilated animals inspiratory pressures were recorded, rats were sacrificed, pressure-volume (PV) curve of respiratory system constructed, bronchoalveolar lavage (BAL) fluid and aortic blood samples obtained. Group N animals exhibited a higher rise in peak inspiratory pressures in comparison to group H animals. Shift of the PV curve to right, higher total protein and interleukin-6 levels in BAL fluid were observed in normothermia animals in comparison with hypothermia animals and non-ventilated controls. Tumor necrosis factor-alpha was lower in the hypothermia group in comparison with normothermia and non-ventilated groups. Mild hypothermia attenuated changes in respiratory system mechanics and modified cytokine concentration in bronchoalveolar lavage fluid during low lung volume ventilation in animals without previous lung injury.

  10. Extreme pressure fluid sample transfer pump

    DOEpatents

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  11. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  12. Tank System Integrated Model: A Cryogenic Tank Performance Prediction Program

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Sutherlin, S. G.; Schnell, A. R.; Moder, J. P.

    2017-01-01

    Accurate predictions of the thermodynamic state of the cryogenic propellants, pressurization rate, and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning for future space exploration missions. This Technical Memorandum (TM) presents the analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, mixing, and condensation on the tank wall. This TM also includes comparisons of TankSIM program predictions with the test data andexamples of multiphase mission calculations.

  13. Fault Weakening due to Erosion by Fluids: A Possible Origin of Intraplate Earthquake Swarms

    NASA Astrophysics Data System (ADS)

    Vavrycuk, V.; Hrubcova, P.

    2016-12-01

    The occurrence and specific properties of earthquake swarms in geothermal areas are usually attributed to a highly fractured rock and/or heterogeneous stress within the rock mass being triggered by magmatic or hydrothermal fluid intrusion. The increase of fluid pressure destabilizes fractures and causes their opening and subsequent shear-tensile rupture. The spreading and evolution of the seismic activity is controlled by fluid flow due to diffusion in a permeable rock and/or by the redistribution of Coulomb stress. The `fluid-injection model', however, is not valid universally. We provide evidence that this model is inconsistent with observations of earthquake swarms in West Bohemia, Czech Republic. Full seismic moment tensors of micro-earthquakes in the 1997 and 2008 swarms in West Bohemia indicate that fracturing at the starting phase of the swarm was not associated with fault openings caused by pressurized fluids but rather with fault compactions. This can physically be explained by a `fluid-erosion model', when the essential role in the swarm triggering is attributed to chemical and hydrothermal fluid-rock interactions in the focal zone. Since the rock is exposed to circulating hydrothermal, CO2-saturated fluids, the walls of fractures are weakened by dissolving and altering various minerals. If fault strength lowers to a critical value, the seismicity is triggered. The fractures are compacted during failure, the fault strength recovers and a new cycle begins.

  14. Sound transmission analysis of partially treated MR fluid-based sandwich panels using finite element method

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2017-04-01

    This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.

  15. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  16. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2018-02-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2·21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings.

  17. Measurement of the Density of Base Fluids at Pressures 0.422 to 2.20 Gpa

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Jacobson, B. O.; Bergstroem, S. I.

    1985-01-01

    The influence of pressure on the density of six base fluids is experimentally studied for a range of pressures from 0.422 to 2.20 GPa. An important parameter used to describe the results is the change in relative volume with change in pressure dv sub r/dp. For pressures less than the solidification pressure (p ps) a small change in pressure results in a large change in dv sub r/ps. For pressures greater than the solidification pressure (p ps) there is no change in dv sub r/dp with changing pressure. The solidification pressures of the base fluids varies considerably, as do the slopes that the experimental data assumes for p ps. A new formula is developed that describes the effect of pressure on density in terms of four constants. These constants vary for the different base fluids tested.

  18. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems

    PubMed Central

    Wu, Min; Frieboes, Hermann B.; McDougall, Steven R.; Chaplain, Mark A.J.; Cristini, Vittorio; Lowengrub, John

    2013-01-01

    The flow of interstitial fluid and the associated interstitial fluid pressure (IFP) in solid tumors and surrounding host tissues have been identified as critical elements in cancer growth and vascularization. Both experimental and theoretical studies have shown that tumors may present elevated IFP, which can be a formidable physical barrier for delivery of cell nutrients and small molecules into the tumor. Elevated IFP may also exacerbate gradients of biochemical signals such as angiogenic factors released by tumors into the surrounding tissues. These studies have helped to understand both biochemical signaling and treatment prognosis. Building upon previous work, here we develop a vascular tumor growth model by coupling a continuous growth model with a discrete angiogenesis model. We include fluid/oxygen extravasation as well as a continuous lymphatic field, and study the micro-environmental fluid dynamics and their effect on tumor growth by accounting for blood flow, transcapillary fluid flux, interstitial fluid flow, and lymphatic drainage. We thus elucidate further the non-trivial relationship between the key elements contributing to the effects of interstitial pressure in solid tumors. In particular, we study the effect of IFP on oxygen extravasation and show that small blood/lymphatic vessel resistance and collapse may contribute to lower transcapillary fluid/oxygen flux, thus decreasing the rate of tumor growth. We also investigate the effect of tumor vascular pathologies, including elevated vascular and interstitial hydraulic conductivities inside the tumor as well as diminished osmotic pressure differences, on the fluid flow across the tumor capillary bed, the lymphatic drainage, and the IFP. Our results reveal that elevated interstitial hydraulic conductivity together with poor lymphatic function is the root cause of the development of plateau profiles of the IFP in the tumor, which have been observed in experiments, and contributes to a more uniform distribution of oxygen, solid tumor pressure and a broad-based collapse of the tumor lymphatics. We also find that the rate that IFF is fluxed into the lymphatics and host tissue is largely controlled by an elevated vascular hydraulic conductivity in the tumor. We discuss the implications of these results on microenvironmental transport barriers, and the tumor invasive and metastatic potential. Our results suggest the possibility of developing strategies of targeting tumor cells based on the cues in the interstitial fluid. PMID:23220211

  19. Development and characterization of an IPMC hair-like transducer

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Challita, Elio; Khairalah, Nady

    2015-04-01

    Hair-like sensors are very common in natural and biological systems. Such sensors are used to measure acoustic pressures, fluid flows, and chemical concentrations among others. Hair-like actuators are also used to control fluid flows and perform temperature management. This study presents a manufacturing technique for a hair-like IPMC transducer. A thorough study is presented on the building process of the sensor. The method used to control the diameter and the electrodes thickness of the transducer is developed. The sensing behavior of the manufactured transducers is experimentally characterized.

  20. Do Arthroscopic Fluid Pumps Display True Surgical Site Pressure During Hip Arthroscopy?

    PubMed

    Ross, Jeremy A; Marland, Jennifer D; Payne, Brayden; Whiting, Daniel R; West, Hugh S

    2018-01-01

    To report on the accuracy of 5 commercially available arthroscopic fluid pumps to measure fluid pressure at the surgical site during hip arthroscopy. Patients undergoing hip arthroscopy for femoroacetabular impingement were block randomized to the use of 1 of 5 arthroscopic fluid pumps. A spinal needle inserted into the operative field was used to measure surgical site pressure. Displayed pump pressures and surgical site pressures were recorded at 30-second intervals for the duration of the case. Mean differences between displayed pump pressures and surgical site pressures were obtained for each pump group. Of the 5 pumps studied, 3 (Crossflow, 24K, and Continuous Wave III) reflected the operative field fluid pressure within 11 mm Hg of the pressure readout. In contrast, 2 of the 5 pumps (Double Pump RF and FMS/DUO+) showed a difference of greater than 59 mm Hg between the operative field fluid pressure and the pressure readout. Joint-calibrated pumps more closely reflect true surgical site pressure than gravity-equivalent pumps. With a basic understanding of pump design, either type of pump can be used safely and efficiently. The risk of unfamiliarity with these differences is, on one end, the possibility of pump underperformance and, on the other, potentially dangerously high operating pressures. Level II, prospective block-randomized study. Copyright © 2017. Published by Elsevier Inc.

  1. High precision Hugoniot measurements on statically pre-compressed fluid helium

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.

    2016-09-01

    The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.

  2. Management of fluid mud in estuaries, bays, and lakes. II: Measurement, modeling, and management

    USGS Publications Warehouse

    McAnally, W.H.; Teeter, A.; Schoellhamer, David H.; Friedrichs, C.; Hamilton, D.; Hayter, E.; Shrestha, P.; Rodriguez, H.; Sheremet, A.; Kirby, R.

    2007-01-01

    Techniques for measurement, modeling, and management of fluid mud are available, but research is needed to improve them. Fluid mud can be difficult to detect, measure, or sample, which has led to new instruments and new ways of using existing instruments. Multifrequency acoustic fathometers sense neither density nor viscosity and are, therefore, unreliable in measuring fluid mud. Nuclear density probes, towed sleds, seismic, and drop probes equipped with density meters offer the potential for accurate measurements. Numerical modeling of fluid mud requires solving governing equations for flow velocity, density, pressure, salinity, water surface, plus sediment submodels. A number of such models exist in one-, two-, and three-dimensional form, but they rely on empirical relationships that require substantial site-specific validation to observations. Management of fluid mud techniques can be classified as those that accomplish: Source control, formation control, and removal. Nautical depth, a fourth category, defines the channel bottom as a specific fluid mud density or alternative parameter as safe for navigation. Source control includes watershed management measures to keep fine sediment out of waterways and in-water measures such as structures and traps. Formation control methods include streamlined channels and structures plus other measures to reduce flocculation and structures that train currents. Removal methods include the traditional dredging and transport of dredged material plus agitation that contributes to formation control and/or nautical depth. Conditioning of fluid mud by dredging and aerating offers the possibility of improved navigability. Two examples—the Atchafalaya Bar Channel and Savannah Harbor—illustrate the use of measurements and management of fluid mud.

  3. Pressure fluctuations and time scales in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Septham, Kamthon; Morrison, Jonathan; Diwan, Sourabh

    2015-11-01

    Pressure fluctuations in turbulent channel flow subjected to globally stabilising linear feedback control are investigated at Reτ = 400 . The passivity-based control is adopted and explained by the conservative characteristics of the nonlinear terms contributing to the Reynolds-Orr equation (Sharma et al. Phys. Fluids 2011). The linear control operates via vU' ; the maximum forcing is located at y+ ~ 20 , corresponding to the location of the maximum in the mean-square pressure gradient. The responses of the rapid (linear) and slow (nonlinear) pressure fluctuations to the linear control are investigated using the Green's function representations. It demonstrates that the linear control operates via the linear source terms of the Poisson equation for pressure fluctuations. Landahl's timescales of the minimal flow unit (MFU) in turbulent channel flow are examined at y+ = 20 . It shows that the timescales of MFU agree well with the theoretical values proposed by Landahl (1993). Therefore, the effectiveness of the linear control to attenuate wall turbulence is explained by Landahl's theory for timescales, in that the control proceeds via the shear interaction timescale which is significantly shorter than both the nonlinear and viscous timescales.

