Application of a magnetic fluid seal to rotary blood pumps
NASA Astrophysics Data System (ADS)
Mitamura, Y.; Arioka, S.; Sakota, D.; Sekine, K.; Azegami, M.
2008-05-01
A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
Application of a magnetic fluid seal to rotary blood pumps.
Mitamura, Y; Arioka, S; Sakota, D; Sekine, K; Azegami, M
2008-05-21
A magnetic fluid seal enables mechanical contact-free rotation of a shaft without frictional heat and material wear and hence has excellent durability. However, the durability of a magnetic fluid seal decreases in liquid. The life of a seal applied to a rotary blood pump is not known. We have developed a magnetic fluid seal that has a shield mechanism minimizing the influence of the rotary pump on the magnetic fluid. The developed magnetic fluid seal worked for over 286 days in a continuous flow condition, for 24 days (on-going) in a pulsatile flow condition and for 24 h (electively terminated) in blood flow. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
NASA Technical Reports Server (NTRS)
Zuk, J.
1976-01-01
The fundamentals of fluid sealing, including seal operating regimes, are discussed and the general fluid-flow equations for fluid sealing are developed. Seal performance parameters such as leakage and power loss are presented. Included in the discussion are the effects of geometry, surface deformations, rotation, and both laminar and turbulent flows. The concept of pressure balancing is presented, as are differences between liquid and gas sealing. Mechanisms of seal surface separation, fundamental friction and wear concepts applicable to seals, seal materials, and pressure-velocity (PV) criteria are discussed.
Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya
2011-03-01
A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids. We developed an MF seal that has a "shield" mechanism, and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Three types of MF seals were used. Seal A was a conventional seal without a shield. Seal B had the same structure as that of Seal A, but the seal was installed at 1 mm below liquid level. Seal C was a seal with a shield and the MF was set at 1 mm below liquid level. Seal A failed after 6 and 11 days. Seal B showed better results (20 and 73 days). Seal C showed long-term durability (217 and 275 days). The reason for different results in different seal structures was considered to be different flow conditions near the magnetic fluid. Fluid dynamics near the MF in the pump were analyzed using computational fluid dynamics (CFD) software. We have developed an MF seal with a shield that works in liquid for >275 days. The MF seal is promising as a shaft seal for rotary blood pumps.
Coaxial twin-shaft magnetic fluid seals applied in vacuum wafer-handling robot
NASA Astrophysics Data System (ADS)
Cong, Ming; Wen, Haiying; Du, Yu; Dai, Penglei
2012-07-01
Compared with traditional mechanical seals, magnetic fluid seals have unique characters of high airtightness, minimal friction torque requirements, pollution-free and long life-span, widely used in vacuum robots. With the rapid development of Integrate Circuit (IC), there is a stringent requirement for sealing wafer-handling robots when working in a vacuum environment. The parameters of magnetic fluid seals structure is very important in the vacuum robot design. This paper gives a magnetic fluid seal device for the robot. Firstly, the seal differential pressure formulas of magnetic fluid seal are deduced according to the theory of ferrohydrodynamics, which indicate that the magnetic field gradient in the sealing gap determines the seal capacity of magnetic fluid seal. Secondly, the magnetic analysis model of twin-shaft magnetic fluid seals structure is established. By analyzing the magnetic field distribution of dual magnetic fluid seal, the optimal value ranges of important parameters, including parameters of the permanent magnetic ring, the magnetic pole tooth, the outer shaft, the outer shaft sleeve and the axial relative position of two permanent magnetic rings, which affect the seal differential pressure, are obtained. A wafer-handling robot equipped with coaxial twin-shaft magnetic fluid rotary seals and bellows seal is devised and an optimized twin-shaft magnetic fluid seals experimental platform is built. Test result shows that when the speed of the two rotational shafts ranges from 0-500 r/min, the maximum burst pressure is about 0.24 MPa. Magnetic fluid rotary seals can provide satisfactory performance in the application of wafer-handling robot. The proposed coaxial twin-shaft magnetic fluid rotary seal provides the instruction to design high-speed vacuum robot.
A durable, non power consumptive, simple seal for rotary blood pumps.
Mitamura, Y; Sekine, K; Asakawa, M; Yozu, R; Kawada, S; Okamoto, E
2001-01-01
One of the key technologic requirements for rotary blood pumps is the sealing of the motor shaft. A mechanical seal, a journal bearing, magnetic coupling, and magnetic suspension have been developed, but they have drawbacks such as wear, thrombus formation, and power consumption. A magnetic fluid seal was developed for an axial flow pump. A magnetic fluid seal is durable, simple, and non power consumptive. Long-term experiments and finite element modeling (FEM) analyses confirmed these advantages. The seal body was composed of a Ned-Fe magnet and two pole pieces; the seal was formed by injecting ferrofluid into the gap (50 microm) between the pole pieces and the motor shaft. To contain the ferrofluid in the seal and to minimize the possibility of ferrofluid making contact with blood, a shield with a small cavity was attached to the pole piece. While submerged in blood, the sealing pressure of the seal was measured and found to be 188 mm Hg with ferrofluid LS-40 (saturated magnetization, 24.3 kA/m) at a motor speed of 10,000 rpm and 225 mm Hg under static conditions. The magnetic fluid seals performed perfectly at a pressure of 100 mm Hg for 594 + days in a static condition, and 51, 39+, and 34+ days at a motor speed of 8,000 rpm. FEM analyses indicated a theoretical sealing pressure of 260 mm Hg. The state of the magnetic fluid in the seal in water was observed with a microscope. Neither splashing of magnetic fluid nor mixing of the magnetic fluid and water was observed. The specially designed magnetic fluid seal for keeping liquids out is useful for axial flow blood pumps. The magnetic fluid seal was incorporated into an intracardiac axial flow pump.
CFD Activity at Aerojet Related to Seals and Fluid Film Bearing
NASA Technical Reports Server (NTRS)
Bache, George E.
1991-01-01
Computational Fluid Dynamics (CFD) activities related to seals and fluid film bearings are presented. Among the topics addressed are the following: Aerovisc Numeric and its capabilities; Recent Seal Applications; and Future Code Developments.
Development of a magnetic fluid shaft seal for an axial-flow blood pump.
Sekine, Kazumitsu; Mitamura, Yoshinori; Murabayashi, Shun; Nishimura, Ikuya; Yozu, Ryouhei; Kim, Dong-Wook
2003-10-01
A rotating impeller in a rotary blood pump requires a supporting system in blood, such as a pivot bearing or magnetic suspension. To solve potential problems such as abrasive wear and complexity of a supporting system, a magnetic fluid seal was developed for use in an axial-flow blood pump. Sealing pressures at motor speeds of up to 8,000 rpm were measured with the seal immersed in water or bovine blood. The sealing pressure was about 200 mm Hg in water and blood. The calculated theoretical sealing pressure was about 230 mm Hg. The seal remained perfect for 743 days in a static condition and for 180+ days (ongoing test) at a motor speed of 7,000 rpm. Results of measurement of cell growth activity indicated that the magnetic fluid has no negative cytological effects. The specially designed magnetic fluid shaft seal is useful for an axial-flow blood pump.
A magnetic fluid seal for rotary blood pumps: Behaviors of magnetic fluids in a magnetic fluid seal.
Mitamura, Yoshinori; Yano, Tetsuya; Nakamura, Wataru; Okamoto, Eiji
2013-01-01
A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid
NASA Astrophysics Data System (ADS)
Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya
A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
Application study of magnetic fluid seal in hydraulic turbine
NASA Astrophysics Data System (ADS)
Yu, Z. Y.; Zhang, W.
2012-11-01
The waterpower resources of our country are abundant, and the hydroelectric power is developed, but at present the main shaft sealing device of hydraulic turbine is easy to wear and tear and the leakage is great. The magnetic fluid seal has the advantages of no contact, no wear, self-healing, long life and so on. In this paper, the magnetic fluid seal would be used in the main shaft of hydraulic turbine, the sealing structure was built the model, meshed the geometry, applied loads and solved by using MULTIPHYSICS in ANSYS software, the influence of the various sealing structural parameters such as tooth width, height, slot width, sealing gap on the sealing property were analyzed, the magnetic fluid sealing device suitable for large-diameter shaft and sealing water was designed, the sealing problem of the hydraulic turbine main shaft was solved effectively which will bring huge economic benefits.
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
Mitamura, Yoshinori; Yano, Tetsuya; Okamoto, Eiji
2013-01-01
A magnetic fluid (MF) seal has excellent durability. The performance of an MF seal, however, has been reported to decrease in liquids (several days). We have developed an MF seal that has a shield mechanism. The seal was perfect for 275 days in water. To investigate the effect of a shield, behaviors of MFs in a seal in water were studied both experimentally and computationally. (a) Two kinds of MF seals, one with a shield and one without a shield, were installed in a centrifugal pump. Behaviors of MFs in the seals in water were observed with a video camera and high-speed microscope. In the seal without a shield, the surface of the water in the seal waved and the turbulent flow affected behaviors of the MFs. In contrast, MFs rotated stably in the seal with a shield in water even at high rotational speeds. (b) Computational fluid dynamics analysis revealed that a stationary secondary flow pattern in the seal and small velocity difference between magnetic fluid and water at the interface. These MF behaviors prolonged the life of an MF seal in water.
Membrane Transport Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry W.
1996-01-01
The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.
Sealing performance of a magnetic fluid seal for rotary blood pumps.
Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki
2009-09-01
A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.
NASA Technical Reports Server (NTRS)
1972-01-01
Developments by the aerospace industry in seals and sealing techniques are announced for possible use in other areas. The announcements presented are grouped as: sealing techniques for cryogenic fluids, high pressure applications, and modification for improved performance.
Seals Research at Texas A/M University
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.
1991-01-01
The Turbomachinery Laboratory at Texas A&M has been providing experimental data and computational codes for the design seals for many years. The program began with the development of a Halon based seal test rig. This facility provided information about the effective stiffness and damping in whirling seals. The Halon effectively simulated cryogenic fluids. Another test facility was developed (using air as the working fluid) where the stiffness and damping matrices can be determined. This data was used to develop bulk flow models of the seal's effect upon rotating machinery; in conjunction with this research, a bulk flow model for calculation of performance and rotordynamic coefficients of annular pressure seals of arbitrary non-uniform clearance for barotropic fluids such as LH2, LOX, LN2, and CH4 was developed. This program is very efficient (fast) and converges for very large eccentricities. Currently, work is being performed on a bulk flow analysis of the effects of the impeller-shroud interaction upon the stability of pumps. The data was used along with data from other researchers to develop an empirical leakage prediction code for MSFC. Presently, the flow field inside labyrinth and annular seals are being studied in detail. An advanced 3-D Doppler anemometer system is being used to measure the mean velocity and entire Reynolds stress tensor distribution throughout the seals. Concentric and statically eccentric seals were studied; presently, whirling seals are being studied. The data obtained are providing valuable information about the flow phenomena occurring inside the seals, as well as a data base for comparison with numerical predictions and for turbulence model development. A finite difference computer code was developed for solving the Reynolds averaged Navier Stokes equation inside labyrinth seals. A multi-scale k-epsilon turbulence model is currently being evaluated. A new seal geometry was designed and patented using a computer code. A large scale, 2-D seal flow visualization facility is also being developed.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.; Farmer, R.
1985-01-01
An analysis for modeling damping seals for use in Space Shuttle main engine turbomachinery is being produced. Development of a computational fluid mechanics code for turbulent, incompressible flow is required.
NASA Technical Reports Server (NTRS)
Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.
1985-01-01
The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.
Numerical analysis on the action of centrifuge force in magnetic fluid rotating shaft seals
NASA Astrophysics Data System (ADS)
Zou, Jibin; Li, Xuehui; Lu, Yongping; Hu, Jianhui
2002-11-01
The magnetic fluid seal is suitable for high-speed rotating shaft seal applications. Centrifuge force will have evident influence on magnetic fluid rotating shaft seals. The seal capacity of the rotating shaft seal can be improved or increased by some measures. Through hydrodynamic analysis the moving status of the magnetic fluid is worked out. By numerical method, the magnetic field and the isobars in the magnetic fluid of a seal device are computed. Then the influence of the centrifuge force on the magnetic fluid seal is calculated quantitatively.
NASA Technical Reports Server (NTRS)
Elrod, David A.
1989-01-01
The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.
An analysis on the magnetic fluid seal capacity
NASA Astrophysics Data System (ADS)
Meng, Zhao; Jibin, Zou; Jianhui, Hu
2006-08-01
The capacity of the magnetic fluid seal depends on the magnetic field and the saturation magnetization of the magnetic fluid. There are many factors that influence the magnetic field and the seal capacity of the magnetic fluid seal, such as the sealing gap, the shaft eccentricity, the shaft diameter, and the centrifugal force. In this paper, these factors are analyzed by numerical computations. When the material and structure are the same, the magnetic fluid seal capacity will reduce with the increasing of the sealing gap. When the shaft diameter is large the gravity should be considered. The centrifugal force has influence on the magnetic fluid seal capacity.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
NASA Technical Reports Server (NTRS)
1991-01-01
In recognition of a deficiency in the current modeling capability for seals, an effort was established by NASA to develop verified computational fluid dynamic concepts, codes, and analyses for seals. The objectives were to develop advanced concepts for the design and analysis of seals, to effectively disseminate the information to potential users by way of annual workshops, and to provide experimental verification for the models and codes under a wide range of operating conditions.
Centrifugal inertia effects in two-phase face seal films
NASA Technical Reports Server (NTRS)
Basu, P.; Hughes, W. F.; Beeler, R. M.
1987-01-01
A simplified, semianalytical model has been developed to analyze the effect of centrifugal inertia in two-phase face seals. The model is based on the assumption of isothermal flow through the seal, but at an elevated temperature, and takes into account heat transfer and boiling. Using this model, seal performance curves are obtained with water as the working fluid. It is shown that the centrifugal inertia of the fluid reduces the load-carrying capacity dramatically at high speeds and that operational instability exists under certain conditions. While an all-liquid seal may be starved at speeds higher than a 'critical' value, leakage always occurs under boiling conditions.
Development of seals for a geothermal downhole intensifier. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Captain, K.M.; Harvey, A.C.; Caskey, B.C.
1985-08-01
A system using high-velocity fluid jets in conjunction with a rotary diamond bit is currently considered as the best candidate for reducing the cost of drilling geothermal wells. Technical, safety and cost considerations indicate that the required jet supply pressure can best be established by a downhole pressure intensifier. Key intensifier components are the check valve and plunger seals, which must prevent leakage of the high-pressure, high-temperature abrasive fluid (drilling mud). To achieve the required performance, novel ceramic seals are currently being developed. The check valve seal includes a tapered polymeric plug and ceramic stop acting against a ceramic seat.more » The ceramic plunger seal is a variant of the ''stepped-joint'' piston ring and is designed to minimize contact pressure and abrasive wear. Initial testing of these seals in the laboratory shows encouraging results; design refinement and further testing is in progress. 2 refs., 6 figs., 3 tabs.« less
Experimental and analytical tools for evaluation of Stirling engine rod seal behavior
NASA Technical Reports Server (NTRS)
Krauter, A. I.; Cheng, H. S.
1979-01-01
The first year of a two year experimental and analytical program is reported. The program is directed at the elastohydrodynamic behavior of sliding elastomeric rod seals for the Stirling engine. During the year, experimental and analytical tools were developed for evaluating seal leakage, seal friction, and the fluid film thickness at the seal/cylinder interface.
40 CFR 147.3103 - Fluid seals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Fluid seals. 147.3103 Section 147.3103... Tribes § 147.3103 Fluid seals. Notwithstanding §§ 144.28(f)(2) and 146.12(c) of this chapter, owners and operators shall not use a fluid seal as an alternative to a packer. ...
40 CFR 147.3103 - Fluid seals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Fluid seals. 147.3103 Section 147.3103... Tribes § 147.3103 Fluid seals. Notwithstanding §§ 144.28(f)(2) and 146.12(c) of this chapter, owners and operators shall not use a fluid seal as an alternative to a packer. ...
Kapich, Davorin D.
1985-01-01
A shaft seal system is disclosed for isolating two regions of different fluid mediums through which a rotatable shaft extends. The seal system includes a seal housing through which the shaft extends and which defines an annular land and an annular labyrinth both of which face on the shaft so that each establishes a corresponding fluid sealing annulus. A collection cavity is formed in communication with the annular sealing spaces, and fluids compatible with the fluids in each of the two regions to be isolated are introduced, respectively, into the annular sealing spaces and collected in the collection cavity from which the fluid mixture is removed and passed to a separator which separates the fluids and returns them to their respective annular sealing spaces in a recycling manner. In the illustrated embodiment, the isolated fluid mediums comprise a liquid region and a gas region. Gas is removed from the gas region and passed through a purifier and a gas pump operative to introduce the purified gas through the labyrinth sealing annulus to the collection cavity. After passing to the separator, the separated gas is passed through a dryer from which the dried gas is caused to pass through the labyrinth sealing annulus into the collection cavity independently of the purified gas so as to insure isolation of the gas region in the event of sealing gas pump malfunction.
Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank
1991-01-01
Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.
Leak rate of seals: Effective-medium theory and comparison with experiment.
Lorenz, B; Persson, B N J
2010-02-01
Seals are extremely useful devices to prevent fluid leakage. We present an effective-medium theory of the leak rate of rubber seals, which is based on a recently developed contact mechanics theory. We compare the theory with experimental results for seals consisting of silicon rubber in contact with sandpaper and sand-blasted PMMA surfaces.
Prediction of force coefficients for labyrinth seals
NASA Technical Reports Server (NTRS)
Lee, O. W. K.; Martinez-Sanchez, M.; Czajkowski, E.
1984-01-01
The development of a linear model for the prediction of labyrinth seal forces and on its comparison to available stiffness data is presented. A discussion of the relevance of fluid damping forces and the preliminary stages of a program to obtain data on these forces are examined. Fluid-dynamic forces arising from nonuniform pressure patterns in labyrinth seal glands are known to be potentially destablizing in high power turbomachinery. A well documented case in point is that of the space Shuttle Main Engine turbopumps. Seal forces are also an important factor for the stability of shrouded turbines, acting in that case in conjunction with the effects of blade-tip clearance variations.
NASA Technical Reports Server (NTRS)
1993-01-01
A new Ferrofluidics exclusion seal promises improvement in controlling "fugitive emissions" -vapors that escape into the atmosphere from petroleum refining and chemical processing facilities. These are primarily volatile organic compounds, and their emissions are highly regulated by the EPA. The ferrofluid system consists of a primary mechanical seal working in tandem with a secondary seal. Ferrofluids are magnetic liquids - fluids in which microscopic metal particles have been suspended, allowing the liquid to be controlled by a magnetic force. The concept was developed in the early years of the Space program, but never used. Two Avco scientists, however, saw commercial potential in ferrofluids and formed a company. Among exclusion seal commercial applications are rotary feedthrough seals, hydrodynamic bearings and fluids for home and automotive loudspeakers. Ferrofluidics has subsidiaries throughout the world.
Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings
NASA Technical Reports Server (NTRS)
Andres, Luis San
1993-01-01
A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.
Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.
1988-01-01
The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.
Low-leakage and low-instability labyrinth seal
NASA Technical Reports Server (NTRS)
Rhode, David L. (Inventor)
1997-01-01
Improved labyrinth seal designs are disclosed. The present invention relates to labyrinth seal systems with selected sealing surfaces and seal geometry to optimize flow deflection and produce maximum turbulent action. Optimum seal performance is generally accomplished by providing sealing surfaces and fluid cavities formed to dissipate fluid energy as a function of the geometry of the sealing surfaces along with the position and size of the fluid cavities formed between members of the labyrinth seal system. Improved convex surfaces, annular flow reversal grooves, flow deflection blocks and rough, machined surfaces cooperate to enhance the performance of the labyrinth seal systems. For some labyrinth seal systems a mid-cavity throttle and either rigid teeth or flexible spring teeth may be included.
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.
1996-01-01
A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
Seal For Precooling A Turbopump
NASA Technical Reports Server (NTRS)
Owen, Samuel S.; Mulready, R.C.
1988-01-01
Diaphragm reduces misalignment. Rotary seal retains precooling fluid in pump section of cryogenic turbopump, preventing fluid from entering turbine section. Precooling fluid held in pump section of turbopump by knife-edge labyrinth seal on diaphragm.
Influence of the shaft rotation on the stability of magnetic fluid shaft seal characteristics
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2008-12-01
Distribution of the magnetic particles concentration in a magnetic fluid shaft seal is studied numerically for a rotating shaft. It is revealed that the shaft rotation causes not only an azimuthal flow of the magnetic fluid, but a meridional flow as well. This meridional flow prevents the growth of magnetic particle concentration in the gap of the magnetic fluid shaft seal. As a result, the burst pressure of the magnetic fluid shaft seal for the rotating shaft is stable and does not change with time. Figs 6, Refs 7.
Miniature magnetic fluid seal working in liquid environments
NASA Astrophysics Data System (ADS)
Mitamura, Yoshinori; Durst, Christopher A.
2017-06-01
This study was carried out to develop a miniature magnetic fluid (MF) seal working in a liquid environment. The miniature MF seal is intended for use in a catheter blood pump. The requirements for the MF seal included a size of less than Ø4×4.5 mm, shaft diameter of 1 mm, sealing pressure of 200 mmHg, shaft speed of up to 40000 rpm, and life of one month. The miniature MF seal was composed of an NdFeB magnet (Ø4ר2×1) sandwiched between two pole pieces (Ø4ר1.1×0.5). A shield (Ø4ר1.2×1.5) was placed on the pole piece facing the liquid to minimize the influence of pump flow on the MF. The seal was installed on a Ø1 shaft. A seal was formed by injecting MF (Ms: 47.8 kA/m and η: 0.5 Pa·sec) into the gap between the pole pieces and the shaft. Total volume of the MF seal was 44 μL. A sealing pressure of 370 mmHg was obtained at motor speeds of 0-40,000 rpm. The seal remained perfect for 10 days in saline under the condition of a pump flow of 1.5 L/min (The test was terminated in accordance with plans). The seal remained intact after ethylene oxide sterilization during which the seal was exposed to high pressures. In conclusion, the newly developed MF seal will be useful for a catheter pump.
Theoretical and experimental study on the magnetic fluid seal of reciprocating shaft
NASA Astrophysics Data System (ADS)
Li, Decai; Xu, Haiping; He, Xinzhi; Lan, Huiqing
2005-03-01
The authors obtain anti-pressure formula of reciprocating shaft magnetic fluid seal from general Navier-Stokes equation. In order to verify the correctness of the anti-pressure formula, the authors set up a magnetic fluid anti-pressure experiment rig for a reciprocating seal. Finally, the authors have verified influence of speed and stroke on the seal anti-pressure.
Numerical, analytical, experimental study of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.
1992-01-01
NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.
Joint properties of a tool machining process to guarantee fluid-proof abilities
NASA Astrophysics Data System (ADS)
Bataille, C.; Deltombe, R.; Jourani, A.; Bigerelle, M.
2017-12-01
This study addressed the impact of rod surface topography in contact with reciprocating seals. Rods were tooled with and without centreless grinding. All rods tooled with centreless grinding were fluid-proof, in contrast to rods tooled without centreless grinding that either had leaks or were fluid-proof. A method was developed to analyse the machining signature, and the software Mesrug™ was used in order to discriminate roughness parameters that can be used to characterize the sealing functionality. According to this surface roughness analysis, a fluid-proof rod tooled without centreless grinding presents aperiodic large plateaus, and the relevant roughness parameter for characterizing the sealing functionality is the density of summits S DS. Increasing the density of summits counteracts leakage, which may be because motif decomposition integrates three topographical components: circularity (perpendicular long-wave roughness), longitudinal waviness, and roughness thanks to the Wolf pruning algorithm. A 3D analytical contact model was applied to analyse the contact area of each type of sample with the seal surface. This model provides a leakage probability, and the results were consistent with the interpretation of the topographical analysis.
High Pressure Rotary Shaft Sealing Mechanism
Dietle, Lannie; Gobeli, Jeffrey D.
2001-05-08
A laterally translatable pressure staged rotary shaft sealing mechanism having a seal housing with a shaft passage therein being exposed to a fluid pressure P1 and with a rotary shaft being located within the shaft passage. At least one annular laterally translatable seal carrier is provided. First and second annular resilient sealing elements are supported in axially spaced relation by the annular seal carriers and have sealing relation with the rotary shaft. The seal housing and at least one seal carrier define a first pressure staging chamber exposed to the first annular resilient sealing element and a second pressure staging chamber located between and exposed to the first and second annular resilient sealing elements. A first fluid is circulated to the first pressure chamber at a pressure P1, and a second staging pressure fluid is circulated to the second pressure chamber at a fraction of pressure P1 to achieve pressure staging, cooling of the seals. Seal placement provides hydraulic force balancing of the annular seal carriers.
Advanced Supercritical Carbon Dioxide Brayton Cycle Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Sienicki, James; Moisseytsev, Anton
2015-10-21
Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less
Experimental study on a magnetofluid sealing liquid for propeller shaft
NASA Astrophysics Data System (ADS)
Zhao, Chang-Fa; Sun, Rong-Hua; Zheng, Jin-Xing
2003-06-01
The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe3O4 was successfully yielded, and an oil-base as a working carrier and dispersing agent was determined. The preparation process of the magnetic fluid and prescription of the oil-base magnetic fluid were discussed. The simulation experimental rig of magnetic fluid sealing for propeller shaft was designed. The sealing ability experiment was conducted and results were analyzed. The pressure of sealing is up to 2 MPa.
Shaft seal assembly and method
NASA Technical Reports Server (NTRS)
Keba, John E. (Inventor)
2007-01-01
A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.
A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1990-01-01
A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.
Experimental validation of a novel stictionless magnetorheological fluid isolator
NASA Astrophysics Data System (ADS)
Kelso, Shawn P.; Denoyer, Keith K.; Blankinship, Ross M.; Potter, Kenneth; Lindler, Jason E.
2003-07-01
Magnetorheological (MR) fluid damper design typically constitutes a piston/dashpot configuration. During reciprocation, the fluid is circulated through the device with the generated pressure providing viscous damping. In addition, the damper is also intended to accommodate off-axis loading; i.e., rotation moments and lateral loads orthogonal to the axis of operation. Typically two sets of seals, one where the piston shaft enters and exits the device and one between the piston and the cylinder wall, maintain alignment of the damper and seal the fluid from leaking. With MR fluid, these seals can act as sources of non-linear friction effects (stiction) and oftentimes possess a shorter lifespan due to the abrasive nature of the ferrous particles suspended in the fluid. Intelligently controlling damping forces must also accommodate the non-linear stiction behavior, which degrades performance. A new, unique MR fluid isolator was designed, fabricated and tested that directly addresses these concerns. The goal of this research was the development of a stiction-free MR isolator whose damping force can be predicted and precisely controlled. This paper presents experimental results for a prototype device and compares those results to model predictions.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a closed... sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be... the seal system, the barrier fluid system, or both. If the sensor indicates failure of the seal system...
Miniature electrically operated diaphragm valve
Adkins, Douglas R.; Spletzer, Barry L.; Wong, Chungnin C.; Frye-Mason, Gregory C.; Fischer, Gary J.; Hesketh, Peter J.
2001-01-01
The present invention provides a miniature electrically operated valve that can stand off significant pressures, that can be inexpensively produced, and that can be made to operate without continuous electrical power. A valve according to the present invention comprises a housing and a beam mounted with the housing. A diaphragm mounted with the housing forms a sealed fluid volume. An electromagnetic energy source, such as an electromagnetic coil, mounts with the housing and when energized urges the beam in one direction. The beam can be urged in the opposing direction by passive means or by reversing the polarity of the electromagnetic energy source or by a second electromagnetic energy source. Two fluid ports mount with the housing. A first fluid port mounts so that, as the beam is urged in one direction or the opposite, the beam urges the diaphragm to move between engaging and substantially sealing the fluid port and disengaging and not substantially sealing the fluid port. A seat can be mounted with the diaphragm to aid in sealing the fluid port. Latching mechanisms such as permanent magnets can be mounted so that the valve remains in the open or closed positions without continuous electrical power input. Fluid can flow through the housing between the two fluid ports when the diaphragm does not seal the first fluid port, but can be prevented from flowing by urging the beam so that the diaphragm seals the first fluid port. Various embodiments accommodate various latching mechanisms, electromagnetic energy sources, number of fluid ports, and diaphragm design considerations.
Seals/Secondary Fluid Flows Workshop 1997; Volume II: HSR Engine Special Session
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The High Speed Civil Transport (HSCT) will be the largest engine ever built and operated at maximum conditions for long periods of time. It is being developed collaboratively with NASA, FAA, Boeing-McDonnell Douglas, Pratt & Whitney, and General Electric. This document provides an initial step toward defining high speed research (HSR) sealing needs. The overview for HSR seals includes defining objectives, summarizing sealing and material requirements, presenting relevant seal cross-sections, and identifying technology needs. Overview presentations are given for the inlet, turbomachinery, combustor and nozzle. The HSCT and HSR seal issues center on durability and efficiency of rotating equipment seals, structural seals and high speed bearing and sump seals. Tighter clearances, propulsion system size and thermal requirements challenge component designers.
Dual motion valve with single motion input
NASA Technical Reports Server (NTRS)
Belew, Robert (Inventor)
1987-01-01
A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.
Klebanoff, Leonard E.
2001-01-01
A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.
NASA Technical Reports Server (NTRS)
Brien, M.
1977-01-01
An experimental evaluation was performed on a high-speed (72.9 m/s, 14,349 ft/min) transmission seal of the synergistic type. During testing of the seal, oil leakage occurred at positive bearing cavity pressures. Modifications were made in an attempt to eliminate the leakage but none were completely successful. Leakage appears to be the result of questionable positioning of the sealing elements resulting in inadequate shaft contact by the oil side sealing element. This condition may be related to the nonsymmetrical shape of the elastomeric retainer and to dimensional changes caused by swelling of the elastomeric retainer from exposure to the sealed fluid. Indications of a speed dependent leakage characteristic were also observed.
Seal assembly with anti-rotation pin for high pressure supercritical fluids
Wright, Steven A.; Fuller, Robert L.
2014-08-05
A seal assembly for sealing a machine with a first chamber and a second chamber is provided. A rotating shaft extends through the first and second chambers, and rotates therein. The seal assembly has a seal housing, a seal ring and a seal pin. The seal housing is positionable in the machine housing. The seal housing has a seal pocket extending into a fluid side thereof, and a housing receptacle extending into an inner diameter thereof at the seal pocket. The seal ring is positionable in the seal pocket of the seal housing for forming a seal therewith. The seal ring has a ring receptacle extending into an outer diameter thereof. The ring receptacle is positionable adjacent to the housing receptacle for defining a pin hole therebetween. The seal pin is loosely positionable in the pin hole whereby movement about the seal ring is accommodated while preventing rotation thereof.
Thermoconvective flow velocity in a high-speed magnetofluid seal after it has stopped
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2012-09-01
Convective flow is investigated in the high-speed (linear velocity of the shaft seal is more than 1 m/s) magnetofluid shaft seal after it has been stopped. Magnetic fluid is preliminarily heated due to viscous friction in the moving seal. After the shaft has been stopped, nonuniform heated fluid remains under the action of a high-gradient magnetic field. Numerical analysis has revealed that in this situation, intense thermomagnetic convection is initiated. The velocity of magnetic fluid depends on its viscosity. For the fluid with viscosity of 2 × 10-4 m2/s the maximum flow velocity within the volume of magnetic fluid with a characteristic size of 1 mm can attain a value of 10 m/s.
Yamazaki, K; Mori, T; Tomioka, J; Litwak, P; Antaki, J F; Tagusari, O; Koyanagi, H; Griffith, B P; Kormos, R L
1997-01-01
A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (< 0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.
Seal Technology for Liquid Oxygen (LOX) Turbopumps
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Hamm, Robert
1985-01-01
Two types of advanced seals for liquid oxygen (LOX) turbopumps were investigated. One was a spiral-groove face seal whose function is to seal high-pressure LOX at the impeller end of the turbopump. The other was a floating-ring, Rayleigh-step, helium buffered seal used to prevent LOX ingress to the turbine side of the unit. For each seal type, two sizes were investigated (50 and 20 mm). A turbine-driven test rig was designed and manufactured, and a test program was completed on the 50 mm floating-ring, Rayleigh-step, helium buffered seal. Significant results were: vaporization in the flow path could cause failure by overheating; therefore, the spiral-groove pumping portion of the seal that provides the fluid film must circulate fluid without disruption if vaporization occurs in the sealing dam. This is successfully accomplished by a pressure-balanced spiral-groove concept that is described. The spiral-groove configuration is affected by turbulence in the fluid film and pressure drops due to fluid inertia at sudden contractions. The net results of these effects are deep grooves, large operating films, and high power loss when compared against seals operating with laminar films. Turbulence and inertia are induced by the high-density and low-viscosity characteristics of LOX. The program clearly pointed out the need to consider system environmental factors such as thermal and centrifugal distortions and rotor vibrations in the seal design.