  4. System for Manipulating Drops and Bubbles Using Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1999-01-01

    The manipulation and control of drops of liquid and gas bubbles is achieved using high intensity acoustics in the form of and/or acoustic radiation pressure and acoustic streaming. generated by a controlled wave emission from a transducer. Acoustic radiation pressure is used to deploy or dispense drops into a liquid or a gas or bubbles into a liquid at zero or near zero velocity from the discharge end of a needle such as a syringe needle. Acoustic streaming is useful in manipulating the drop or bubble during or after deployment. Deployment and discharge is achieved by focusing the acoustic radiation pressure on the discharge end of the needle, and passing the acoustic waves through the fluid in the needle. through the needle will itself, or coaxially through the fluid medium surrounding the needle. Alternatively, the acoustic waves can be counter-deployed by focusing on the discharge end of the needle from a transducer axially aligned with the needle, but at a position opposite the needle, to prevent premature deployment of the drop or bubble. The acoustic radiation pressure can also be used for detecting the presence or absence of a drop or a bubble at the tip of a needle or for sensing various physical characteristics of the drop or bubble such as size or density.

  5. a New Approach for Complete Mixing by Transverse and Streamwise Flow Motions in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Wang, Muh-Rong; Dai, Chiau-Yi; Huang, Yang-Sheng

    Mixing control is an important issue in micro-fluid chip applications, such as μTAS (Micro-Total Analysis System) or LOC (Lab-on-Chip) because the flow at micro-scale is highly laminar. Several flow control schemes had been developed for complete mixing in the micro-channels in the past decades. However, most of the mixing control schemes are performed by utilizing specific excitation devices, such as electrokinetic, magnetic or pressure drivers. This paper investigates a new control scheme which is composed of a series of flow manipulation by changing the pressure at the two inlets of the micromixer as the external excitation. The fluids from two inlets are introduced to a square mixing chamber, which provides a space where the streamwise and transverse flow motions take place. The results show that the micromixer can be used to produce a large recirculation zone with series of small transverse fringes under external excitations. It is found that this new flow pattern enhances mixing processes at the micro-scale. A complete mixing can be achieved under appropriate flow control with the corresponding design.

  6. High-pressure and high-temperature neutron reflectometry cell for solid-fluid interface studies

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lerner, A. H.; Taylor, M.; Baldwin, J. K.; Grubbs, R. K.; Majewski, J.; Hickmott, D. D.

    2012-07-01

    A new high pressure-temperature ( P - T Neutron Reflectometry (NR) cell developed at Los Alamos National Laboratory (LANL) is described that significantly extends the capabilities of solid/fluid interface investigations up to 200MPa ( ensuremath ˜ 30000 psi) and 200 ° C. The cell's simple aluminum construction makes it light and easy to operate while thinned neutron windows allow up to 74% neutron transmission. The wide-open neutron window geometry provides a maximum theoretical ensuremath Qz range of 0.31Å-1. Accurate T and P controls are integrated on the cell's control panel. Built-in powder wells provide the ability to saturate fluids with reactive solids, producing aqueous species and/or decomposing into gaseous phases. The cell is designed for samples up to 50.8mm in diameter and 10.0mm in thickness. An experiment investigating the high P - T corrosion behavior of aluminum on LANL's Surface ProfilE Analysis Reflectometer (SPEAR) is presented, demonstrating the functioning and capability of the cell. Finally, outlooks on high P - T NR applications and perspectives on future research are discussed.

  7. Goal-directed Fluid Therapy May Improve Hemodynamic Stability of Parturient with Hypertensive Disorders of Pregnancy Under Combined Spinal Epidural Anesthesia for Cesarean Delivery and the Well-being of Newborns

    PubMed Central

    Xiao, Wei; Duan, Qing-Fang; Fu, Wen-Ya; Chi, Xin-Zuo; Wang, Feng-Ying; Ma, Da-Qing; Wang, Tian-Long; Zhao, Lei

    2015-01-01

    Background: Hypotension induced by combined spinal epidural anesthesia in parturient with hypertensive disorders of pregnancy (HDP) can easily compromise blood supply to vital organs including uteroplacental perfusion and result in fetal distress. The aim of this study was to investigate whether the goal-directed fluid therapy (GDFT) with LiDCOrapid system can improve well-being of both HDP parturient and their babies. Methods: Fifty-two stable HDP parturient scheduled for elective cesarean delivery were recruited. After loading with 10 ml/kg lactated Ringer's solution (LR), parturient were randomized to the GDFT and control group. In the GDFT group, individualized fluid therapy was guided by increase in stroke volume (ΔSV) provided via LiDCOrapid system. The control group received the routine fluid therapy. The primary endpoints included maternal hypotension and the doses of vasopressors administered prior to fetal delivery. The secondary endpoints included umbilical blood gas abnormalities and neonatal adverse events. Results: The severity of HDP was similar between two groups. The total LR infusion (P < 0.01) and urine output (P < 0.05) were higher in the GDFT group than in the control group. Following twice fluid challenge tests, the systolic blood pressure, mean blood pressure, cardiac output and SV in the GDFT group were significantly higher, and the heart rate was lower than in the control group. The incidence of maternal hypotension and doses of phenylephrine used prior to fetal delivery were significantly higher in the control group than in the GDFT group (P < 0.01). There were no differences in the Apgar scores between two groups. In the control group, the mean values of pH in umbilical artery/vein were remarkably decreased (P < 0.05), and the incidences of neonatal hypercapnia and hypoxemia were statistically increased (P < 0.05) than in the GDFT group. Conclusions: Dynamic responsiveness guided fluid therapy with the LiDCOrapid system may provide potential benefits to stable HDP parturient and their babies. PMID:26168834

  8. Goal-directed Fluid Therapy May Improve Hemodynamic Stability of Parturient with Hypertensive Disorders of Pregnancy Under Combined Spinal Epidural Anesthesia for Cesarean Delivery and the Well-being of Newborns.

    PubMed

    Xiao, Wei; Duan, Qing-Fang; Fu, Wen-Ya; Chi, Xin-Zuo; Wang, Feng-Ying; Ma, Da-Qing; Wang, Tian-Long; Zhao, Lei

    2015-07-20

    Hypotension induced by combined spinal epidural anesthesia in parturient with hypertensive disorders of pregnancy (HDP) can easily compromise blood supply to vital organs including uteroplacental perfusion and result in fetal distress. The aim of this study was to investigate whether the goal-directed fluid therapy (GDFT) with LiDCO rapid system can improve well-being of both HDP parturient and their babies. Fifty-two stable HDP parturient scheduled for elective cesarean delivery were recruited. After loading with 10 ml/kg lactated Ringer's solution (LR), parturient were randomized to the GDFT and control group. In the GDFT group, individualized fluid therapy was guided by increase in stroke volume (ΔSV) provided via LiDCO rapid system. The control group received the routine fluid therapy. The primary endpoints included maternal hypotension and the doses of vasopressors administered prior to fetal delivery. The secondary endpoints included umbilical blood gas abnormalities and neonatal adverse events. The severity of HDP was similar between two groups. The total LR infusion (P < 0.01) and urine output (P < 0.05) were higher in the GDFT group than in the control group. Following twice fluid challenge tests, the systolic blood pressure, mean blood pressure, cardiac output and SV in the GDFT group were significantly higher, and the heart rate was lower than in the control group. The incidence of maternal hypotension and doses of phenylephrine used prior to fetal delivery were significantly higher in the control group than in the GDFT group (P < 0.01). There were no differences in the Apgar scores between two groups. In the control group, the mean values of pH in umbilical artery/vein were remarkably decreased (P < 0.05), and the incidences of neonatal hypercapnia and hypoxemia were statistically increased (P < 0.05) than in the GDFT group. Dynamic responsiveness guided fluid therapy with the LiDCO rapid system may provide potential benefits to stable HDP parturient and their babies.

  9. Extracellular Polymeric Matrix Production and Relaxation under Fluid Shear and Mechanical Pressure in Staphylococcus aureus Biofilms.

    PubMed

    Hou, Jiapeng; Veeregowda, Deepak H; van de Belt-Gritter, Betsy; Busscher, Henk J; van der Mei, Henny C

    2017-10-20

    The viscoelasticity of a biofilm's EPS (extracellular-polymeric-substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the response of a biofilm of an EPS producing (ATCC 12600) and non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal-Laser-Scanning-Microscopy confirmed absence of calcofluorwhite-stainable EPS in biofilms of S. aureus 5298. ATR-FTIR spectroscopy combined with tribometry indicated that the polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low shear and this increased EPS production extended to entire biofilms, as indicated by tribometrically measured coefficients of friction (CoF). CoFs of biofilms grown under high fluid shear were higher than when grown under low shear, likely due to wash-off of polysaccharides. Measurement of a biofilm's CoF implies application of mechanical pressure that yielded an immediate increase in polysaccharide band area of S. aureus ATCC 12600 biofilms due to their compression that decreased after relieving pressure to the level observed prior to mechanical pressure. For biofilms grown under high shear, this coincided with a higher %whiteness in Optical-Coherence-Tomography-images indicative of water outflow, returning back into the biofilm during stress relaxation. Biofilms grown under low shear however, were stimulated during tribometry to produce EPS, also after stress relieve. Knowledge of factors that govern EPS production and water flow in biofilms will allow better control of biofilms under mechanical challenge and understanding of the barrier properties of biofilms toward antimicrobial penetration. IMPORTANCE Adaptive responses of biofilm inhabitants in nature to environmental challenges such as fluid shear and mechanical pressure, often involve EPS production with the aim of protecting biofilm inhabitants. EPS can assist biofilm bacteria to remain attached or impede antimicrobial penetration. The tribochemist is a recently introduced instrument, allowing to study initially adhering bacteria to a Germanium crystal using ATR-FTIR spectroscopy, while simultaneously allowing measurement of the coefficient of friction of a biofilm, serving as an indicator of the EPS content of a biofilm. EPS production can be stimulated by both fluid shear during growth and mechanical pressure, while increased EPS production can continue after pressure relaxation of the biofilm. Since EPS is pivotal in the protection of biofilm inhabitants against mechanical and chemical challenges, knowledge the factors that make biofilm inhabitants decide to produce EPS as provided in this study, are important for the development of biofilm control measures. Copyright © 2017 American Society for Microbiology.

  10. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ƒ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).