Ethylene/acrylic elastomers (EAE): sealing application candidates for the automotive industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carr, J.; Ginn, A.
1979-01-01
EAE, based on experimental elastomers developed by Du Pont and called ''Vamac'' (formerly ''MPE''), are ethylene/methyl acrylate copolymers compounded with appropriate plasticizers, fillers, and other additives. They function satisfactorily at -54/sup 0/ to +177/sup 0/C and have excellent tensile strength, elongation, and resistance to compression set, corrosion, tear, and weathering. They show good resistance to automatic transmission fluids, engine oil, some gear lubricants and hydrocarbon greases, water, engine coolants, and dilute acids and bases, but should not be used with gasoline, concentrated acids, high-pressure steam, automotive brake fluids, phosphate ester-based hydraulic fluids, diester-based synthetic lubricants, or chlorinated hydrocarbons. They needmore » no solid-lubricant or antiwear additives, but special mold-release preparations are necessary. They should be useful as seals for the transmission front pump, the clutch, and the engine front crankshaft and possibly for other sealing and nonseal applications (e.g., spark-plug boots).« less
Ceramic Borehole Seals for Nuclear Waste Disposal Applications
NASA Astrophysics Data System (ADS)
Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.
2015-12-01
Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural effects the plug will have on surrounding media. This paper will report on the state of the development effort and plans for a field demonstration in early 2016 in a cased well with traditional plug seal and strength measurements.
Regarding the influence of heating and the Soret effect on a magnetic fluid seal
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2017-06-01
The influence of a temperature gradient and the Soret effect on the distribution of particles in a magnetic fluid seal (MFS) is studied. The heating of the MFS is found to be an effective method of homogenizing the magnetic fluid in the seal; in addition, the influence of the Soret effect on this process is found to be essential.
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej
2004-01-01
The objectives of the program were to develop computational fluid dynamics (CFD) codes and simpler industrial codes for analyzing and designing advanced seals for air-breathing and space propulsion engines. The CFD code SCISEAL is capable of producing full three-dimensional flow field information for a variety of cylindrical configurations. An implicit multidomain capability allow the division of complex flow domains to allow optimum use of computational cells. SCISEAL also has the unique capability to produce cross-coupled stiffness and damping coefficients for rotordynamic computations. The industrial codes consist of a series of separate stand-alone modules designed for expeditious parametric analyses and optimization of a wide variety of cylindrical and face seals. Coupled through a Knowledge-Based System (KBS) that provides a user-friendly Graphical User Interface (GUI), the industrial codes are PC based using an OS/2 operating system. These codes were designed to treat film seals where a clearance exists between the rotating and stationary components. Leakage is inhibited by surface roughness, small but stiff clearance films, and viscous pumping devices. The codes have demonstrated to be a valuable resource for seal development of future air-breathing and space propulsion engines.
Experimental and numerical determination of the static critical pressure in ferrofluid seals
NASA Astrophysics Data System (ADS)
Horak, W.; Szczęch, M.
2013-02-01
Ferrofluids have various engineering applications; one of them are magnetic fluid seals for rotating shafts. There are various constructions of this type of seals, but the main difference is the number of sealing stages. The development of this construction is a complex process which requires knowledge of ferrofluid physical and rheological properties and the magnetic field distribution inside the sealing gap. One of the most important parameters of ferrofluid seals is the critical (burst) pressure. It is the pressure value at which a leak will occur. This study presents results of numerical simulation of magnetic field distribution inside the seal gap and calculations of the critical pressure value. The obtained pressure values were verified by experiments.
Three-step labyrinth seal for high-performance turbomachines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1987-01-01
A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specified in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to the.... Each compressor seal system shall meet the applicable requirements specified in paragraph (b)(1), (b)(2...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... specified in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents leakage of process fluid to the.... Each compressor seal system shall meet the applicable requirements specified in paragraph (b)(1), (b)(2...
Sealed One Piece Battery Having A Prism Shape Container
Verhoog, Roelof; Barbotin, Jean-Loup
2000-03-28
A sealed one-piece battery having a prism-shaped container including: a tank consisting of a single plastic material, a member fixed and sealed to the tank and to partitions on the side of the tank opposite the transverse wall to seal the tank, two flanges fixed and sealed to longitudinal walls defining flow compartments for a heat-conducting fluid, and two tubes on the transverse wall of the tank forming an inlet and an outlet for fluid common to the compartments.
NASA Astrophysics Data System (ADS)
Krakov, M. S.; Nikiforov, I. V.
2011-12-01
For the low-speed magnetic fluid seals, the influence of the meridional flow, induced by the shaft rotation, on the distribution of magnetic particles concentration, is studied. Influence of the thermomagnetic convection on the structure of this flow and on the temperature distribution in high-speed magnetic fluid seals is investigated also. The problems were examined by numerical methods. It is discovered that even very slow rotation of the shaft homogenises distribution of the magnetic particles concentration in the seal and thereby enlarges its operation life. For high-speed seals thermomagnetic convection provides the penetration of the fluid flow in the region of the narrow gap and levels off the temperature distribution decreasing its maximum value and thereby enlarges its operation life too. It is found also that the influence of thermomagnetic convection grows with the viscosity increasing.
Analysis of dynamic characteristics of fluid force induced by labyrinth seal
NASA Technical Reports Server (NTRS)
Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.
1984-01-01
Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.
NASA Astrophysics Data System (ADS)
Welch, N.; Crawshaw, J.; Boek, E.
2014-12-01
The successful storage of carbon dioxide in geologic formations requires an in-depth understanding of all reservoir characteristics and morphologies. An intact and substantial seal formation above a storage reservoir is required for a significant portion of the initial sealing mechanisms believed to occur during carbon dioxide storage operations. Shales are a common seal formation rock types found above numerous hydrocarbon reservoirs, as well as potential saline aquifer storage locations. Shales commonly have very low permeability, however they also have the tendency to be quite fissile, and the formation of fractures within these seals can have a significant detrimental effect on the sealing potential of a reservoir and amount to large areas of high permeability and low capillary pressures compared to the surrounding intact rock. Fractured shales also have an increased current interest due to the increasing development of shale gas reservoirs using hydraulic fracturing techniques. This work shows the observed changes that occur within fractured pieces of reservoir seal shale samples, along with quarry analogues, using an in-situ micro-CT fluid flow imaging apparatus with a Hassler type core holder. Changes within the preferential flow path under different stress regimes as well as physical changes to the fracture geometry are reported. Lattice Boltzmann flow simulations were then performed on the extracted flow paths and compared to experiment permeability measurements. The preferential flow path of carbon dioxide through the fracture network is also observed and compared to the results two-phase Lattice Boltzmann fluid flow simulations.
Dietle, Lannie L; Schroeder, John E; Kalsi, Manmohan S; Alvarez, Patricio D
2013-08-13
A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.
Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.
2010-09-21
A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.
NASA Astrophysics Data System (ADS)
Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime
2017-10-01
Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
40 CFR 63.1012 - Compressor standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in the referencing subpart. (b) Seal system standard. Each compressor shall be equipped with a seal..., except as provided in § 63.1002(b) and paragraphs (e) and (f) of this section. Each compressor seal...-loop system that purges the barrier fluid directly into a process stream. (c) Barrier fluid system. The...
Rim seal arrangement having pumping feature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ching-Pang; Myers, Caleb
A rim seal arrangement for a gas turbine engine includes a first seal face on a rotor component, and a second seal face on a stationary annular rim centered about a rotation axis of the rotor component. The second seal face is spaced from the first seal face along an axial direction to define a seal gap. The seal gap is located between a radially outer hot gas path and a radially inner rotor cavity. The first seal face has a plurality of circumferentially spaced depressions, each having a depth in an axial direction and extending along a radial extentmore » of the first seal face. The depressions influence flow in the seal gap such that during rotation of the rotor component, fluid in the seal gap is pumped in a radially outward direction to prevent ingestion of a gas path fluid from the hot gas path into the rotor cavity.« less
An intraventricular axial flow blood pump integrated with a bearing purge system.
Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J
1995-01-01
The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system.
Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Lee, Chester C.
1989-01-01
Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.
An experimental technique for performing 3-D LDA measurements inside whirling annular seals
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.
1992-01-01
During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.
NASA Technical Reports Server (NTRS)
Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.
1974-01-01
Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.
Fluid Dynamic - Structural Interactions of Labyrinth Seals.
1986-08-01
A., "The Leakage of Steam Through Labyrinth Seals ", Trans. ASME, Vol. 57, 1935, pp 115-122. 21. Komotori, K., "A Consideration on the Labyrinth ...October 1980. 17. Vermes, G., "A fluid-Mechanics Approach to the Labyrinth Seal Leakage Problem", Journal of Basic Engineering, Tr. ASME, Series D...INTERACTIONS OF LABYRINTH SEALS Manuel Martinez-Sanchez John Dugundji Gas Turbine and Plasma Dynamics Laboratory D T IC Department of Aeronautics and
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Assembly and method for testing the integrity of stuffing tubes
Morrison, Edward Francis
1997-01-01
A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally therealong and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube.
Petrie, E. S.; Evans, J. P.; Bauer, S. J.
2014-11-01
In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less
Investigation of positive shaft seals
NASA Technical Reports Server (NTRS)
Pfouts, J. O.
1970-01-01
Welded metal bellows secondary seals prevent secondary seal leakage with a minimum number of potential leak paths. High performance seal is obtained by controlling the potentially unstable seal-face movements induced by mechanical vibrations and fluid pressure pulsations.
Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array.
Eberhardt, William C; Wakefield, Brendan F; Murphy, Christin T; Casey, Caroline; Shakhsheer, Yousef; Calhoun, Benton H; Reichmuth, Colleen
2016-08-31
Nature has shaped effective biological sensory systems to receive complex stimuli generated by organisms moving through water. Similar abilities have not yet been fully developed in artificial systems for underwater detection and monitoring, but such technology would enable valuable applications for military, commercial, and scientific use. We set out to design a fluid motion sensor array inspired by the searching performance of seals, which use their whiskers to find and follow underwater wakes. This sensor prototype, called the Wake Information Detection and Tracking System (WIDTS), features multiple whisker-like elements that respond to hydrodynamic disturbances encountered while moving through water. To develop and test this system, we trained a captive harbor seal (Phoca vitulina) to wear a blindfold while tracking a remote-controlled, propeller-driven submarine. After mastering the tracking task, the seal learned to carry the WIDTS adjacent to its own vibrissal array during active pursuit of the target. Data from the WIDTS sensors describe changes in the deflection angles of the whisker elements as they pass through the hydrodynamic trail left by the submarine. Video performance data show that these detections coincide temporally with WIDTS-wake intersections. Deployment of the sensors on an actively searching seal allowed for the direct comparison of our instrument to the ability of the biological sensory system in a proof-of-concept demonstration. The creation of the WIDTS provides a foundation for instrument development in the field of biomimetic fluid sensor technology.
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
An implantable centrifugal blood pump for long term circulatory support.
Yamazaki, K; Litwak, P; Kormos, R L; Mori, T; Tagusari, O; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Umezu, M; Tomioka, J; Koyanagi, H; Griffith, B P
1997-01-01
A compact centrifugal blood pump was developed as an implantable left ventricular assist system. The impeller diameter is 40 mm and the pump dimensions are 55 x 64 mm. This first prototype was fabricated from titanium alloy, resulting in a pump weight of 400 g including a brushless DC motor. Weight of the second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon to improve blood compatibility. Flow rates of over 7 L/min against 100 mmHg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system ("Cool-Seal") is used as a shaft seal. In this seal system, seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. The purge fluid is continuously purified and sterilized by an ultrafiltration filter incorporated into the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular apex-descending aorta bypass was performed utilizing a PTFE (Polytetrafluoroethylene) vascular graft, with the pump placed in the left thoracic cavity. In two in vivo experiments, pump flow rate was maintained at 5-8 L/min, and pump power consumption remained stable at 9-10 W. All plasma free hemoglobin levels were measured at < 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (< 0.5 ml/ day). Both animals remain under observation after 162 and 91 days of continuous pump function.
NASA Technical Reports Server (NTRS)
Childs, Dara W.; Elrod, David; Hale, Keith
1989-01-01
Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals show the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluid entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Steinetz, B. M.; Kudriavtsev, V. V.; Proctor, M. P.; Kiraly, L. James (Technical Monitor)
2002-01-01
The work presented here concerns the numerical development and simulation of the flow, pressure patterns and motion of a pair of fingers arranged behind each other and axially aligned in-line. The fingers represent the basic elemental component of a Finger Seal (FS) and form a tight seal around the rotor. Yet their flexibility allows compliance with rotor motion and in a passive-adaptive mode complies also with the hydrodynamic forces induced by the flowing fluid. While the paper does not treat the actual staggered configuration of a finger seal, the inline arrangement represents a first step towards that final goal. The numerical 2-D (axial-radial) and 3-D results presented herein were obtained using a commercial package (CFD-ACE+). Both models use an integrated numerical approach, which couples the hydrodynamic fluid model (Navier-Stokes based) to the solid mechanics code that models the compliance of the fingers.
Low pressure cooling seal system for a gas turbine engine
Marra, John J
2014-04-01
A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.
Assembly and method for testing the integrity of stuffing tubes
Morrison, E.F.
1997-08-26
A stuffing tube integrity checking assembly includes first and second annular seals, with each seal adapted to be positioned about a stuffing tube penetration component. An annular inflation bladder is provided, the bladder having a slot extending longitudinally there along and including a separator for sealing the slot. A first valve is in fluid communication with the bladder for introducing pressurized fluid to the space defined by the bladder when mounted about the tube. First and second releasible clamps are provided. Each clamp assembly is positioned about the bladder for securing the bladder to one of the seals for thereby establishing a fluid-tight chamber about the tube. 5 figs.
Zero dead volume tube to surface seal
Benett, William J.; Folta, James A.
2000-01-01
A method and apparatus for connecting a tube to a surface that creates a dead volume seal. The apparatus is composed of three components, a body, a ferrule, and a threaded fitting. The ferrule is compressed onto a tube and a seal is formed between the tube and a device retained in the body by threading the fitting into the body which provides pressure that seals the face of the ferrule to a mating surface on the device. This seal can be used at elevated temperatures depending on the materials used. While the invention has been developed for use with micro-machined silicon wafers used in Capillary Gas Chromatograph (GC), it can be utilized anywhere for making a gas or fluid face seal to the surface of a device that has near zero dead volume.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor)
2006-01-01
The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.
40 CFR 63.1363 - Standards for equipment leaks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mechanical seal system that includes a barrier fluid system and meets the requirements specified in... dual mechanical seal system is: (A) Operated with the barrier fluid at a pressure that is at all times... paragraph (a)(2) of this section. (5) Lines and equipment not containing process fluids are not subject to...
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the... criterion that indicates failure of the seal system, the barrier fluid system, or both. If the sensor...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an... both. If the sensor indicates failure of the seal system, the barrier fluid system, or both based on...
NASA Technical Reports Server (NTRS)
Martin, J. P.; Kok, B.; Radmer, R.
1976-01-01
A system has been under development which is designed to seek remotely for clues to life in planetary soil samples. The basic approach is a set of experiments, all having a common sensor, a gas analysis mass spectrometer which monitors gas composition in the head spaces above sealed, temperature controlled soil samples. Versatility is obtained with up to three preloaded, sealed fluid injector capsules for each of eleven soil test cells. Tests results with an engineering model has demonstrated performance capability of subsystem components such as soil distribution, gas sampling valves, injector mechanisms, temperature control, and test cell seal.
Dynamic tester for rotor seals and bearings
NASA Technical Reports Server (NTRS)
Vonpragenau, George L. (Inventor)
1993-01-01
A dynamic tester for testing vibration damping seals and bearings is constructed having a hollow shaft extending through the seal or bearing, with the shaft internally supported at each end by fluid bearings on hollow bosses connected to an interior of an enclosure, with no rolling members connected to the shaft is described. A high pressure working fluid is forced through the hollow bosses to operate the bearings. Additionally, the shaft is provided with a reaction turbine that angularly vents a portion of the high pressure working fluid in order to rotate the shaft at high speed, up to 40,000 rpm. The seal or bearing is mounted in a bushing, in turn supported by rods to a shaking device that vibrates the seal or bearing as the shaft is rotated. A plurality of proximity sensors are mounted from outside the enclosure to sense shaft and seal bushing vibrations, and a plurality of pressure ports are disposed in the enclosure to allow sensing of dynamic and static pressures of the testing apparatus.
Magnetically Retained Relief Valve
NASA Technical Reports Server (NTRS)
Johnson, Wesley L. (Inventor); Cook, Charles R. (Inventor)
2017-01-01
A pressure relief valve includes a housing having a fluid inlet and at least one fluid outlet. A first structure mounted in the housing and fixed in relation thereto is in magnetic attraction with a second structure coupled to a piston disposed in a portion of the housing. The piston defines a chamber disposed adjacent to the fluid outlet(s) throughout the piston's stroke. The piston includes a sealing element providing a sealing force to prevent flow through the valve. The sealing force is independent of the magnetic attraction force between the first and second structures.
Crack - seal veins - what we learnt since the seminal work of John Ramsay
NASA Astrophysics Data System (ADS)
Urai, Janos L.; Bons, Paul D.
2017-04-01
In the nineteen-eighties, John Ramsay and co-workers have laid the basis for much of our current understanding of tectonic veins, by proposing that tectonic veins accrete in many small increments of cracking and sealing, making the link to cyclic stress and fluid pressure cycles and the earthquake cycle, and by proposing that fibrous veins track the opening trajectory, which has created a toolbox to analyse progressive deformation in rocks. They recognised syntaxial and antitaxial veins, which grow depending on the composition of the wall rock and the vein. Following on these seminal contributions, advances in analysing the microstructure and chemical signature in crack-seal veins made a lot of progress, facilitated by the rapid increase in micro analytical tools like cathodeluminescence and EBSD. Initial modelling of crystal growth in crack- seal veins provided an explanation of how crystals become fibrous without being deformed and explained how fibres sometimes do and sometimes don't follow the opening trajectory. This was followed by numerical models of crystal growth to study the development of crystal facets after larger crack increments, and experimental study of the sealing dynamics of syntaxial veins. These models were initially kinematic, using the ELLE microdynamic simulation package, and more recently incorporating the physics of the growing interface using the Phase Field method, which now allows 3D simulation of both syntaxial and antitaxial veins and can simultaneously compute the evolving permeability of the crack using Lattice Boltzmann techniques. Parallel to these developments we developed an understanding of the strength of the vein cement, and, using Discrete Element Techniques, explored the effects of differences of the strength of the vein and its adhesion to the wall rock on fracture patterns in crack-seal systems in changing stress fields. This presentation will review these developments, showing how the ideas of John Ramsay inspired follow up work leading to a much better understanding of the complex feedback systems between fracture growth, crystal growth and fluid flow in crack-seal systems.
An implantable centrifugal blood pump with a recirculating purge system (Cool-Seal system).
Yamazaki, K; Litwak, P; Tagusari, O; Mori, T; Kono, K; Kameneva, M; Watach, M; Gordon, L; Miyagishima, M; Tomioka, J; Umezu, M; Outa, E; Antaki, J F; Kormos, R L; Koyanagi, H; Griffith, B P
1998-06-01
A compact centrifugal blood pump has been developed as an implantable left ventricular assist system. The impeller diameter is 40 mm, and pump dimensions are 55 x 64 mm. This first prototype, fabricated from titanium alloy, resulted in a pump weight of 400 g including a brushless DC motor. The weight of a second prototype pump was reduced to 280 g. The entire blood contacting surface is coated with diamond like carbon (DLC) to improve blood compatibility. Flow rates of over 7 L/min against 100 mm Hg pressure at 2,500 rpm with 9 W total power consumption have been measured. A newly designed mechanical seal with a recirculating purge system (Cool-Seal) is used for the shaft seal. In this seal system, the seal temperature is kept under 40 degrees C to prevent heat denaturation of blood proteins. Purge fluid also cools the pump motor coil and journal bearing. Purge fluid is continuously purified and sterilized by an ultrafiltration unit which is incorporated in the paracorporeal drive console. In vitro experiments with bovine blood demonstrated an acceptably low hemolysis rate (normalized index of hemolysis = 0.005 +/- 0.002 g/100 L). In vivo experiments are currently ongoing using calves. Via left thoracotomy, left ventricular (LV) apex descending aorta bypass was performed utilizing an expanded polytetrafluoroethylene (ePTFE) vascular graft with the pump placed in the left thoracic cavity. In 2 in vivo experiments, the pump flow rate was maintained at 5-9 L/min, and pump power consumption remained stable at 9-10 W. All plasma free Hb levels were measured at less than 15 mg/dl. The seal system has demonstrated good seal capability with negligible purge fluid consumption (<0.5 ml/day). In both calves, the pumps demonstrated trouble free continuous function over 6 month (200 days and 222 days).
Design and testing of an electromagnetic coupling
NASA Technical Reports Server (NTRS)
Anderson, William J.
1986-01-01
Hostile environments such as the hard vacuum of space, and exposure to water or caustic fluids have fostered the development of devices which allow mechanical rotary feed throughs with positive sealing without the use of conventional dynamic seals. One such device is an electromagnetic coupling which transfers motion across a hermetic seal by means of a rotating magnetic field. Static pull-out torque and dynamic heat build-up and pull-out torque tests of a synchronous reluctance homopolar coupling are reported herein. Coupling efficiencies are estimated for a range of speeds and torques.
An application of small-gap equations in sealing devices
NASA Technical Reports Server (NTRS)
Vionnet, Carlos A.; Heinrich, Juan C.
1993-01-01
The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.
An application of small-gap equations in sealing devices
NASA Astrophysics Data System (ADS)
Vionnet, Carlos A.; Heinrich, Juan C.
1993-11-01
The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.
FLUID PURIFIER AND SEALING VALVE
Swanton, W.F.
1962-04-24
An improved cold trap designed to condense vapors and collect foreign particles in a flowing fluid is described. In the arrangement, a valve is provided to prevent flow reversal in case of pump failure and to act as a sealing valve. Provision is made for reducing the temperature of the fluid being processed, including a pre-cooling stage. (AEC)
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
NASA Technical Reports Server (NTRS)
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.
Extreme pressure fluid sample transfer pump
Halverson, Justin E.; Bowman, Wilfred W.
1990-01-01
A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.
An experimental study of dynamic characteristics of labyrinth seal
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Fukumoto, Koji; Mochida, Hideyuki
1994-01-01
The fluid force due to labyrinth seal sometimes makes the turbomachineries unstable under higher rotating speed, higher pressure and higher power. Therefore, it is important to predict the magnitude and the direction of the fluid force and to evaluate the stability of the rotor system in design process. This paper shows the experimental results of the fluid force induced by a straight labyrinth seal and the rotordynamic coefficients calculated from the fluid force. Influences of the number of fins under the rotating speed, whirling speed, inlet pressure, and inlet tangential velocity are mainly investigated on a stability of the rotor system. The results show that increase of the number of fins makes the fluid force small and the rotor system stable, an increase of inlet pressure makes the fluid forces large and an increase of inlet tangential velocity makes the rotor system unstable.
NASA Technical Reports Server (NTRS)
Lamvermeyer, D. J.
1967-01-01
Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.
Guggenheim, S. Frederic
1986-01-01
A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.
Aerodynamic seals for rotary machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir
2016-02-09
An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include amore » secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.« less
Prati, Carlo; Siboni, Francesco; Polimeni, Antonella; Bossu, Maurizio; Gandolfi, Maria Giovanna
2014-12-30
The sealing of wide-open apex roots is still a challenge and requires the use of apical barrier techniques. The aim was to evaluate ex vivo the sealing and the apical morphology of 3 commercial calcium oxide (CaO)-containing sealers - namely, 2 zinc oxide-based (CRCS and Sealapex) and a calcium silicate MTA-based (TechBiosealer Endo) - placed in wet root canals with artificial wide-open apices. Thirty human single-rooted teeth were shaped with Protaper and an artificial open apex (diameter size 110) was created. Each root was inserted in a custom-designed support containing simulated body fluid (Hank's balanced salt solution, HBSS) at the bottom simulating the presence of periapical fluid in the canal. Each sealer (TechBiosealer Endo, CRCS, Sealapex) was compacted to the apical 5 mm and the filled roots stored in HBSS at 37°C. The sealing was evaluated as microinfiltrated fluid since 24 hours up to 6 months using a high-precision digital fluid flow meter. The sealers were also studied for setting time in HBSS, calcium releasing (statistical analysis by 2-way ANOVA followed by Student-Newman-Keuls test, P<0.05) and surface morpho-chemistry by ESEM-EDX and OM analysis. All sealers showed a stable seal. TechBiosealer Endo maintained a better seal than the other materials (P<0.05) and ESEM-EDX and OM analyses showed the presence of apatite deposits. The clinical use of hydraulic hydrophilic MTA-based sealers can be recommended to stop/reduce the fluid flow rate through the apex. The artificial apical barrier in wet wide apices is a suitable technique able to seal wet root canals.
Diakunchak, Ihor S.
2013-03-05
A disc seal assembly for use in a turbine engine. The disc seal assembly includes a plurality of outwardly extending sealing flange members that define a plurality of fluid pockets. The sealing flange members define a labyrinth flow path therebetween to limit leakage between a hot gas path and a disc cavity in the turbine engine.
Differential capacitance probe for process control involving aqueous dielectric fluids
Svoboda, John M.; Morrison, John L.
2002-10-08
A differential capacitance probe device for process control involving aqueous dielectric fluids is disclosed. The device contains a pair of matched capacitor probes configured in parallel, one immersed in a sealed container of reference fluid, and the other immersed in the process fluid. The sealed container holding the reference fluid is also immersed in the process fluid, hence both probes are operated at the same temperature. Signal conditioning measures the difference in capacitance between the reference probe and the process probe. The resulting signal is a control error signal that can be used to control the process.
NASA Astrophysics Data System (ADS)
Huerta, N. J.; Hesse, M. A.; Bryant, S. L.; Strazisar, B. R.
2013-12-01
Leaking wells that penetrate a geologic CO2 sequestration site provide a potential direct pathway for the escape of CO2 to an overlying aquifer or even back into the atmosphere. Leakage is a highly coupled system, involving transport of CO2-saturated brine and reaction of carbonic acid with the cement that encases wells. Carbonic acid attacks cement phases to dissolve calcium rich components and raise the fluid pH. Our experiments show that total dissolution of the cement matrix, which would lead to self-enhancing leakage, is prevented by an amorphous aluminosilicate phase that remains after dissolution to constrain fluid flux. Conversely, self-limiting behavior develops in a zone where pH is sufficiently high for carbonate minerals to become insoluble and precipitate. Extrapolation of these bench-scale observations indicates that a barrier of carbonate precipitation would develop as more CO2-saturated brine leaks along a well. The process of sealing of the pathway and the timescale of sealing are critical for any risk assessment of the sequestration operation. Using numerical models to interpret the experiments, we find a lag in self-limiting behavior which is controlled by the saturation state of carbonate phases. Sufficient residence time is crucial for the development of the precipitation zone. Precipitation need not seal uniformly across an entire fracture, only in dominant flow paths. Simply growing the width of a zone of precipitation is insufficient to capture the self-limiting behavior we observe in experiments. To seal, the precipitating material must also accumulate and grow into the open fracture space and close the aperture. Closure rate is a function of the initial leak path conductivity, pressure differential (which controls fluid flux), leak path length, and CO2-saturation in the brine. Combining these results with risk assessment tools that incorporate the well development history will give stakeholders a tool to quantitatively predict well leakage for candidate sites.
NASA Astrophysics Data System (ADS)
Singh Dhillon, Navdeep; Pisano, Albert P.
2014-03-01
A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.
40 CFR 65.119 - Recordkeeping provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... agitators equipped with a dual mechanical seal system that includes barrier fluid system, the owner or... assessment that identifies the representative composition of the process fluid. The assessment shall be based... pump visual inspections as specified in § 65.107(b)(4). (ii) Documentation of dual mechanical seal pump...
Twist seal for high-pressure vessels such as space shuttle rocket motors
NASA Technical Reports Server (NTRS)
von Pragenau, George L. (Inventor)
1989-01-01
Seals for sealing clevis and flange joints (14) of a solid rocket booster motor, and more particularly to a seal (30) which is twisted upon application of expansion forces to an edge seal (36). This twisting motion initially causes a leading edge seal (44) to be urged into sealing engagement with a surface (48) of an adjacent member (20) and thereafter, increasing fluid pressure on a pressurized side (64) of a seal (30) drives a broad sealing region (46) into sealing engagement with a surface (48).
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2017-01-24
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing
Anderson, Brian L.
2015-05-26
A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.
Static and dynamic characteristics of parallel-grooved seals
NASA Technical Reports Server (NTRS)
Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji
1987-01-01
Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.
Some new results concerning the dynamic behavior of annular turbulent seals
NASA Technical Reports Server (NTRS)
Massmann, H.; Nordmann, R.
1985-01-01
The dynamic characteristics of annular turbulent seals applied in high pressure turbopumps can be described by stiffness, damping, and inertia coefficients. An improved procedure is presented for determining these parameters by using measurements made with newly developed test equipment. The dynamic system seal, consisting of the fluid between the cylindrical surfaces of the rotating shaft and the housing, is excited by test forces (input), and the relative motion between the surfaces (output) is measured. Transformation of the input and output time signals into the frequency domain leads to frequency response functions. An analytical model, depending on the seal parameters, is fitted to the measured data in order to identify the dynamic coefficients. Some new results are reported that show the dependencies of these coefficients with respect to the axial and radial Reynolds numbers and the geometrical data of the seal.
Fault seal analysis of Okan and Meren fields, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, R.A.; Brenneman, R.J.; Adeogba, A.A.
The sealing capacity and the dynamic seal behavior of faults between juxtaposed reservoirs were analyzed for Okan and Meren fields, offshore Nigeria. In both fields correlations were found between reservoir performance, juxtaposed fluid types, oil geochemistry, interpreted fluid contact relationships, fault sealing/leaking condition, and calculated smear gouge ratios. Integration of these data has been invaluable in quantifying fault seal risk and may effect depletion strategies for fault-juxtaposed reservoirs within these fields. Fault plane sections defined reservoir juxtapositions and aided visualization of potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materialsmore » between the juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character based on fluid contact relationships in proved reservoirs and, in addition, were used to quantify fault seal risk of untested fault-dependent closures in Okan. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and also to risk seal integrity of fault dependent closures within the untested O-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits potential reserves within the O-sand package. In Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, specific G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios. The cross-sealing and/or cross-leaking nature of compartment boundaries at Meren is related to fault displacement variation and the composition of displaced stratigraphy.« less
A nonintrusive nuclear monitor for measuring liquid contents in sealed vessels
NASA Technical Reports Server (NTRS)
Singh, J. J.; Mall, G. H.
1984-01-01
A nonintrusive nuclear technique for monitoring fluid contents in sealed vessels, regardless of the fluid distribution inside the vessels is described. The technique is applicable to all-g environments. It is based on the differences in Cesium-137 gamma ray attenuation coefficients in air and the test liquids.
NASA Technical Reports Server (NTRS)
Macglashan, W. F., Jr.
1980-01-01
Zero-leakage valve has fluid-sealing diaphragm support and flat sievelike sealing surface. Diaphragm-support valve is easy to fabricate and requires minimum maintenance. Potential applications include isolation valve for waste systems and remote air-actuated valve. Device is also useful in controlling flow of liquid fluorine and corrosive fluids at high pressures.
One-shot valve may be remotely actuated
NASA Technical Reports Server (NTRS)
Kami, S.
1965-01-01
One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.
Sealing properties of mechanical seals for an axial flow blood pump.
Tomioka, J; Mori, T; Yamazaki, K; Koyanagi, H
1999-08-01
A miniature intraventricular axial flow blood pump for left ventricular support is under development. One of the key technologies required for such pumps is sealing of the motor shaft. In this study, to prevent blood backflow into the motor side, mechanical seals were developed and their sealing properties investigated. In the experimental apparatus, the mechanical seal separated the bovine blood on the chamber side from the cooling water on the motor side. A leakage of the blood was measured by inductively coupled plasma (ICP) light emission analysis. The rate of hemolysis was measured by the cyanmethemoglobin method. Frictional torque acting on the shaft was measured by a torque transducer. In the experiments, the rotational speed of the shaft was changed from 1,000 to 10,000 rpm, and the contact force of the seal faces was changed from 1.96 to 4.31 N. To estimate lubrication regimes, the Stribeck curve, a diagram of the coefficient of friction against the bearing characteristic G number, was drawn. The results of the experiments showed that both the leakage of blood and the rate of hemolysis were very small. The friction loss was also very small. The mechanical seal was operated in various lubrication regimes, from a fluid lubrication regime to a mixed lubrication regime.
The thermal and mechanical deformation study of up-stream pumping mechanical seal
NASA Astrophysics Data System (ADS)
Chen, H. L.; Xu, C.; Zuo, M. Z.; Wu, Q. B.
2015-01-01
Taking the viscosity-temperature relationship of the fluid film into consideration, a 3-D numerical model was established by ANSYS software which can simulate the heat transfer between the upstream pumping mechanical seal stationary and rotational rings and the fluid film between them as well as simulate the thermal deformation, structure deformation and the coupling deformation of them. According to the calculation result, thermal deformation causes the seal face expansion and the maximum thermal deformation appears at the inside of the seal ring. Pressure results in a mechanical deformation, the maximum deformation occurs at the top of the spiral groove and the overall trend is inward the mating face, opposite to the thermal deformation. The coupling deformation indicate that the thermal deformation can be partly counteracted by pressure deformation. Using this model, the relationship between deformation and shaft speed and the sealing liquid pressure was studied. It's found that the shaft speed will both enhance the thermal and structure deformation and the fluid pressure will enhance the structure deformation but has little to do with the thermal deformation. By changing the sealing material, it's found that material with low thermal expansion coefficient and low elastic modulus will suffer less thermal-pressure deformation.
Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji
2007-03-01
To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.
Numerical Simulation of the Fluid-Structure Interaction of a Surface Effect Ship Bow Seal
NASA Astrophysics Data System (ADS)
Bloxom, Andrew L.
Numerical simulations of fluid-structure interaction (FSI) problems were performed in an effort to verify and validate a commercially available FSI tool. This tool uses an iterative partitioned coupling scheme between CD-adapco's STAR-CCM+ finite volume fluid solver and Simulia's Abaqus finite element structural solver to simulate the FSI response of a system. Preliminary verification and validation work (V&V) was carried out to understand the numerical behavior of the codes individually and together as a FSI tool. Verification and Validation work that was completed included code order verification of the respective fluid and structural solvers with Couette-Poiseuille flow and Euler-Bernoulli beam theory. These results confirmed the 2 nd order accuracy of the spatial discretizations used. Following that, a mixture of solution verifications and model calibrations was performed with the inclusion of the physics models implemented in the solution of the FSI problems. Solution verifications were completed for fluid and structural stand-alone models as well as for the coupled FSI solutions. These results re-confirmed the spatial order of accuracy but for more complex flows and physics models as well as the order of accuracy of the temporal discretizations. In lieu of a good material definition, model calibration is performed to reproduce the experimental results. This work used model calibration for both instances of hyperelastic materials which were presented in the literature as validation cases because these materials were defined as linear elastic. Calibrated, three dimensional models of the bow seal on the University of Michigan bow seal test platform showed the ability to reproduce the experimental results qualitatively through averaging of the forces and seal displacements. These simulations represent the only current 3D results for this case. One significant result of this study is the ability to visualize the flow around the seal and to directly measure the seal resistances at varying cushion pressures, seal immersions, forward speeds, and different seal materials. SES design analysis could greatly benefit from the inclusion of flexible seals in simulations, and this work is a positive step in that direction. In future work, the inclusion of more complex seal geometries and contact will further enhance the capability of this tool.
Williams, William R.
1979-01-01
The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.
Dual diaphragm tank with telltale drain
NASA Technical Reports Server (NTRS)
Tuthill, Wallace C., Jr. (Inventor)
1991-01-01
A fluid storage and expulsion system comprising a tank with an internal flexible diaphragm assembly of dual diaphragms in back-to-back relationship, at least one of which is provided with a patterned surface having fine edges such that the diaphragms are in contact along said edges without mating contact of surface areas to thereby form fluid channels which extend outwardly to the peripheral edges of the diaphragms is described. The interior wall of the tank at the juncture of tank sections is formed with a circumferential annular recess comprising an outer annular recess portion which forms a fluid collection chamber and an inner annular recess portion which accommodates the peripheral edge portions of the diaphragms and a sealing ring in clamped sealing relation therebetween. The sealing ring is perforated with radially extending passages which allow any fluid leaking or diffusing past a diaphragm to flow through the fluid channels between the diaphragms to the fluid collection chamber. Ports connectable to pressure fittings are provided in the tank sections for admission of fluids to opposite sides of the diaphragm assembly. A drain passage through the tank wall to the fluid collection chamber permits detection, analysis and removal of fluids in the collection chamber.
Dilmore, Robert M; Sams, James I; Glosser, Deborah; Carter, Kristin M; Bain, Daniel J
2015-10-20
Recent large-scale development of oil and gas from low-permeability unconventional formations (e.g., shales, tight sands, and coal seams) has raised concern about potential environmental impacts. If left improperly sealed, legacy oil and gas wells colocated with that new development represent a potential pathway for unwanted migration of fluids (brine, drilling and stimulation fluids, oil, and gas). Uncertainty in the number, location, and abandonment state of legacy wells hinders environmental assessment of exploration and production activity. The objective of this study is to apply publicly available information on Pennsylvania oil and gas wells to better understand their potential to serve as pathways for unwanted fluid migration. This study presents a synthesis of historical reports and digital well records to provide insights into spatial and temporal trends in oil and gas development. Areas with a higher density of wells abandoned prior to the mid-20th century, when more modern well-sealing requirements took effect in Pennsylvania, and areas where conventional oil and gas production penetrated to or through intervals that may be affected by new Marcellus shale development are identified. This information may help to address questions of environmental risk related to new extraction activities.
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an... indicates failure of the seal system, the barrier fluid system, or both. (f) If the sensor indicates failure...
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be observed daily or shall be equipped with an... indicates failure of the seal system, the barrier fluid system, or both. (f) If the sensor indicates failure...
40 CFR 61.242-3 - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (a)-(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section... system, or both. (f) If the sensor indicates failure of the seal system, the barrier fluid system, or...
40 CFR 146.12 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water. The casing and cement used in the construction of each newly drilled well shall be designed for... intervals; and (7) Type or grade of cement. (c) All Class I injection wells, except those municipal wells... injection zone, or tubing with an approved fluid seal as an alternative. The tubing, packer, and fluid seal...
Space shuttle main engine high pressure fuel pump aft platform seal cavity flow analysis
NASA Technical Reports Server (NTRS)
Lowry, S. A.; Keeton, L. W.
1987-01-01
A general purpose, three-dimensional computational fluid dynamics code named PHOENICS, developed by CHAM Inc., is used to model the flow in the aft-platform seal cavity in the high pressure fuel pump of the space shuttle main engine. The model is used to predict the temperatures, velocities, and pressures in the cavity for six different sets of boundary conditions. The results are presented as input for further analysis of two known problems in the region, specifically: erratic pressures and temperatures in the adjacent coolant liner cavity and cracks in the blade shanks near the outer diameter of the aft-platform seal.
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2014 CFR
2014-07-01
... indications of liquids dripping from the pump seal. The owner or operator shall document that the inspection... pump seal at the time of the weekly inspection, the owner or operator shall comply with either of the... mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a barrier fluid...
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2013 CFR
2013-07-01
... indications of liquids dripping from the pump seal. The owner or operator shall document that the inspection... pump seal at the time of the weekly inspection, the owner or operator shall comply with either of the... mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a barrier fluid...
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2012 CFR
2012-07-01
... indications of liquids dripping from the pump seal. The owner or operator shall document that the inspection... pump seal at the time of the weekly inspection, the owner or operator shall comply with either of the... mechanical seal pumps. Each pump equipped with a dual mechanical seal system that includes a barrier fluid...
Zone separator for multiple zone vessels
Jones, John B.
1983-02-01
A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.
Numerical analysis of the non-contacting gas face seals
NASA Astrophysics Data System (ADS)
Blasiak, S.
2017-08-01
The non-contacting gas face seals are used in high-performance devices where the main requirements are safety and reliability. Compliance with these requirements is made possible by careful research and analysis of physical processes related to, inter alia, fluid flow through the radial gap and ring oscillations susceptible to being housed in the enclosure under the influence of rotor kinematic forces. Elaborating and developing mathematical models describing these phenomena allows for more and more accurate analysis results. The paper presents results of studies on stationary ring oscillations made of different types of materials. The presented results of the research allow to determine which of the materials used causes the greatest amplitude of the vibration of the system fluid film-working rings.
Application of Pinniped Vibrissae to Aeropropulsion
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Poinsatte, Philip; Thurman, Douglas; Wroblewski, Adam; Snyder, Christopher
2015-01-01
Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possessundulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce dragcompared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae andCalifornia Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of thewhiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskerswere used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to performwind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to studyincidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulationswere conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements overthe baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixedwing aircraft. Noise reduction potential is also explored
Biofilm-induced calcium carbonate precipitation: application in the subsurface
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.
2012-12-01
We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen high permeability regions or fractures (either natural or induced) in the subsurface. Novel high pressure test vessel to investigate biogeochemical processes under relevant subsurface scales and pressures.
Robustness of Modeling of Out-of-Service Gas Mechanical Face Seal
NASA Technical Reports Server (NTRS)
Green, Itzhak
2007-01-01
Gas lubricated mechanical face seal are ubiquitous in many high performance applications such as compressors and gas turbines. The literature contains various analyses of seals having orderly face patterns (radial taper, waves, spiral grooves, etc.). These are useful for design purposes and for performance predictions. However, seals returning from service (or from testing) inevitably contain wear tracks and warped faces that depart from the aforementioned orderly patterns. Questions then arise as to the heat generated at the interface, leakage rates, axial displacement and tilts, minimum film thickness, contact forces, etc. This work describes an analysis of seals that may inherit any (i.e., random) face pattern. A comprehensive computer code is developed, based upon the Newton- Raphson method, which solves for the equilibrium of the axial force and tilting moments that are generated by asperity contact and fluid film effects. A contact mechanics model is incorporated along with a finite volume method that solves the compressible Reynolds equation. Results are presented for a production seal that has sustained a testing cycle.
NASA Astrophysics Data System (ADS)
Meyer, H.
1981-11-01
Flat plate collector systems suitable for hot water supply, swimming pool heating, and auxiliary space heating were developed. A control and ready made packaged pipe assembly, adapted to synthetic fluid, was developed. A heat transfer fluid was selected, pumps, safety devices, armatures and seals were tested for their long term performance. External heat exchangers for simple and cascade arrangement of the hot water tanks were tested. It is found that the channel design of a roll bonded absorber has only limited effect on collector performance if the channel width approximates the space between the plates. Systems already installed work satisfactorily.
40 CFR 65.107 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2010 CFR
2010-07-01
... frequency of drips and to the sensor that indicates failure of the seal system, the barrier fluid system, or... or fuel gas system or connected by a closed vent system to a control device that complies with the... equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (v...
Integrated fault seal analysis and risk assessemt: Okan and Meren Fields, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, R.A.; Brenneman, R.J.; Adepoju, A.A.
1996-01-01
Integration of production, geochemical, seismic, well log, and structural data provides important constraints on the sealing capacity and dynamic behavior of fault juxtaposed reservoirs in Okan and Meren fields, offshore Nigeria. Correlations were found between pressure decline histories, juxtaposed fluid types, oil composition, fluid contact relationships, fault sealing/leaking condition, and estimates of the composition of the fault gouge. Fault plane sections defined reservoir juxtapositions and potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materials between juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character in proved reservoirs and were usedmore » to quantify fault seal risk of untested, fault-dependent closures. In the Okan Field juxtapositions of the G-, H, L-, M, and O-sands were analyzed. Smear gouge ratios correlated to fluid contact relationships and pressure decline histories within these juxtaposed reservoirs empirically calibrate sealing potential. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and to risk seal integrity of fault-dependent closures within the untested 0-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits column heights and potential reserves within the O-sand package. In the Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, the G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios.« less
Integrated fault seal analysis and risk assessemt: Okan and Meren Fields, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, R.A.; Brenneman, R.J.; Adepoju, A.A.
Integration of production, geochemical, seismic, well log, and structural data provides important constraints on the sealing capacity and dynamic behavior of fault juxtaposed reservoirs in Okan and Meren fields, offshore Nigeria. Correlations were found between pressure decline histories, juxtaposed fluid types, oil composition, fluid contact relationships, fault sealing/leaking condition, and estimates of the composition of the fault gouge. Fault plane sections defined reservoir juxtapositions and potential cross-fault spill points. Smear gouge ratios calculated from E-logs were used to estimate the composition of fault-gouge materials between juxtaposed reservoirs. These tools augmented interpretation of seal/nonseal character in proved reservoirs and were usedmore » to quantify fault seal risk of untested, fault-dependent closures. In the Okan Field juxtapositions of the G-, H, L-, M, and O-sands were analyzed. Smear gouge ratios correlated to fluid contact relationships and pressure decline histories within these juxtaposed reservoirs empirically calibrate sealing potential. The results of these analyses were then used to interpret production-induced fault seal breakdown within the G-sands and to risk seal integrity of fault-dependent closures within the untested 0-sands in an adjacent, upthrown fault block. Within this fault block the presence of potential fault intersection leak points and large areas of sand/sand juxtaposition with high smear gouge ratios (low sealing potential) limits column heights and potential reserves within the O-sand package. In the Meren Field the E- and G-sands are juxtaposed, on different pressure decline, geochemically distinct, and are characterized by low smear gouge ratios. In contrast, the G- and H-sands, juxtaposed across the same fault, contain similar OOWCs and are characterized by high smear gouge ratios.« less
Versatile fluid-mixing device for cell and tissue microgravity research applications.
Wilfinger, W W; Baker, C S; Kunze, E L; Phillips, A T; Hammerstedt, R H
1996-01-01
Microgravity life-science research requires hardware that can be easily adapted to a variety of experimental designs and working environments. The Biomodule is a patented, computer-controlled fluid-mixing device that can accommodate these diverse requirements. A typical shuttle payload contains eight Biomodules with a total of 64 samples, a sealed containment vessel, and a NASA refrigeration-incubation module. Each Biomodule contains eight gas-permeable Silastic T tubes that are partitioned into three fluid-filled compartments. The fluids can be mixed at any user-specified time. Multiple investigators and complex experimental designs can be easily accommodated with the hardware. During flight, the Biomodules are sealed in a vessel that provides two levels of containment (liquids and gas) and a stable, investigator-controlled experimental environment that includes regulated temperature, internal pressure, humidity, and gas composition. A cell microencapsulation methodology has also been developed to streamline launch-site sample manipulation and accelerate postflight analysis through the use of fluorescent-activated cell sorting. The Biomodule flight hardware and analytical cell encapsulation methodology are ideally suited for temporal, qualitative, or quantitative life-science investigations.
NASA Astrophysics Data System (ADS)
Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.
2016-12-01
This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.
An in vitro evaluation of the apical sealing ability of new polymeric endodontic filling systems.
Onay, Emel Olga; Ungor, Mete; Unver, Saadet; Ari, Hale; Belli, Sema
2009-08-01
The objective of this study was to compare the short-term sealing abilities of recently introduced polymeric endodontic filling systems. Root canals of 120 extracted and decoronated human single-rooted teeth were instrumented using crown-down technique with HERO Shaper rotary instruments. The roots were divided randomly into 8 groups (6 experimental and 2 control groups of 15 roots each) and filled with different combinations of core and sealer as follows: group 1, RealSeal/Resilon; group 2, RealSeal/Herofill; group 3, Hybrid Root Seal/Resilon; group 4, Hybrid Root Seal/Herofill; group 5, MM-Seal/Resilon; group 6, MM-Seal/Herofill; group 7, positive controls (Herofill only); group 8, negative controls. Apical leakage quantity was evaluated after 1 week by using a fluid filtration model. For each sample, measurements of fluid movement were recorded at 2-minute intervals for a total of 8 minutes, and then averaged. The data were calculated and analyzed using the Kolmogorov-Smirnov test, 1-way analysis of variance (ANOVA), and the Tukey test. Significance was set at P less than .05. Multiple paired comparisons (Tukey test) showed that, of all the groups, MM-Seal/Herofill combination exhibited the least microleakage, and RealSeal/Herofill combination ranked second in this regard. The mean leakage values for the RealSeal/Resilon and MM-Seal/Resilon combinations were both significantly higher than the means for the other 4 experimental groups (P < .01). Hybrid Root Seal combined with Resilon resulted in significantly less microleakage than Hybrid Root Seal combined with Herofill (P = .001). The results suggest that the sealing properties of epoxy-resin-based sealer (MM-Seal) combined with gutta-percha (Herofill) are superior to those of methacrylate-based sealers (Hybrid Root Seal and Realseal) combined with Resilon.
Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies
NASA Astrophysics Data System (ADS)
Caporuscio, F.
2015-12-01
Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.
Application of Pinniped Vibrissae to Aeropropulsion
NASA Technical Reports Server (NTRS)
Shyam, Vikram (Principal Investigator); Ameri, Ali; Poinsatte, Phil; Thurman, Doug; Wroblewski, Adam; Snyder, Chris
2015-01-01
Vibrissae of Phoca Vitulina (Harbor Seal) and Mirounga Angustirostris (Elephant Seal) possess undulations along their length. Harbor Seal Vibrissae were shown to reduce vortex induced vibrations and reduce drag compared to appropriately scaled cylinders and ellipses. Samples of Harbor Seal vibrissae, Elephant Seal vibrissae and California Sea Lion vibrissae were collected from the Marine Mammal Center in California. CT scanning, microscopy and 3D scanning techniques were utilized to characterize the whiskers. Computational fluid dynamics simulations of the whiskers were carried out to compare them to an ellipse and a cylinder. Leading edge parameters from the whiskers were used to create a 3D profile based on a modern power turbine blade. The NASA SW-2 facility was used to perform wind tunnel cascade testing on the 'Seal Blades'. Computational Fluid Dynamics simulations were used to study incidence angles from -37 to +10 degrees on the aerodynamic performance of the Seal Blade. The tests and simulations were conducted at a Reynolds number of 100,000. The Seal Blades showed consistent performance improvements over the baseline configuration. It was determined that a fuel burn reduction of approximately 5 could be achieved for a fixed wing aircraft. Noise reduction potential is also explored.
Optical nondestructive dynamic measurements of wafer-scale encapsulated nanofluidic channels.
Liberman, Vladimir; Smith, Melissa; Weaver, Isaac; Rothschild, Mordechai
2018-05-20
Nanofluidic channels are of great interest for DNA sequencing, chromatography, and drug delivery. However, metrology of embedded or sealed nanochannels and measurement of their fill-state have remained extremely challenging. Existing techniques have been restricted to optical microscopy, which suffers from insufficient resolution, or scanning electron microscopy, which cannot measure sealed or embedded channels without cleaving the sample. Here, we demonstrate a novel method for accurately extracting nanochannel cross-sectional dimensions and monitoring fluid filling, utilizing spectroscopic ellipsometric scatterometry, combined with rigorous electromagnetic simulations. Our technique is capable of measuring channel dimensions with better than 5-nm accuracy and assessing channel filling within seconds. The developed technique is, thus, well suited for both process monitoring of channel fabrication as well as for studying complex phenomena of fluid flow through nanochannel structures.
Pennell, William E.; Rowan, William J.
1977-01-01
A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.
Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.
1999-05-25
A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.
Garcia, A.R.; Johnston, R.G.; Martinez, R.K.
1999-05-25
A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.
An earthquake mechanism based on rapid sealing of faults
Blanpied, M.L.; Lockner, D.A.; Byerlee, J.D.
1992-01-01
RECENT seismological, heat flow and stress measurements in active fault zones such as the San Andreas have led to the suggestion1,2 that such zones can be relatively weak. One explanation for this may be the presence of overpressured fluids along the fault3-5, which would reduce the shear stress required for sliding by partially 'floating' the rock. Although several mechanisms have been proposed for overpressurizing fault fluids3,4,6,7, we recall that 'pressure seals' are known to form in both sedimentary8 and igneous9 rocks by the redistribution of materials in solution; the formation of such a seal along the boundaries of a fault will prevent the communication of fluids between the porous, deforming fault zone and the surrounding country rock. Compaction of fault gouge, under hydrostatic loading and/or during shear, elevates pore pressure in the sealed fault and allows sliding at low shear stress. We report the results of laboratory sliding experiments on granite, which demonstrate that the sliding resistance of faults can be significantly decreased by sealing and compaction. The weakening that results from shear-induced compaction can be rapid, and may provide an instability mechanism for earthquakes.
Seal device for ferromagnetic containers
Meyer, R.E.; Jason, A.J.
1994-10-18
A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach there through until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity. 10 figs.
Experimental studies and performance analyses on polyurethane and nitrile rubber rod seals
NASA Astrophysics Data System (ADS)
Mirza, M.; Temiz, V.; Kamburoǧlu, E.
2012-09-01
The aim of this study is to determine the friction and leakage properties of rod seals made of polyethylene and nitrile rubber with different design geometries, under various pressure and lubricating oil viscosity conditions, in order to make assumptions about their general sealing characteristics and their pros and cons under certain working conditions that involve a range of fluid pressures. The test specimens consist of commercial rod seals of various designs and materials and were mounted on a hard chrome coated shaft subject to reciprocating motion. The test rig is capable of measuring friction force by means of strain measurements on a load cell transmitting the linear motion of a screw shaft to the test shaft. The test results of the reciprocating rod seal samples were evaluated according to leakage amount and friction resistance as a function of materials, design geometries and fluid pressures as well as the lubricating oil viscosity.
Seal device for ferromagnetic containers
Meyer, Ross E.; Jason, Andrew J.
1994-01-01
A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.
Fractal modeling of fluidic leakage through metal sealing surfaces
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong
2018-04-01
This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.
Numerical simulation on reasonable hole-sealing depth of boreholes for gas extraction
NASA Astrophysics Data System (ADS)
Zhao, Dan; Pan, Jingtao
2018-04-01
To overcome the low efficiency of extracting gas in coal reservoirs with a low gas permeability, some boreholes were drilled for gas extraction in No. 2 coal reservoir of Wangjialing Coalmine in Shanxi Province, China and reasonably sealed. Aiming at shortfalls such as rapid attenuation of volume for extracted gas as well as low gas permeability when using boreholes in the No. 2 coal reservoir, the traditional COMSOL MultiphysicsMT Earth Science Module was used to couple the three governing equations (Darcy-Brinkman-Navier-Stokes) for fluids. On this basis, numerical simulation on the seepage law along the directions of roadways and boreholes was carried out. The simulation results indicated that when the hole-sealing length was within the width range of fractures in roadways, the negative pressure not only led the gas in surrounding rock masses to flow to the boreholes, but also made the air flow in roadways to permeate into coal walls. As a result, gas and air flows both entered into the boreholes through the loosening zone containing fractures, resulting in seepage of air in roadway to the boreholes. The seepage velocity along the roadway direction under condition with a hole-sealing length of 12 m was obviously slower than that when the hole-sealing length was 8 m. While, the method by simply increasing the length of the hole-sealing section for boreholes failed to effectively stop the air flow in roadways from permeating into the coal wall and then entering the boreholes. Moreover, the increase in the hole-sealing length brought about much more difficulties to the hole-sealing construction. So, the method is not operable in practical condition of the coal mine. Therefore, it is necessary to improve the traditional hole-sealing technology based on foamed macromolecular materials which are mainly made of polyurethane (PU) and use the fluid wall-type hole-sealing technology based on solid-liquid coupling. Then, the effects of gas extraction before and after using the fluid wall-type hole-sealing technology based on solid-liquid coupling to increase the hole-sealing length to 12 m were compared. The comparison results revealed that the pure extraction amount of gas from a single borehole in the No. 2 coal reservoir of Wangjialing Coalmine was improved by 4˜6 times. In addition, the concentration of extracted gas increased from less than 1% under the traditional hole-sealing mode to 20%˜25%, with an increase of more than 20 times. The extraction effect of the No. 2 coal reservoir of the coal mine was significantly enhanced by employing the fluid-wall-type hole-sealing technology based on solid-liquid coupling.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Astrophysics Data System (ADS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-06-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in.), a fence height of 0.0635 cm (0.025 in.), and 1800 bristles/cm circumference (4500 bristles/in. circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approximately the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions
NASA Technical Reports Server (NTRS)
Carlile, Julie A.; Hendricks, Robert C.; Yoder, Dennis A.
1992-01-01
The leakage performance of a brush seal with gaseous working fluids at static and low rotor speed conditions was studied. The leakage results are included for air, helium, and carbon dioxide at several bristle/rotor interferences. Also, the effects of packing a lubricant into the bristles and also of reversing the pressure drop across the seal were studied. Results were compared to that of an annular seal at similar operating conditions. In order to generalize the results, they were correlated using corresponding state theory. The brush seal tested had a bore diameter of 3.792 cm (1.4930 in), a fence height of 0.0635 cm (0.025 in), and 1800 bristles/cm circumference (4500 bristles/in circumference). Various bristle/rotor radial interferences were achieved by using a tapered rotor. The brush seal reduced the leakage in comparison to the annular seal, up to 9.5 times. Reversing the pressure drop across the brush seal produced leakage rates approx. the same as that of the annular seal. Addition of a lubricant reduced the leakage by 2.5 times. The air and carbon dioxide data were successfully correlated using corresponding state theory. However, the helium data followed a different curve than the air and carbon dioxide data.
Electron beam selectively seals porous metal filters
NASA Technical Reports Server (NTRS)
Snyder, J. A.; Tulisiak, G.
1968-01-01
Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.
Steam Turbine Flow Path Seals (a Review)
NASA Astrophysics Data System (ADS)
Neuimin, V. M.
2018-03-01
Various types of shroud, diaphragm, and end seals preventing idle leak of working steam are installed in the flow paths of steam turbine cylinders for improving their efficiency. Widely known labyrinth seals are most extensively used in the Russian turbine construction industry. The category of labyrinth seals also includes seals with honeycomb inserts. The developers of seals with honeycomb inserts state that the use of such seals makes it possible to achieve certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor rotating parts may rub against the stator elements. However, a positive effect can only be achieved if the optimal design parameters of the honeycomb structure are fulfilled with due regard to the specific features of its manufacturing technology and provided that this structure is applied in a goal-seeking manner in the seals of steam and gas turbines and compressors without degrading their vibration stability. Calculated and preliminary assessments made by experts testify that the replacement of conventional labyrinth seals by seals with honeycomb inserts alone, due to which the radial gaps in the shroud seal can be decreased from 1.5 to 0.5 mm, allows the turbine cylinder efficiency to be increased at the initial stage by approximately 1% with the corresponding gain in the turbine set power output. The use of rectangular-cellular seals may result, according to estimates made by their developers, in a further improvement of turbine efficiency by 0.5-1.0%. The labor input required to fabricate such seals is six to eight times smaller than that to fabricate labyrinth seals with honeycomb inserts. Recent years have seen the turbine construction companies of the United States and Germany advertising the use of abradable (sealing) coatings (borrowed from the gas turbine construction technology) in the turbine designs instead of labyrinth seals. The most efficient performance of such seals in the turbine flow path is achieved with the sealing material-to-blade linear wear ratio equal to 10 : 1. According to estimates of the developers, application of abradable (sealing) coatings to all problem surfaces (resulting in the power output increased by 0.5-1.0%) is economically profitable even if this procedure is carried out under field conditions at a thermal power plant.
Titanium sealing glasses and seals formed therefrom
Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.
1997-01-01
Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La.sub.2 O.sub.3, B.sub.2 O.sub.3, TiO.sub.2 and Al.sub.2 O.sub.3 in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).
Core disruptive accident margin seal
Golden, Martin P.
1979-01-01
Apparatus for sealing the annulus defined within a substantially cylindrical rotatable riser assembly and plug combination of a nuclear reactor closure head. The apparatus comprises an inflatable sealing mechanism disposed in one portion of the riser assembly near the annulus such that upon inflation the sealing mechanism is radially actuated against the other portion of the riser assembly thereby sealing the annulus. The apparatus further comprises a connecting mechanism which places one end of the sealing mechanism in fluid communication with the reactor cover gas so that overpressurization of the reactor cover gas will increase the radial actuation of the sealing mechanism thus enhancing sealing of the annulus.
Episodic tremor and slip explained by fluid-enhanced microfracturing and sealing
NASA Astrophysics Data System (ADS)
Bernaudin, M.; Gueydan, F.
2017-12-01
A combination of non-volcanic tremor and transient slow slip events behaviors is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths. This association defines Episodic Tremor and Slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. Here we propose a new mechanical approach that provides for the first time a mechanical and field-based explanation of the observed association between non-volcanic tremor and slow slip events. In contrast with more classical rate-and-state models, this physical model uses a ductile rheology with grain size sensitivity, fluid-driven microfracturing and sealing (e.g. grain size reduction and grain growth) and related pore fluid pressure fluctuations. We reproduce slow slip events by transient ductile strain localization as a result of fluid-enhanced microfracturing and sealing. Moreover, occurrence of macrofracturing during transient strain localization and local increase in pore fluid pressure well simulate non-volcanic tremor. Our model provides therefore a field-based explanation of episodic tremor and slip and moreover predicts the depth and temperature ranges of their occurrence in subduction zones. It implies furthermore that non-volcanic tremor and slow slip events are physically related.
A model for the space shuttle main engine high pressure oxidizer turbopump shaft seal system
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
1990-01-01
A simple static model is presented which solves for the flow properties of pressure, temperature, and mass flow in the Space Shuttle Main Engine pressure Oxidizer Turbopump Shaft Seal Systems. This system includes the primary and secondary turbine seals, the primary and secondary turbine drains, the helium purge seals and feed line, the primary oxygen drain, and the slinger/labyrinth oxygen seal pair. The model predicts the changes in flow variables that occur during and after failures of the various seals. Such information would be particularly useful in a post flight situation where processing of sensor information using this model could identify a particular seal that had experienced excessive wear. Most of the seals in the system are modeled using simple one dimensional equations which can be applied to almost any seal provided that the fluid is gaseous. A failure is modeled as an increase in the clearance between the shaft and the seal. Thus, the model does not attempt to predict how the failure process actually occurs (e.g., wear, seal crack initiation). The results presented were obtained using a FORTRAN implementation of the model running on a VAX computer. Solution for the seal system properties is obtained iteratively; however, a further simplified implementation (which does not include the slinger/labyrinth combination) was also developed which provides fast and reasonable results for most engine operating conditions. Results from the model compare favorably with the limited redline data available.
NASA Astrophysics Data System (ADS)
Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran
2017-02-01
Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, James
This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO 2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments weremore » carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO 2 reacted systems to non-CO 2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.« less
A new stylolite classification scheme to estimate compaction and local permeability variations
NASA Astrophysics Data System (ADS)
Koehn, D.; Rood, M. P.; Beaudoin, N.; Chung, P.; Bons, P. D.; Gomez-Rivas, E.
2016-12-01
We modeled the geometrical roughening of bedding-parallel, mainly layer-dominated stylolites in order to understand their structural evolution, to present an advanced classification of stylolite shapes and to relate this classification to chemical compaction and permeability variations at stylolites. Stylolites are rough dissolution seams that develop in sedimentary basins during chemical compaction. In the Zechstein 2 carbonate units, an important lean gas reservoir in the southern Permian Zechstein basin in Germany, stylolites influence local fluid flow, mineral replacement reactions and hence the permeability of the reservoir. Our simulations demonstrate that layer-dominated stylolites can grow in three distinct stages: an initial slow nucleation phase, a fast layer-pinning phase and a final freezing phase if the layer is completely dissolved during growth. Dissolution of the pinning layer and thus destruction of the stylolite's compaction tracking capabilities is a function of the background noise in the rock and the dissolution rate of the layer itself. Low background noise needs a slower dissolving layer for pinning to be successful but produces flatter teeth than higher background noise. We present an advanced classification based on our simulations and separate stylolites into four classes: (1) rectangular layer type, (2) seismogram pinning type, (3) suture/sharp peak type and (4) simple wave-like type. Rectangular layer type stylolites are the most appropriate for chemical compaction estimates because they grow linearly and record most of the actual compaction (up to 40 mm in the Zechstein example). Seismogram pinning type stylolites also provide good tracking capabilities, with the largest teeth tracking most of the compaction. Suture/sharp peak type stylolites grow in a non-linear fashion and thus do not record most of the actual compaction. However, when a non-linear growth law is used, the compaction estimates are similar to those making use of the rectangular layer type stylolites. Simple wave-like stylolites are not useful for compaction estimates, since their growth is highly non-linear with a very low growth exponent. In the case where sealing material is collected at the tooth during dissolution, stylolites can act as barriers for local fluid flow as they intensify sealing capabilities of pinning layers. However, the development of teeth and spikes offsets and thus destroys continuous stylolite seams so that the permeability across the stylolite becomes very heterogeneous and they are no continuous barriers. This behavior is best shown in rectangular layer and seismogram pinning type stylolites that develop efficient fluid barriers at teeth tips but destroy sealing capabilities of layers by offsetting them at the flank, leading to a permeability anisotropy along 2-D stylolite planes. Suture/sharp peak stylolites can create fluid barriers if they collect enough sealing material. However, if the collecting material does not seal or if spikes offset the sealing material the stylolite leaks. We propose that our classification can be used to realistically estimate chemical compaction in reservoirs and gives an indication on how heterogeneous the permeability of stylolites can be.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Tam, L. T.; Muszynska, A.