  11. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  12. The analysis of the flow with water injection in a centrifugal compressor stage using CFD simulation

    NASA Astrophysics Data System (ADS)

    Michal, Tomášek; Richard, Matas; Tomáš, Syka

    2017-09-01

    This text deals with the principle of direct cooling of the pressure gas in a centrifugal compressor based on evaporation of the additional fluid phase in a control domain. A decrease of the gas temperature is reached by taking the heat, which is required for evaporation of the fluid phase. The influence of additional fluid phase on the parameters of the multiphase flow is compared with the ideal gas simulation in the defined domain and with the same boundary conditions.

  13. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  14. Effect of External Pressure and Catheter Gauge on Flow Rate, Kinetic Energy, and Endothelial Injury During Intravenous Fluid Administration in a Rabbit Model.

    PubMed

    Hu, Mei-Hua; Chan, Wei-Hung; Chen, Yao-Chang; Cherng, Chen-Hwan; Lin, Chih-Kung; Tsai, Chien-Sung; Chou, Yu-Ching; Huang, Go-Shine

    2016-01-01

    The effects of intravenous (IV) catheter gauge and pressurization of IV fluid (IVF) bags on fluid flow rate have been studied. However, the pressure needed to achieve a flow rate equivalent to that of a 16 gauge (G) catheter through smaller G catheters and the potential for endothelial damage from the increased kinetic energy produced by higher pressurization are unclear. Constant pressure on an IVF bag was maintained by an automatic adjustable pneumatic pressure regulator of our own design. Fluids running through 16 G, 18 G, 20 G, and 22 G catheters were assessed while using IV bag pressurization to achieve the flow rate equivalent to that of a 16 G catheter. We assessed flow rates, kinetic energy, and flow injury to rabbit inferior vena cava endothelium. By applying sufficient external constant pressure to an IVF bag, all fluids could be run through smaller (G) catheters at the flow rate in a 16 G catheter. However, the kinetic energy increased significantly as the catheter G increased. Damage to the venous endothelium was negligible or minimal/patchy cell loss. We designed a new rapid infusion system, which provides a constant pressure that compresses the fluid volume until it is free from visible residual fluid. When large-bore venous access cannot be obtained, multiple smaller catheters, external pressure, or both should be considered. However, caution should be exercised when fluid pressurized to reach a flow rate equivalent to that in a 16 G catheter is run through a smaller G catheter because of the profound increase in kinetic energy that can lead to venous endothelium injury.

  15. Numerical simulation of water evaporation inside vertical circular tubes

    NASA Astrophysics Data System (ADS)

    Ocłoń, Paweł; Nowak, Marzena; Majewski, Karol

    2013-10-01

    In this paper the results of simplified numerical analysis of water evaporation in vertical circular tubes are presented. The heat transfer in fluid domain (water or wet steam) and solid domain (tube wall) is analyzed. For the fluid domain the temperature field is calculated solving energy equation using the Control Volume Method and for the solid domain using the Finite Element Method. The heat transfer between fluid and solid domains is conjugated using the value of heat transfer coefficient from evaporating liquid to the tube wall. It is determined using the analytical Steiner-Taborek correlation. The pressure changes in fluid are computed using Friedel model.

  16. Shallow fluid pressure transients caused by seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Fleischmann, Karl Henry

    1993-10-01

    Clastic dikes, induced by paleo-seismic slip along the Jonesboro Fault, can be used to estimate the magnitude of shallow fluid pressure transients. Fractures show evidence of two phases of seismically induced dilation by escaping fluids. Initial dilation and propagation through brittle rocks was caused by expulsion of trapped reducing fluids from beneath a clay cap. Second phase fluids were thixotropic clays which flowed vertically from clay beds upwards into the main fracture. Using the differential dilation and fracture trace lengths, the fluid pressure pulse is estimated to have ranged from 0.312-0.49 MPa, which is approximately equal to the vertical load during deformation. Field observations in adjacent rocks record evidence of large-magnitude seismic events, which are consistent with the large nature of the fluid pressure fluctuation.

  17. Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea.

    PubMed

    Kasai, Takatoshi; Motwani, Shveta S; Yumino, Dai; Gabriel, Joseph M; Montemurro, Luigi Taranto; Amirthalingam, Vinoban; Floras, John S; Bradley, T Douglas

    2013-03-19

    This study sought to test the effects of rostral fluid displacement from the legs on transpharyngeal resistance (Rph), minute volume of ventilation (Vmin), and partial pressure of carbon dioxide (PCO2) in men with heart failure (HF) and either obstructive (OSA) or central sleep apnea (CSA). Overnight rostral fluid shift relates to severity of OSA and CSA in men with HF. Rostral fluid displacement may facilitate OSA if it shifts into the neck and increases Rph, because pharyngeal obstruction causes OSA. Rostral fluid displacement may also facilitate CSA if it shifts into the lungs and induces reflex augmentation of ventilation and reduces PCO2, because a decrease in PCO2 below the apnea threshold causes CSA. Men with HF were divided into those with mainly OSA (obstructive-dominant, n = 18) and those with mainly CSA (central-dominant, n = 10). While patients were supine, antishock trousers were deflated (control) or inflated for 15 min (lower body positive pressure [LBPP]) in random order. LBPP reduced leg fluid volume and increased neck circumference in both obstructive- and central-dominant groups. However, in contrast to the obstructive-dominant group in whom LBPP induced an increase in Rph, a decrease in Vmin, and an increase in PCO2, in the central-dominant group, LBPP induced a reduction in Rph, an increase in Vmin, and a reduction in PCO2. These findings suggest mechanisms by which rostral fluid shift contributes to the pathogenesis of OSA and CSA in men with HF. Rostral fluid shift could facilitate OSA if it induces pharyngeal obstruction, but could also facilitate CSA if it augments ventilation and lowers PCO2. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Chemical environments of submarine hydrothermal systems. [supporting abiogenetic theory

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The paper synthesizes diverse information about the inorganic geochemistry of submarine hydrothermal systems, provides a description of the fundamental physical and chemical properties of these systems, and examines the implications of high-temperature, fluid-driven processes for organic synthesis. Emphasis is on a few general features, i.e., pressure, temperature, oxidation states, fluid composition, and mineral alteration, because these features will control whether organic synthesis can occur in hydrothermal systems.

  19. Investigation of positive shaft seals

    NASA Technical Reports Server (NTRS)

    Pfouts, J. O.

    1970-01-01

    Welded metal bellows secondary seals prevent secondary seal leakage with a minimum number of potential leak paths. High performance seal is obtained by controlling the potentially unstable seal-face movements induced by mechanical vibrations and fluid pressure pulsations.

  20. Lubrication Flows.

    ERIC Educational Resources Information Center

    Papanastasiou, Tasos C.

    1989-01-01

    Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…

  1. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  2. CCFP Analyzer

    NASA Image and Video Library

    2016-05-06

    ISS047e106715 (05/06/2016) --- ESA (European Space Agency astronaut Tim Peake unpacks a cerebral and cochlear fluid pressure (CCFP) analyzer. The device is being tested to measure the pressure of the fluid in the skull, also known as intracranial pressure, which may increase due to fluid shifts in the body while in microgravity. It is hypothesized that the headward fluid shift that occurs during space flight leads to increased pressure in the brain, which may push on the back of the eye, causing it to change shape.

  3. Creep, compaction and the weak rheology of major faults

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1992-01-01

    Field and laboratory observations suggest that the porosity within fault zones varies over earthquake cycles so that fluid pressure is in long-term equilibrium with hydrostatic fluid pressure in the country rock. Between earthquakes, ductile creep compacts the fault zone, increasing fluid pressure, and finally allowing frictional failure at relatively low shear stress. Earthquake faulting restores porosity and decreases fluid pressure to below hydrostatic. This mechanism may explain why major faults, such as the San Andreas system, are weak.

  4. NASA's Cryogenic Fluid Management Technology Project

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  5. Spool-type control valve assembly with reduced spool stroke for hydraulic belt-and-pulley type continuously variable transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, H.; Akashi, T.; Takada, M.

    1987-03-31

    This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less

  6. Fracture propagation during fluid injection experiments in shale at elevated confining pressures.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Mecklenburgh, Julian; Rutter, Ernest; Fauchille, Anne-Laure; Taylor, Rochelle; Lee, Peter

    2017-04-01

    The use of hydraulic fracturing to recover shale-gas has focused attention upon the fundamental fracture properties of gas-bearing shales. Fracture propagation trajectories in these materials depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. Here we report the results of laboratory-scale fluid injection experiments, for Whitby mudstone and Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone (a tight sandstone with permeability similar to shales), which is used an isotropic baseline and tight-gas sandstone analogue. Our injection experiments involved the pressurisation of a blind-ending central hole in an initially dry cylindrical sample. Pressurisation was conducted under constant volume-rate control, using silicone oils of various viscosities. The dependence of breakdown pressure on confining pressure was seen to be dependent on the rock strength, with the significantly stronger Pennant sandstone exhibiting much lower confining-pressure dependence of breakdown pressure than the weaker shales. In most experiments, a small drop in the injection pressure record was observed at what is taken to be fracture initiation, and in the Pennant sandstone this was accompanied by a small burst of acoustic energy. Breakdown was found to be rapid and uncontrollable after initiation if injection is continued, but can be limited to a slower (but still uncontrolled) rate by ceasing the injection of fluid after the breakdown initiation in experiments where it could be identified. A simplified 2-dimensional model for explaining these observations is presented in terms of the stress intensities at the tip of a pressurised crack. Additionally, we present a suite of supporting mechanical, flow and elastic measurements. Mechanical experiments include standard triaxial tests, pressure-dependent permeability experiments and fracture toughness determined using the double-torsion test. Elastic characterisation was determined through ultrasonic velocities determined using a cross-correlation method.

  7. Mechanisms of fluid production in smooth adhesive pads of insects

    PubMed Central

    Dirks, Jan-Henning; Federle, Walter

    2011-01-01

    Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-zero steady state, demonstrating the presence of a storage volume. We estimated its size and the influx rate into it from a simple compartmental model. Influx was independent of step frequency. Fluid-depleted pads recovered maximal footprint volumes within 15 min. Pads in stationary contact accumulated fluid along the perimeter of the contact zone. The initial fluid build-up slowed down, suggesting that flow is driven by negative Laplace pressure. Freely climbing stick insects left hardly any traceable footprints, suggesting that they save secretion by minimizing contact area or by recovering fluid during detachment. However, even the highest fluid production rates observed incur only small biosynthesis costs, representing less than 1 per cent of the resting metabolic rate. Our results show that fluid secretion in insect wet adhesive systems relies on simple physical principles, allowing for passive control of fluid volume within the contact zone. PMID:21208970

  8. Heating tar sands formations while controlling pressure

    DOEpatents

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX

    2010-01-12

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  9. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  10. Shuttle cryogenic supply system optimization study. Volume 3: Technical report, section 10, 11 and 12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.

  11. Analysis and control of the METC fluid bed gasifier. Quarterly report, April 1995--June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This document summarizes work performed for the period 4/1/95 to 7/31/95 on contract no. DE-FG21-94MC31384 (Work accomplished during the period 10/1/94 to 3/31/94 was summarized in the previous technical progress report included in the appendix of this report). In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data, (2) review of the literature on fluid bed gasifier operation and control, and (3) understanding of present FBG operation and real world considerations. Tasks accomplishedmore » during the present reporting period include: (1) Completion of a literature survey on Fluid Bed Gasifier control, (2) Observation of the FBG during the week of July 17 to July 21, and (3) Suggested improvements to the control of FBG backpressure and MGCR pressure.« less

  12. Laboratory studies of volcanic jets

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner; Sturtevant, Bradford

    1984-09-01

    The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere produces a compression wave. The strength of this wave depends primarily on the sound speed of the fluid in the reservoir but also, secondarily with opposite effect, on the density: helium produces a relatively strong atmospheric shock while the Freons do not produce any optically observable wave front. Well-formed N waves are detected with a microphone far from the reservoir. Barrel shocks, Mach disks, and other familiar features of steady underexpanded supersonic jets form inside the jet almost immediately after passage of the flow head. These features are maintained until the pressure in the reservoir decays to sonic conditions. At low pressures the jets are relatively structureless. Gas-particle jets from volcanic eruptions may behave as pseudogases if particle concentrations and mass and momentum exchange between the components are sufficiently small. The sound speed of volcanic pseudogases can be as large as 1000 m s-1 or as small as a few tens of meters per second depending on the mass loading and initial temperature. Fluids of high sound speed produce stronger atmospheric shock waves than do those of low sound speed. Therefore eruption of a hot gas lightly laden with particulates should produce a stronger shock than eruption of a cooler or heavily laden fluid. An empirical expression suggests that the initial velocity of the head of supersonic volcanic jets is controlled by the sound speed and the ratio of the density of the erupting fluid to that of the atmosphere. The duration of gas or pseudogas eruptions is controlled by the sound speed of the fluid and the ratio of reservoir volume to vent area.

  13. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    NASA Astrophysics Data System (ADS)

    Plantier, F.; Marlin, L.; Missima, D.; Torré, J.-P.

    2013-12-01

    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatus.

  14. An evaluation and comparison of intraventricular, intraparenchymal, and fluid-coupled techniques for intracranial pressure monitoring in patients with severe traumatic brain injury.

    PubMed

    Vender, John; Waller, Jennifer; Dhandapani, Krishnan; McDonnell, Dennis

    2011-08-01

    Intracranial pressure measurements have become one of the mainstays of traumatic brain injury management. Various technologies exist to monitor intracranial pressure from a variety of locations. Transducers are usually placed to assess pressure in the brain parenchyma and the intra-ventricular fluid, which are the two most widely accepted compartmental monitoring sites. The individual reliability and inter-reliability of these devices with and without cerebrospinal fluid diversion is not clear. The predictive capability of monitors in both of these sites to local, regional, and global changes also needs further clarification. The technique of monitoring intraventricular pressure with a fluid-coupled transducer system is also reviewed. There has been little investigation into the relationship among pressure measurements obtained from these two sources using these three techniques. Eleven consecutive patients with severe, closed traumatic brain injury not requiring intracranial mass lesion evacuation were admitted into this prospective study. Each patient underwent placement of a parenchymal and intraventricular pressure monitor. The ventricular catheter tubing was also connected to a sensor for fluid-coupled measurement. Pressure from all three sources was measured hourly with and without ventricular drainage. Statistically significant correlation within each monitoring site was seen. No monitoring location was more predictive of global pressure changes or more responsive to pressure changes related to patient stimulation. However, the intraventricular pressure measurements were not reliable in the presence of cerebrospinal fluid drainage whereas the parenchymal measurements remained unaffected. Intraparenchymal pressure monitoring provides equivalent, statistically similar pressure measurements when compared to intraventricular monitors in all care and clinical settings. This is particularly valuable when uninterrupted cerebrospinal fluid drainage is desirable.

  15. Space Shuttle Upgrade Liquid Oxygen Tank Thermal Stratification

    NASA Technical Reports Server (NTRS)

    Tunc, Gokturk; Wagner, Howard; Bayazitoglu, Yildiz

    2001-01-01

    In 1997, NASA initiated a study of a liquid oxygen and ethanol orbital maneuvering and reaction control system for space shuttle upgrades as well as other reusable launch vehicle applications. The pressure-fed system uses sub-cooled liquid oxygen at 2413.2 KPa (350 psia) stored passively using insulation. Thermal stratification builds up while the space shuttle is docked at the international space station. The venting from the space shuttle's liquid oxygen tank is not desired during this 96-hr time period. Once the shuttle undocks from the space station there could be a pressure collapse in the liquid oxygen tank caused by fluid mixing due to the thruster fU"ings . The thermal stratification and resulting pressure rise in the tank were examined by a computational fluid dynamic model. Since the heat transfer from the pressurant gas to the liquid will result in a decrease in tank pressure the final pressure after the 96 hours will be significantly less when the tank is pressurized with ambient temperature helium. Therefore, using helium at ambient temperature to pressurize the tank is preferred to pressurizing the tank with helium at the liquid oxygen temperature. The higher helium temperature will also result in less mass of helium to pressurize the tank.

  16. Magnetic power piston fluid compressor

    NASA Technical Reports Server (NTRS)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  17. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  18. Chiari malformation may increase perivascular cerebrospinal fluid flow into the spinal cord: A subject-specific computational modelling study.

    PubMed

    Lloyd, Robert A; Fletcher, David F; Clarke, Elizabeth C; Bilston, Lynne E

    2017-12-08

    Syringomyelia is associated with Chiari I malformation, although the mechanistic link is unclear. Studies have suggested that cerebrospinal fluid enters the spinal cord via the perivascular spaces, and that changes in the timing of the subarachnoid pressures may increase flow into the spinal cord. This study aims to determine how Chiari malformation and syringomyelia alter the subarachnoid space pressures and hence perivascular flow. Subject-specific models of healthy controls (N = 9), Chiari patients with (N = 7) and without (N = 8) syringomyelia, were developed from magnetic resonance imaging (MRI), to simulate the subarachnoid pressures. These pressures were input to an idealised model of the perivascular space to evaluate potential differences in perivascular flow. Peak pressures in Chiari patients without a syrinx were higher than in controls (46% increase; p = .029) and arrived earlier in the cardiac cycle than both controls (2.58% earlier; p = .045) and syrinx patients (2.85% earlier; p = .045). The perivascular model predicted Chiari patients without a syrinx would have the greatest flow into the cord (p < .05) if the arterial pulse delay was between 4 and 10% of the cardiac cycle. Using phase-contrast MRI the mean arterial delay for all subjects was similar, and was estimated as 4.7 ± 0.2%. The perivascular pumping rate showed a strong positive correlation (R Adj 2 =0.85; p < .0001) with extended periods of high pressure that arrived earlier in the cardiac cycle, suggesting these pressure characteristics may play a role in syrinx development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Stability of fault submitted to fluid injections

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes recently observed in Oklahoma (Mw 5.6, 2016).

  20. A revised model of fluid transport optimization in Physarum polycephalum.

    PubMed

    Bonifaci, Vincenzo

    2017-02-01

    Optimization of fluid transport in the slime mold Physarum polycephalum has been the subject of several modeling efforts in recent literature. Existing models assume that the tube adaptation mechanism in P. polycephalum's tubular network is controlled by the sheer amount of fluid flow through the tubes. We put forward the hypothesis that the controlling variable may instead be the flow's pressure gradient along the tube. We carry out the stability analysis of such a revised mathematical model for a parallel-edge network, proving that the revised model supports the global flow-optimizing behavior of the slime mold for a substantially wider class of response functions compared to previous models. Simulations also suggest that the same conclusion may be valid for arbitrary network topologies.

  1. Effect of Interfacial Turbulence and Accommodation Coefficient on CFD Predictions of Pressurization and Pressure Control in Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya

    2015-01-01

    Laminar models agree closely with the pressure evolution and vapor phase temperature stratification but under-predict liquid temperatures. Turbulent SST k-w and k-e models under-predict the pressurization rate and extent of stratification in the vapor but represent liquid temperature distributions fairly well. These conclusions seem to equally apply to large cryogenic tank simulations as well as small scale simulant fluid pressurization cases. Appropriate turbulent models that represent both interfacial and bulk vapor phase turbulence with greater fidelity are needed. Application of LES models to the tank pressurization problem can serve as a starting point.

  2. Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft

    NASA Astrophysics Data System (ADS)

    Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing

    2005-03-01

    The authors obtain anti-pressure formula of reciprocating shaft magnetic fluid seal from general Navier-Stokes equation. In order to verify the correctness of the anti-pressure formula, the authors set up a magnetic fluid anti-pressure experiment rig for a reciprocating seal. Finally, the authors have verified influence of speed and stroke on the seal anti-pressure.

  3. Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Yancy, Clyde W.; Buckey, Jay C.; Lane, Lynda D.; Hargens, Alan R.; Blomqvist, C. G.

    1992-01-01

    A hypothesis is proposed that a temporal relationship exists between increases in cardiac filling pressure and plasma artrial natriuretic peptide (ANP) concentration and also between ANP elevation and vasodilation, fluid movement from plasma to interstitium, and increased urine volume (UV). To test the hypothesis, 30 ml/kg isotonic saline were infused in supine male subjects over 24 min and responses were monitored for 3 h postinfusion. Results show that at end infusion, mean arterial pressure (RAP), heart rate and plasma volume exhibited peak increases of 146, 23, and 27 percent, respectively. Mean plasma ANP and UV peaked (45 and 390 percent, respectively) at 30 min postinfusion. Most cardiovascular variables had returned toward control levels by 1 h postinfusion, and net reabsorption of extravascular fluid ensued. It is concluded that since ANP was not significantly increased until 30 min postinfusion, factors other than ANP initiate responses to intravascular fluid loading. These factors include increased vascular pressures, baroreceptor-mediated vasolidation, and hemodilution of plasma proteins. ANP is suggested to mediate, in part, the renal response to saline infusion.

  4. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Hao, Meng; Jin, Hongwei

    2018-02-01

    Based on coal seam gas migration theory under multi-physics field coupling effect, fluid-solid coupling model of coal seam gas was build using elastic mechanics, fluid mechanics in porous medium and effective stress principle. Gas seepage behavior under different original gas pressure was simulated. Results indicated that residual gas pressure, gas pressure gradient and gas low were bigger when original gas pressure was higher. Coal permeability distribution decreased exponentially when original gas pressure was lower than critical pressure. Coal permeability decreased rapidly first and then increased slowly when original pressure was higher than critical pressure.