2004-01-01
Today's computational methods enable the determination of forces in complex systems, but without field validation data, or feedback, there is a high risk of failure when the design envelope is challenged. The data of Childs and Bently and field data reported in NASA Conference Proceedings serve as sources of design information for the development of these computational codes. Over time all turbomachines degrade and instabilities often develop, requiring responsible, accurate, turbomachine diagnostics with proper decisions to prevent failures. Tam et al. (numerical) and Bently and Muszynska (analytical) models corroborate and implicate that destabilizing factors are related through increases in the fluid-force average circumferential velocity. The stability threshold can be controlled by external swirl and swirl brakes and increases in radial fluid film stiffness (e.g., hydrostatic and ambient pressures) to enhance rotor stability. Also cited are drum rotor self-excited oscillations, where the classic fix is to add a split or severed damper ring or cylindrical damper drum, and the Benkert-Wachter work that engendered swirl brake concepts. For a smooth-operating, reliable, long-lived machine, designers must pay very close attention to sealing dynamics and diagnostic methods. Correcting the seals enabled the space shuttle main engine high-pressure fuel turbopump (SSME HPFTP) to operate successfully.
New-Generation Sealing Slurries For Borehole Injection Purposes
NASA Astrophysics Data System (ADS)
Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert
2015-12-01
The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
Hermetically sealed superconducting magnet motor
DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.
1996-01-01
A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.
Monticelli, Francesca; Osorio, Raquel; Toledano, Manuel; Ferrari, Marco; Pashley, David H; Tay, Franklin R
2010-07-01
The sealing properties of a one-step obturation post-placement technique consisting of Resilon-capped fibre post-obturators were compared with a two-step technique based on initial Resilon root filling following by 24h-delayed fibre post-placement. Thirty root segments were shaped to size 40, 0.04 taper and filled with: (1) InnoEndo obturators; (2) Resilon/24h-delayed FibreKor post-cementation. Obturator, root filling and post-cementation procedures were performed using InnoEndo bonding agent/dual-cured root canal sealer. Fluid flow rate through the filled roots was evaluated at 10psi using a computerised fluid filtration model before root resection and after 3 and 9mm apical resections. Fluid flow data were analysed using two-way repeated measures ANOVA and Tukey test to examine the effects of root-filling post-placement techniques and root resection lengths on fluid leakage from the filled canals (alpha=0.05). A significantly greater amount of fluid leakage was observed with the one-step technique when compared with two-step technique. No difference in fluid leakage was observed among intact canals and canals resected at different lengths for both materials. The seal of root canals achieved with the one-step obturator is less effective than separate Resilon root fillings followed by a 24-h delay prior to the fibre post-placement. Incomplete setting of the sealer and restricted relief of polymerisation shrinkage stresses may be responsible for the inferior seal of the one-step root-filling/post-restoration technique. Copyright 2010 Elsevier Ltd. All rights reserved.
Titanium sealing glasses and seals formed therefrom
Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.
1997-12-02
Alkaline-earth lanthanoborate sealing-glass compositions containing CaO, La{sub 2}O{sub 3}, B{sub 2}O{sub 3}, TiO{sub 2} and Al{sub 2}O{sub 3} in various combinations of mole-% are provided. These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys that have a high aqueous durability for component or device applications requiring exposure to moisture, water or body fluids. Particular applications of the titanium sealing-glass compositions include forming glass-to-metal seals for lithium batteries and implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 2 figs.
NASA Technical Reports Server (NTRS)
Darden, J. M.; Earhart, E. M.
2011-01-01
The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.
Hydrodynamic effects in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1978-01-01
Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, may be a significant factor in seal operating mechanism.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wibur
2005-01-01
This is the source listing of the computer code SPIRALI which predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures.
Hydrodynamic effects in a misaligned radial face seal
NASA Technical Reports Server (NTRS)
Etsion, I.
1977-01-01
Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.
Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing
NASA Astrophysics Data System (ADS)
Bernaudin, M.; Gueydan, F.
2018-04-01
Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.
Heat exchanger containing a component capable of discontinuous movement
Wilson, D.G.
1993-11-09
Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices. 11 figures.
Heat exchanger containing a component capable of discontinuous movement
Wilson, David Gordon
2001-04-17
Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.
Heat exchanger containing a component capable of discontinuous movement
Wilson, David G.
1993-01-01
Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.
Heat exchanger containing a component capable of discontinuous movement
Wilson, David Gordon
2002-01-01
Regenerative heat exchangers are described for transferring heat between hot and cold fluids. The heat exchangers have seal-leakage rates significantly less than those of conventional regenerative heat exchangers because the matrix is discontinuously moved and is releasably sealed while in a stationary position. Both rotary and modular heat exchangers are described. Also described are methods for transferring heat between a hot and cold fluid using the discontinuous movement of matrices.
Hermetically sealed superconducting magnet motor
DeVault, R.C.; McConnell, B.W.; Phillips, B.A.
1996-07-02
A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.
Rotordynamic Behavior Of Sawtooth-Pattern Damping Seals
NASA Technical Reports Server (NTRS)
Nolan, Steven A.
1992-01-01
Report describes comparative experimental and theoretical study of rotordynamics of several different annular liquid pump seals. Introduces damping seals of new type in which inner surfaces of stators have saw-tooth-cross-section axial grooves interrupted at regular axial intervals by circumferential dams. Teeth of sawtooth patterns directed against rotations in attempt to reduce further asymptotic circumferential velocities of fluids.
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
....1(f). (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a... § 65.102(b) and paragraphs (e) and (f) of this section. Each compressor seal system shall meet any one... of § 65.115; or (3) Equipped with a closed-loop system that purges the barrier fluid directly into a...
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2014 CFR
2014-07-01
....1(f). (b) Seal system standard. Each compressor shall be equipped with a seal system that includes a... § 65.102(b) and paragraphs (e) and (f) of this section. Each compressor seal system shall meet any one... of § 65.115; or (3) Equipped with a closed-loop system that purges the barrier fluid directly into a...
Closure head for a nuclear reactor
Wade, Elman E.
1980-01-01
A closure head for a nuclear reactor includes a stationary outer ring integral with the reactor vessel with a first rotatable plug disposed within the stationary outer ring and supported from the stationary outer ring by a bearing assembly. A sealing system is associated with the bearing assembly to seal the annulus defined between the first rotatable plug and the stationary outer ring. The sealing system comprises tubular seal elements disposed in the annulus with load springs contacting the tubular seal elements so as to force the tubular seal elements against the annulus in a manner to seal the annulus. The sealing system also comprises a sealing fluid which is pumped through the annulus and over the tubular seal elements causing the load springs to compress thereby reducing the friction between the tubular seal elements and the rotatable components while maintaining a gas-tight seal therebetween.
Apparatus for removing a contaminant from a fluid stream
Brewster, M.D.; Posa, R.P.
1998-12-22
A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall. 4 figs.
Apparatus for removing a contaminant from a fluid stream
Brewster, Michael D.; Posa, Richard P.
1998-01-01
A device for removing a contaminant from a fluid stream flowing within a conduit is disclosed. The device includes a container and a barrier. The container has a first wall generated about an axis and a second wall generated about the same axis. The first wall defines a first volume therewithin, while the first and second walls define an annular second volume therebetween. Both the first and second volumes are sealed at one end of the device, while at the other end of the device the second volume only is sealed. A filter material occupies the second volume. The first and second walls are permeable to the fluid stream and are capable of retaining the filter material in the second volume. The barrier is impermeable to the fluid stream and creates a seal between the second wall and the conduit wall. The barrier is positioned adjacent the other end of the device such that when the other end of the device is the upstream end, the fluid stream must sequentially pass into the first volume, through the first wall, into the second volume and through the filter material, and through the second wall.
Three-step cylindrical seal for high-performance turbomachines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1987-01-01
A three-step cylindrical seal configuration representing the seal for a high performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass flux (leakage rate) was 70% that of an equivalent straight cylindrical seal with a correspondingly higher pressure drop based on the same flow areas of 0.3569 sq cm but 85% that of the straight seal based on the third-step flow area of 0.3044 sq cm. The mass flow rates for the three step cylindrical seal in the fully eccentric and concentric positions were essentially the same, and the trends in flow coefficient followed those of a simple axisymmetric inlet configuration. However, for inlet stagnation temperatures less than the thermodynamic critical temperature the pressure profiles exhibited a flat region throughout the third step of the seal, with the pressure magnitude dependent on the inlet stagnation temperature. Such profiles represent an extreme positive direct stiffness. These conditions engendered a crossover in the pressure profile upstream of the postulated choke that resulted in a local negative stiffness. Flat and crossover profiles resulting from choking within the seal are practically unknown to the seal designer. However, they are of critical importance to turbomachine stability and must be integrated into any dynamic analysis of a seal of this configuration. In addition, choking is highly dependent on geometry, inlet-to-backpressure ratio, and inlet temperature and can occur within the seal even though the backpressure is above the critical pressure.
Paqué, F; Sirtes, G
2007-09-01
To compare the long-term apical sealing ability of gutta-percha/AH Plus and Resilon/Epiphany. The root canals of 90 single-rooted human mandibular premolars with single narrow root canals were prepared with ProFile 0.4 taper instruments to apical size 40. After each instrument, the canals were irrigated with 1% sodium hypochlorite. Subsequently, the teeth were randomly divided into four groups containing 20 teeth each. Additionally, 10 prepared premolars served as positive and 10 counterparts with intact crowns as negative controls. The root canals were filled with gutta-percha/AH Plus or Resilon/Epiphany using lateral or vertical compaction. Specimens were allowed to set for 7 days at 37 degrees C and 100% humidity. Subsequently, the root fillings were removed down to the apical 4 mm. Fluid movement was then assessed using a fluid transportation model and re-evaluated after 16 months of water storage. Leakage within and between groups was compared using nonparametric tests. Negative controls revealed no fluid movement and positive controls displayed gross fluid movement at both times of observation. At the immediate measurement, there were no significant differences between the experimental groups (Kruskal-Wallis, P > 0.05). Gutta-percha/AH Plus fillings retained their seal after 16-months storage (Wilcoxon, P > 0.05), whilst the Resilon/Epiphany groups lost their sealing capacity (Wilcoxon, P < 0.001). In these groups, 29 of the 40 specimens exhibited gross leakage similar to positive controls. Initially, Resilon/Epiphany root fillings prevented fluid movement to the same degree as gutta-percha/AH Plus counterparts, but showed more fluid movement when tested at 16 months.
Well fluid isolation and sample apparatus and method
Schalla, Ronald; Smith, Ronald M.; Hall, Stephen H.; Smart, John E.
1995-01-01
The present invention specifically permits purging and/or sampling of a well but only removing, at most, about 25% of the fluid volume compared to conventional methods and, at a minimum, removing none of the fluid volume from the well. The invention is an isolation assembly that is inserted into the well. The isolation assembly is designed so that only a volume of fluid between the outside diameter of the isolation assembly and the inside diameter of the well over a fluid column height from the bottom of the well to the top of the active portion (lower annulus) is removed. A seal may be positioned above the active portion thereby sealing the well and preventing any mixing or contamination of inlet fluid with fluid above the packer. Purged well fluid is stored in a riser above the packer. Ports in the wall of the isolation assembly permit purging and sampling of the lower annulus along the height of the active portion.
1999 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
2000-01-01
NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.
Cryogenic Flange and Seal Evaluation
NASA Technical Reports Server (NTRS)
Ramirez, Adrian
2014-01-01
The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.
Compatibility of Elastomeric Seal Compounds with MIL-H-6083 and MIL-H- 46170 Hydraulic Fluid
1990-06-01
are also made with results obtained using NBR -L, a reference material cited in AMS 3217. 20. DISTRIBUTION/AVAILABILJTY OF ABSTRACT 21. ABSTRACT...Concurrent comparative studies were conducted using NBR -L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume...of a standard reference material such as NBR -L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of
Quasi-one-dimensional compressible flow across face seals and narrow slots. 1: Analysis
NASA Technical Reports Server (NTRS)
Zuk, J.; Ludwig, L. P.; Johnson, R. L.
1972-01-01
An analysis is presented for compressible fluid flow across shaft face seals and narrow slots. The analysis includes fluid inertia, viscous friction, and entrance losses. Subsonic and choked flow conditions can be predicted and analyzed. The model is valid for both laminar and turbulent flows. Results agree with experiment and with solutions which are more limited in applicability. Results show that a parallel film can have a positive film stiffness under choked flow conditions.
Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.
2000-01-01
A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.
Environmental and customer-driven seal requirements
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1994-01-01
Public awareness of environmental hazards, well-publicized effects of hazardous leakages (Three Mile Island, Challenger), and a general concern for planet earth have precipitated emission limits that drive the design requirements for seals applications. Types of seals, barrier fluids, and the necessity of thin lubricating films and stable turbomachine operation to minimize leakage and material losses generated by rubbing contact are discussed.
Environmental and customer-driven seal requirements
NASA Astrophysics Data System (ADS)
Hendricks, Robert C.
1994-07-01
Public awareness of environmental hazards, well-publicized effects of hazardous leakages (Three Mile Island, Challenger), and a general concern for planet earth have precipitated emission limits that drive the design requirements for seals applications. Types of seals, barrier fluids, and the necessity of thin lubricating films and stable turbomachine operation to minimize leakage and material losses generated by rubbing contact are discussed.
Measurement of interstage fluid-annulus dynamical properties
NASA Technical Reports Server (NTRS)
Adams, M. L.; Makay, E.; Diaz-Tous, I. A.
1982-01-01
The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.
Shetty, Shilpa; Hiremath, Geeta; Yeli, Mahantesh
2017-01-01
Aim of the Study: The aim of this study was to compare and evaluate the sealing ability of four root end filling materials mineral trioxide aggregate (MTA)-Plus, Biodentine, MTA (MTA Angelus) and glass ionomer cement (GIC) using fluid filtration method. Materials and Methods: Forty-four extracted, human single-rooted teeth were collected. The crown of each tooth was decoronated 2 mm above the cementoenamel junction. Canals were negotiated, instrumented, obturated using lateral compaction method. The access cavities were sealed with Cavit. Root end resection and apical root end cavity preparations of 4 mm were made in each specimen. The selected roots were then randomly divided into four groups (n = 11) and restored as follows. Group 1 – GIC, Group 2 – MTA (MTA Angelus), Group 3 – Biodentine, and Group 4 – MTA Plus. The apical microleakage of each specimen was assessed using fluid filtration method at 72 h, 1 month and 3 months. Microleakage in each specimen was recorded in mm (millimeter) and converted to μl/min/cm H2O. Results: MTA Angelus showed least microleakage followed by Biodentine and MTA Plus. Least sealing ability was seen with GIC. There was statistically significant difference between all the materials at various time intervals. Conclusion: MTA Angelus showed superior sealing ability as a retrograde filling material followed by Biodentine and MTA Plus. PMID:29386776
Use of duraseal in repair of cerebrospinal fluid leaks.
Chin, Christopher J; Kus, Lukas; Rotenberg, Brian W
2010-10-01
The purpose of our article is to review the use of the DuraSeal Sealant System (Confluent Surgical Inc., Waltham, MA) in the repair of complex cerebrospinal fluid (CSF) leaks in endoscopic skull-base surgery. Retrospective chart review. London Health Sciences Centre. A database of endoscopic skull-base cases between 2007 and 2009 that involved CSF leakage repaired with DuraSeal was created. Demographic data and operative reports were collected and analyzed qualitatively. Recurrence of CSF leak after repair. Five cases were identified that met study criteria. In four of the five cases, the repair was successful. There were no complications related to DuraSeal use. Comparison to a subset of patients using Tisseel Fibrin Sealant (Baxter, Toronto, ON) for repair did not show a significant difference in failure rate (χ2 = 0.029, p = .858). There are a variety of techniques described to repair CSF rhinorrhea, with various studies demonstrating the advantages of using tissue glues in CSF leak repairs. We used DuraSeal in five patients to enhance graft strength and form a watertight seal. The system was effective in the majority of patients. Our study is the first to report on endoscopic endonasal repair of CSF leaks using DuraSeal.
Evaluation of soft rubber goods. [for use as O-rings, and seals on space shuttle
NASA Technical Reports Server (NTRS)
Merz, P. L.
1974-01-01
The performance of rubber goods suitable for use as O-rings, seals, gaskets, bladders and diaphragms under conditions simulating those of the space shuttle were studied. High reliability throughout the 100 flight missions planned for the space shuttle was considered of overriding importance. Accordingly, in addition to a rank ordering of the selected candidate materials based on prolonged fluid compatibility and sealability behavior, basic rheological parameters (such as cyclic hysteresis, stress relaxation, indicated modulus, etc.) were determined to develop methods capable of predicting the cumulative effect of these multiple reuse cycles.
NASA Technical Reports Server (NTRS)
Weiser, P.; Nordmann, R.
1991-01-01
In today's rotordynamic calculations, the input parameters for a finite element analysis (FEA) determine very much the reliability of eigenvalue and eigenmode predictions. While modeling of an elastic structure by means of beam elements etc. is relatively straightforward to perform and the input data for journal bearings are usually known exactly enough, the determination of stiffness and damping for labyrinth seals is still the subject of many investigations. Therefore, the rotordynamic influence of labyrinths is often not included in FEA for rotating machinery because of a lack of computer programs to calculate these parameters. This circumstance can give rise to severe vibration problems especially for high performance turbines or compressors, resulting in remarkable economic losses. The forces generated in labyrinths can be described for small motions around the seal center with a linearized force-motion relationship. Several years ago, we started with the development of computer codes for the determination of rotordynamic seal coefficients. Our different approaches to evaluate the dynamic fluid forces generated by turbulent, compressible seal flow are introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, Eric J
LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.
A Lifting Ball Valve for cryogenic fluid applications
NASA Astrophysics Data System (ADS)
Cardin, Joseph M.; Reinicke, Robert H.; Bruneau, Stephen D.
1993-11-01
Marotta Scientific Controls, Inc. has designed a Lifting Ball Valve (LBV) capable of both flow modulation and tight shutoff for cryogenic and other applications. The LBV features a thin-walled visor valving element that lifts off the seal with near axial motion before rotating completely out of the flow path. This is accomplished with a simple, robust mechanism that minimizes cost and weight. Conventional spherical rotating seats ar plagued by leakage due to 'scuffing' as the seal and seat slide against one another while opening. Cryogenic valves, which typically utilize plastic seals, are particularly susceptible to this type of damage. The seat in the LBV lifts off the seal without 'scuffing' making it immune to this failure mode. In addition, the LBV lifting mechanism is capable of applying the very high seating loads required to seal at cryogenic temperatures. These features make the LBV ideally suited for cryogenic valve applications. Another major feature of the LBV is the fact that the visor rotates completely out of the flow path. This allows for a smaller, lighter valve for a given flow capacity, especially for line sizes above one inch. The LBV is operated by a highly integrated 'wetted' DC brushless motor. The motor rotor is 'wetted' ion that it is immersed in the fluid. To ensure compatibility, the motor rotor is encased in a thin-walled CRES weldment. The motor stator is outside the fluid containment weldment and therefore is not in direct contact with the fluid. To preclude the potential for external leakage there are no static or dynamic seals or bellows across the pressure boundary. The power required to do the work of operating the valving mechanism is transmitted across the pressure boundary by electromagnetic interaction between the motor rotor and the stator. Commutation of the motor is accomplished using the output of a special 'wetted' resolver. This paper describes the design, operation, and element testing of the LBV.
MAHDI, Alaa Abdul; BOLAÑOS-CARMONA, Victoria; GONZALEZ-LOPEZ, Santiago
2013-01-01
Objectives To investigate the bond strength and seal ability produced by AH Plus/gutta-percha, EndoREZ and RealSeal systems to root canal dentin. Material and Methods Sixty extracted single-root human teeth, instrumented manually to size 40, were divided into three groups (n=20) according to the sealer used; G1: AH Plus, G2: EndoREZ, and G3: RealSeal sealers. After filling using the lateral condensation technique, each sealer group was randomly divided into two subgroups according to the tests applied (n=10 for µPush-out test and n=10 for fluid filtration test). A fluid filtration method was used for quantitative evaluation of apical leakage. Four 1-mm-thick slices (cervical and medium level) were obtained from each root sample and a µPush-out test was performed. Failure modes were examined under microscopy at 40x, and a one-way ANOVA was applied to analyze the permeability. Non-parametrical statistics for related (Friedman's and Wilcoxon's rank tests) or unrelated samples (Kruskal-Wallis' and Mann-Whitney's tests) allowed for comparisons of µPush-out strength values among materials at the different levels. Statistical significance was accepted for p values <.05. Results There are no significant differences among fluid filtration of the three sealers. The sealer/core material does not significantly influence the µPush-out bond strength values (F=2.49; p=0.10), although statistically significant differences were detected with regard to root level (Chi2=23.93; p<0.001). AH Plus and RealSeal obtained higher bond strength to intraradicular dentin in the medium root slices. Conclusions There are no significant differences between the permeability and global µPush-out bond strength to root canal dentin achieved by AH Plus/gutta-percha, EndoREZ and RealSeal systems. PMID:24037078
Dynamic response of film thickness in spiral-groove face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1985-01-01
Tests were performed on an inward- and an outward-pumping spiral-groove face seal to experimentally determine the film thickness response to seal seat motions and to gain insight into the effect of secondary seal friction on film thickness behavior. Film thickness, seal seat axial motion, seal frictional torque, and film axial load were recorded as functions of time. The experiments revealed that for sinusoidal axial oscillations of the seal seat, the primary ring followed the seal seat motion very well. For a skewed seal seat, however, the primary ring did not follow the seal seat motion, and load-carrying capacity was degraded. Secondary seal friction was varied over a wide range to determine its effect on film thickness dynamics. The seals were tested with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed ranged from 7000 to 20,000 rpm. Seal tangential velocity ranged from 34 to 98 m/sec (113 to 323 ft/sec).
Shaft seal assembly for high speed and high pressure applications
NASA Technical Reports Server (NTRS)
Hadt, W. F.; Ludwig, L. P. (Inventor)
1979-01-01
A seal assembly is provided for reducing the escape of fluids from between a housing and a shaft rotably mounted in the housing. The seal assembly comprises a pair of seal rings resiliently connected to each other and disposed in side-by-side relationship. In each seal ring, both the internal bore surface and the radial face which faces away from the other seal ring are provided with a plurality of equi-spaced recesses. The seal faces referred to are located adjacent a seating surface of the housing. Under normal operating conditions, the seal assembly is stationary with respect to the housing, and the recesses generate life, keep the assembly spaced from the rotating shaft and allow slip therebetween. The seal assembly can seize on the shaft, and slip will then occur between the radial faces and the housing.
Analysis and Design of a Double-Divert Spiral Groove Seal
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Berard, Gerald
2007-01-01
This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.
A Teaspoon Pump for Pumping Blood with High Hydraulic Efficiency and Low Hemolysis Potential.
Dame, Don
1996-05-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required. © 1996 International Society for Artificial Organs.
A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.
Dame, D
1996-06-01
Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.
Development of a gastroretentive pulsatile drug delivery platform.
Thitinan, Sumalee; McConville, Jason T
2012-04-01
To develop a novel gastroretentive pulsatile drug delivery platform by combining the advantages of floating dosage forms for the stomach and pulsatile drug delivery systems. A gastric fluid impermeable capsule body was used as a vessel to contain one or more drug layer(s) as well as one or more lag-time controlling layer(s). A controlled amount of air was sealed in the innermost portion of the capsule body to reduce the overall density of the drug delivery platform, enabling gastric floatation. An optimal mass fill inside the gastric fluid impermeable capsule body enabled buoyancy in a vertical orientation to provide a constant surface area for controlled erosion of the lag-time controlling layer. The lag-time controlling layer consisted of a swellable polymer, which rapidly formed a gel to seal the mouth of capsule body and act as a barrier to gastric fluid ingress. By varying the composition of the lag-time controlling layer, it was possible to selectively program the onset of the pulsatile delivery of a drug. This new delivery platform offers a new method of delivery for a variety of suitable drugs targeted in chronopharmaceutical therapy. This strategy could ultimately improve drug efficacy and patient compliance, and reduce harmful side effects by scaling back doses of drug administered. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.
2016-12-01
An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.
Kabei, N; Tuichiya, K; Sakurai, Y
1994-09-01
When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
Batzer, Thomas H.; Call, Wayne R.
1989-01-01
This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.
Batzer, T.H.; Call, W.R.
1989-01-24
This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.
Takei, Yoshio; Suzuki, Ippei; Wong, Marty K S; Milne, Ryan; Moss, Simon; Sato, Katsufumi; Hall, Ailsa
2016-10-01
An animal-borne blood sampler with data-logging functions was developed for phocid seals, which collected two blood samples for the comparison of endocrinological/biochemical parameters under two different conditions. The sampler can be triggered by preset hydrostatic pressure, acceleration (descending or ascending), temperature, and time, and also manually by light. The sampling was reliable with 39/50 (78%) successful attempts to collect blood samples. Contamination of fluids in the tubing to the next blood sample was <1%, following the prior clearance of the tubing to a waste syringe. In captive harbor seals ( Phoca vitulina ), the automated blood-sampling method was less stressful than direct blood withdrawal, as evidenced by lower levels of stress hormones ( P < 0.05 for ACTH and P = 0.078 for cortisol). HPLC analyses showed that both cortisol and cortisone were circulating in seal blood. Using the sampler, plasma levels of cardiovascular hormones, atrial natriuretic peptide (ANP), AVP, and ANG II were compared in grey seals ( Halichoerus grypus ), between samples collected when the animals were on land and in the water. HPLC analyses determined that [Met 12 ] ANP (1-28) and various forms of angiotensins (ANG II, III, and IV) were circulating in seal blood. Although water immersion profoundly changes the plasma levels of cardiovascular hormones in terrestrial mammals, there were only tendencies toward an increase in ANP ( P = 0.069) and a decrease in AVP ( P = 0.074) in the seals. These results suggest that cardiovascular regulation in phocid seals may have undergone adaptation during evolution of the carnivore to a semiaquatic lifestyle. Copyright © 2016 the American Physiological Society.
Sealed vacuum canister and method for pick-up and containment of material
Stoutenburgh, Roger R.
1996-01-01
A vacuum canister including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. In operation of the vacuum canister to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber.
Sealed vacuum canister and method for pick-up and containment of material
Stoutenburgh, R.R.
1996-02-13
A vacuum canister is described including a housing with a sealed vacuum chamber having a predetermined vacuum pressure therein and a valve having a first port for fluid communication with the vacuum chamber and a second port for receiving at least one of a fluid and a particulate material. The valve is operable between a first position to seal the vacuum chamber and retain the predetermined vacuum within the vacuum chamber, and a second position to access the vacuum chamber to permit vacuum fluid flow through the valve from the second port into the vacuum chamber. The vacuum canister, in the operation to pick up material with the valve in the second position, when the second port is located adjacent at least one of a fluid and a particulate material, is effective to displace through the valve at least one of a fluid and a particulate material into the housing. The vacuum canister is desirably suitable for picking up and containing hazardous material such as radioactive material, in which the vacuum canister includes a protective layer of lead having a predetermined thickness that is effective to shield radiation emitted from the radioactive material contained within the housing. Advantageously, the vacuum canister includes a vacuum means for establishing a predetermined vacuum pressure within the vacuum chamber. 6 figs.
Sonographic diagnosis and successful nonoperative management of sealed perforated duodenal ulcer.
Fujii, Yasutomo; Asato, Mitsunobu; Taniguchi, Nobuyuki; Shigeta, Kouichiro; Omoto, Kiyoka; Itoh, Kouichi; Suzukawa, Masayuki
2003-01-01
We encountered a case of sealed perforated duodenal ulcer in a 75-year-old woman with rheumatoid arthritis and chronic renal failure. Abdominal sonography showed a bright linear echo within the thickened anterior wall of the duodenal bulb and the presence of free air at the anterior surface of the liver. We found no signs of direct communication between the duodenal lumen and the peritoneal cavity or any free fluid. On follow-up sonography performed every 2 days during the first week of the patient's hospitalization, no free fluid was found in the abdomen. The use of sonography to diagnose this patient's sealed perforated duodenal ulcer and to monitor the ulcer for the appearance of free fluid allowed us to provide successful nonsurgical management to this patient. We believe that the use of abdominal sonography in all patients suspected of having a perforated duodenal ulcer may help increase the diagnostic accuracy of this modality and may reduce the need for surgery in such patients. Copyright 2002 Wiley Periodicals, Inc.
Analogy between fluid cavitation and fracture mechanics
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.
When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.
Analogy between fluid cavitation and fracture mechanics
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.
1983-01-01
When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2011-11-15
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Mechanically expandable annular seal
Gilmore, R.F.
1983-07-19
A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.
Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals
NASA Astrophysics Data System (ADS)
Welch, N.; Crawshaw, J.
2017-12-01
Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at https://pubs.usgs.gov/tm/06/a43/. 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.
Performance of end-face seals with diametral tilt and coning - Hydrodynamic effects
NASA Technical Reports Server (NTRS)
Sharoni, A.; Etsion, I.
1979-01-01
Hydrodynamic effects in end-face seals with diametral tilt and coning are analyzed. A closed-form solution for the axial separating force and the restoring and transverse moments is presented that covers the whole range from zero to full angular misalignment at various degrees of coning. Both low-pressure seals with cavitating flow and high-pressure seals with full fluid film are considered. The effect of coning is to reduce the axial force and the restoring and transverse moments compared to their magnitude in flat-face seals. Strong coupling between diametral tilt and transverse moment is demonstrated. This transverse moment which is entirely due to hydrodynamic effects can be the source of dynamic instability in the form of seal wobble.
NASA Technical Reports Server (NTRS)
Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.
1991-01-01
Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.
Development of a contact heat exchanger for a constructable radiator system
NASA Technical Reports Server (NTRS)
Howell, H. R.
1983-01-01
A development program for a contact heat exchanger to be used to transfer heat from a spacecraft coolant loop to a heat pipe radiator is described. The contact heat exchanger provides for a connectable/disconnectable joint which allows for on-orbit assembly of the radiator system and replacement or exchange of radiator panels for repair and maintenance. The contact heat exchanger does not require the transfer of fluid across the joint; the spacecraft coolant loop remains contained in an all welded system with no static or dynamic fluid seals. The contact interface is also "dry' with no conductive grease or interstitial material required.
Watertight cataract incision closure using fibrin tissue adhesive.
Hovanesian, John A; Karageozian, Vicken H
2007-08-01
To determine whether a simple method for applying fibrin tissue adhesive to a clear corneal cataract incision can create a watertight seal. Laboratory investigation. Clear corneal cataract incisions were simulated in 8 eye-bank eyes. In 4 eyes, fibrin adhesive was applied to the incision in a simple manner; the other 4 eyes were controls with no adhesive. Each eye was tested under low pressure conditions to detect fluid ingress of India Ink on the eye's surface. The eyes were tested again with external compression to distort the incision to detect fluid egress. In the eyes with fibrin adhesive, there was no egress of fluid with incision distortion and no ingress of India Ink. In the 4 eyes without adhesive, there was ingress and egress of fluid. A simple method of applying fibrin adhesive to cataract incisions created a watertight seal.
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Jonkoniec, T. G.
1975-01-01
A positive isolation disconnect was developed for component replacement in serviced liquid and gaseous spacecraft systems. Initially a survey of feasible concepts was made to determine the optimum method for fluid isolation, sealing techniques, coupling concepts, and foolproofing techniques. The top concepts were then further evaluated, including the fabrication of a semifunctional model. After all tradeoff analyses were made, a final configuration was designed and fabricated for development testing. This resulted in a 6.35 mm (1/4 inch) line and 12.7 mm (1/2 inch) line positive isolation disconnect, each unit consisting of two coupled disconnect halves, each capable of fluid isolation with essentially zero clearance between them for zero leakage upon disconnect half disengagement. An interlocking foolproofing technique was incorporated that prevents uncoupling of disconnect halves prior to fluid isolation.