  5. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  6. Association between ascites and primary hyperfibrinolysis: A cohort study in 210 dogs.

    PubMed

    Zoia, Andrea; Drigo, Michele; Simioni, Paolo; Caldin, Marco; Piek, Christine J

    2017-05-01

    Coagulation profiles were determined in 70 dogs with ascites, 70 healthy control dogs and 70 sick control dogs without ascites. Dogs with ascites were divided into four sub-groups based on the pathophysiology of fluid formation. Coagulation profile, serum C-reactive protein and frequency of discordant plasma fibrin-fibrinogen degradation products and D-dimer assay results, suggesting primary hyperfibrinolysis, were compared between groups. Within the ascites group, 10 samples of ascitic fluid were transudates due to decreased osmotic pressure, 18 were transudates due to increased hydrostatic pressure, 13 were exudates and 29 were haemorrhagic. Plasma fibrinogen concentrations were significantly lower in dogs with ascites compared to sick dogs without ascites. Activated partial thromboplastin time, prothrombin time, plasma concentrations of fibrin-fibrinogen degradation products and D-dimers, and frequency of primary hyperfibrinolysis, were significantly higher for dogs with ascites compared to both control groups. There was no significant difference in platelet count between groups. The frequency of primary hyperfibrinolysis was highest in dogs with transudative ascites due to increased hydrostatic pressure. Serum C-reactive protein was significantly higher in dogs with ascites compared to both control groups, and significantly and positively correlated with plasma D-dimers. In conclusion, dogs with ascites have an increased frequency of primary hyperfibrinolysis, especially with ascites secondary to increased hydrostatic pressure. The increased inflammation present in these dogs may have activated haemostasis in some cases, explaining the higher plasma D-dimers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOEpatents

    Hall, M.N.

    1996-04-30

    Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

  8. Starling resistors, autoregulation of cerebral perfusion and the pathogenesis of idiopathic intracranial hypertension.

    PubMed

    DE Simone, Roberto; Ranieri, Angelo; Bonavita, Vincenzo

    2017-03-01

    Two critical functions for the control of intracranial fluids dynamics are carried on the venous side of the perfusion circuit: the first is the avoidance of cortical veins collapse during the physiological increases of cerebrospinal fluid (CSF) pressure in which they are immersed. The second, is the generation of an abrupt venous pressure drop at the confluence of the cortical veins with the dural sinuses that is required to allow a CSF outflow rate balanced with its production. There is evidence that both of these effects are ensured by a Starling resistor mechanism (a fluid dynamic construct that governs the flow in collapsible tubes exposed to variable external pressure) acting at the confluence of cortical veins in the dural sinus. This implies that, in normal circumstances of perfusion balance, a certain degree of venous collapse physiologically occurs at the distal end of the cortical vein. This is passively modulated by the transmural pressure of the venous wall (i.e. the difference between internal blood pressure and external CSF pressure). The mechanism provides that the blood pressure of the cortical vein upstream the collapsed segment is dynamically maintained a few mmHg higher than the CSF pressure, so as to prevent their collapse during the large physiological fluctuations of the intracranial pressure. Moreover, the partial collapse of the vein confluence also generates a sharp pressure drop of the blood entering into the sinus. The CSF is drained in dural sinus through arachnoid villi proportionally to its pressure gradient with the sinus blood. The venous pressure drop between cortical veins and dural sinus is therefore needed to ensure that the CSF can leave the cranio-spinal space with the same speed with which it is produced, without having to reach a too high pressure, which would compress the cortical veins. Notably, the mechanism requires that the walls of the dural sinuses are rigid enough to avoid the collapse under the external cerebrospinal fluid pressure, and predicts that in the presence of excessively flexible dural sinuses, the system admits a second point of balance between cerebral fluid pressure and dural sinus pressure, at higher values. The second balance state is due to the triggering of a self-limiting venous collapse feedback loop between the CSF pressure, that compresses the sinus, and the subsequent increase of the dural sinus pressure, that further raises the intracranial pressure. The loop may stabilize only when the maximum stretching allowed by the venous wall is reached. Then, a new relatively stable and self-sustaining balance state is achieved, at the price of a higher CSF and dural sinus pressure values. We propose that this model is crucially involved in Idiopatic Intracranial Hypertension pathogenesis with and without papilledema, a condition that could be described as a pathological new balance state, relatively stable, between intracranial and dural venous pressure, at higher absolute values.

  9. Constant-Differential-Pressure Two-Fluid Accumulator

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin; Dalton, Luke T.

    2010-01-01

    A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.

  10. Analysis and control of the METC fluid bed gasifier. Quarterly report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    In this work, three components will form the basis for design of a control scheme for the Fluidized Bed Gasifier (FBG) at METC: (1) a control systems analysis based on simple linear models derived from process data; (2) review of the literature on fluid bed gasifier operation and control; and (3) understanding of present FBG operation and real world considerations. Tasks accomplished during the present reporting period include: (1) observation of the FBG during the week of July 17 to July 21; (2) suggested improvements to the control of FBG backpressure and MGCR pressure; and (3) data collection from FBGmore » run No. 11 and transfer of data to USC.« less

  11. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Susceptibility of experimental faults to pore pressure increase: insights from load-controlled experiments on calcite-bearing rocks

    NASA Astrophysics Data System (ADS)

    Spagnuolo, Elena; Violay, Marie; Nielsen, Stefan; Cornelio, Chiara; Di Toro, Giulio

    2017-04-01

    Fluid pressure has been indicated as a major factor controlling natural (e.g., L'Aquila, Italy, 2009 Mw 6.3) and induced seismicity (e.g., Wilzetta, Oklahoma, 2011 Mw 5.7). Terzaghi's principle states that the effective normal stress is linearly reduced by a pore pressure (Pf) increase σeff=σn(1 - αPf), where the effective stress parameter α, may be related to the fraction of the fault area that is flooded. A value of α =1 is often used by default, with Pf shifting the Mohr circle towards lower normal effective stresses and anticipating failure on pre-existing faults. However, within a complex fault core of inhomogeneous permeability, α may vary in a yet poorly understood way. To shed light on this problem, we conducted experiments on calcite-bearing rock samples (Carrara marble) at room humidity conditions and in the presence of pore fluids (drained conditions) using a rotary apparatus (SHIVA). A pre-cut fault is loaded by constant shear stress τ under constant normal stress σn=15 MPa until a target value corresponding roughly to the 80 % of the frictional fault strength. The pore pressure Pf is then raised with regular pressure and time steps to induce fault instability. Assuming α=1 and a threshold for instability τp_eff=μp σeff, the experiments reveal that an increase of Pf does not necessarily induce an instability even when the effective strength threshold is largely surpassed (e.g., τp_eff=1.3 μpσeff). This result may indicate that the Pf increase did not instantly diffuse throughout the slip zone, but took a finite time to equilibrate with the external imposed pressure increase due to finite permeability. Under our experimental conditions, a significant departure from α=1 is observed provided that the Pf step is shorter than about < 20s. We interpret this delay as indicative of the diffusion time (td), which is related to fluid penetration length l by l = √ κtd-, where κ is the hydraulic diffusivity on the fault plane. We show that a simple cubic law relates td to hydraulic aperture, pore pressure gradient and injection rate. We redefine α as the ratio between the fluid penetration length and sample dimension L resulting in α = min(√ktd,L) L. Under several pore pressure loading rates this relation yields an approximate hydraulic diffusivity κ ˜10-8 m2 s-1 which is compatible, for example, with a low porosity shale. Our results highlight that a high injection flow rate in fault plane do not necessarily induce seismogenic fault slip: a critical pore penetration length or fluid patch size is necessary to trigger fault instability.

  13. Controlled evacuation using the biocompatible and energy efficient microfluidic ejector.

    PubMed

    Lad, V N; Ralekar, Swati

    2016-10-01

    Development of controlled vacuum is having many applications in the realm of biotechnology, cell transfer, gene therapy, biomedical engineering and other engineering activities involving separation or chemical reactions. Here we show the controlled vacuum generation through a biocompatible, energy efficient, low-cost and flexible miniature device. We have designed and fabricated microfluidic devices from polydimethylsiloxane which are capable of producing vacuum at a highly controlled rate by using water as a motive fluid. Scrupulous removal of infected fluid/body fluid from the internal hemorrhage affected parts during surgical operations, gene manipulation, cell sorting, and other biomedical activities require complete isolation of the delicate cells or tissues adjacent to the targeted location. We demonstrate the potential of the miniature device to obtain controlled evacuation without the use of highly pressurized motive fluids. Water has been used as a motive liquid to eject vapor and liquid at ambient conditions through the microfluidic devices prepared using a low-cost fabrication method. The proposed miniature device may find applications in vacuum generation especially where the controlled rate of evacuation, and limited vacuum generation are of utmost importance in order to precisely protect the cells in the nearby region of the targeted evacuated area.

  14. Method and apparatus for waste destruction using supercritical water oxidation

    DOEpatents

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  15. Steady pressure measurements on an Aeroelastic Research Wing (ARW-2)

    NASA Technical Reports Server (NTRS)

    Sandford, Maynard C.; Seidel, David A.; Eckstrom, Clinton V.

    1994-01-01

    Transonic steady and unsteady pressure tests have been conducted in the Langley transonic dynamics tunnel on a large elastic wing known as the DAST ARW-2. The wing has a supercritical airfoil, an aspect ratio of 10.3, a leading-edge sweep back angle of 28.8 degrees, and two inboard and one outboard trailing-edge control surfaces. Only the outboard control surface was deflected to generate steady and unsteady flow over the wing during this study. Only the steady surface pressure, control-surface hinge moment, wing-tip deflection, and wing-root bending moment measurements are presented. The results from this elastic wing test are in tabulated form to assist in calibrating advanced computational fluid dynamics (CFD) algorithms.

  16. Staged regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  17. Shaft seal assembly and method

    NASA Technical Reports Server (NTRS)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  18. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer

    PubMed Central

    Gerstner, Elizabeth R.; Duda, Dan G.; di Tomaso, Emmanuelle; Ryg, Peter A.; Loeffler, Jay S.; Sorensen, A. Gregory; Ivy, Percy; Jain, Rakesh K.; Batchelor, Tracy T.

    2016-01-01

    Most brain tumors oversecrete vascular endothelial growth factor (VEGF), which leads to an abnormally permeable tumor vasculature. This hyperpermeability allows fluid to leak from the intravascular space into the brain parenchyma, which causes vasogenic cerebral edema and increased interstitial fluid pressure. Increased interstitial fluid pressure has an important role in treatment resistance by contributing to tumor hypoxia and preventing adequate tumor penetration of chemotherapy agents. In addition, edema and the corticosteroids needed to control cerebral edema cause significant morbidity and mortality. Agents that block the VEGF pathway are able to decrease vascular permeability and, thus, cerebral edema, by restoring the abnormal tumor vasculature to a more normal state. Decreasing cerebral edema minimizes the adverse effects of corticosteroids and could improve clinical outcomes. Anti-VEGF agents might also be useful in other cancer-related conditions that increase vascular permeability, such as malignant pleural effusions or ascites. PMID:19333229

  19. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure

    USGS Publications Warehouse

    Byerlee, J.

    1992-01-01

    Byerlee, J., 1992. The change in orientation of subsidiary shears near faults containing pore fluid under high pressure. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 295-303. The mechanical effects of a fault containing near-lithostatic fluid pressure in which fluid pressure decreases monotonically from the core of the fault zone to the adjacent country rock is considered. This fluid pressure distribution has mechanical implications for the orientation of subsidiary shears around a fault. Analysis shows that the maximum principal stress is oriented at a high angle to the fault in the country rock where the pore pressure is hydrostatic, and rotates to 45?? to the fault within the fault zone where the pore pressure is much higher. This analysis suggests that on the San Andreas fault, where heat flow constraints require that the coefficient of friction for slip on the fault be less than 0.1, the pore fluid pressure on the main fault is 85% of the lithostatic pressure. The observed geometry of the subsidiary shears in the creeping section of the San Andreas are broadly consistent with this model, with differences that may be due to the heterogeneous nature of the fault. ?? 1992.

  20. The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock

    USGS Publications Warehouse

    Fournier, R.O.

    1991-01-01

    Pore-fluid pressure (Pf) > Ph has been encountered at the bottom of 3 geothermal exploration wells that attained temperatures > 370??C (at Larderello, Italy, at Nesjavellir, Iceland, and at The Geysers, California). Chemical sealing by deposition of minerals in veins appears to have allowed the development of the high Pf encountered in the above wells. The upper limit for the magnitude of Pf that can be attained is controlled by either the onset of shear fracturing (where differential stress is relatively high) that reopens clogged veins, or the hydraulic opening of new or old fractures (at relatively low values of differential stress). -from Author

  1. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the Nobeoka Thrust. We estimated the fluid driving pressure ratio P* at the time of fracture opening by using the Mohr circle analysis that has been carried out using the vein orientation data. The estimated P* are 0.05 and 0.15-0.40 in the hanging wall and footwall, respectively. These results indicate that there are spatial differences of pore fluid pressure in the interseismic period.

  2. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOEpatents

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  3. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    PubMed Central

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  4. Experiments of draining and filling processes in a collapsible tube at high external pressure

    NASA Astrophysics Data System (ADS)

    Flaud, P.; Guesdon, P.; Fullana, J.-M.

    2012-02-01

    The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.

  5. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs on a Windows 95/NT personal computer. The program, help files and examples are licensed by Texas A&M University Technology License Office. The study of the static and dynamic performance of two hydrostatic/hydrodynamic bearings demonstrates the importance of centrifugal and advection fluid inertia effects for operation at high rotational speeds. The first example considers a conceptual hydrostatic thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The large axial stiffness and damping coefficients of the bearing should provide accurate control and axial positioning of the turbopump and also allow for unshrouded impellers, therefore increasing the overall pump efficiency. The second bearing uses a refrigerant R134a, and its application in oil-free air conditioning compressors is of great technological importance and commercial value. The computed predictions reveal that the LH2 bearing load capacity and flow rate increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial stiffness has a maximum for a recess pressure rati of approx. 0.55. while the axial damping coefficient decreases as the recess pressure ratio increases. The computer results from three flow models are compared. These models are a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the other hand renders the largest damping coefficients and inertia coefficients. The most important findings are related to the reduction of the outflow through the inner radius and the appearance of subambient pressures. The performance of the refrigerant hybrid thrust bearing is evaluated at two operating speeds and pressure drops. The computed results are presented in dimensionless form to evidence consistent trends in the bearing performance characteristics. As the applied axial load increases, the bearing film thickness and flow rate decrease while the recess pressure increases. The axial stiffness coefficient shows a maximum for a certain intermediate load while the damping coefficient steadily increases. The computed results evidence the paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where there is actually an inflow through the bearing inner diameter, accompanied by subambient pressures just downstream of the bearing recess edge. These results are solely due to centrifugal fluid inertia and advection transport effects. Recommendations include the extension of the computer program to handle flexure pivot tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft angular misalignments.

  6. Breadboard development of a fluid infusion system

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.

    1974-01-01

    A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.

  7. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.

  8. Stroke volume variation as a guide for fluid resuscitation in patients undergoing large-volume liposuction.

    PubMed

    Jain, Anil Kumar; Khan, Asma M

    2012-09-01

    : The potential for fluid overload in large-volume liposuction is a source of serious concern. Fluid management in these patients is controversial and governed by various formulas that have been advanced by many authors. Basically, it is the ratio of what goes into the patient and what comes out. Central venous pressure has been used to monitor fluid therapy. Dynamic parameters, such as stroke volume and pulse pressure variation, are better predictors of volume responsiveness and are superior to static indicators, such as central venous pressure and pulmonary capillary wedge pressure. Stroke volume variation was used in this study to guide fluid resuscitation and compared with one guided by an intraoperative fluid ratio of 1.2 (i.e., Rohrich formula). : Stroke volume variation was used as a guide for intraoperative fluid administration in 15 patients subjected to large-volume liposuction. In another 15 patients, fluid resuscitation was guided by an intraoperative fluid ratio of 1.2. The amounts of intravenous fluid administered in the groups were compared. : The mean amount of fluid infused was 561 ± 181 ml in the stroke volume variation group and 2383 ± 1208 ml in the intraoperative fluid ratio group. The intraoperative fluid ratio when calculated for the stroke volume variation group was 0.936 ± 0.084. All patients maintained hemodynamic parameters (heart rate and systolic, diastolic, and mean blood pressure). Renal and metabolic indices remained within normal limits. : Stroke volume variation-guided fluid application could result in an appropriate amount of intravenous fluid use in patients undergoing large-volume liposuction. : Therapeutic, II.

  9. Closed-Loop Control of Fluid Therapy for Treatment of Hypovolemia

    DTIC Science & Technology

    2008-04-01

    index) (Table 2). Invasive bladder catheterization and blood sampling add the use of urinary output, lactate, central venous oxygen saturation, he...for guiding burn resuscitation Time delay, renal failure, and drugs complicate interpretation Central venous oxygenation ScvO2 Global perfusion index... Central venous pressure (CVP) Sensitive to volume change Pre-injury baseline values vary Arterial pressure by transducer Real-time continuous

  10. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  11. Precise nanoliter fluid handling system with integrated high-speed flow sensor.

    PubMed

    Haber, Carsten; Boillat, Marc; van der Schoot, Bart

    2005-04-01

    A system for accurate low-volume delivery of liquids in the micro- to nanoliter range makes use of an integrated miniature flow sensor as part of an intelligent feedback control loop driving a micro-solenoid valve. The flow sensor is hydraulically connected with the pressurized system liquid in the dispensing channel and located downstream from the pressure source, above the solenoid valve. The sensor operates in a differential mode and responds in real-time to the internal flow-pulse resulting from the brief opening interval of the solenoid valve leading to a rapid ejection of a fluid droplet. The integral of the flow-pulse delivered by the sensor is directly proportional to the volume of the ejected droplet from the nozzle. The quantitative information is utilized to provide active control of the effectively dispensed or aspirated volume by adjusting the solenoid valve accordingly. This process significantly enhances the precision of the fluid delivery. The system furthermore compensates automatically for any changes in the viscosity of the dispensed liquid. The data delivered by the flow sensor can be saved and backtracked in order to confirm and validate the aspiration and dispensing process in its entirety. The collected dispense information can be used for quality control assessments and automatically be made part of an electronic record.

  12. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  13. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  14. Perivascular fluid cuffs decrease lung compliance by increasing tissue resistance.

    PubMed

    Lowe, Kevin; Alvarez, Diego F; King, Judy A; Stevens, Troy

    2010-06-01

    Lung inflammation causes perivascular fluid cuffs to form around extra-alveolar blood vessels; however, the physiologic consequences of such cuffs remain poorly understood. Herein, we tested the hypothesis that perivascular fluid cuffs, without concomitant alveolar edema, are sufficient to decrease lung compliance. Prospective, randomized, controlled study. Research laboratory. One hundred twenty male CD40 rats. To test this hypothesis, the plant alkaloid thapsigargin was used to activate store-operated calcium entry and increase cytosolic calcium in endothelium. Thapsigargin was infused into a central venous catheter of intact, sedated, and mechanically ventilated rats. Static and dynamic lung mechanics and hemodynamics were measured continuously. Thapsigargin produced perivascular fluid cuffs along extra-alveolar vessels but did not cause alveolar flooding or blood gas abnormalities. Lung compliance dose-dependently decreased after thapsigargin infusion, attributable to an increase in tissue resistance that was attributed to increased tissue damping and tissue elastance. Airway resistance was not changed. Neither central venous pressure nor left ventricular end diastolic pressure was altered by thapsigargin. Heart rate did not change, although thapsigargin decreased left ventricular systolic function sufficient to reduce cardiac output by 50%. Infusion of the type 4 phosphodiesterase inhibitor, rolipram, prevented thapsigargin from inducing perivascular cuffs and decreasing lung compliance. Rolipram also normalized pressure over time and corrected the deficit in cardiac output. Our findings resolve for the first time that perivascular cuff formation negatively impacts mechanical coupling between the bronchovascular bundle and the lung parenchyma, decreasing lung compliance without impacting central venous pressure.

  15. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  16. Weld joint concepts for on-orbit repair of Space Station Freedom fluid system tube assemblies

    NASA Technical Reports Server (NTRS)

    Jolly, Steven D.