A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress
NASA Astrophysics Data System (ADS)
Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi
2014-11-01
A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1993-01-01
The compliant metallic seal combines the noncontact feature of the labyrinth seal, the low leakage of a mechanical seal, and the compliant nature of the brush seal. It consists of several thin metallic elements or leaves mounted within a ring which is press fit into the housing, and in form, sort of resembles a lip seal sections wiping the shaft. A second set of overlapping cover leaves are placed on top of the shaft riding leaves which reduces leakage and provides stiffness. The leaves can be straight or angle cut. The shaft riding fingers are designed with mismatched curvature to provide lift off similar to the Rayleigh lift pads in mechanical seals with leading edge clearances nearly twice those of the trailing edge as as shown by Fleming to be optimal for gas flows in convergent seal passages. Leading edge clearances range from 300 to 500 microinches. Balance pockets beneath the leaves provide fluid film feed to the 'Rayleigh lift' surface and the proper balance ratio (mechanical seal) when combined with the static pressure and film pressure. The leaves flex in the radial direction and accommodate thermomechanical behavior as well as axial motion and angular misalignment. In the static mode, there is a net closing force on the leaves. The seals were tested to 70 psi at speeds to 16,000 rpm or surface speeds to 330 fps and temperatures from ambient to 440 F. A slow cycle through the rig critical at 10,000 rpm induced a radial vibration response of 0.004 to 0.005 inch were accommodated by the seal. Preliminary performance data are encouraging demonstrating hydrodynamic liftoff and noncontacting operation at pressure and speeds typical of gas turbine engines. The leakage performance data are significantly better than commercial labyrinth and brush seals which should be expected as this design incorporates the features of the low leakage face or mechanical seal along with the flexibility of the brush configuration.
NASA Astrophysics Data System (ADS)
Hendricks, Robert C.
1993-10-01
The compliant metallic seal combines the noncontact feature of the labyrinth seal, the low leakage of a mechanical seal, and the compliant nature of the brush seal. It consists of several thin metallic elements or leaves mounted within a ring which is press fit into the housing, and in form, sort of resembles a lip seal sections wiping the shaft. A second set of overlapping cover leaves are placed on top of the shaft riding leaves which reduces leakage and provides stiffness. The leaves can be straight or angle cut. The shaft riding fingers are designed with mismatched curvature to provide lift off similar to the Rayleigh lift pads in mechanical seals with leading edge clearances nearly twice those of the trailing edge as as shown by Fleming to be optimal for gas flows in convergent seal passages. Leading edge clearances range from 300 to 500 microinches. Balance pockets beneath the leaves provide fluid film feed to the 'Rayleigh lift' surface and the proper balance ratio (mechanical seal) when combined with the static pressure and film pressure. The leaves flex in the radial direction and accommodate thermomechanical behavior as well as axial motion and angular misalignment. In the static mode, there is a net closing force on the leaves. The seals were tested to 70 psi at speeds to 16,000 rpm or surface speeds to 330 fps and temperatures from ambient to 440 F. A slow cycle through the rig critical at 10,000 rpm induced a radial vibration response of 0.004 to 0.005 inch were accommodated by the seal. Preliminary performance data are encouraging demonstrating hydrodynamic liftoff and noncontacting operation at pressure and speeds typical of gas turbine engines. The leakage performance data are significantly better than commercial labyrinth and brush seals which should be expected as this design incorporates the features of the low leakage face or mechanical seal along with the flexibility of the brush configuration.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.; Shapiro, Wilbur
2005-01-01
The SPIRALI code predicts the performance characteristics of incompressible cylindrical and face seals with or without the inclusion of spiral grooves. Performance characteristics include load capacity (for face seals), leakage flow, power requirements and dynamic characteristics in the form of stiffness, damping and apparent mass coefficients in 4 degrees of freedom for cylindrical seals and 3 degrees of freedom for face seals. These performance characteristics are computed as functions of seal and groove geometry, load or film thickness, running and disturbance speeds, fluid viscosity, and boundary pressures. A derivation of the equations governing the performance of turbulent, incompressible, spiral groove cylindrical and face seals along with a description of their solution is given. The computer codes are described, including an input description, sample cases, and comparisons with results of other codes.
Zero Boil-Off Tank (ZBOT) Experiment
NASA Technical Reports Server (NTRS)
Mcquillen, John
2016-01-01
The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.
Development of the Baylor-Nikkiso centrifugal pump with a purging system for circulatory support.
Naito, K; Miyazoe, Y; Aizawa, T; Mizuguchi, K; Tasai, K; Ohara, Y; Orime, Y; Glueck, J; Takatani, S; Noon, G P
1993-07-01
The Baylor-Nikkiso centrifugal pump is a magnetically coupled system with a V-ring seal separating the pump and the actuator chamber. To prevent thrombus formation behind the impeller and to extend the life of the pump to 2 weeks of continuous operation, we incorporated a purging chamber behind the V-ring seal. An external pump connected to this purging chamber infused fluid at a constant rate to wash the shaft-seal area. To evaluate the effectiveness of the purging system, we have carried out biventricular bypass experiments using calves. The purging system was successful in reducing the level of thrombus formation after 2 weeks of operation. The results of these studies confirmed that the Baylor-Nikkiso centrifugal pump with this purging system is suitable for at least 2 weeks of continuous operation as a circulatory support system.
Swellable elastomers under constraint
NASA Astrophysics Data System (ADS)
Lou, Yucun; Robisson, Agathe; Cai, Shengqiang; Suo, Zhigang
2012-08-01
Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the crack and permeates into the cement, causing small particles of elastomers in the cement to swell, resulting in the blocking of the flow. Elastomers are also used as large components in swellable packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by the elastomer against the confinement is a key factor that affects the quality of the sealing. This work develops a systematic approach to predict the magnitude of the pressure in such components. Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining pressure. The data are interpreted in terms of a modified Flory-Rehner model.
Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C
2017-08-15
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
2017-07-25
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
Stress and Pore Fluid Pressure Cycles Beneath the Seismogenic Layer Recorded by Veins
NASA Astrophysics Data System (ADS)
Nüchter, J. A.; Stöckhert, B.
2006-12-01
Metamorphic rocks approaching the crustal scale brittle-ductile transition (BDT) during exhumation are expected to become increasingly affected by short term stress fluctuations related to seismic activity in the overlying seismogenic layer, while still residing in a long-term viscous environment. The (micro-)structural record of monogenetic syntaxial quartz veins in metamorphic rocks from southern Evia, Greece, yields insight into the processes and conditions just beneath the long-term BDT at temperatures of about 300 to 350° C. The following features are characteristic: 1) The veins crosscut the foliation and all syn-metamorphic structures; 2) the veins have formed from tensile fractures, with a typical length on the order of 10-1 to 101 m; 3) some veins branch symmetrically with an aperture angle of 30°, which is interpreted to indicate high crack propagation rates similar to Raleigh wave speed; 4) the veins formed during a single sealing stage by mineral precipitation in open cavities; 5) the veins show a low aspect ratio of about 10 to 100 and a characteristic lenticular shape, controlled by distributed ductile deformation of the host rock, with vein-parallel shortening by typically less than 1 %; 6) the intensity of crystal plastic deformation in the vein quartz decreases from the vein walls towards the center; 7) fluid inclusions trapped in the vein quartz record a time series of pore fluid pressure (Pf) evolution during progressive sealing, with low Pf at the vein walls (early stage) to high Pf in the vein core (final stage). These features indicate: Opening of the fractures commenced immediately after crack arrest, controlled by ductile deformation of the host rock at temperatures between about 300 and 350° C. The crack opening rate exceeded the rate of sealing, so that the quartz crystals grew into an open cavity. For opening of cracks, the effective stress on the fracture walls must be tensile and the fluid pressure must be similar to that of the magnitude of the least principal stress Pf ≍ σ3. The evolution of Pf recorded by the fluid inclusions reflects the relaxation of stress during progressive opening and sealing of the vein. This is supported by the fact that the quartz crystals grown at the fracture walls, hence early in the opening and sealing history, record a more intense deformation compared to the crystals grown lately in the centre of the vein. The structural and microstructural record of these monogenetic veins reflects an isothermal switch from brittle failure to decelerating viscous creep. The total strain accumulated is low. The following scenario is inferred: Fracturing is proposed to be a consequence of co-seismic loading related to fault slip in the overlying upper crust. Within the underlying damage zone, fractures develop and dilation causes a drop in Pf. Subsequently, the fractures open controlled by viscous creep of the host rock with a concomitant rise in Pf during stress relaxation. Sealing of the fissures to become veins takes place continuously by precipitation of minerals from the pore fluid streaming through the evolving cavity. The lenticular monogenetic veins are therefore interpreted to record a short-term and episodic process. Such type of record of exhumed rocks provides insight into earthquake-related damage beneath the seismogenic layer and into the nature of transient crustal properties in the earthquake cycle.
NASA Technical Reports Server (NTRS)
Baskharone, Erian A.
1993-01-01
This study concerns the rotor dynamic characteristics of fluid-encompassed rotors, with special emphasis on shrouded pump impellers. The core of the study is a versatile and categorically new finite-element-based perturbation model, which is based on a rigorous flow analysis and what we have generically termed the 'virtually' deformable finite-element approach. The model is first applied to the case of a smooth annular seal for verification purposes. The rotor excitation components, in this sample problem, give rise to a purely cylindrical, purely conical, and a simultaneous cylindrical/conical rotor whirl around the housing centerline. In all cases, the computed results are compared to existing experimental and analytical data involving the same seal geometry and operating conditions. Next, two labyrinth-seal configurations, which share the same tooth-to-tooth chamber geometry but differ in the total number of chambers, were investigated. The results, in this case, are compared to experimental measurements for both seal configurations. The focus is finally shifted to the shrouded-impeller problem, where the stability effects of the leakage flow in the shroud-to-housing secondary passage are investigated. To this end, the computational model is applied to a typical shrouded-impeller pump stage, fabricated and rotor dynamically tested by Sulzer Bros., and the results compared to those of a simplified 'bulk-flow' analysis and Sulzer Bros.' test data. In addition to assessing the computed rotor dynamic coefficients, the shrouded-impeller study also covers a controversial topic, namely that of the leakage-passage inlet swirl, which was previously cited as the origin of highly unconventional (resonance-like) trends of the fluid-exerted forces. In order to validate this claim, a 'microscopic' study of the fluid/shroud interaction mechanism is conducted, with the focus being on the structure of the perturbed flow field associated with the impeller whirl. The conclusions of this study were solidified by the outcome of a numerical-certainty exercise, where the grid dependency of the numerical results is objectively examined. The final phase of the shrouded-impeller investigation involves the validation of a built-in assumption, in all other perturbation models, whereby single-harmonic tangential distributions of all the flow thermophysical properties are imposed. The last phase of the investigation course is aimed at verifying the fine details of the perturbed flow field in light of recent set of detailed LDA measurements in a smooth annular seal. Grid dependency of the fluid-induced forces is also investigated, and specific recommendations are made.
Analysis for leakage and rotordynamic coefficients of surface-roughened tapered annular gas seals
NASA Technical Reports Server (NTRS)
Nelson, C. C.
1984-01-01
The present analysis calculates the leakage and rotor-dynamic coefficients for tapered annular gas seals whose rotor and stator have been subjected to different surface roughness treatments. The analysis is demonstrated for the effects of changes in the Space Shuttle Main Engine High Pressure Oxygen Turbopump's turbine interstage seal length, taper, clearance, and fluid prerotation. It is noted that changes in these parameters generally resulted in major changes in leakage and rotordynamic coefficients.
NASA Astrophysics Data System (ADS)
Zhang, Yanhua; Clennell, Michael B.; Delle Piane, Claudio; Ahmed, Shakil; Sarout, Joel
2016-12-01
This generic 2D elastic-plastic modelling investigated the reactivation of a small isolated and critically-stressed fault in carbonate rocks at a reservoir depth level for fluid depletion and normal-faulting stress conditions. The model properties and boundary conditions are based on field and laboratory experimental data from a carbonate reservoir. The results show that a pore pressure perturbation of -25 MPa by depletion can lead to the reactivation of the fault and parts of the surrounding damage zones, producing normal-faulting downthrows and strain localization. The mechanism triggering fault reactivation in a carbonate field is the increase of shear stresses with pore-pressure reduction, due to the decrease of the absolute horizontal stress, which leads to an expanded Mohr's circle and mechanical failure, consistent with the predictions of previous poroelastic models. Two scenarios for fault and damage-zone permeability development are explored: (1) large permeability enhancement of a sealing fault upon reactivation, and (2) fault and damage zone permeability development governed by effective mean stress. In the first scenario, the fault becomes highly permeable to across- and along-fault fluid transport, removing local pore pressure highs/lows arising from the presence of the initially sealing fault. In the second scenario, reactivation induces small permeability enhancement in the fault and parts of damage zones, followed by small post-reactivation permeability reduction. Such permeability changes do not appear to change the original flow capacity of the fault or modify the fluid flow velocity fields dramatically.
Intracochlear drug injections through the round window membrane: Measures to improve drug retention
Plontke, Stefan K.; Hartsock, Jared J.; Gill, Ruth M.; Salt, Alec N.
2016-01-01
The goal of this study was to develop appropriate methodology to apply drugs quantitatively to perilymph of the ear. Intratympanic applications of drugs to the inner ear often result in variable drug levels in perilymph and can only be used for molecules that readily permeate the round window (RW) membrane. Direct intracochlear and intralabyrinthine application procedures for drugs, genes or cell-based therapies by-pass the tight boundaries at the round window, oval window, otic capsule and the blood-labyrinth barrier. However, perforations can release inner ear pressure, allowing cerebrospinal fluid to enter through the cochlear aqueduct, displacing the injected drug solution into the middle ear. Two markers, fluorescein or fluorescein isothiocyanate (FITC)-labeled dextran, were used to quantify how much of an injected substance was retained in cochlear perilymph following an intracochlear injection. We evaluated whether procedures to mitigate fluid leaks improved marker retention in perilymph. Almost all procedures to reduce volume efflux, including the use of gel for internal sealing and glue for external sealing of the injection site, resulted in improved retention of the marker in perilymph. Adhesive on the RW membrane effectively prevented leaks but also influenced fluid exchange between CSF and perilymph. We conclude that drugs can be delivered to the ear in a consistent, quantitative manner using intracochlear injections if care is taken to control the fluid leaks that result from cochlear perforation. PMID:26905306
Experimental postseismic recovery of fractured rocks assisted by calcite sealing
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M.-L.; Gratier, J.-P.; Renard, F.
2017-07-01
Postseismic recovery within fault damage zones involves slow healing of coseismic fractures leading to permeability reduction and strength increase with time. To better understand this process, experiments were performed by long-term fluid percolation with calcite precipitation through predamaged quartz-monzonite samples subjected to upper crustal conditions of stress and temperature. This resulted in a P wave velocity recovery of 50% of its initial drop after 64 days. In contrast, the permeability remained more or less constant for the duration of the experiment. Microstructures, fluid chemistry, and X-ray microtomography demonstrate that incipient calcite sealing and asperity dissolution are responsible for the P wave velocity recovery. The permeability is unaffected because calcite precipitates outside of the main flow channels. The highly nonparallel evolution of strength recovery and permeability suggests that fluid conduits within fault damage zones can remain open fluid conduits after an earthquake for much longer durations than suggested by the seismic monitoring of fault healing.
Comparative evaluation of three shaft seals proposed for high performance turbomachinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.
1982-01-01
Experimental pressure profiles and leak rate characteristics for three shaft seal prototype model configurations proposed for the space shuttle turbopump were assessed in the concentric and fully eccentric, to point of rub, positions without the effects of rotation. The parallel-cylindrical configuration has moderate to good stiffness with a higher leak rate. It represents a simple concept, but for practical reasons and possible increases in stability, all such seals should be conical-convergent. The three-stepdown-sequential, parallel-cylindrical seal is converging and represents good to possible high stiffness when fluid separation occurs, with a significant decrease in leak rate. Such seals can be very effective. The three-stepdown-sequential labyrinth seal of 33-teeth (i.e., 12-11-10 teeth from inlet to exit) provides excellent leak control but usually has very poor stiffness, depending on cavity design. The seal is complex and not recommended for dynamic control.
NASA Technical Reports Server (NTRS)
Waterman, A. W.; Huxford, R. L.; Nelson, W. G.
1976-01-01
Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended.
DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.
1995-01-01
An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.
40 CFR 63.1331 - Equipment leak provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in pumps and agitator seals in light liquid service shall not be considered to be a leak. For purposes of this subpart, a “bleed port” is a technologically-required feature of the pump or seal whereby polymer fluid used to provide lubrication and/or cooling of the pump or agitator shaft exits the pump...
40 CFR 63.164 - Standards: Compressors.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compressor shall be equipped with a seal system that includes a barrier fluid system and that prevents... paragraphs (h) and (i) of this section. (b) Each compressor seal system as required in paragraph (a) of this... requirements of § 63.172 of this subpart; or (3) Equipped with a closed-loop system that purges the barrier...
21 CFR 131.130 - Evaporated milk.
Code of Federal Regulations, 2014 CFR
2014-04-01
... added vitamin D as prescribed by paragraph (b) of this section. It is homogenized. It is sealed in a container and so processed by heat, either before or after sealing, as to prevent spoilage. (b) Vitamin addition. (1) Vitamin D shall be present in such quantity that each fluid ounce of the food contains 25...
Development of a hermetically sealed brushless DC motor for a J-T cryocooler
NASA Technical Reports Server (NTRS)
Joscelyn, Edwin; Hochler, Irwin; Ferri, Andrew; Rott, Heinz; Soukaris, Ted
1996-01-01
This development was sponsored by Ball Aerospace for the Cryogenic On-Orbit LongLife Active Refrigerator (COOLLAR) program. The cryocooler is designed to cool objects to 65 K and operate in space for at least 7 years. The system also imports minimal impact to the spacecraft in terms of vibration and heat. The basic Joule-Thompson cycle involves compressing a working fluid, nitrogen in this case, at near-constant temperature from 17.2 KPa to 6.89 MPa. The nitrogen is then expanded through a Joule-Thompson valve. The pure nitrogen gas must be kept clean; therefore, any contamination from motor organic materials must be eliminated. This requirement drove the design towards sealing of the motor within a titanium housing without sacrificing motor performance. It is estimated that an unsealed motor would have contributed 1.65 g of contaminants, due to the organic insulation and potting materials, over the 7-year life. This paper describes the motor electrical and mechanical design, as well as the sealing difficulties encountered, along with their solutions.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1988-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.
SLM Produced Hermetically Sealed Isolation Valve
NASA Technical Reports Server (NTRS)
Richard, James
2014-01-01
Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.
SLM Produced Hermetically Sealed Isolation Valve
NASA Technical Reports Server (NTRS)
Richard, James A.
2014-01-01
Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
NASA Technical Reports Server (NTRS)
Cao, Nhai The
1993-01-01
A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.
NASA Astrophysics Data System (ADS)
Kolandaivelu, K. P.; Lowell, R. P.
2015-12-01
To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.
Carter, H. Kennon; Mlekodaj, Ronald L.
1977-01-01
A seal is provided for allowing a thin flexible tape to be pulled from a high vacuum region (less than 10.sup.-.sup.6 torr) into atmospheric pressure. The tape first passes through a slit in an elastomer and thence through a pool of vacuum pump fluid into a differentially pumped volume. A second slit in an elastomer is the final seal element prior to exit of the tape to atmospheric pressure. The vacuum seal is utilized in a system for the rapid removal of samples, implanted in the surface of the tape, from a vacuum system to atmospheric pressure.
Method and apparatus for pressurizing vaporous fluids
Bingham, Dennis N.; Ferguson, Russell L.
2001-01-01
Pump apparatus according to the present invention may comprise a pump body having a bore therein and a piston mounted within the bore so that the piston may be reciprocated within the bore between first and second positions. A sleeve seal assembly mounted to the pump body contacts the piston as the piston moves between the first and second positions. A piston seal assembly mounted to the piston contacts the bore in the pump body and is located on the piston so that the piston seal assembly does not contact the sleeve seal assembly as the piston is reciprocated between the first and second positions within the bore of the pump body.
Method and apparatus for testing surface characteristics of a material
NASA Technical Reports Server (NTRS)
Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)
2006-01-01
A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.
Evaluation of instability forces of labyrinth seals in turbines or compressors
NASA Technical Reports Server (NTRS)
Iwatsubo, T.
1980-01-01
The effects of a force induced by the labyrinth seal on the stability of rotor systems and the factors of the seal which affect the stability are investigated. In the analysis, it is assumed that the fluid in the seal is steady and that the rotor is set vertically in order to avoid the effects of gravity force. The force induced by the seal is expressed in terms proportional to the velocity and displacement of the rotor and is deduced to that expression for the oil film force in journal bearings. That force is taken into account in the equations of motion; then the stability of the system is discussed by energy concept. The force induced by the labyrinth seal always makes the rotor system unstable, and the tendency is marked when seal leakages are small. The resonance point of the rotor system is also affected by the labyrinth seal (the resonance point of the rotor system is removed by the seal leakages). The force induced by the labyrinth seal was measured by using a water-tunnel experimental system which was designed to measure the labyrinth seal force by using the similarity between gas and liquid flow theory.
Code of Federal Regulations, 2014 CFR
2014-04-01
... include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids... electrical transformers and condensers containing PCB's in sealed containers. (d) For the purpose of this...
Turbine blade tip and seal clearance excitation forces
NASA Technical Reports Server (NTRS)
Martinez-Sanchez, M.; Jaroux, B.
1992-01-01
Experimental and theoretical work done as Phase 3 of a program sponsored by MSFC to investigate the magnitude, origin, and parametric variations of destabilizing forces which arise in high power turbines due to blade-tip leakage effects are described. The two facilities which were built for this purpose are first described. The larger one is a closed, 2 atm pressurized Freon-12 flow loop in which is installed a 1:1 replica of the SSME first stage hydrogen turbine, which can be driven by the flow, and which generates about 14 KW of power into a load-absorbing DC generator. The smaller facility is used to measure the forces on labyrinth seals of the same type as those used in our turbine tests with a shrouded turbine. The seals can be kinematically whirled and spun (independently), and the inlet swirl can be set to a variety of values. Air is the working fluid (with atmospheric discharge) and the data are real-time pressure distributions in the seal glands. The five different unshrouded turbine configurations were tested with static offsets, plus one with a shroud band and a two-ridge seal. Theoretical models of various degrees of complexity were developed to help interpreting and extrapolating the data. The notion of partial work done by the fluid leaking through the tip gaps was put on a quantitative basis by examining the leakage vortex roll-up dynamics. This was used to obtain a theory of the work loss due to a uniform gap. Perturbation and multiple scale arguments were then used to extend this to the case of an eccentric turbine. This yields an unsteady, 3-D theory which can predict the distribution of the approach flow, and its effect on work defect, cross-forces, pressure patterns, and dynamic damping. The predictions agree qualitatively with the data and exhibit the correct trends, but the cross-forces are generally under-predicted.
NASA Technical Reports Server (NTRS)
Nicks, C. O.; Childs, D. W.
1984-01-01
The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.
Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo
1984-01-01
Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).
NASA Astrophysics Data System (ADS)
Li, Minghui; Yin, Guangzhi; Xu, Jiang; Li, Wenpu; Song, Zhenlong; Jiang, Changbao
2016-12-01
Fluid-solid coupling investigations of the geological storage of CO2, efficient unconventional oil and natural gas exploitations are mostly conducted under conventional triaxial stress conditions ( σ 2 = σ 3), ignoring the effects of σ 2 on the geomechanical properties and permeability of rocks (shale, coal and sandstone). A novel multi-functional true triaxial geophysical (TTG) apparatus was designed, fabricated, calibrated and tested to simulate true triaxial stress ( σ 1 > σ 2 > σ 3) conditions and to reveal geomechanical properties and permeability evolutions of rocks. The apparatus was developed with the capacity to carry out geomechanical and fluid flow experiments at high three-dimensional loading forces and injection pressures under true triaxial stress conditions. The control and measurement of the fluid flow with effective sealing of rock specimen corners were achieved using a specially designed internally sealed fluid flow system. To validate that the apparatus works properly and to recognize the effects of each principal stress on rock deformation and permeability, stress-strain and permeability experiments and a hydraulic fracturing simulation experiment on shale specimens were conducted under true triaxial stress conditions using the TTG apparatus. Results show that the apparatus has advantages in recognizing the effects of σ 2 on the geomechanical properties and permeability of rocks. Results also demonstrate the effectiveness and reliability of the novel TTG apparatus. The apparatus provides a new method of studying the geomechanical properties and permeability evolutions of rocks under true triaxial stress conditions, promoting further investigations of the geological storage of CO2, efficient unconventional oil and gas exploitations.
Rothgeb, Timothy Moore [Norfolk, VA; Reece, Charles Edwin [Yorktown, VA
2009-06-02
A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.
40 CFR 60.482-3a - Standards: Compressors.
Code of Federal Regulations, 2012 CFR
2012-07-01
... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped... both. (f) If the sensor indicates failure of the seal system, the barrier system, or both based on the...
40 CFR 63.1026 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... presence and frequency of drips and to the sensor that indicates failure of the seal system, the barrier... or fuel gas system or connected by a closed-vent system to a control device that complies with the.... (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system...
Brake Fluid Compatibility Studies with Advanced Brake Systems
2016-01-16
and chemical characterization tests. Increased wear seen with the silicone brake fluid on brake system parts was substantiated by laboratory bench...tests and dynamic seal tests, followed by a series of physical and chemical characterization tests on used silicone brake fluid and hydraulic...elastomers with silicone brake fluid was conducted at ambient and 40 °C, primarily to determine using GC-MS, if the chemical constituents in the
An in vitro comparison of tracheostomy tube cuffs
Maguire, Seamus; Haury, Frances; Jew, Korinne
2015-01-01
Introduction The Shiley™ Flexible adult tracheostomy tube with TaperGuard™ cuff has been designed through its geometry, materials, diameter, and wall thickness to minimize micro-aspiration of fluids past the cuff and to provide an effective air seal in the trachea while also minimizing the risk of excessive contact pressure on the tracheal mucosa. The cuff also has a deflated profile that may allow for easier insertion through the stoma site. This unique design is known as the TaperGuard™ cuff. The purpose of the observational, in vitro study reported here was to compare the TaperGuard™ taper-shaped cuff to a conventional high-volume low-pressure cylindrical-shaped cuff (Shiley™ Disposable Inner Cannula Tracheostomy Tube [DCT]) with respect to applied tracheal wall pressure, air and fluid sealing efficacy, and insertion force. Methods Three sizes of tracheostomy tubes with the two cuff types were placed in appropriately sized tracheal models and lateral wall pressure was measured via pressure-sensing elements on the inner surface. Fluid sealing performance was assessed by inflating the cuffs within the tracheal models (25 cmH2O), instilling water above the cuff, and measuring fluid leakage past the cuff. To measure air leak, tubes were attached to a test lung and ventilator, and leak was calculated by subtracting the average exhaled tidal volume from the average delivered tidal volume. A tensile test machine was used to measure insertion force for each tube with the cuff deflated to simulate clinical insertion through a stoma site. Results The average pressure exerted on the lateral wall of the model trachea was lower for the taper-shaped cuff than for the cylindrical cuff under all test conditions (P<0.05). The taper-shaped cuff also demonstrated a more even, lower pressure distribution along the lateral wall of the model trachea. The average air and fluid seal performance with the taper-shaped cuff was significantly improved, when compared to the cylindrical-shaped cuff, for each tube size tested (P<0.05). The insertion force for the taper-shaped cuff was ~40% less than that for the cylindrical-shaped cuff. Conclusion In a model trachea, the Shiley™ Flexible Adult tracheostomy tube with TaperGuard™ cuff, when compared to the Shiley™ Disposable Inner Cannula Tracheostomy tube with cylindrical cuff, exerted a lower average lateral wall pressure and a more evenly distributed pressure. In addition, it provided more effective fluid and air seals and required less force to insert. PMID:25960679
Spiral groove seal. [for hydraulic rotating shaft
NASA Technical Reports Server (NTRS)
Ludwig, L. P. (Inventor)
1973-01-01
Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.
Design review and analysis for a Pratt and Whitney fluid-film bearing and seal testing rig
NASA Technical Reports Server (NTRS)
Childs, Dara W.
1994-01-01
A design review has been completed for a Pratt and Whitney (P&W)-designed fluid-film bearing and annular-seal test rig to be manufactured and installed at George C. Marshall Space Flight Center (MSFC). Issues covered in this study include: (1) the capacity requirements of the drive unit; (2) the capacity and configuration of the static loading system; (3) the capacity and configuration of the dynamic excitation system; (4) the capacity, configuration, and rotordynamic stability of a test bearing, support bearings, and shaft; and (5) the characteristics and configuration of the measurement transducers and data channels.
Ultrasound for non-invasive fluid droplet detection inside a sealed container
NASA Astrophysics Data System (ADS)
Glass, S. W.; Good, M. S.; Roy, S.; Luzi, F.
2017-02-01
Ultrasound has long been known to be capable of measuring water level. Zero-degree ultrasound transducers may be used to send an L-wave through the fluid and receive a reflected signal from the fluid/gas interface surface. The level of the fluid is proportional to the sound wave time of flight to traverse the water path. This approach may even be used from outside the fluid containment wall by sending the wave through the tank or pipe bottom. The approach, however, does not work well if there is only a thin layer of fluid consisting of one or two millimeters or even only a few droplets. Surface waves are also known to be sensitive to the presence or absence of fluid on a surface. A surface wave may be transmitted a significant distance by a transmitting transducer and then received by a similar transducer. If the surface along the wave path is wet with even a few droplets of fluid, the surface wave may be significantly attenuated. Generating and measuring such a surface wave from the opposite side of a tank or pipe containment wall and separating the near-wall surface wave from the far-wall surface wave, however, is more challenging. The feasibility of an approach for producing a surface wave on the opposite side of a steel plate to sense the presence or absence of fluid is discussed. This approach is supported by 2-D finite element modeling of the measurement configuration and by empirical demonstration of the technique's sensitivity. This technique was developed for measurement of a very small amount of fluid that may condense within a used nuclear fuel canister after it cools for several years. Early detection of fluid would provide advance warning of potential degradation to internal components in time for mitigation or management of the waste inside that container. Other potential applications include non-intrusive detection of trace liquids within any sealed container, within inaccessible plena of aircrafts or within other inaccessible complex welded skin structures.
Mechanical Expansion of Steel Tubing as a Solution to Leaky Wellbores
Radonjic, Mileva; Kupresan, Darko
2014-01-01
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1. The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments. PMID:25490436
Mechanical expansion of steel tubing as a solution to leaky wellbores.
Radonjic, Mileva; Kupresan, Darko
2014-11-20
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP). The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments.
NASA Technical Reports Server (NTRS)
Farner, Bruce R. (Inventor)
2012-01-01
A valve includes a housing defining a bore having an inlet and extending along a longitudinal axis. A head is attached to the housing and defines a head passage having an outlet. A piston is disposed within the bore and includes a piston passage extending through the piston along the longitudinal axis. The piston is moveable between a closed position in which a sealing end of the piston abuts a seat of the head to close fluid communication through the piston passage and an open position in which the sealing end of the piston is axially spaced along the longitudinal axis from the seat of the head to permit fluid communication through the piston passage between the inlet and the outlet. The housing defines an equalizing chamber in fluid communication with the head passage for damping movement of the piston.
Numerical solution of a flow inside a labyrinth seal
NASA Astrophysics Data System (ADS)
Šimák, Jan; Straka, Petr; Pelant, Jaroslav
2012-04-01
The aim of this study is a behaviour of a flow inside a labyrinth seal on a rotating shaft. The labyrinth seal is a type of a non-contact seal where a leakage of a fluid is prevented by a rather complicated path, which the fluid has to overcome. In the presented case the sealed medium is the air and the seal is made by a system of 20 teeth on a rotating shaft situated against a smooth static surface. Centrifugal forces present due to the rotation of the shaft create vortices in each chamber and thus dissipate the axial velocity of the escaping air.The structure of the flow field inside the seal is studied through the use of numerical methods. Three-dimensional solution of the Navier-Stokes equations for turbulent flow is very time consuming. In order to reduce the computational time we can simplify our problem and solve it as an axisymmetric problem in a two-dimensional meridian plane. For this case we use a transformation of the Navier-Stokes equations and of the standard k-omega turbulence model into a cylindrical coordinate system. A finite volume method is used for the solution of the resulting problem. A one-side modification of the Riemann problem for boundary conditions is used at the inlet and at the outlet of the axisymmetric channel. The total pressure and total density (temperature) are to be used preferably at the inlet whereas the static pressure is used at the outlet for the compatibility. This idea yields physically relevant boundary conditions. The important characteristics such as a mass flow rate and a power loss, depending on a pressure ratio (1.1 - 4) and an angular velocity (1000 - 15000 rpm) are evaluated.
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1974-01-01
A computer program is presented for compressible fluid flow with friction and area change. The program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions. The program was written to be applied to gas film seals. The area-change analysis should prove useful for choked flow conditions with small mean thickness, as well as for face seals where radial area change is significant. The program is written in FORTRAN 4.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1971-01-01
The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.
Spiral groove seal. [for rotating shaft
NASA Technical Reports Server (NTRS)
Ludwig, L. P.; Strom, T. N. (Inventor)
1974-01-01
Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove produces a pumping action toward the fluid when the shaft rotates. This prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear. Provision is made for placing these spiral grooves in communication with the fluid to accelerate the generation of the hydraulic lifting force.
Stirling engine with air working fluid
Corey, John A.
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
Energy conservation through sealing technology
NASA Technical Reports Server (NTRS)
Stair, W. K.; Ludwig, L. P.
1978-01-01
Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.
Microfluidic pressure sensing using trapped air compression.
Srivastava, Nimisha; Burns, Mark A
2007-05-01
We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.
Microfluidic pressure sensing using trapped air compression
Srivastava, Nimisha; Burns, Mark A.
2010-01-01
We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid–air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d ~ 50 μm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700–100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384
[Sealing properties of three resin-based sealers].
Mai, Sui; Wu, Shiyu; Gu, Lisha; Qi, Yipin; Sun, Qiurong; Ling, Junqi
2014-11-01
To evaluate the sealing properties of three resin- based sealers, EndoREZ, RealSEAL and RealSEAL SE. Forthy-eight extracted human anterior teeth with single root and canal were prepared using ProTaper files with crown-down technique to F3. The teeth were filled with three sealer respectively with hot gutta- percha vertical condensation technique simulating the clinical situation. Leakage quantity was detected using computerized fluid filtration meter with 10 samples in each group. The cross section morphology of apical parts of roots of 5 mm was observed with scanning electron microscope and transmission electron microscope in 3 samples of each group, respectively. The leakage quantity of EndoREZ, RealSEAL and RealSEAL SE were (2.61±0.60), (1.43±0.11) and (1.76±0.18) µl/min, respectively. The gaps between the the sealer and the canal wall were increased in in order of RealSEAL, RealSEAL SE and EndoREZ. No obvious demineralized dentin under EndoREZ and the smear layer was not completed removed. The partly demineralized dentin was observed under RealSEAL and the smear layer was totally removed. The partly demineralized dentin was seen under RealSEAL SE and the majority of smear layer was removed. Among the three resin- based sealers, RealSEAL has the best sealing properties, followed by RealSEAL SE and EndoREZ.
Nuclear reactor sealing system
McEdwards, James A.
1983-01-01
A liquid metal-cooled nuclear reactor sealing system. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel.
Centrifugal separators and related devices and methods
Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID
2012-03-06
Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.
Barmpalexis, Panagiotis; Grypioti, Agni
2018-06-01
This study describes the development of a new esomeprazole (ESO) delayed release gastro-resistant formulation with improved storage stability. A three-step (drug-, sub(seal)- and enteric-) coating process was employed with the aid of a fluid bed coater. Several formulation factors (namely, size and quantity of starting non-pareil sugar spheres, binder quantity during drug-layering, sub(seal)-coating polymer type, and quantity and enteric coating quantity) were evaluated and the whole process was modeled with the aid of feed-forward back-propagation artificial neural networks (ANNs). Results showed that the selection of small-sized starting spheres (45/60 mesh size) leads to pellet agglomeration, while as sub(seal)-coating weight gain increases a reduction in ESO dissolution rate is observed. The enteric-coating applied (Eudragit L30D-55) showed good gastro-resistant performance in both 0.1 N HCl and pH 4.5 media, while immediate release profiles with more than 85% of ESO being released in less than 30 min were obtained. The effect of cellulose-based sub(seal)-coating polymers, (namely, hydroxypropyl cellulose and hydroxypropylmethyl cellulose) on formulation's storage stability at 40 ± 2 °C/75 ± 5%RH indicated that only hydroxypropylmethyl cellulose was able to stabilize ESO delayed-release formulations in terms of assay, dissolution, impurities, and gastro-resistance performance. Finally, scanning electron microscopy (SEM) analysis revealed smooth and homogeneous external surface/coating layers in all three levels (drug-, sub(seal)-, and enteric- coating), while x-ray diffraction showed no polymorphic transformations.
Adhesive sealing of dentin surfaces in vitro: A review
Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H
2016-01-01
Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037
Effect of working fluids on thermal performance of closed loop pulsating heat pipe
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Malcho, Milan
2014-08-01
Improving the performance of electrical components needs higher heat removal from these systems. One of the solutions available is to use a sealed heat pipe with a throbbing filling, where development meets the current requirements for intensification of heat removal and elimination of moving parts cooling systems. Heat pipes operate using phase change working fluid, and it is evaporation and condensation. They have a meandering shape and are characterized by high intensity of heat transfer, high durability and reliability. Advantage of these tubes is that it is not necessary to create the internal capillary structure for transporting liquid and they need any pump to the working fluid circulation. They have a simple structure, low cost, high performance, and they can be used for various structural applications. The choice of working fluid volume and performance affects thermal performance. Distilled water, ethanol and acetone were used in the performance ranges 0-80%.
NASA Technical Reports Server (NTRS)
Das, Digendra K.
1991-01-01
The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.
Performance of Oil Pumping Rings: An Analytical and Experimental Study
NASA Technical Reports Server (NTRS)
Eusepi, M. W.; Walowit, J. A.; Pinkus, O.; Holmes, P.
1986-01-01
A steady-state design computer program was developed to predict the performance of pumping rings as functions of geometry, applied loading, speed, ring modulus, and fluid viscosity. Additional analyses were developed to predict transient behavior of the ring and the effects of temperature rises occurring in the hydrodynamic film between the ring and shaft. The analysis was initially compared with previous experimental data and then used to design additional rings for further testing. Tests were performed with Rulon, carbon-graphite, and babbit rings. The design analysis was used to size all of the rings and to select the ranges of clearances, thickness, and loading. Although full quantitative agreement was lacking, relative agreement existed in that rings that were predicted to perform well theoretically, generally performed well experimentally. Some causes for discrepanices between theory and experiment are believed to be due to starvation, leakage past the secondary seal at high pressures, and uncertainties in the small clearances and local inlet temperatures to the pumping ring. A separate preliminary analysis was performed for a pumping Leningrader seal. This anlaysis can be used to predict the film thickness and flow rate thr ough the seal as a function of pressure, speed, loading, and geometry.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.
2004-08-31
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by either fluid or gas pressure against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile Monolith Polymer Elements For Flow Control In Microfluidic Systems
Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Shepodd, Timothy J.; Kirby, Brian J.
2006-01-24
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Mobile monolithic polymer elements for flow control in microfluidic devices
Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Shepodd, Timothy J [Livermore, CA; Kirby, Brian J [San Francisco, CA
2005-11-11
A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
Self-actuating and locking control for nuclear reactor
Chung, Dong K.
1982-01-01
A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level.
Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials
NASA Astrophysics Data System (ADS)
Anbergen, Hauke; Sass, Ingo
2016-04-01
Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle • constant radial stress boundary conditions (sigma 2 = sigma 3 = constant) • radial freezing from inside out, following the in-situ freezing direction The results differ substantially from prior test procedures (such as standardized frost tests for concrete or soft soils). Concentric frost-induced cracking was observed. The cracking pattern is in good agreement with cryostatic suction processes and frost heave in fine grained soils. The hydraulic conductivity of the system depends on the composition of the grout. With the developed testing device (and procedure) a unified and independent assessment and quality control becomes feasible. Adequate materials for advanced shallow geothermal systems can be clearly identified.
Lee, Kwang-Won; Son, H-H; Yoshiyama, Masatoshi; Tay, Franklin R; Carvalho, Ricardo M; Pashley, David H
2003-09-01
To compare the ability of an experimental antibacterial self-etching primer adhesive system to seal exposure sites in normal, caries-affected and caries-infected human dentin. 30 extracted human third molars were used within 1 month of extraction. 10 intact normal teeth comprised the normal group. 20 teeth with occlusal caries that radiographically extended halfway to the pulp were excavated using caries-detector solution (CDS) and a #4 round carbide bur in a slowspeed handpiece. Half of those teeth were fully excavated free of CDS-stained material without exposing the pulp, and were designated as the caries-affected dentin group. The remaining 10 teeth were excavated as close to the pulp as possible without obtaining an exposure, but whose dentin continued to stain red with CDS; this group was designated as the caries-infected dentin group. The remaining dentin thickness in all of the specimens in the other two groups was then reduced to the same extent as the caries-infected group. Direct exposures of the pulp chamber were made with a 1/4 round bur in the normal dentin or a 25 gauge needle in the other two groups. After measuring the fluid flow through the exposure, the sites were then sealed with an experimental antibacterial fluoride-containing self-etching primer adhesive systems (ABF). Fluid conductance was remeasured every week for 16 weeks. The fluid conductance through the exposure fell 99% in all groups following resin sealing. The seals of normal and caries-affected dentin remained relatively stable over the 16 weeks, while the seals of caries-infected dentin gradually deteriorated, reaching significance at 8 weeks. TEM examination revealed very thin (ca. 0.5 mm) hybrid layers in normal dentin, 3-4 microm thick hybrid layers in caries-affected dentin and 40 microm thick hybrid layers in caries-infected dentin. The tubules of caries-infected dentin were enlarged and filled with bacteria. Resin tags passed around these bacteria in the top 20-40 microm thereby encapsulating them in resin.
The influence of shrouded stator cavity flows on multistage compressor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellborn, S.R.; Okiishi, T.H.
1999-07-01
Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved systematic changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Rig data indicate increasing seal-tooth leakage substantially degraded compressor performance. For every 1 percent increase in seal-tooth clearance-to-span ratio, the decrease in pressure rise was 3 percent and the reduction in efficiency was 1 point. These observed performance penalties are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. The performance degradation observed with increased leakagemore » was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near-hub performance of the stator row in which leakage occurred. Second, the altered stator exit flow conditions, caused by increased leakage, impaired the performance of the next downstream stage by decreasing the work input of the rotor and increasing total pressure loss of the stator. These trends caused the performance of downstream stages to deteriorate progressively. Numerical simulations of the test rig stator flow field were also conducted to help resolve important fluid mechanic details associated with the interaction between the primary and cavity flows. Simulation results show that fluid originating in the upstream cavity collected on the stator suction surface when the cavity tangential momentum was low and on the pressure side when it was high. The convection of cavity fluid to the suction surface was a mechanism that reduced stator performance when leakage increased.« less
DEVICE FOR CHARGING OR DISCHARGING
Untemeyer, S.; Hutter, E.
1959-01-13
A loading and unloading device is presented for loading objects into and unloading them from an apparatus in which fluid under pressure is employed, such as a heterogeneous rcactor wherein the fuel elements are in the form of slugs. This device is comprised essentially of a cylindrical member disposed coaxially with and as an accessible extension of an internal tube member of the apparatus in which the objects, or fuel elements, are normally disposed in use. The outermost end of the cylindrical extension is closed by a removable seal plug. The lower end of the cylindrical extension is separated from the intennal tube by a disk valve which is operated externally. A source of pressure fluid and a drain line are provided in communication with the interior of the cylindrical extension. To load an object into the internal tube, the disk valve is closed, the seal plug is renmoved, an object is placed in the cylindrical extension, and the seal plug is replaced. The disk valve is then opened and ihe pressure of the fluid within the cylindrical extension is increased until it is greater than the pressure within the internal tube and forces the object out of the cylindrical extension into the internal tube. To remove an object from the tube the disk valve is opened and the intenior of thc cylindnical extension is connected to the drain line whereby the operating pressure within the intennal tube forces the object out of the internal tube and up into the cylindrical extension. The disk valve is then closed and the seal plug is removed to permit removal of the object.
Silva, Safira Marques de Andrade; Carrilho, Marcela Rocha de Oliveira; Marquezini, Luiz; Garcia, Fernanda Cristina Pimentel; Manso, Adriana Pigozzo; Alves, Marcelo Corrêa; de Carvalho, Ricardo Marins
2009-01-01
Objective: To test the hypothesis that the quality of the dentinal sealing provided by two-step etch-and-rinse adhesives cannot be altered by the addition of an extra layer of the respective adhesive or the application of a more hydrophobic, non-solvated resin. Material and Methods: full-crown preparations were acid-etched with phosphoric acid for 15 s and bonded with Adper Single Bond (3M ESPE), Excite DSC (Ivoclar/Vivadent) or Prime & Bond NT (Dentsply). The adhesives were used according to the manufacturers' instructions (control groups) or after application to dentin they were a) covered with an extra coat of each respective system or b) coated with a non-solvated bonding agent (Adper Scotchbond Multi-Purpose Adhesive, 3M ESPE). Fluid flow rate was measured before and after dentin surfaces were acid-etched and bonded with adhesives. Results: None of the adhesives or experimental treatments was capable to block completely the fluid transudation across the treated dentin. Application of an extra coat of the adhesive did not reduce the fluid flow rate of adhesive-bonded dentin (p>0.05). Conversely, the application of a more hydrophobic non-solvated resin resulted in significant reductions in the fluid flow rate (p<0.05) for all tested adhesives. Conclusions: The quality of the dentinal sealing provided by etch-and-rinse adhesives can be significantly improved by the application of a more hydrophobic, non-solvated bonding agent. PMID:19466248
Gas Seal Pad With Herringbone-Grooved Rotor-Stiffness and Load Capacity
NASA Technical Reports Server (NTRS)
Flemming, David P.
2006-01-01
The principle of herringbone-grooved journal bearings has been applied to the case of a seal disc running under a finger seal pad. The inward pumping action of herringbone grooves on the disc generates load capacity and stiffness to maintain a fluid film and prevent contact of the pad and disc. This mechanism does not depend on a converging film under the pad, such as analyzed in previous works. Analysis shows that significant stiffness and load capacity can be supplied by herringbone grooves. In order for the grooves to be effective, the seal pressure drop must be taken outside of the grooved portion of the rotor, but this may be acceptable in order to gain freedom from maintaining a precise film convergence.
Compressible and incompressible fluid seals: Influence on rotordynamic response and stability
NASA Technical Reports Server (NTRS)
Thames, Howard D.
1992-01-01
The flow field inside a whirling annular seal operating a Reynolds numbers of 12,000 and 24,000 and a Taylor number of 6,600 was measured. The rotor was mounted eccentric (50 percent) upon the facilities shaft which resulted in a circular orbit at a whirl ratio of 1.0. Three papers which summarize the work were written and are presented. Addition measurements were performed for the annular seal operating at an eccentricity ratio of 10 percent for Re = 24,000 and Ta = 6,600. A labyrinth seal was also installed into the facility and operated at an eccentricity ratio of 50 percent at the same Reynolds and Taylor numbers. These data are currently being reduced and analyzed.
SCISEAL: A CFD code for analysis of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh; Przekwas, Andrzej
1994-01-01
A viewgraph presentation is made of the objectives, capabilities, and test results of the computer code SCISEAL. Currently, the seal code has: a finite volume, pressure-based integration scheme; colocated variables with strong conservation approach; high-order spatial differencing, up to third-order; up to second-order temporal differencing; a comprehensive set of boundary conditions; a variety of turbulence models and surface roughness treatment; moving grid formulation for arbitrary rotor whirl; rotor dynamic coefficients calculated by the circular whirl and numerical shaker methods; and small perturbation capabilities to handle centered and eccentric seals.
Micromechanism linear actuator with capillary force sealing
Sniegowski, Jeffry J.
1997-01-01
A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.
Morris, W.J.
1958-12-01
A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.
NASA Technical Reports Server (NTRS)
Baehr, E. F. (Inventor)
1977-01-01
A corneal seal device is provided which, when placed in an incision in the eye, permits the insertion of a surgical tool or instrument through the device into the eye. The device includes a seal chamber which opens into a tube which is adapted to be sutured to the eye and serves as an entry passage for a tool. A sealable aperture in the chamber permits passage of the tool through the chamber into the tube and hence into the eye. The chamber includes inlet ports adapted to be connected to a regulated source of irrigation fluid which provides a safe intraocular pressure.
Dual rotating shaft seal apparatus
Griggs, J.E.; Newman, H.J.
1983-06-16
The report is directed to apparatus suitable for transferring torque and rotary motion through a wall in a manner which is essentially gas impermeable. The apparatus can be used for pressurizing, agitating, and mixing fluids and features two ferrofluidic, i.e., ferrometic seals. Each seal is disposed on one of two supported shafts and each shaft is operably connected at one end to a gear mechanism and at its other end to an adjustable coupling means which is to be connected to a rotatable shaft extending through a wall through which torque and rotary motion are to be transferred.
Sealed-bladdered chemical processing method and apparatus
Harless, D. Phillip
1999-01-01
A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.
NASA Technical Reports Server (NTRS)
Elrod, D. A.; Childs, D. W.
1986-01-01
A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
1980-02-01
propylene rubber) EPDM Brake valve parts and seals 80 EPDM (SAE, RM 69) Referee test slabs 70L VITON 0-rings 70 TN4 -i______ - -.- . .J....... TABLE 2...separated. The volume and hardness of two rubber test specimens was determined. One specimen was placed in the lower fluid layer (conventional fluid...and one specimen was suspended horizontally in the top fluid layer (silicone). The jar was stored on the laboratory shelf at ambient temperature. The
NASA Astrophysics Data System (ADS)
Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei
2017-08-01
Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.
Development and Evaluation of Phosphonitrilic Fluoroelastomer O-Rings.
1975-04-01
and having the following formula: c 0CH2(CF2$CF2H n 1 The polymer contained svfflclent cure sites to attain good curability with mnvent~onai...cable with phosphonitrilic fluoroelastomer compounds. A good quality coating of approximately 0,031" thickness was obtained by passing the cable through...extreme low temperature flexibility, outstanding fluid resistance, good heat resis- tance and good dynnmic properties. O-ring seals are one such
Emergency cooling system and method
Oosterkamp, W.J.; Cheung, Y.K.
1994-01-04
An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.
System for injecting fuel in a gas turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jonathan Dwight
A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.
Golovashchenko, Sergey Fedorovich [Beverly Hills, MI; Bonnen, John Joseph Francis [Milford, MI
2012-03-20
An electro-hydraulic forming tool for forming a sheet metal blank in a one-sided die has first and second rigid rings that engage opposite sides of a sheet metal blank. The rigid rings are contained within slots on a die portion and a hydraulic force applicator portion of the forming tool. The seals are either resiliently biased by an elastomeric member or inherently resiliently biased into contact with the blank.
40 CFR 61.242-3 - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a... paragraphs (a)-(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section...
40 CFR 60.482-3a - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped...
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel gas system, or connected by a closed vent system to a control device that meets the requirements... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the...
40 CFR 61.242-3 - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... barrier fluid system degassing reservoir that is routed to a process or fuel gas system or connected by a... paragraphs (a)-(c) of this section shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gas system or connected by a closed-vent system to a control device that meets the requirements of... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an...
40 CFR 65.112 - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel gas system, or connected by a closed vent system to a control device that meets the requirements... barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an alarm unless the...
40 CFR 63.1031 - Compressors standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gas system or connected by a closed-vent system to a control device that meets the requirements of... service. Each barrier fluid system shall be equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. Each sensor shall be observed daily or shall be equipped with an...
40 CFR 60.482-3a - Standards: Compressors.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (2) Equipped with a barrier fluid system degassing reservoir that is routed to a process or fuel gas... equipped with a sensor that will detect failure of the seal system, barrier fluid system, or both. (e)(1) Each sensor as required in paragraph (d) of this section shall be checked daily or shall be equipped...
The protective activity of tea catechins against experimental infection by Vibrio cholerae O1.
Toda, M; Okubo, S; Ikigai, H; Suzuki, T; Suzuki, Y; Hara, Y; Shimamura, T
1992-01-01
Tea catechins inhibited the fluid accumulation induced by cholera toxin in sealed adult mice. The catechins also reduced fluid accumulation by Vibrio cholerae O1 in ligated intestinal loops of rabbits. These findings suggest that tea catechins may possess protective activity against V. cholerae O1.
NASA Astrophysics Data System (ADS)
Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou
2018-06-01
As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in which scenario self-juxtaposition forms between the hanging wall and footwall.
NASA Astrophysics Data System (ADS)
Luo, Xiangcheng
Material contacts, including thermal, electrical, seating (fluid sealing and electromagnetic sealing) and mechanical (pressure) contacts, together with their interface materials, were, evaluated, and in some cases, improved beyond the state of the art. The evaluation involved the use of thermal, electrical and mechanical methods. For thermal contacts, this work evaluated and improved the heat transfer efficiency between two contacting components by developing various thermal interface pastes. Sodium silicate based thermal pastes (with boron nitride particles as the thermally conductive filler) as well as polyethylene glycol (PEG) based thermal pastes were developed and evaluated. The optimum volume fractions of BN in sodium silicate based pastes and PEG based pastes were 16% and 18% respectively. The contribution of Li+ ions to the thermal contact conductance in the PEG-based paste was confirmed. For electrical contacts, the relationship between the mechanical reliability and electrical reliability of solder/copper and silver-epoxy/copper joints was addressed. Mechanical pull-out testing was conducted on solder/copper and silver-epoxy/copper joints, while the contact electrical resistivity was measured. Cleansing of the copper surface was more effective for the reliability of silver-epoxy/copper joint than that of solder/copper joint. For sealing contacts, this work evaluated flexible graphite as an electromagnetic shielding gasket material. Flexible graphite was found to be at least comparable to conductive filled silicone (the state of the art) in terms of the shielding effectiveness. The conformability of flexible graphite with its mating metal surface under repeated compression was characterized by monitoring the contact electrical resistance, as the conformability is important to both electromagnetic scaling and fluid waling using flexible graphite. For mechanical contacts, this work focused on the correlation of the interface structure (such as elastic/plastic deformation, oxidation, strain hardening, passive layer damage, fracture, etc.) with the electrical contact resistance, which was measured in real time for contacts under dynamic compression, thus allowing both reversible and irreversible changes to be observed. The materials studied included metals (carbon steel, stainless steel, aluminum and copper), carbon fiber reinforced polymer-matrix composite (nylon-6), ceramic (mortar) and graphite, due to their relevance to fastening, concrete structures, electric brushes and electrical pressure contacts.
Fournier, R.O.
1991-01-01
Pore-fluid pressure (Pf) > Ph has been encountered at the bottom of 3 geothermal exploration wells that attained temperatures > 370??C (at Larderello, Italy, at Nesjavellir, Iceland, and at The Geysers, California). Chemical sealing by deposition of minerals in veins appears to have allowed the development of the high Pf encountered in the above wells. The upper limit for the magnitude of Pf that can be attained is controlled by either the onset of shear fracturing (where differential stress is relatively high) that reopens clogged veins, or the hydraulic opening of new or old fractures (at relatively low values of differential stress). -from Author
Long-term animal experiments with an intraventricular axial flow blood pump.
Yamazaki, K; Kormos, R L; Litwak, P; Tagusari, O; Mori, T; Antaki, J F; Kameneva, M; Watach, M; Gordon, L; Mukuo, H; Umezu, M; Tomioka, J; Outa, E; Griffith, B P; Koyanagai, H
1997-01-01
A miniature intraventricular axial flow blood pump (IVAP) is undergoing in vivo evaluation in calves. The IVAP system consists of a miniature (phi 13.9 mm) axial flow pump that resides within the left ventricular (LV) chamber and a brushless DC motor. The pump is fabricated from titanium alloy, and the pump weight is 170 g. It produces a flow rate of over 5 L/min against 100 mmHg pressure at 9,000 rpm with an 8 W total power consumption. The maximum total efficiency exceeds 17%. A purged lip seal system is used in prototype no. 8, and a newly developed "Cool-Seal" (a low temperature mechanical seal) is used in prototype no. 9. In the Cool-Seal system, a large amount of purge flow is introduced behind the seal faces to augment convective heat transfer, keeping the seal face temperature at a low level for prevention of heat denaturation of blood proteins. The Cool-Seal system consumes < 10 cc purge fluid per day and has greatly extended seal life. The pumps were implanted in three calves (26, 30, and 168 days of support). The pump was inserted through a left thoracotomy at the fifth intercostal space. Two pursestring sutures were placed on the LV apex, and the apex was cored with a myocardial punch. The pump was inserted into the LV with the outlet cannula smoothly passing through the aortic valve without any difficulty. Only 5 min elapsed between the time of chest opening and initiation of pumping. Pump function remained stable throughout in all experiments. No cardiac arrhythmias were detected, even at treadmill exercise tests. The plasma free hemoglobin level remained in the acceptable range. Post mortem examination did not reveal any interference between the pump and the mitral apparatus. No major thromboembolism was detected in the vital organs in Cases 1 or 2, but a few small renal infarcts were detected in Case 3.
NASA Astrophysics Data System (ADS)
Cangioli, Filippo; Pennacchi, Paolo; Vannini, Giuseppe; Ciuchicchi, Lorenzo
2018-01-01
The influence of sealing components on the rotordynamic stability of turbomachinery has become a key topic because the oil and gas market is increasingly demanding high rotational speeds and high efficiency. This leads the turbomachinery manufacturers to design higher flexibility ratios and to reduce the clearance of the seals. Accurate prediction of the effective damping of seals is critical to avoid instability problems; in recent years, "negative-swirl" swirl brakes have been used to reverse the circumferential direction of the inlet flow, which changes the sign of the cross-coupled stiffness coefficients and generates stabilizing forces. Experimental tests for a teeth-on-stator labyrinth seal were performed by manufacturers with positive and negative pre-swirl values to investigate the pre-swirl effect on the cross-coupled stiffness coefficient. Those results are used as a benchmark in this paper. To analyse the rotor-fluid interaction in the seals, the bulk-flow numeric approach is more time efficient than computational fluid dynamics (CFD). Although the accuracy of the coefficients prediction in bulk-flow models is satisfactory for liquid phase application, the accuracy of the results strongly depends on the operating conditions in the case of the gas phase. In this paper, the authors propose an improvement in the state-of-the-art bulk-flow model by introducing the effect of the energy equation in the zeroth-order solution to better characterize real gas properties due to the enthalpy variation along the seal cavities. The consideration of the energy equation allows for a better estimation of the coefficients in the case of a negative pre-swirl ratio, therefore, it extend the prediction fidelity over a wide range of operating conditions. The numeric results are also compared to the state-of-the-art bulk-flow model, which highlights the improvement in the model.
Space Shuttle RCS Oxidizer Leak Repair for STS-26
NASA Technical Reports Server (NTRS)
Delventhal, R. A.; Faget, N. M.
1989-01-01
Following propellant loading of the Space Shuttle's reaction control system (RCS) for mission STS 26, an oxidizer leak was detected in the left orbital maneuvering system (OMS) pod, where the RCS is located. Subsequent investigation determined that the leak was isolated at a mechanical Dynatube fitting near the RCS nitrogen tetroxide tank. An intense effort was initiated to design, fabricate, and qualify a sealing device to stop the oxidizer leak externally so that the Space Shuttle launch could proceed. It was discovered that sealing devices called clamshells were widely used throughout the petrochemical and power generation industries to stop leaks developed in large diameter pipes which carry steam or other hazardous fluids. These clamshells are available in different diameters and strengths and are placed around the pipe at the location of the leak. A sealing compound is then injected under high pressure into the clamshell to stop the leak. This technology was scaled down and applied to the problem of stopping the leak on the Orbiter, which was on a half-inch diameter line in a nearly inaccessible location. Many obstacles had to be overcome such as determining that the sealing material would be compatible with the nitrogen tetroxide and ensuring that the clamshell would actually fit around the Dynatube fitting without interfering with other lines which were in close proximity. The effort at the NASA Johnson Space Center included materials compatibility testing of several sealants, design of a clamshell to fit in the confined compartment, and manufacture and qualification of the flight hardware. A clamshell was successfully placed around the Dynatube fitting on the Orbiter and the oxidizer leak was terminated. Then it was decided to apply this technology further and design clamshells for other mechanical fittings onboard the Orbiter and develop sealing compounds which will be compatible with fuels such as monomethyl hydrazine (MMH). The potential exists for using this type of sealing device in numerous other applications throughout the aerospace industry.
Dynamic analysis of the mechanical seals of the rotor of the labyrinth screw pump
NASA Astrophysics Data System (ADS)
Lebedev, A. Y.; Andrenko, P. M.; Grigoriev, A. L.
2017-08-01
A mathematical model of the work of the mechanical seal with smooth rings made from cast tungsten carbide in the condition of liquid friction is drawn up. A special feature of this model is the allowance for the thermal expansion of a liquid in the gap between the rings; this effect acting in the conjunction with the frictional forces creates additional pressure and lift which in its turn depends on the width of the gap and the speed of sliding. The developed model displays the processes of separation, transportation and heat removal in the compaction elements and also the resistance to axial movement of the ring arising in the gap caused by the pumping effect and the friction in the flowing liquid; the inertia of this fluid is taken into account by the mass reduction method. The linearization of the model is performed and the dynamic characteristics of the transient processes and the forced oscillations of the device are obtained. The conditions imposed on the parameters of the mechanical seal are formulated to provide a regime of the liquid friction, which minimizes the wear.
Dissociation of Hexavalent Chromium from Sanded Paint Particles into a Simulated Lung Fluid
2006-06-01
was simulated with a porcine based mucin . Sanded particles were collected based on particle size into the impactor’s six petri dishes, which...was used to imitate particle deposition onto a layer of lung fluid. The lung fluid was simulated with a porcine based mucin . Sanded particles were...documented as those directly related to corrosion control such as maintenance, repair, treatment , washing, painting, depainting, and sealing. These
Kim, S Y; Kim, E J; Kim, D S; Lee, I B
2013-01-01
The aims of this study were to examine changes in dentinal fluid flow (DFF) during the application of a desensitizing agent and to compare the permeability reduction levels among different types of desensitizing agents. A cervical cavity was prepared for the exposure of cervical dentin on an extracted human premolar connected to a subnanoliter fluid flow measuring device under 20 cm of water pressure. The cavity was acid-etched with 32% phosphoric acid to make dentin highly permeable. The different types of desensitizing agents that were applied on the cavity were Seal&Protect as the light-curing adhesive type, SuperSeal and BisBlock as oxalate types, Gluma Desensitizer as the protein-precipitation type, and Bi-Fluoride 12 as the fluoride type. DFF was measured from the time before the application of the desensitizing agent throughout the application procedure to five minutes after the application. The characteristics of dentinal tubule occlusion of each desensitizing agent were examined by scanning electron microscopy. The DFF rate after each desensitizing agent application was significantly reduced when compared to the initial DFF rate before application for all of the desensitizing agents (p<0.05). Seal&Protect showed a greater reduction in the DFF rate when compared to Gluma Desensitizer and Bi-Fluoride 12 (p<0.05). SuperSeal and BisBlock exhibited a greater reduction in DFF rate when compared to Bi-Fluoride 12 (p<0.05). The dentin hypersensitivity treatment effects of the employed desensitizing agents in this study were confirmed through real-time measurements of DFF changes. The light-curing adhesive and oxalate types showed greater reduction in the DFF rate than did the protein-precipitation and fluoride types.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Overview of NASA Glenn Seal Program
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.
2003-01-01
The Seal Team is divided into four primary areas. These areas include turbine engine seal development, structural seal development, acoustic seal development, and adaptive seal development. The turbine seal area focuses on high temperature, high speed shaft seals for secondary air system flow management. The structural seal area focuses on high temperature, resilient structural seals required to accommodate large structural distortions for both space- and aero-applications. Our goal in the acoustic seal project is to develop non-contacting, low leakage seals exploiting the principles of advanced acoustics. We are currently investigating a new acoustic field known as Resonant Macrosonic Synthesis (RMS) to see if we can harness the large acoustic standing pressure waves to form an effective air-barrier/seal. Our goal in the adaptive seal project is to develop advanced sealing approaches for minimizing blade-tip (shroud) or interstage seal leakage. We are planning on applying either rub-avoidance or regeneration clearance control concepts (including smart structures and materials) to promote higher turbine engine efficiency and longer service lives.
1997-03-11
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporuscio, Florie Andre; Norskog, Katherine Elizabeth; Maner, James Lavada
The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (graniticmore » gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.« less
Labyrinth Seal Flutter Analysis and Test Validation in Support of Robust Rocket Engine Design
NASA Technical Reports Server (NTRS)
El-Aini, Yehia; Park, John; Frady, Greg; Nesman, Tom
2010-01-01
High energy-density turbomachines, like the SSME turbopumps, utilize labyrinth seals, also referred to as knife-edge seals, to control leakage flow. The pressure drop for such seals is order of magnitude higher than comparable jet engine seals. This is aggravated by the requirement of tight clearances resulting in possible unfavorable fluid-structure interaction of the seal system (seal flutter). To demonstrate these characteristics, a benchmark case of a High Pressure Oxygen Turbopump (HPOTP) outlet Labyrinth seal was studied in detail. First, an analytical assessment of the seal stability was conducted using a Pratt & Whitney legacy seal flutter code. Sensitivity parameters including pressure drop, rotor-to-stator running clearances and cavity volumes were examined and modeling strategies established. Second, a concurrent experimental investigation was undertaken to validate the stability of the seal at the equivalent operating conditions of the pump. Actual pump hardware was used to construct the test rig, also referred to as the (Flutter Rig). The flutter rig did not include rotational effects or temperature. However, the use of Hydrogen gas at high inlet pressure provided good representation of the critical parameters affecting flutter especially the speed of sound. The flutter code predictions showed consistent trends in good agreement with the experimental data. The rig test program produced a stability threshold empirical parameter that separated operation with and without flutter. This empirical parameter was used to establish the seal build clearances to avoid flutter while providing the required cooling flow metering. The calibrated flutter code along with the empirical flutter parameter was used to redesign the baseline seal resulting in a flutter-free robust configuration. Provisions for incorporation of mechanical damping devices were introduced in the redesigned seal to ensure added robustness
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 63.1007 - Pumps in light liquid service standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... sensor that indicates failure of the seal system, the barrier fluid system, or both. The owner or... reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control... liquid service. (iv) Each barrier fluid system is equipped with a sensor that will detect failure of the...