    1993-01-01

    Because Space Station Freedom (SSF) is an independent satellite, not depending upon another spacecraft for power, attitude control, or thermal regulation, it has a variety of tubular, fluid-carrying assemblies on-board. The systems of interest in this analysis provide breathing air (oxygen and nitrogen), a working fluid (two-phase anhydrous ammonia) for thermal control, and a monopropellant (hydrazine) for station reboost. The tube assemblies run both internally and externally with respect to the habitats. They are found in up to 50 ft. continuous lengths constructed of mostly AISI 316L stainless steel tubing, but also including some Inconel 625 nickel-iron and Monel 400 nickel-copper alloy tubing. The outer diameters (OD) of the tubes range from 0.25-1.25 inches, and the wall thickness between 0.028-.095 inches. The system operational pressures range from 377 psi (for the thermal control system) to 3400 psi (for the high pressure oxygen and nitrogen supply lines in the ECLSS). SSF is designed for a fifteen to thirty year mission. It is likely that the tubular assemblies (TA's) will sustain damage or fail during this lifetime such that they require repair or replacement. The nature of the damage will be combinations of punctures, chips, scratches, and creases and may be cosmetic or actually leaking. The causes of these hypothetical problems are postulated to be: (1) faulty or fatigued fluid joints--both QD's and butt-welds; (2) micro-meteoroid impacts; (3) collison with another man-made object; and (4) over-pressure strain or burst (system origin). While the current NASA baseline may be to temporarily patch the lines by clamping metal c-sections over the defect, and then perform high pressure injection of a sealing compound, it is clear that permanent repair of the line(s) is necessary. This permanent repair could be to replace the entire TA in the segment, or perhaps the segment itself, both alternatives being extremely expensive and risky. The former would likely require extensive EVA to release TA clamps and pose great risk to other engineering subsystems, and the latter would require major de-servicing of the Station.

  17. Tribology Experiment in Zero Gravity

    NASA Technical Reports Server (NTRS)

    Pan, C. H. T.; Gause, R. L.; Whitaker, A. F.; Finckenor, M. M.

    2015-01-01

    A tribology experiment in zero gravity was performed during the orbital flight of Spacelab 1 to study the motion of liquid lubricants over solid surfaces. The absence of a significant gravitational force facilitates observation of such motions as controlled by interfacial and capillary forces. Two experimental configurations were used. One deals with the liquid on one solid surface, and the other with the liquid between a pair of closed spaced surfaces. Time sequence photographs of fluid motion on a solid surface yielded spreading rate data of several fluid-surface combinations. In general, a slow spreading process as governed by the tertiary junction can be distinguished from a more rapid process which is driven by surface tension controlled internal fluid pressure. Photographs were also taken through the transparent bushings of several experimental journal bearings. Morphology of incomplete fluid films and its fluctuation with time suggest the presence or absence of unsteady phenomena of the bearing-rotor system in various arrangements.

  18. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    NASA Astrophysics Data System (ADS)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around bohole. If the formation has a low permeability and is heated quickly, the dissociated gas and water couldn’t flow away in time, which is likely to bring a hazard of excess pore pressure. Especially in the area near the wall of borehole, the increase degree of pore pressure is high than other area because the dissociation of gas hydrates is relatively violent and hydraulic gradient is bigger. We also studied the distribution of water saturation around borehole after 10min, 30min and 60min respectively. It revealed that along with the invasion of drilling fluid and dissociation of gas hydrate, the degree of water saturation increased gradually. The effect of gas hydrate dissociation and drilling fluids invasion on borehole stability is to weaken mechanical properties of wellbore and change the pore pressure, then changes the effective stress of gas hydrates-bearing sediment. So temperature, pressure in the borehole and filter loss of drilling fluids should be controlled strictly to prevent gas hydrates from decomposing largely and in order to keep the borehole stability in the gas hydrates-bearing formations.

  19. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  20. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    PubMed

    Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian

    2017-01-01

    The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  1. Fluid thermodynamics control thermal weakening during earthquake rupture.

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.

    2017-12-01

    Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault strengths. Further extrapolation of this simplified model to mid- and low- crustal depths shows that, large cpw rise during phase transitions makes TP the dominant weakening mechanism up to 5 km depth. Increasing depth allows somewhat larger shear stress and reduced cpw rise, and so substantial shear heating at low slip rates, favouring FH for fault weakening.

  2. Action of polysaccharides of similar average mass but differing molecular volume and charge on fluid drainage through synovial interstitium in rabbit knees

    PubMed Central

    Scott, D; Coleman, P J; Mason, R M; Levick, J R

    2000-01-01

    Hyaluronan (HA), an anionic polysaccharide of synovial fluid, attenuates fluid loss from joints as joint pressure is raised (‘outflow buffering’). The buffering is thought to depend on the expanded molecular domain of the polymer, which causes reflection by synovial extracellular matrix, leading to flow-dependent concentration polarization. We therefore assessed the effects of polysaccharides of differing average molecular volume and charge. Trans-synovial fluid drainage(Q̇s) was measured at controlled joint fluid pressure (Pj) in knees of anaesthetized rabbits. The joints were infused with polydisperse HA of weight-average mass 2100 kDa (4 mg ml−1, n = 17), with polydisperse neutral dextran of similar average mass (2000 kDa; n = 7) or with Ringer solution vehicle (n = 2). The role of polymer charge was assessed by infusions of neutral or sulphated dextran of average molecular mass 500 kDa (n = 6). When HA was present, Q̇s increased little with pressure, forming a virtual plateau of ∼4 μl min−1 from 10 to 25 cmH2O. Neutral dextran 2000 failed to replicate this effect. Instead, Q̇s increased steeply with Pj, reaching eight times the HA value by 20 cmH2O (P = 0.0001, ANOVA). Dextran 2000 reduced flows in comparison with Ringer solution. Analysis of the aspirated joint fluid showed that 31 ± 0.07 % (s.e.m.) of dextran 2000 in the filtrand was reflected by synovium, compared with ≥ 79 % for HA. The viscometric molecular radius of the dextran, ∼31 nm, was smaller than that of HA (101–181 nm), as was its osmotic pressure. Anionic dextran 500 failed to buffer fluid drainage, but it reduced fluid escape and synovial conductance dQ̇s/dPj more than neutral dextran 500 (P < 0.0001, ANOVA). The anionic charge increased the molecular volume and viscosity of dextran 500. The results support the hypothesis that polymer molecular volume influences its reflection by interstitial matrix and outflow buffering. Polymer charge influences flow through an effect on viscosity and possibly electrostatic interactions with negatively charged interstitial matrix. PMID:11060134

  3. Potential pressurized payloads: Fluid and thermal experiments

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1992-01-01

    Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.

  4. Restraint of Liquid Jets by Surface Tension in Microgravity Modeled

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2001-01-01

    Tension in Microgravity Modeled Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, jets must be contained by surface tension forces. Recent NASA experiments in microgravity (Tank Pressure Control Experiment, TPCE, and Vented Tank Pressure Experiment, VTRE) resulted in a wealth of data about jet behavior in microgravity. VTRE was surprising in that, although it contained a complex geometry of baffles and vanes, the limit on liquid inflow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by surface tension is key to managing fluids in low gravity. To model this phenomenon, we need a numerical method that can track the fluid motion and the surface tension forces. The fluid motion is modeled with the Navier-Stokes equation formulated for low-speed incompressible flows. The quantities of velocity and pressure are placed on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. The free surface is tracked via the introduction of a color function that tracks liquid as 1/2 and gas as -1/2. A phase model developed by Jacqmin is used. This model converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly. Previous attempts at this formulation have been criticized for smearing the interface. However, by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function, interface smearing is avoided. These equations can be rewritten as two coupled Poisson equations that also include the velocity. The method of solution is as follows: first, the phase equations are solved from this solution, a velocity field is generated, then a successive overrelaxation scheme is used to solve for a pressure field consistent with the velocity solution. After the code was implemented in axisymmetric form and verified by several test cases, the drop tower runs of Aydelott were modeled. The model handed the free-surface deformation quite nicely, even to the point of modeling geyser growth in the regime where the free surface was no longer restrained. A representative run is shown.

  5. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  6. Effects of pressure distribution on parallel circular porous plates with combined effect of piezo-viscous dependency and non-Newtonian couple stress fluid

    NASA Astrophysics Data System (ADS)

    Vijayakumar, B.; Kesavan, Sundarammal

    2018-04-01

    Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.

  7. Analysis of the intraocular jet flows and pressure gradients induced by air and fluid infusion: mechanism of focal chorioretinal damage.

    PubMed

    Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek

    2014-05-01

    To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Damage Control Resuscitation Supplemented with Vasopressin in a Severe Polytrauma Model with Traumatic Brain Injury and Uncontrolled Internal Hemorrhage.

    PubMed

    Dickson, J Michael; Wang, Xu; St John, Alexander E; Lim, Esther B; Stern, Susan A; White, Nathan J

    2018-03-14

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of traumatic death worldwide and particularly on the battlefield. They are especially challenging when present simultaneously (polytrauma), and clear blood pressure end points during fluid resuscitation are not well described for this situation. The goal of this study is to evaluate for any benefit of increasing blood pressure using a vasopressor on brain blood flow during initial fluid resuscitation in a swine polytrauma model. We used a swine polytrauma model with simultaneous TBI, femur fracture, and HS with uncontrolled noncompressible internal bleeding from an aortic tear injury. Five animals were assigned to each of three experimental groups (hydroxyethyl starch only [HES], HES + 0.4 U/kg vasopressin, and no fluid resuscitation [No Fluids]). Fluids were given as two 10 mL/kg boluses according to tactical field care guidelines. Primary outcomes were mean arterial blood pressure (MAP) and brain blood flow at 60 min. Secondary outcomes were blood flows in the heart, intestine, and kidney; arterial blood lactate level; and survival at 6 hr. Organ blood flow was measured using injection of colored microspheres. Five animals were tested in each of the three groups. There was a statistically significant increase in MAP with vasopressin compared with other experimental groups, but no significant increase in brain blood flow during the first 60 min of resuscitation. The vasopressin group also exhibited greater total internal hemorrhage volume and rate. There was no difference in survival at 6 hours. In this experimental swine polytrauma model, increasing blood pressure with vasopressin did not improve brain perfusion, likely due to increased internal hemorrhage. Effective hemostasis should remain the top priority for field treatment of the polytrauma casualty with TBI.

  9. Anisotropic changes in P-wave velocity and attenuation during deformation and fluid infiltration of granite

    USGS Publications Warehouse

    Stanchits, S.A.; Lockner, D.A.; Ponomarev, A.V.