40 CFR 63.163 - Standards: Pumps in light liquid service.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or... with a sensor that will detect failure of the seal system, the barrier fluid system, or both. (4) Each... per million or greater is measured, a leak is detected. (5) Each sensor as described in paragraph (e...
NASA Astrophysics Data System (ADS)
Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M.
2017-07-01
Over the last 6 years we developed an array system for electromagnetic acquisition (magnetotelluric & long offset transient electromagnetics [LOTEM]) that includes microseismic acquisition. While predominantly used for magnetotellurics, we focus on the autonomous operation as reservoir monitoring system including a shallow borehole receiver and 100/150 KVA transmitter. A marine extension is also under development. For Enhanced Oil recovery (EOR), in addition to reservoir flood front movements, reservoir seal integrity has become an issue [1]. Seal integrity is best addressed with microseismics while the water flood front is best addressed with electromagnetics. Since the flooded reservoir is conductive and the hydrocarbon saturated part is resistive, you need both magnetic and electric fields. The fluid imaging is addressed using electromagnetics. To overcome the volume-focus inherent to electromagnetics a new methodology to focus the sensitivity under the receiver is proposed. Field data and 3D modeling confirm this could increase the efficiency of LOTEM to reservoir monitoring.
NASA Technical Reports Server (NTRS)
Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.
1991-01-01
Experimental results from a partially sealed squeeze film damper (SFD) test rig, executing a circular centered orbit are presented and discussed. A serrated piston ring is installed at the damper exit. This device involves a new sealing concept which produces high damping values while allowing for oil flow to cool the damper. In the partially sealed damper, large cavitation regions are observed in the pressure fields at orbit radii epsilon equals 0.5 and epsilon equals 0.8. The cavitated pressure distributions and the corresponding force coefficients are compared with a cavitated bearing solution. The experimental results show the significance of fluid inertia and vapor cavitation in the operation of squeeze film dampers. Squeeze film Reynolds numbers tested reach up to Re equals 50, spanning the range of contemporary applications.
2003 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2004-01-01
The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.
GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoksoulian, Lois; Berger, Peter; Freiburg, Jared
Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, locatedmore » stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO₂ injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO₂ and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.« less
Long-life, space-maintainable nuclear stage regulators and shutoff valves
NASA Technical Reports Server (NTRS)
1972-01-01
The six most promising valve, regulator, and remote coupling concepts, representing the more radical designs from twenty concepts generated, were investigated. Of the three valves, one has no moving parts because shutoff sealing is accomplished by an electromagnetic field which ionized the flowing fluid. Another valve uses liquid metal to obtain sealing. In the third valve, high sealing forces are generated by heating and expanding trapped hydrogen. The pressure regulator is an electronically controlled, electromechanically operated, single state valve. Its complexity is in electronic circuitry, and the design results in less weight, increased reliability and performance flexibility, and multipurpose application. The two remote couplings feature the minimization of weight and mechanical complexity. One concept uses a low melting temperature metal alloy which is injected into the joint cavity; upon solidification, the alloy provides a seal and a structural joint. The second concept is based on the differential thermal expansion of the coupling mating parts. At thermal equilibrium there is a predetermined interference between the parts, and sealing is achieved by interference loading.
Lubricants for High-Vacuum Applications
1993-03-15
SEAL LUBRICANT R O RESERVOIR S• BALL RETAINER Figure 3. Schematic of a bearing configuration showing a labyrinth seal. (From m. N. Gardos , ASLE...are known as channeling greases. Such greases are pushed out of the way and form a path ( channel ) when the balls of a bearing pass through the grease...contacting surfaces. If a grease is fluid enough that it tends to fill the spaces between balls, it is a "slumping" (non- channeling ) grease. The consistency
Polytetrafluoroetylene tape as temporary restorative material: a fluid filtration study.
Olcay, Keziban; Steier, Liviu; Erdogan, Hilal
2015-01-01
The purpose of this study was to compare the sealing ability of temporary restorative materials at 24 hrs and 1 week. Endodontic access cavities were prepared in 56 extracted lower incisor-teeth and divided into 5 groups (n=10). Standard 5 mm deep access preparations were completed and root canals were prepared to size ISO #30 file. The access cavities were restored as follows: Group 1: temporary restorative material (Ceivitron); Group 2: glass ionomer cement (Fuji II); Group 3: zinc oxide-eugenol cement (IRM); Group 4: zinc phosphate cement (Adhesor); Group 5: polytetrafluoroetylene tape (PTFE). The quality of the coronal sealing of each specimen was measured (24 hrs and 1 week) using fluid transport model. The data was analyzed with repeated measurements ANOVA, Tukey' HSD and Paired samples T-Tests. A significant difference was found among the groups at all time-periods (p<0.05). At 24 hrs, PTFE showed similar leakage with Ceivitron, IRM, and Fuji II but it showed higher leakage than Adhesor. At 1 week, Ceivitron showed higher leakage than PTFE, meanwhile PTFE showed similar leakage with IRM, Fuji II, and Adhesor (p>0.05). Sealing ability of IRM and PTFE groups significantly increased by time (p<0.05 and p<0.001 respectively). Within the limitations of this study, PTFE showed an acceptable short-term sealing capability when compared to the other commonly used temporary restorative materials at 1 week measurements.
Sleep, Norman H.; Blanpied, M.L.
1994-01-01
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.
Reciprocating Magnetic Refrigerator
NASA Technical Reports Server (NTRS)
Johnson, D. L.
1985-01-01
Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.
NASA Astrophysics Data System (ADS)
Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare
2016-04-01
Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts) affected by large scale fracture (semblance image) and seem consistent with a suspended mud/sand mixture non-fluidized fluid flow. Near-Middle-Far offsets amplitude analysis confirms that most of the amplitude anomalies within the pipes conduit and terminus are only partly related to gas. An interpretation of the possible texture observed is proposed with a discussion of the noise and artefact induced by resolution and migration problems. Possible hypothetical formation mechanisms for those Pipes are discussed.
Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper.
Glavan, Ana C; Martinez, Ramses V; Maxwell, E Jane; Subramaniam, Anand Bala; Nunes, Rui M D; Soh, Siowling; Whitesides, George M
2013-08-07
This paper describes the fabrication of pressure-driven, open-channel microfluidic systems with lateral dimensions of 45-300 microns carved in omniphobic paper using a craft-cutting tool. Vapor phase silanization with a fluorinated alkyltrichlorosilane renders paper omniphobic, but preserves its high gas permeability and mechanical properties. When sealed with tape, the carved channels form conduits capable of guiding liquid transport in the low-Reynolds number regime (i.e. laminar flow). These devices are compatible with complex fluids such as droplets of water in oil. The combination of omniphobic paper and a craft cutter enables the development of new types of valves and switches, such as "fold valves" and "porous switches," which provide new methods to control fluid flow.
Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1982-01-01
One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.
Loomis, C.C.; Ash, W.J.
1957-11-26
An improved retort assembly useful in the thermal reduction of volatilizable metals such as magnesium and calcium is described. In this process a high vacuum is maintained in the retort, however the retort must be heated to very high temperatures while at the same time the unloading end must bo cooled to condense the metal vapors, therefore the retention of the vacuum is frequently difficult due to the thermal stresses involved. This apparatus provides an extended condenser sleeve enclosed by the retort cover which forms the vacuum seal. Therefore, the seal is cooled by the fluid in the condenser sleeve and the extreme thermal stresses found in previous designs together with the deterioration of the sealing gasket caused by the high temperatures are avoided.
Magnelok technology: a complement to magnetorheological fluids
NASA Astrophysics Data System (ADS)
Carlson, J. David
2004-07-01
Magnetorheological or MR fluids have been successfully used to enable highly effective semi-active control systems in automobile primary suspensions to control unwanted motions in civil engineering structures and to provide force-feedback in steer-by-wire systems. A key to the successful use of MR fluids is an appreciation and understanding of the balance and trade-off between the magnetically controlled on-state force and the ever-present off-state viscous force. In all MR fluid applications, one must deal with the fact that MR fluids never fully decouple or go to zero force in their off-state. Magnelok devices are a magnetically controlled compliment to traditional MR fluid devices that have been developed to enable a true force decoupling in the off-state. Magnelok devices may be embodied as linear or rotary dampers, brakes, lockable struts or position holding devices. They are particularly suitable for lock/un-lock applications. Unlike MR fluid devices they contain no fluid yet they do provide a variable level of friction damping that is controlled by the magnitude of the applied magnetic field. Magnelok devices are low cost as they easily accommodate relatively loose mechanical tolerances and require no seals or accumulator. A variety of controllable Magnelok devices and applications are described.
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door removed. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
Microgravity Science Glovebox - Airlock
NASA Technical Reports Server (NTRS)
1997-01-01
Once the Microgravity Science Glovebox (MSG) is sealed, additional experiment items can be inserted through a small airlock at the bottom right of the work volume. It is shown here with the door open. The European Space Agency (ESA) and NASA are developing the MSG for use aboard the International Space Station (ISS). Scientists will use the MSG to carry out multidisciplinary studies in combustion science, fluid physics and materials science. The MSG is managed by NASA's Marshall Space Flight Center (MSFC). Photo Credit: NASA/MSFC
NASA Technical Reports Server (NTRS)
1992-01-01
A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.
Tensile overpressure compartments on low-angle thrust faults
NASA Astrophysics Data System (ADS)
Sibson, Richard H.
2017-08-01
Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Namhata, A.; Dilmore, R. M.; Oladyshkin, S.; Zhang, L.; Nakles, D. V.
2015-12-01
Carbon dioxide (CO2) storage into geological formations has significant potential for mitigating anthropogenic CO2 emissions. An increasing emphasis on the commercialization and implementation of this approach to store CO2 has led to the investigation of the physical processes involved and to the development of system-wide mathematical models for the evaluation of potential geologic storage sites and the risk associated with them. The sub-system components under investigation include the storage reservoir, caprock seals, and the above zone monitoring interval, or AZMI, to name a few. Diffusive leakage of CO2 through the caprock seal to overlying formations may occur due to its intrinsic permeability and/or the presence of natural/induced fractures. This results in a potential risk to environmental receptors such as underground sources of drinking water. In some instances, leaking CO2 also has the potential to reach the ground surface and result in atmospheric impacts. In this work, fluid (i.e., CO2 and brine) flow above the caprock, in the region designated as the AZMI, is modeled for a leakage event of a typical geologic storage system with different possible boundary scenarios. An analytical and approximate solution for radial migration of fluids in the AZMI with continuous inflow of fluids from the reservoir through the caprock has been developed. In its present form, the AZMI model predicts the spatial changes in pressure - gas saturations over time in a layer immediately above the caprock. The modeling is performed for a benchmark case and the data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is used to quantify the uncertainty of the model outputs based on the uncertainty of model input parameters such as porosity, permeability, formation thickness, and residual brine saturation. The recently developed aPC approach performs stochastic model reduction and approximates the models by a polynomial-based response surface. Finally, a global sensitivity analysis was performed with Sobol indices based on the aPC technique to determine the relative importance of these input parameters on the model output space.
An Update on Structural Seal Development at NASA GRC
NASA Technical Reports Server (NTRS)
Dunlap, Pat; Steinetz, Bruce; Finkbeiner, Josh; DeMange, Jeff; Taylor, Shawn; Daniels, Chris; Oswald, Jay
2006-01-01
A viewgraph presentation describing advanced structural seal development for NASA exploration is shown. The topics include: 1) GRC Structural Seals Team Research Areas; 2) Research Areas & Objective; 3) Wafer Seal Geometry/Flow Investigations; 4) Wafer Seal Installation DOE Study; 5) Results of Wafer Seal Installation DOE Study; 6) Wafer Geometry Study: Thickness Variations; 7) Wafer Geometry Study: Full-Size vs. Half-Size Wafers; 8) Spring Tube Seal Development; 9) Resiliency Improvement for Rene 41 Spring Tube; 10) Spring Tube Seals: Go-Forward Plan; 11) High Temperature Seal Preloader Development: TZM Canted Coil Spring; 12) TZM Canted Coil Spring Development; 13) Arc Jet Test Rig Development; and 14) Arc Jet Test Rig Status.
Stinson, W.J.
1958-09-16
A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.
Kitano, Tomoya; Iwasaki, Kiyotaka
The EVAHEART Left Ventricular Assist System (LVAS) was designed for the long-term support of a patient with severe heart failure. It has an original water lubrication system for seal and bearing and wear on these parts was considered one of its critical failure modes. A durability test focusing on wear was designed herein. We developed a mock loop, which generates a physiologic pulsatile flow and is sufficiently durable for a long-term test. The pulsatile load and the low fluid viscosity enable the creation of a severe condition for the mechanical seal. A total of 18 EVAHEART blood pumps completed 2 years of operation under the pulsatile condition without any failure. It indicated the EVAHEART blood pump had a greater than 90% reliability with a 88% confidence level. The test was continued with six blood pumps and achieved an average of 8.6 years, which was longer than the longest clinical use in Japan. The test result showed that no catastrophic, critical, marginal, or minor failures of the blood pump or their symptoms were observed. The seal performance was maintained after the test. Moreover, the surface roughness did not change, which showed any burn or abnormal wear occurred. The original water lubrication system equipped in EVAHEART LVAS prevent severe wear on the seal and the bearing, and it can be used in the bridge to transplant and destination therapy.
Compact, Two-Sided Structural Cold Plate Configuration
NASA Technical Reports Server (NTRS)
Zaffetti, Mark
2011-01-01
In two-sided structural cold plates, typically there is a structural member, such as a honeycomb panel, that provides the structural strength for the cold plates that cool equipment. The cold plates are located on either side of the structural member and thus need to have the cooling fluid supplied to them. One method of accomplishing this is to route the inlet and outlet tubing to both sides of the structural member. Another method might be to supply the inlet to one side and the outlet to the other. With the latter method, an external feature such as a hose, tube, or manifold must be incorporated to pass the fluid from one side of the structural member to the other. Although this is a more compact design than the first option, since it eliminates the need for a dedicated supply and return line to each side of the structural member, it still poses problems, as these external features can be easily damaged and are now new areas for potential fluid leakage. This invention eliminates the need for an external feature and instead incorporates the feature internally to the structural member. This is accomplished by utilizing a threaded insert that not only connects the cold plate to the structural member, but also allows the cooling fluid to flow through it into the structural member, and then to the cold plate on the opposite side. The insert also employs a cap that acts as a cover to seal the open area needed to install the insert. There are multiple options for location of o-ring style seals, as well as the option to use adhesive for redundant sealing. Another option is to weld the cap to the cold plate after its installation, thus making it an integral part of the structural member. This new configuration allows the fluid to pass from one cold plate to the other without any exposed external features.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1994-01-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Steinetz, Bruce M.
1994-07-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
Rotordynamic Instability Problems in High-Performance Turbomachinery
NASA Technical Reports Server (NTRS)
1982-01-01
Rotor dynamic instability problems in high performance turbomachinery are reviewed. Mechanical instability mechanisms are discussed. Seal forces and working fluid forces in turbomachinery are discussed. Control of rotor instability is also investigated.
Quasi-one-dimensional compressible flow across face seals and narrow slots. 2: Computer program
NASA Technical Reports Server (NTRS)
Zuk, J.; Smith, P. J.
1972-01-01
A computer program is presented for compressible fluid flow with friction across face seals and through narrow slots. The computer program carries out a quasi-one-dimensional flow analysis which is valid for laminar and turbulent flows under both subsonic and choked flow conditions for parallel surfaces. The program is written in FORTRAN IV. The input and output variables are in either the International System of Units (SI) or the U.S. customary system.
NASA Technical Reports Server (NTRS)
1993-01-01
A complex of high pressure piping at Stennis Space Center carries rocket propellants and other fluids/gases through the Center's Component Test Facility. Conventional clamped connectors tend to leak when propellant lines are chilled to extremely low temperatures. Reflange, Inc. customized an existing piping connector to include a secondary seal more tolerant of severe thermal gradients for Stennis. The T-Con connector solved the problem, and the company is now marketing a commercial version that permits testing, monitoring or collecting any emissions that may escape the primary seal during severe thermal transition.
Microfabrication of hybrid fluid membrane for microengines
NASA Astrophysics Data System (ADS)
Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.
2015-12-01
This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.
Numerical Simulation of Flow in a Whirling Annular Seal and Comparison with Experiments
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Hendricks, R. C.; Steinetz, B. M.
1995-01-01
The turbulent flow field in a simulated annular seal with a large clearance/radius ratio (0.015) and a whirling rotor was simulated using an advanced 3D CFD code SCISEAL. A circular whirl orbit with synchronous whirl was imposed on the rotor center. The flow field was rendered quasi-steady by making a transformation to a totaling frame. Standard k-epsilon model with wall functions was used to treat the turbulence. Experimentally measured values of flow parameters were used to specify the seal inlet and exit boundary conditions. The computed flow-field in terms of the velocity and pressure is compared with the experimental measurements inside the seal. The agreement between the numerical results and experimental data with correction is fair to good. The capability of current advanced CFD methodology to analyze this complex flow field is demonstrated. The methodology can also be extended to other whirl frequencies. Half- (or sub-) synchronous (fluid film unstable motion) and synchronous (rotor centrifugal force unbalance) whirls are the most unstable whirl modes in turbomachinery seals, and the flow code capability of simulating the flows in steady as well as whirling seals will prove to be extremely useful in the design, analyses, and performance predictions of annular as well as other types of seals.
What You Should Know about Cerebral Aneurysms
... produce cerebrospinal fluid), difficulty breathing that requires a mechanical ventilator, and infection. Heart and lung problems may ... stay within the aneurysm and act as a mechanical barrier to blood flow, thus sealing it off. ...
40 CFR 63.1331 - Equipment leak provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pump or seal whereby polymer fluid used to provide lubrication and/or cooling of the pump or agitator... limited to, a rupture disk indicator, magnetic sensor, motion detector on the pressure relief valve stem...
The rotating heat pipe - Implementation as a uniform-temperature heat source
NASA Astrophysics Data System (ADS)
Limoges, R. F.
1981-11-01
A wickless rotating heat pipe, if properly controlled, is a uniform heat source. The data presented are based on work done with 12.7 cm diameter x 76 cm long rotating heat pipes operating between 120 and 140 C. The major areas reviewed are: materials of fabrication, working fluids, sealing, temperature control, heaters, and safety. The optimum rotating heat pipe defined by these studies is fabricated of type 304 stainless steel, uses water as the working fluid, is sealed with welded joints, and utilizes a pressure switch and a fast-response quartz lamp for temperature control. Surface-temperature control of + or - 0.15 C and temperature uniformity within 0.8 C are obtained. Results of experiments designed to study the effects of hydrogen in the enclosed volume of the heat pipe are presented.
Space transportation system disconnect. [replenishing fluids during orbital servicing
NASA Technical Reports Server (NTRS)
1980-01-01
The use of medium duty 300 psi fluid disconnects for orbital servicing was demonstrated to be both practical and technically feasible. A prototype disconnect was designed and tested, based on criteria formulated from a survey of expected usage requirements for orbital servicing concepts. Testing involved the comparison of three seal materials (EPR, Neoprene and Teflon), and two test media (helium and Freon 21), and was conducted over a temperature range of -150 F to +225 F. Results indicate low helium leakage (10 to the -4 power sccs) and extremely low engagement forces (56 lb sub f). Testing was also performed on a new seal design. Design concepts for a cryogenic disconnect and a high pressure disconnect were investigated. Results of an industry survey for usable orbital servicing disconnects and areas needing attention in future studies are discussed.
A transient fault-valve mechanism operating in upper crustal level, Sierras Pampeanas, Argentina
NASA Astrophysics Data System (ADS)
Japas, María Silvia; Urbina, Nilda Esther; Sruoga, Patricia; Garro, José Matías; Ibañes, Oscar
2016-11-01
Located in the Sierras Pampeanas (the broken-foreland of the Pampean flat slab segment in the southern Central Andes), the Cerro Tiporco volcanic field shows Neogene hydrothermal activity linked to migration of arc-magmatism into the foreland. Late Neogene deposits comprise epithermal vein systems emplaced in Precambrian-Early Palaeozoic igneous-metamorphic basement, Late Miocene sedimentary rocks and Early Pliocene volcaniclastic rocks. Mineralization consists of calcareous onyx, aragonite and calcite veins as well as travertine deposits. Onyx and aragonite occur as fill of low-displacement nearly vertical reverse-sinistral faults striking NW, and nearly horizontal dilatant fractures. The latter consist of load-removal induced fractures affecting the igneous-metamorphic rocks, as well as bedding planes in the Late Miocene sediments. The presence of veins recording multiple fracture episodes and crack-and-seal growth of veins suggests relatively low differential stress and supralithostatic fluid pressure, as well as cyclic changes in pore pressure and high mineral-deposition/fracture-opening ratio. These conditions support a mechanism of fault-valve behaviour during onyx and aragonite vein emplacement. The fault-valve mechanism involves fractures associated with impermeable barriers between environments with different fluid pressure. Faulting generated an appreciable directional permeability triggering fluid migration from the highest to the lowest pressure region, with subsequent deposition and sealing that started a new pressurization-faulting-sealing cycle. Late aragonite and calcite veins suggest a change in kinematics indicating the onset of tectonic-load conditions.
Seal Related Development Activities at EG/G
NASA Technical Reports Server (NTRS)
Greiner, Harold F.
1991-01-01
Seal related development activities including modeling, analysis, and performance testing are described for several current seal related projects. Among the current seal related projects are the following: high pressure gas sealing systems for turbomachinery; brush seals for gas path sealing in gas turbines; and tribological material evaluation for wear surfaces in sealing systems.
Advanced Seal Development for Large Industrial Gas Turbines
NASA Technical Reports Server (NTRS)
Chupp, Raymond E.
2006-01-01
Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.
High Pressure and Temperature Effects in Polymers
NASA Astrophysics Data System (ADS)
Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain
Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.
Chemical compatibility screening test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1997-12-01
A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less
An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael
2005-09-20
A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Analytical liquid test sample filtration apparatus
Lohnes, Brent C.; Turner, Terry D.; Klingler, Kerry M.; Clark, Michael L.
1996-01-01
A liquid sample filtration apparatus includes: a) a module retaining filter elements; b) a filter clamping and fluid injection apparatus positioned relative to the module to engage a filter element thereon, and includes a pair of first and second opposing engageable members to sealing engage a filter element therebetween; c) an inlet tube connected to an opposing engageable member; d) an outlet tube connected to an opposing engageable member; e) a motor to move the module relative to the filter clamping and injection apparatus to register filter elements on the module to the clamping and injection apparatus; and f) a motor associated with the filter clamping and injection apparatus to move the opposing engageable members into substantial sealing fluid communication relative to a filter element on the module. An apparatus for engaging opposing ends of a filter element includes: a) a member having a recess configured to engage one end of a filter element, including a first fluid passage communicating with the recess to pass fluid between the recess and externally of the member; and b) a second member positioned in opposing juxtaposition relative to the other member, and having a projection sized and shaped to matingly fit within the other member recess, the second member projection including a second recess configured to engage the other end of the filter element, the second member including a second fluid passage communicating with the second recess to pass fluid between the second recess and externally of the second member.
DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.
2013-06-03
Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that providemore » cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.« less
Ecker, Amir L.
1980-01-01
What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1989-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two-phase seal is described and documented. The analyses, results, and computer codes are summarized.
NASA Technical Reports Server (NTRS)
Russell, John M.
1993-01-01
This is the final report of a research effort which addresses the title problem. The report discusses two broad models of flows, which represent the following extreme cases: (1) inertia-dominated flow, where friction is relatively insignificant; and (2) friction-dominated flow where inertia is insignificant. In class (2), the leak channel might consist of the gap between a scratch in a plastic seal and a polished metal plate against which the seal is pressed. Here, the cross section of the leak channel is modeled as a flat bottomed crescent. A publication generated under the present grant period presents an exact solution of the equations of fully-developed laminar pipe flow of a liquid in the case of a crescent beneath a hyperbolic arc. A Master's thesis project supported by the present grant presents the corresponding solution beneath a circular arc. A second publication reviews the flow of a gas through the same channel, which may be analyzed by a standard one-dimensional model (Fanno flow) for an engineering approximation. Finally, the report discusses the design and progress in the fabrication of a leak-test cell, in which one may measure the flow of fluid through a controlled flaw in a seal. The aim of such measurements is to furnish data for comparison with the predictions of the theory.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
Lewis, Owen; Stogran, Edmund M.
1980-01-01
Laser apparatus is described wherein an active laser element, such as the disc of a face-pumped laser, is mounted in a housing such that the weight of the element is supported by glass spheres which fill a chamber defined in the housing between the walls of the housing and the edges of the laser element. The uniform support provided by the spheres enable the chamber and the pump side of the laser element to be sealed without affecting the alignment or other optical properties of the laser element. Cooling fluid may be circulated through the sealed region by way of the interstices between the spheres. The spheres, and if desired also the cooling fluid may contain material which absorbs radiation at the wavelength of parasitic emissions from the laser element. These parasitic emissions enter the spheres through the interface along the edge surface of the laser element and it is desirable that the index of refraction of the spheres and cooling fluid be near the index of refraction of the laser element. Thus support, cooling, and parasitic suppression functions are all accomplished through the use of the arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason Heath; Brian McPherson; Thomas Dewers
The assessment of caprocks for geologic CO{sub 2} storage is a multi-scale endeavor. Investigation of a regional caprock - the Kirtland Formation, San Juan Basin, USA - at the pore-network scale indicates high capillary sealing capacity and low permeabilities. Core and wellscale data, however, indicate a potential seal bypass system as evidenced by multiple mineralized fractures and methane gas saturations within the caprock. Our interpretation of {sup 4}He concentrations, measured at the top and bottom of the caprock, suggests low fluid fluxes through the caprock: (1) Of the total {sup 4}He produced in situ (i.e., at the locations of sampling)more » by uranium and thorium decay since deposition of the Kirtland Formation, a large portion still resides in the pore fluids. (2) Simple advection-only and advection-diffusion models, using the measured {sup 4}He concentrations, indicate low permeability ({approx}10-20 m{sup 2} or lower) for the thickness of the Kirtland Formation. These findings, however, do not guarantee the lack of a large-scale bypass system. The measured data, located near the boundary conditions of the models (i.e., the overlying and underlying aquifers), limit our testing of conceptual models and the sensitivity of model parameterization. Thus, we suggest approaches for future studies to better assess the presence or lack of a seal bypass system at this particular site and for other sites in general.« less
Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinehart, Alex; Petrusak, Robin; Heath, Jason E.
2010-12-01
Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scalemore » seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.« less
Mirone, Giuseppe; Ruggiero, Claudio; Spennato, Pietro; Aliberti, Ferdinando; Trischitta, Vincenzo; Cinalli, Giuseppe
2015-06-01
Subdural fluid collections following intraventricular and/or paraventricular procedures in pediatric neurosurgery are common and can be hard to treat. We describe our technique to close cortical defects by the aid of a fibrin adhesive and subsequent Ringer inflation with the aim to avoid cortical mantle collapse and to prevent the development of subdural fluid collections. We report the preliminary results of a prospective study on a consecutive series of 29 children who underwent 37 transcortical or transcallosal surgical procedures since 2008 in our department. In 17 procedures, we performed a transcortical approach on lesions, and in other 19 operations, we operated by a transcallosal. In 5/17 transcortical approaches (29%) and in 3/20 transcallosal approaches (15%), we observed a 5-mm-thick subdural fluid collection of the 5 patients with subdural fluid collections in the transcortical group, 3 patients (17%) underwent surgery for symptomatic or progressive subdural fluid collections. Of the 3 patients in the transcallosal group, a subduro-peritoneal shunt was necessary only for 1 patient (5%). At the very end of the treatment (including chemotherapy and radiotherapy), it was possible to remove the subduro-peritoneal shunt in all these patients because of disappearance of the subdural fluid collections. In pediatric patients after transcortical or transcallosal procedures, the use of a fibrin adhesive to seal surgical opening and subsequent inflation of the residual cavity with Ringer lactate solution to avoid cortical mantle collapse seems safe and appears to prevent the development of subdural fluid collections.
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Gandolfi, M G; Prati, C
2010-10-01
To evaluate the long-term sealing ability (up to 6 months) of two experimental calcium silicate MTA cements used as root canal sealers in association with warm gutta-percha. Calcium silicate (MTA) and calcium-fluoro-silicate powders were prepared. Sodium fluoride was included in FMTA (Fluoride-doped Mineral Trioxide Aggregate) as an expansive and retardant agent. Single-rooted teeth were instrumented with NiTi rotary instruments, filled with warm gutta-percha in association with one of the experimental sealers or with AH Plus as a control (n = 20 for each sealer) and stored at 37 °C. Sealing was assessed at 24, 48 h, 1, 2 weeks and 1, 3, 6 months by a fluid filtration method. Scanning electron microscopy with energy dispersive analysis (SEM/EDX) was used to study the dentine/sealer interface of roots stored for 6 months and the surface of cement disks stored for 24 h. All sealers revealed a statistically significant reduction (P < 0.05) in fluid filtration after the first 2 weeks. No statistically significant differences were observed between FMTA and AH Plus at all analysis times. At short times (24, 48-h), no statistically significant differences were found between the experimental cements and AH Plus. At long-term evaluations (1, 3, 6 months), FMTA and AH Plus sealed significantly better (P < 0.05) than MTA. FMTA was associated with lower fluid filtration rates, and the seal was stable from 48 h to 6 months, thus proving the most effective material. Scanning electron microscopy with energy dispersive analysis of root sections filled with calcium silicate sealers revealed the formation of a blend layer of gutta-percha and cement consequent to the warm gutta-percha condensation technique. Scanning electron microscopy with energy dispersive analysis of 24-h-stored disks identified a Ca-rich coating on the outer surface consisting of globular particles (calcium hydroxide and calcium carbonate), and a deeper internal Ca- and Si-rich region consisting of needle-like ettringite crystals and round formations of calcium silicate hydrate gel. Fluoride-doped MTA demonstrated stable sealing during a period of up to 6 months and significantly better than conventional calcium silicate MTA cements and comparable to AH Plus. The study supports the suitability of calcium silicate MTA cements as sealers in association with warm gutta-percha for root filling. © 2010 International Endodontic Journal.
Customized Hermetic Feedthrough Developed to Isolate Fluids
NASA Technical Reports Server (NTRS)
Meredith, Roger D.
1999-01-01
A common problem occurs when refrigerant fluids wick inside the insulation of thermocouple wires through a compressor's casing feedthrough and then leak into the adjacent disconnect box outside the casing. Leaking fluids create an unfavorable situation inside the disconnect box and may contaminate the fluids. To address this problem, NASA Lewis Research Center s Manufacturing Engineering Division developed a customized hermetic feedthrough for a bank of Worthington compressors. In these compressors, bearing temperatures are measured by internal thermocouples embedded in bearings located inside the compressor casings. The thermocouple wires need to be routed outside the casing and read at another location. These wires are short and are terminated to a disconnect strip inside the casing. The bearings operate at about 170 F, but because the casing is filled with R12 refrigerant oil, the casing has a maximum temperature of about 100 F. The operating conditions of these compressors permit the use of an epoxy that is compatible with the R12 fluid. The desired finished product is a stainless steel tube that has been filled solid with epoxy after thermocouple wires bonded and sealed by epoxy have been inserted through its length. Shrink tubing extends from both ends of the tube. The process that was developed to isolate the thermocouple wires from the R12 fluid follows. For this application, use an 8-in.-long piece of 0.500-in. 304 stainless steel tube with six pairs of 24-gauge stranded, PTFE-insulated (polytetrafluoroethylene) type "T" thermocouple wires for each feedthrough. Use shrink tubing to strain relief the insulated wires at their exit from the stainless steel tube. Cut the wire to length and identify the location of the stainless steel tube sleeve with masking tape. Then, remove the outer insulation from a 2-in. section of wire that will be inside the tube, and carefully strip to bare wire a 1-in. section in the middle of the section with the outer insulation removed. For an effective seal, the epoxy must penetrate between the strands when stranded conductors are used. Make the seal with epoxy bond on the bare wire. The bare wire must be encapsulated with a thin layer of the epoxy that leaves only a very low profile. These encapsulated wires must cure before the assembly can be continued. Then, inspect the cured wires for complete encapsulation before going to the next step. Insert the wires in the stainless steel tube and orient them so that the epoxied stripped sections are staggered within the tube; then, apply shrink tubing to one end of the cleaned wires, positioning it inside the edge of the tube. The small gaps between the wires on the other end will be used to inject the epoxy into the tube. Let the epoxy cure inside the tube, free of any voids. Then, continue to fill the tube until the entire 8-in. length is nearly filled, allowing room for the other strain-relieving shrink tubing. Since this first design, the process has been adjusted to fit many needs and situations. Customized feedthroughs have been assembled from various wire types, wire gauges, and/or stainless steel tube passages. The fittings selected to mount these feedthroughs allow their use in other areas, such as pressure or vacuum systems.