    2003-01-01

    Fluid infiltration and pore fluid pressure changes are known to have a significant effect on the occurrence of earthquakes. Yet, for most damaging earthquakes, with nucleation zones below a few kilometers depth, direct measurements of fluid pressure variations are not available. Instead, pore fluid pressures are inferred primarily from seismic-wave propagation characteristics such as Vp/Vs ratio, attenuation, and reflectivity contacts. We present laboratory measurements of changes in P-wave velocity and attenuation during the injection of water into a granite sample as it was loaded to failure. A cylindrical sample of Westerly granite was deformed at constant confining and pore pressures of 50 and 1 MPa, respectively. Axial load was increased in discrete steps by controlling axial displacement. Anisotropic P-wave velocity and attenuation fields were determined during the experiment using an array of 13 piezoelectric transducers. At the final loading steps (86% and 95% of peak stress), both spatial and temporal changes in P-wave velocity and peak-to-peak amplitudes of P and S waves were observed. P-wave velocity anisotropy reached a maximum of 26%. Transient increases in attenuation of up to 483 dB/m were also observed and were associated with diffusion of water into the sample. We show that velocity and attenuation of P waves are sensitive to the process of opening of microcracks and the subsequent resaturation of these cracks as water diffuses in from the surrounding region. Symmetry of the orientation of newly formed microcracks results in anisotropic velocity and attenuation fields that systematically evolve in response to changes in stress and influx of water. With proper scaling, these measurements provide constraints on the magnitude and duration of velocity and attenuation transients that can be expected to accompany the nucleation of earthquakes in the Earth's crust.

  10. Increased likelihood of induced seismicity in highly overpressured shale formations

    NASA Astrophysics Data System (ADS)

    Eaton, David W.; Schultz, Ryan

    2018-05-01

    Fluid-injection processes such as disposal of saltwater or hydraulic fracturing can induce earthquakes by increasing pore pressure and/or shear stress on faults. Natural processes, including transformation of organic material (kerogen) into hydrocarbon and cracking to produce gas, can similarly cause fluid overpressure. Here we document two examples from the Western Canada Sedimentary Basin where earthquakes induced by hydraulic fracturing are strongly clustered within areas characterized by pore-pressure gradient in excess of 15 kPa/m. Despite extensive hydraulic-fracturing activity associated with resource development, induced earthquakes are virtually absent in the Montney and Duvernay Formations elsewhere. Statistical analysis suggests a negligible probability that this spatial correlation developed by chance. This implies that, in addition to known factors such as anthropogenic pore-pressure increase and proximity to critically stressed faults, high in-situ overpressure of shale formations may also represent a controlling factor for inducing earthquakes by hydraulic fracturing. On a geological timescale, natural pore-pressure generation may lead to fault-slip episodes that regulate magnitude of formation-overpressure.

  11. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D

    2013-08-13

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  12. Rotary shaft sealing assembly

    DOEpatents

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  13. The relationship between mantle pH and the deep nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Mikhail, Sami; Barry, Peter H.; Sverjensky, Dimitri A.

    2017-07-01

    Nitrogen is distributed throughout all terrestrial geological reservoirs (i.e., the crust, mantle, and core), which are in a constant state of disequilibrium due to metabolic factors at Earth's surface, chemical weathering, diffusion, and deep N fluxes imposed by plate tectonics. However, the behavior of nitrogen during subduction is the subject of ongoing debate. There is a general consensus that during the crystallization of minerals from melts, monatomic nitrogen behaves like argon (highly incompatible) and ammonium behaves like potassium and rubidium (which are relatively less incompatible). Therefore, the behavior of nitrogen is fundamentally underpinned by its chemical speciation. In aqueous fluids, the controlling factor which determines if nitrogen is molecular (N2) or ammonic (inclusive of both NH4+ and NH30) is oxygen fugacity, whereas pH designates if ammonic nitrogen is NH4+ or NH30. Therefore, to address the speciation of nitrogen at high pressures and temperatures, one must also consider pH at the respective pressure-temperature conditions. To accomplish this goal we have used the Deep Earth Water Model (DEW) to calculate the activities of aqueous nitrogen from 1-5 GPa and 600-1000 °C in equilibrium with a model eclogite-facies mineral assemblage of jadeite + kyanite + quartz/coesite (metasediment), jadeite + pyrope + talc + quartz/coesite (metamorphosed mafic rocks), and carbonaceous eclogite (metamorphosed mafic rocks + elemental carbon). We then compare these data with previously published data for the speciation of aqueous nitrogen across these respective P-T conditions in equilibrium with a model peridotite mineral assemblage (Mikhail and Sverjensky, 2014). In addition, we have carried out full aqueous speciation and solubility calculations for the more complex fluids in equilibrium with jadeite + pyrope + kyanite + diamond, and for fluids in equilibrium with forsterite + enstatite + pyrope + diamond. Our results show that the pH of the fluid is controlled by mineralogy for a given pressure and temperature, and that pH can vary by several units in the pressure-temperature range of 1-5 GPa and 600-1000 °C. Our data show that increasing temperature stabilizes molecular nitrogen and increasing pressure stabilizes ammonic nitrogen. Our model also predicts a stark difference for the dominance of ammonic vs. molecular and ammonium vs. ammonia for aqueous nitrogen in equilibrium with eclogite-facies and peridotite mineralogies, and as a function of the total dissolved nitrogen in the aqueous fluid where lower N concentrations favor aqueous ammonic nitrogen stabilization and higher N concentrations favor aqueous N2. Overall, we present thermodynamic evidence for nitrogen to be reconsidered as an extremely dynamic (chameleon) element whose speciation and therefore behavior is determined by a combination of temperature, pressure, oxygen fugacity, chemical activity, and pH. We show that altering the mineralogy in equilibrium with the fluid can lead to a pH shift of up to 4 units at 5 GPa and 1000 °C. Therefore, we conclude that pH imparts a strong control on nitrogen speciation, and thus N flux, and should be considered a significant factor in high temperature geochemical modeling in the future. Finally, our modelling demonstrates that pH plays an important role in controlling speciation, and thus mass transport, of Eh-pH sensitive elements at temperatures up to at least 1000 °C.

  14. Pump for delivering heated fluids

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E. (Inventor)

    1973-01-01

    A thermomechanical pump particularly suited for use in pumping a warming fluid obtained from an RTG (Radioisotope Thermal Generator) through science and flight instrumentation aboard operative spacecraft is described. The invention is characterized by a pair of operatively related cylinders, each including a reciprocating piston head dividing the cylinder into a pressure chamber confining therein a vaporizable fluid, and a pumping chamber for propelling the warming fluid, and a fluid delivery circuit for alternately delivering the warming fluid from the RTG through the pressure chamber of one cylinder to the pumping chamber of the other cylinder, whereby the vaporizable fluid within the pair of pressure chambers alternately is vaporized and condensed for driving the associated pistons in pumping and intake strokes.

  15. Real-Time Maps of Fluid Flow Fields in Porous Biomaterials

    PubMed Central

    Mack, Julia J.; Youssef, Khalid; Noel, Onika D.V.; Lake, Michael P.; Wu, Ashley; Iruela-Arispe, M. Luisa; Bouchard, Louis-S.

    2013-01-01

    Mechanical forces such as fluid shear have been shown to enhance cell growth and differentiation, but knowledge of their mechanistic effect on cells is limited because the local flow patterns and associated metrics are not precisely known. Here we present real-time, noninvasive measures of local hydrodynamics in 3D biomaterials based on nuclear magnetic resonance. Microflow maps were further used to derive pressure, shear and fluid permeability fields. Finally, remodeling of collagen gels in response to precise fluid flow parameters was correlated with structural changes. It is anticipated that accurate flow maps within 3D matrices will be a critical step towards understanding cell behavior in response to controlled flow dynamics. PMID:23245922

  16. Study on the characters of control valve for ammonia injection in selective catalytic reduction (SCR) system of coal-fired power plant

    NASA Astrophysics Data System (ADS)

    Yao, Che; Li, Tao; Zhang, Hong; Zhou, Yanming

    2017-08-01

    In this paper, the characters of two control valves used for ammonia injection in SCR system are discussed. The linear/quadratic character between pressure drop/outlet flow rate and valve opening/dynamic pressure inlet are investigated using computational fluid dynamic (CFD) and response surface analysis (RSA) methods. The results show that the linear character of brake valve is significantly better than butterfly valve, which means that the brake valve is more suitable for ammonia injection adjustment than the butterfly valve.

  17. Spontaneous oscillations in microfluidic networks

    NASA Astrophysics Data System (ADS)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  18. Air-fluidized therapy: physical properties and clinical uses.

    PubMed

    VanGilder, Catherine; Lachenbruch, Charlie A

    2010-09-01

    Since the late 1960s, air-fluidized therapy (AFT) has been effectively used to treat patients with pressure ulcers, burns, and many other clinical problems. Much of the demonstrated efficacy is believed to be associated with the unique fluid environment provided by AFT that is fundamentally different from the support provided by surfaces made up of conventional solid materials. Fluid support maximizes the envelopment of the body while significantly reducing shear, friction, and pressure, and mechanical stress applied to the skin and subcutaneous tissue. Additionally, the variable temperature airflow allows the microclimate to be controlled according to needs for both therapy and patient comfort. Clinical benefits of AFT include faster and more cost-effective healing of pressure ulcers, a decreased rate of hospitalizations and emergency room visits for long-term care pressure ulcer patients, decreased mortality of patients with extensive burns and inhalation injury and rapid healing and increased comfort in burn patients. The fluid support also results in a substantial decrease in the amount of caregiver effort required for repositioning patients and increased patient comfort in patients with multiple trauma and external fixation devices or deformities that require a conforming bed, and patients with cancer and bony metastasis. This article seeks to evaluate the physical differences in AFT over other mattress types and to review the published literature for this therapy modality.

  19. In Situ Triaxial Testing To Determine Fracture Permeability and Aperture Distribution for CO2 Sequestration in Svalbard, Norway.

    PubMed

    Van Stappen, Jeroen F; Meftah, Redouane; Boone, Marijn A; Bultreys, Tom; De Kock, Tim; Blykers, Benjamin K; Senger, Kim; Olaussen, Snorre; Cnudde, Veerle

    2018-04-17

    On Svalbard, Arctic Norway, an unconventional siliciclastic reservoir, relying on (micro)fractures for enhanced fluid flow in a low-permeable system, is investigated as a potential CO 2 sequestration site. The fractures' properties at depth are, however, poorly understood. High resolution X-ray computed tomography (micro-CT) imaging allows one to visualize such geomaterials at reservoir conditions. We investigated reservoir samples from the De Geerdalen Formation on Svalbard to understand the influence of fracture closure on the reservoir fluid flow behavior. Small rock plugs were brought to reservoir conditions, while permeability was measured through them during micro-CT imaging. Local fracture apertures were quantified down to a few micrometers wide. The permeability measurements were complemented with fracture permeability simulations based on the obtained micro-CT images. The relationship between fracture permeability and the imposed confining pressure was determined and linked to the fracture apertures. The investigated fractures closed due to the increased confining pressure, with apertures reducing to approximately 40% of their original size as the confining pressure increased from 1 to 10 MPa. This coincides with a permeability drop of more than 90%. Despite their closure, fluid flow is still controlled by the fractures at pressure conditions similar to those at the proposed storage depth of 800-1000 m.

  20. Thermomechanical piston pump development

    NASA Technical Reports Server (NTRS)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

Top