2007 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert
2008-01-01
The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
2008 NASA Seal/Secondary Air System Workshop
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)
2009-01-01
The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.
Meacher, John S.; Ruscitto, David E.
1982-01-01
A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.
High Temperature Metallic Seal Development For Aero Propulsion and Gas Turbine Applications
NASA Technical Reports Server (NTRS)
More, Greg; Datta, Amit
2006-01-01
A viewgraph presentation on metallic high temperature static seal development at NASA for gas turbine applications is shown. The topics include: 1) High Temperature Static Seal Development; 2) Program Review; 3) Phase IV Innovative Seal with Blade Alloy Spring; 4) Spring Design; 5) Phase IV: Innovative Seal with Blade Alloy Spring; 6) PHase IV: Testing Results; 7) Seal Seating Load; 8) Spring Seal Manufacturing; and 9) Other Applications for HIgh Temperature Spring Design
Numerical Investigation of the Effect of Radial Lip Seal Geometry on Sealing Performance
NASA Astrophysics Data System (ADS)
Tok, G.; Parlar, Z.; Temiz, V.
2018-01-01
Sealing elements are often needed in industry and especially in machine design. With the change and development of machine technology from day to day, sealing elements show continuous development and change in parallel with these developments. Many factors influence the performance of the sealing elements such as shaft surface roughness, radial force, lip geometry etc. In addition, the radial lip seals must have a certain pre-load and interference in order to provide a good sealing. This also affects the friction torque. Researchers are developing new seal designs to reduce friction losses in mechanical systems. In the presented study, the effect of the lip seal geometry on sealing performance will be examined numerically. The numerical model created for this purpose will be verified with experimental data firstly. In the numerical model, shaft and seal will be modeled as hyper-elastic in 2D and 3D. NBR (Nitrile Butadiene Rubber) as seal material will be analyzed for the rotating shaft state at constant speed by applying a uniform radial force.
Upflow bioreactor having a septum and an auger and drive assembly
Hansen, Carl S.; Hansen, Conly L.
2007-11-06
An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes an auger positioned in the aperture of the septum. The vessel includes an opening in the top for receiving the auger. The auger extends from a drive housing, which is position over the opening and provides a seal around the opening. The drive housing is adjustable relative to the vessel. The position of the auger in the aperture can be adjusted by adjusting the drive housing relative to the vessel. The auger adjustment mechanism allows the auger to be accurately positioned within the aperture. The drive housing can also include a fluid to provide an additional seal around the shaft of the auger.
Chemical treatment of the intra-canal dentin surface: a new approach to modify dentin hydrophobicity
GAITAN-FONSECA, Cesar; COLLART-DUTILLEUL, Pierre-Yves; SEMETEY, Vincent; ROMIEU, Olivier; CRUZ, Roel; FLORES, Hector; CUISINIER, Frédéric; PÉREZ, Elías; POZOS-GUILLEN, Amaury
2013-01-01
Objective: This study evaluated the hydrophobicity of dentin surfaces that were modified through chemical silanization with octadecyltrichlorosilane (OTS). Material and Methods: An in vitro experimental study was performed using 40 human permanent incisors that were divided into the following two groups: non-silanized and silanized. The specimens were pretreated and chemically modified with OTS. After the chemical modification, the dentin hydrophobicity was examined using a water contact angle measurement (WCA). The effectiveness of the modification of hydrophobicity was verified by the fluid permeability test (FPT). Results and Conclusions: Statistically significant differences were found in the values of WCA and FPT between the two groups. After silanization, the hydrophobic intraradicular dentin surface exhibited in vitro properties that limit fluid penetration into the sealed root canal. This chemical treatment is a new approach for improving the sealing of the root canal system. PMID:23559114
Sealed Battery Block Provided With A Cooling System
Verhoog, Roelof; Barbotin, Jean-Loup
1999-11-16
The present invention relates to a sealed battery block operating at a pressure of at least 1 bar relative, the battery including a container made of a plastics material and made up of a lid and of a case subdivided into wells by at least one partition, said battery being provided with a cooling system including two cheek plates made of a plastics material and co-operating with the outside faces of respective ones of two opposite walls of said case, each cheek plate co-operating with the corresponding wall to define a compartment provided with a plurality of ribs forming baffles for fluid flow purposes, and with an inlet orifice and an outlet orifice for the fluid, said battery being characterized in that each of said ribs extends in a direction that forms an angle relative to the plane of said partition lying in the range 60.degree. to 90.degree..
2006 NASA Seal/Secondary Air System Workshop; Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce, M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert (Editor)
2007-01-01
The 2006 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of NASA s new fundamental aeronautics technology project; (iii) Overview of NASA Glenn Research Center s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakages as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed seal technologies employed by the Apollo command module that serve as an excellent basis for seals for NASA s new Crew Exploration Vehicle (CEV).
Hoch, Stephan; Vomhof, Thomas; Teymoortash, Afshin
2015-03-01
Rupture of the round window membrane with consecutive development of a perilymphatic fistula (PLF) is still a matter of controversial debate in the pathogenesis of idiopathic sudden sensorineural hearing loss (SSHL). Until now no consensus exists about whether these patients benefit from performing an exploratory tympanotomy with sealing of the round window. The aim of the present study was to analyze critically the effectiveness of sealing the round window membrane in patients with SSHL. The clinical data of 51 patients with SSHL and a mean hearing decline of at least 60 dB over 5 frequencies who were treated with tympanotomy and sealing of the round window membrane were retrospectively analyzed. The results have been compared to the current state of the literature. Intraoperatively a round window membrane rupture or fluid leak was observed in none of the patients. After performing tympanotomy the mean improvement of hearing level was 32.7 dB. Twenty of 51 examined patients (39.2%) showed a mean improvement of the hearing level of more than 30 dB and a complete remission could be detected in 12 patients (23.5%). Reviewing the literature revealed no standard guidelines for definition or treatment of SSHL as well as for evaluation of hearing loss and its recovery. The results of the present study and the literature should be discussed critically. It is unclear whether tympanotomy and sealing of the round window membrane may be a meaningful treatment for SSHL. Therefore this procedure should be discussed as a therapeutic option only in selected patients with sudden deafness or profound hearing loss in which PLF is strongly suspicious or conservative treatment failed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.
1997-08-01
Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less
Development of advanced seals for space propulsion turbomachinery
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Liang, A. D.; Childs, D. W.; Proctor, M. P.
1992-01-01
Current activities in seals for space propulsion turbomachinery that the NASA Lewis Research Center sponsors are surveyed. The overall objective is to provide the designer and researcher with the concepts and the data to control seal dynamics and leakage. Included in the program are low-leakage seals, such as the brush seal, the 'ceramic rope' seal, low-leakage seals for liquid oxygen turbopumps, face seals for two phase flow, and swirl brakes for stability. Two major efforts are summarized: a seal dynamics in rotating machinery and an effort in seal code development.
EXPERIMENTAL ANIMAL WATERING DEVICE
Finkel, M.P.
1964-04-01
A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)
Internal pipe attachment mechanism
Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.
1994-01-01
An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.
Internal pipe attachment mechanism
Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.
1994-12-13
An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.
Experimental study of uncentralized squeeze film dampers
NASA Technical Reports Server (NTRS)
Quinn, R. D.
1983-01-01
The vibration response of a rotor system supported by a squeeze film damper (SFD) was experimentally investigated in order to provide experimental data in support of the Rotor/Stator Interactive Finite Element theoretical development. Part of the investigation required the designing and building of a rotor/SFD system that could operate with or without end seals in order to accommodate different SFD lengths. SFD variables investigated included clearance, eccentricity mass, fluid pressure, and viscosity and temperature. The results show inlet pressure, viscosity and clearance have significant influence on the damper performance and accompanying rotor response.
EXPERIMENTAL LIQUID METAL FUEL REACTOR
Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.
1962-01-23
A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)
Development of Advanced Seals for Industrial Turbine Applications
NASA Astrophysics Data System (ADS)
Chupp, Raymond E.; Aksit, Mahmut F.; Ghasripoor, Farshad; Turnquist, Norman A.; Dinc, Saim; Mortzheim, Jason; Demiroglu, Mehmet
2002-10-01
A critical area being addressed to improve industrial turbine performance is reducing the parasitic leakage flows through the various static and dynamic seals. Implementation of advanced seals into General Electric (GE) industrial turbines has progressed well over the last few years with significant operating performance gains achieved. Advanced static seals have been placed in gas turbine hot gas-path junctions and steam turbine packing ring segment end gaps. Brush seals have significantly decreased labyrinth seal leakages in gas turbine compressors and turbine interstages, steam turbine interstage and end packings, industrial compressor shaft seals, and generator seals. Abradable seals are being developed for blade-tip locations in various turbine locations. This presentation summarizes the status of advanced seal development for industrial turbines at GE.
Fibrin Sealants in Dura Sealing: A Systematic Literature Review
2016-01-01
Background Fibrin sealants are widely used in neurosurgery to seal the suture line, provide watertight closure, and prevent cerebrospinal fluid leaks. The aim of this systematic review is to summarize the current efficacy and safety literature of fibrin sealants in dura sealing and the prevention/treatment of cerebrospinal fluid leaks. Methods A comprehensive electronic literature search was run in the following databases: Cochrane Database of Systematic Reviews, Cochrane Central Resister of Controlled Trials, clinicaltrials.gov, MEDLINE/PubMed, and EMBASE. Titles and abstracts of potential articles of interest were reviewed independently by 3 of the authors. Results A total of 1006 database records and additional records were identified. After screening for duplicates and relevance, a total of 78 articles were assessed by the investigators for eligibility. Thirty-eight were excluded and the full-text of 40 articles were included in the qualitative synthesis. Seven of these included only safety data and were included in the safety assessment. The remaining 33 articles included findings from 32 studies that enrolled a total of 2935 patients who were exposed to fibrin sealant. Among these 33 studies there were only 3 randomized controlled trials, with the remaining being prospective cohort analysis, case controlled studies, prospective or retrospective case series. One randomized controlled trial, with 89 patients exposed to fibrin sealant, found a greater rate of intraoperative watertight dura closure in the fibrin sealant group than the control group (92.1% versus 38.0%, p<0.001); however, post-operative cerebrospinal fluid leakage occurred in more fibrin sealant than control patients (6.7% versus 2.0%, p>0.05). Other clinical trials evaluated the effect of fibrin sealant in the postoperative prevention of cerebrospinal fluid leaks. These were generally lower level evidence studies (ie, not prospective, randomized, controlled trials) that were not designed or powered to demonstrate a significant advantage to fibrin sealant use. Two small case series studies evaluated the effect of fibrin sealants in persistent cerebrospinal fluid leak treatment, but did not establish firm efficacy conclusions. Specific adverse reports where fibrin sealants were used for dura sealing were limited, with only 8 cases reported in neurosurgical procedures since 1987 and most reporting only a speculative relationship/association with fibrin sealant exposure. Conclusions A major finding of this systematic literature review is that there is a paucity of randomized studies that have evaluated the effectiveness and safety of fibrin sealants in providing intraoperative watertight dura closure and post-operative cerebrospinal fluid leakage. Among the limited studies available, evidence from a single randomized, controlled trial indicates that fibrin sealants provide a higher rate of intraoperative watertight closure of the dura suture line than control, albeit with a higher rate of postoperative cerebrospinal fluid leakage. Evidence from non-randomized, controlled trials suggests that fibrin sealants may be effective in preventing cerebrospinal fluid leaks with an acceptable safety profile. There is a substantial need for randomized, controlled clinical trials or well-designed prospective observational trials where the conduct of a randomized trial is not feasible to fully assess the impact of fibrin sealant utilization on the rates of intraoperative dura closure, postoperative cerebrospinal leakage, and safety. PMID:27119993
Fibrin Sealants in Dura Sealing: A Systematic Literature Review.
Esposito, Felice; Angileri, Filippo Flavio; Kruse, Peter; Cavallo, Luigi Maria; Solari, Domenico; Esposito, Vincenzo; Tomasello, Francesco; Cappabianca, Paolo
2016-01-01
Fibrin sealants are widely used in neurosurgery to seal the suture line, provide watertight closure, and prevent cerebrospinal fluid leaks. The aim of this systematic review is to summarize the current efficacy and safety literature of fibrin sealants in dura sealing and the prevention/treatment of cerebrospinal fluid leaks. A comprehensive electronic literature search was run in the following databases: Cochrane Database of Systematic Reviews, Cochrane Central Resister of Controlled Trials, clinicaltrials.gov, MEDLINE/PubMed, and EMBASE. Titles and abstracts of potential articles of interest were reviewed independently by 3 of the authors. A total of 1006 database records and additional records were identified. After screening for duplicates and relevance, a total of 78 articles were assessed by the investigators for eligibility. Thirty-eight were excluded and the full-text of 40 articles were included in the qualitative synthesis. Seven of these included only safety data and were included in the safety assessment. The remaining 33 articles included findings from 32 studies that enrolled a total of 2935 patients who were exposed to fibrin sealant. Among these 33 studies there were only 3 randomized controlled trials, with the remaining being prospective cohort analysis, case controlled studies, prospective or retrospective case series. One randomized controlled trial, with 89 patients exposed to fibrin sealant, found a greater rate of intraoperative watertight dura closure in the fibrin sealant group than the control group (92.1% versus 38.0%, p<0.001); however, post-operative cerebrospinal fluid leakage occurred in more fibrin sealant than control patients (6.7% versus 2.0%, p>0.05). Other clinical trials evaluated the effect of fibrin sealant in the postoperative prevention of cerebrospinal fluid leaks. These were generally lower level evidence studies (ie, not prospective, randomized, controlled trials) that were not designed or powered to demonstrate a significant advantage to fibrin sealant use. Two small case series studies evaluated the effect of fibrin sealants in persistent cerebrospinal fluid leak treatment, but did not establish firm efficacy conclusions. Specific adverse reports where fibrin sealants were used for dura sealing were limited, with only 8 cases reported in neurosurgical procedures since 1987 and most reporting only a speculative relationship/association with fibrin sealant exposure. A major finding of this systematic literature review is that there is a paucity of randomized studies that have evaluated the effectiveness and safety of fibrin sealants in providing intraoperative watertight dura closure and post-operative cerebrospinal fluid leakage. Among the limited studies available, evidence from a single randomized, controlled trial indicates that fibrin sealants provide a higher rate of intraoperative watertight closure of the dura suture line than control, albeit with a higher rate of postoperative cerebrospinal fluid leakage. Evidence from non-randomized, controlled trials suggests that fibrin sealants may be effective in preventing cerebrospinal fluid leaks with an acceptable safety profile. There is a substantial need for randomized, controlled clinical trials or well-designed prospective observational trials where the conduct of a randomized trial is not feasible to fully assess the impact of fibrin sealant utilization on the rates of intraoperative dura closure, postoperative cerebrospinal leakage, and safety.
Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2003-01-01
NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.
Development of Advanced Carbon Face Seals for Aircraft Engines
NASA Astrophysics Data System (ADS)
Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu
2018-01-01
Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.
STS-48 ESC image of the MODE-01 Fluid Test Article (FTA) on OV-103's middeck
NASA Technical Reports Server (NTRS)
1991-01-01
An electronic still camera (ESC) closeup shows the STS-48 Middeck Zero ('0') Gravity Dynamics Experiment 01 (MODE-01) Fluid Test Article (FTA) attached to an experimental support module (ESM) located in a forward middeck locker onboard the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The FTA is a 3.1-cm diameter cylindrical sealed Lexan tank. The FTA electromagnetic actuator has excited the test article sinusoidally, which causes the fluid inside the tank to slosh. These slosh forces, along with other data such as acceleration levels of the entire assembly, are measured by the force balance and recorded in digital form on an optical disk for later ground analysis. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shutt
Vignaroli, P A; Anderson, R W; Pashley, D H
1995-10-01
A material that bonds to dentin and seals both the root canal and exposed dentinal tubules would be desirable following root resection. The purpose of this study was to measure the sealing ability of four dentin bonding agents on the resected root end. The bonding systems evaluated were Amalgambond (AMB), Scotchbond Multi-Purpose (SMP), Prisma Universal Bond 3 (PUB 3), and All-Bond 2 (AB2). All materials were applied directly to the resected root end without a class I preparation. One-half of the roots in each group were contaminated with human blood before bonding. Microleakage was measured using fluid filtration at various time intervals from 1 to 24 wk. Results indicated that all dentin bonding agents significantly reduced apical microleakage compared with prebonded controls at all time intervals. Blood contamination did not adversely affect the sealing ability of AMB, PUB 3, or SMP. The blood-contaminated AB2 group displayed significantly greater microleakage after 12 and 24 wk than the uncontaminated roots.
NASA Technical Reports Server (NTRS)
Curry, Donald M.; Lewis, Ronald K.; Hagen, Jeffrey D.
2002-01-01
An X-38 Crew Return Vehicle Seal Development is presented. The contents include: 1) X-38 Crew Return Vehicle; 2) X-38 TPS Configuration; 3) X-38 Seal Locations; 4) X-38 Rudder/Fin Seal Assembly; 5) Baseline X-38 Rudder/Fin Seal Design; 6) Rudder/Fin Seal to Bracket Assembly; 7) X-38 Rudder/Fin Vertical Rub Surface Inconel-0.10 inches; 8) X-38 Rudder/Fin Seal Analysis; 9) Seal Analysis Model; and 10) Governing Differential Equations for Equilibrium Thermal Assumption. The X-38 Rudder/Fin Seal temperature and pressure properties are also given.
Glossosoma nigrior (Trichoptera: Glossosomatidae) respiration in moving fluid.
Morris, Mark W L; Hondzo, Miki
2013-08-15
Laboratory measurements of dissolved oxygen (DO) uptake by Glossosoma nigrior Banks were conducted in a sealed, recirculating flume under variable fluid flow velocities. Measurements were performed in similar water temperatures, DO concentrations and fluid flow velocities to field conditions in the stream where the larvae were obtained. Total oxygen uptake by both cased larvae and corresponding cases without larvae were quantified. An increased fluid flow velocity corresponded to an increased larval DO uptake rate. Oxygen uptake by the larval cases alone was not as sensitive to changes in the Peclet (Pe) number, the dimensionless ratio of advective to diffusive DO transport, as uptake by larvae themselves. The flux of DO to larvae and their cases was up to seven times larger in a moving fluid in comparison to non-moving fluid conditions in the proximity of larvae for 0
2005 NASA Seal/Secondary Air System Workshop, Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2006-01-01
The 2005 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA s new Exploration Initiative program aimed at exploring the Moon, Mars, and beyond; (ii) Overview of the NASA-sponsored Propulsion 21 Project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts including tip clearance control, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Several organizations presented development efforts aimed at developing faster clearance control systems and associated technology to meet future engine needs. The workshop also covered several programs NASA is funding to develop technologies for the Exploration Initiative and advanced reusable space vehicle technologies. NASA plans on developing an advanced docking and berthing system that would permit any vehicle to dock to any on-orbit station or vehicle. Seal technical challenges (including space environments, temperature variation, and seal-on-seal operation) as well as plans to develop the necessary "androgynous" seal technologies were reviewed. Researchers also reviewed tests completed for the shuttle main landing gear door seals.
Embryonic blood-cerebrospinal fluid barrier formation and function
Bueno, David; Parvas, Maryam; Hermelo, Ismaïl; Garcia-Fernàndez, Jordi
2014-01-01
During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF. PMID:25389383
Evaluation of dentin tubule occlusion after laser irradiation and desensitizing agent application.
Kim, Min-Ho; Kim, Ryan Jin-Young; Lee, Woo-Cheol; Lee, In-Bog
2015-10-01
To evaluate the effects of lasers (Nd:YAG and Er:YAG) and of topical desensitizing agents on dentin tubule occlusion by measuring real-time dentin fluid flow (DFF). 32 molars were prepared with V-shape cavity at the cervical area, acid-etched, water rinsed, blotted dry, and treated with (1) Nd:YAG laser; (2) Er:YAG laser; (3) SuperSeal, a desensitizing agent; (4) ClinproXT, a resin-modified glass-ionomer (RMGI) varnish (n = 8 each). A real-time fluid flow measuring instrument (nano-Flow) was used to measure the DFF throughout the procedures. The DFF rates before and after the treatment were compared. Moreover, the surface topography of dentin tubules after each desensitizing method was examined using SEM. DFF varied among the groups. The DFF rate was significantly reduced after laser irradiation/application of the desensitizing agents (P < 0.05). ClinproXT showed the greatest reduction of DFF rate (71.9%), followed by the SuperSeal (34.8%) and laser groups (P< 0.05). However, there was no significant difference between the Nd:YAG (24.1%) and Er:YAG (20.6%) groups (P > 0.05). In SEM images, narrowed dentin tubules were observed in both lased groups and SuperSeal group. In the ClinproXT group, the occluded dentin tubules by the RMGI covering were observed.
NASA Astrophysics Data System (ADS)
Poulet, Thomas; Paesold, Martin; Veveakis, Manolis
2017-03-01
Faults play a major role in many economically and environmentally important geological systems, ranging from impermeable seals in petroleum reservoirs to fluid pathways in ore-forming hydrothermal systems. Their behavior is therefore widely studied and fault mechanics is particularly focused on the mechanisms explaining their transient evolution. Single faults can change in time from seals to open channels as they become seismically active and various models have recently been presented to explain the driving forces responsible for such transitions. A model of particular interest is the multi-physics oscillator of Alevizos et al. (J Geophys Res Solid Earth 119(6), 4558-4582, 2014) which extends the traditional rate and state friction approach to rate and temperature-dependent ductile rocks, and has been successfully applied to explain spatial features of exposed thrusts as well as temporal evolutions of current subduction zones. In this contribution we implement that model in REDBACK, a parallel open-source multi-physics simulator developed to solve such geological instabilities in three dimensions. The resolution of the underlying system of equations in a tightly coupled manner allows REDBACK to capture appropriately the various theoretical regimes of the system, including the periodic and non-periodic instabilities. REDBACK can then be used to simulate the drastic permeability evolution in time of such systems, where nominally impermeable faults can sporadically become fluid pathways, with permeability increases of several orders of magnitude.
Deep Borehole Field Test Research Activities at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy
The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterizedmore » by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.« less
Casey, Megan L; Nguyen, Duong T; Idriss, Barrie; Bennett, Sarah; Dunn, Angela; Martin, Stephen
2015-12-01
Prehospital care, including patient transport, is integral in the patient care process during the Ebola response. Transporting ill persons from the community to Ebola care facilities can stop community spread. Vehicles used for patient transport in infectious disease outbreaks should be evaluated for adequate infection prevention and control. An ambulance driver in Sierra Leone attributed his Ebola infection to exposure to body fluids that leaked from the patient compartment to the driver cabin of the ambulance. A convenience sample of 14 vehicles used to transport patients with suspected or confirmed Ebola in Sierra Leone were assessed. The walls separating the patient compartment and driver cabin in these vehicles were evaluated for structural integrity and potential pathways for body fluid leakage. Ambulance drivers and other staff were asked to describe their cleaning and decontamination practices. Ambulance construction and design standards from the National Fire Protection Association, US General Services Administration, and European Committee on Standardization (CEN) were reviewed. Many vehicles used by ambulance staff in Sierra Leone were not traditional ambulances, but were pick-up trucks or sport-utility vehicles that had been assembled or modified for patient transport. The wall separating the patient compartment and driver cabin in many vehicles did not have a waterproof seal around the edges. Staff responsible for cleaning and disinfection did not thoroughly clean bulk body fluids with disposable towels before disinfection of the patient compartment. Pressure from chlorine sprayers used in the decontamination process may have pushed body fluids from the patient compartment into the driver cabin through gaps around the wall. Ambulance design standards do not require a waterproof seal between the patient compartment and driver cabin. Sealing the wall by tightening or replacing existing bolts is recommended, followed by caulking of all seams with a sealant. Waterproof separation between the patient compartment and driver cabin may be essential for patient transport vehicles in infectious disease outbreaks, especially when chlorine sprayers are used for decontamination or in resource-limited settings where cleaning supplies may be limited.
NASA Astrophysics Data System (ADS)
Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder
2013-04-01
In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with preserved equigranular fabric, or in serpentinites of type (i) and (ii) where they crosscut and offset earlier vein generations). In addition, serpentinized dunites can host syntaxial serpentine veins (ribbons). The ribbons separate regions, where recrystallization of serpentine and brucite can be observed. Presumably the lack of orthopyroxene locally influences the rheology and thus enable ribbon formation. The serpentine and/or brucite assemblages formed during these different stages show distinct trace element patterns suggesting a diminished influence of slab-related fluids during later stages of serpentinization. Ongoing work is aimed at reconciling textural and geochemical co-evolution during serpentinization of the mantle wedge. In particular, deciphering deformation-related pathways for serpentinizing fluids and identifying their geochemical signatures may foster our understanding of shallow subduction-related mass transfer in supra-subduction zones.
Overview of LIDS Docking and Berthing System Seals
NASA Technical Reports Server (NTRS)
Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian
2007-01-01
This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.
2014-01-01
NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on fullscale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662degF (-150 to 350degC), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H.
2014-01-01
NASA is developing advanced space-rated elastomeric seals to support future space exploration missions to low Earth orbit, the Moon, near Earth asteroids, and other destinations. This includes seals for a new docking system and vehicle hatches. These seals must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them, and seal adhesion forces must be low to allow the sealed interface to be separated when required (e.g., during undocking or hatch opening). NASA Glenn Research Center has developed a number of unique test fixtures to measure the leak rates and compression and adhesion loads of candidate seal designs under simulated thermal, vacuum, and engagement conditions. Tests can be performed on full-scale seals with diameters on the order of 50 in., subscale seals that are about 12 in. in diameter, and smaller specimens such as O-rings. Test conditions include temperatures ranging from -238 to 662 F (-150 to 350 C), operational pressure gradients, and seal-on-seal or seal-on-flange mating configurations. Nominal and off-nominal conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features and capabilities of each type of test apparatus and provides an overview of advanced seal development activities at NASA Glenn.
Zarei, Mina; Javidi, Maryam; Kazemi, Zeinab; Afkhami, Farzaneh
2015-08-01
This study aimed to assess and compare the apical sealing ability of HEROfill® Soft-Core system and lateral condensation technique in fine curved canals using the fluid filtration method. Forty human mesiobuccal root canals of mandibular first molars with 25° to 40° curvatures were instrumented to an apical size 30/0.04. Roots were randomly assigned to two experimental groups of 15, designated as groups A and B. Two control groups, each containing five teeth, served as positive and negative controls. Group A was obturated using lateral condensation technique and group B with the HEROfill® Soft-Core system. The groups were tested for microleakage using an in vitro fluid filtration apparatus with 0.5 atm pressure at zero, two, four, six, eight and 10 minutes. Independent t-test was used to analyze the microleakage data. The mean and standard deviation (SD) values for fluid microleakage in the lateral condensation group were 0.58±0.49 μL/min, 0.68±0.35 μL/min, 0.74±0.22 μL/min, 0.71±0.29 μL/min and 0.60± 0.29 μL/min at two, four, six, eight and 10 minutes, respectively. The mean and SD values for fluid microleakage in the HEROfill® group were 0.53±0.42 μL/min, 0.67±0.34 μL/min, 0.69±0.26 μL/min, 0.73±0.33 μL/min and 0.63±0.26 μL/min at two, four, six, eight and 10 minutes, respectively. The difference between the lateral condensation and HEROfill® groups was not statistically significant at two (P=0.776), four (P=0.909), six (P=0.562), eight (P=0.861) or 10 (P=0.765) minutes. The HEROfill® system and cold lateral condensation technique were equally effective for apical sealing of curved canals.
Reservoir characterization and seal integrity of Jemir field in Niger Delta, Nigeria
NASA Astrophysics Data System (ADS)
Adagunodo, Theophilus Aanuoluwa; Sunmonu, Lukman Ayobami; Adabanija, Moruffdeen Adedapo
2017-05-01
Ignoring fault seal and depending solely on reservoir parameters and estimated hydrocarbon contacts can lead to extremely unequal division of reserves especially in oil fields dominated by structural traps where faults play an important role in trapping of hydrocarbons. These faults may be sealing or as conduit to fluid flow. In this study; three-dimensional seismic and well log data has been used to characterize the reservoirs and investigate the seal integrity of fault plane trending NW-SE and dip towards south in Jemir field, Niger-Delta for enhanced oil recovery. The petrophysical and volumetric analysis of the six reservoirs that were mapped as well as structural interpretation of the faults were done both qualitatively and quantitatively. In order to know the sealing potential of individual hydrocarbon bearing sand, horizon-fault intersection was done, volume of shale was determined, thickness of individual bed was estimated, and quality control involving throw analysis was done. Shale Gouge Ratio (SGR) and Hydrocarbon Column Height (HCH) (supportable and structure-supported) were also determined to assess the seal integrity of the faults in Jemir field. The petrophysical analysis indicated the porosity of traps on Jemir field ranged from 0.20 to 0.29 and the volumetric analyses showed that the Stock Tank Original Oil in Place varied between 5.5 and 173.4 Mbbl. The SGR ranged from leaking (<20%) to sealing (>60%) fault plane suggesting poor to moderate sealing. The supportable HCH of Jemir field ranged from 98.3 to 446.2 m while its Structure-supported HCH ranged from 12.1 to 101.7 m. The porosities of Jemir field are good enough for hydrocarbon production as exemplified by its oil reserve estimates. However, improper sealing of the fault plane might enhance hydrocarbon leakage.
A Fluid-driven Earthquake Cycle, Omori's Law, and Fluid-driven Aftershocks
NASA Astrophysics Data System (ADS)
Miller, S. A.
2015-12-01
Few models exist that predict the Omori's Law of aftershock rate decay, with rate-state friction the only physically-based model. ETAS is a probabilistic model of cascading failures, and is sometimes used to infer rate-state frictional properties. However, the (perhaps dominant) role of fluids in the earthquake process is being increasingly realised, so a fluid-based physical model for Omori's Law should be available. In this talk, I present an hypothesis for a fluid-driven earthquake cycle where dehydration and decarbonization at depth provides continuous sources of buoyant high pressure fluids that must eventually make their way back to the surface. The natural pathway for fluid escape is along plate boundaries, where in the ductile regime high pressure fluids likely play an integral role in episodic tremor and slow slip earthquakes. At shallower levels, high pressure fluids pool at the base of seismogenic zones, with the reservoir expanding in scale through the earthquake cycle. Late in the cycle, these fluids can invade and degrade the strength of the brittle crust and contribute to earthquake nucleation. The mainshock opens permeable networks that provide escape pathways for high pressure fluids and generate aftershocks along these flow paths, while creating new pathways by the aftershocks themselves. Thermally activated precipitation then seals up these pathways, returning the system to a low-permeability environment and effective seal during the subsequent tectonic stress buildup. I find that the multiplicative effect of an exponential dependence of permeability on the effective normal stress coupled with an Arrhenius-type, thermally activated exponential reduction in permeability results in Omori's Law. I simulate this scenario using a very simple model that combines non-linear diffusion and a step-wise increase in permeability when a Mohr Coulomb failure condition is met, and allow permeability to decrease as an exponential function in time. I show very strong spatial correlations of the simulated evolved permeability and fluid pressure field with aftershock hypocenters from this 1992 Landers and 1994 Northridge aftershock sequences, and reproduce the observed aftershock decay rates. Controls on the decay rates (p-value) will also be discussed.
Third Generation RLV Structural Seal Development Programs at NASA GRC
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2002-01-01
NASA GRC's work on high temperature structural seal development began in the late 1980's and early 1990's under the NASP (National Aero-Space Plane) project. Bruce Steinetz led the in-house propulsion system seal development program and oversaw industry efforts for propulsion system and airframe seal development for this vehicle. a propulsion system seal location in the NASP engine is shown. The seals were located along the edge of a movable panel in the engine to seal the gap between the panel and adjacent engine sidewalls. More recently, we worked with Rocketdyne on high temperature seals for the linear aerospike engine ramps. In applications such as the former X-33 program, multiple aerospike engine modules would be installed side by side on the vehicle. Seals are required in between adjacent engine modules along the edges and base of the engines. The seals have to withstand the extreme temperatures produced byt he thrusters at the top of the ramps while accommodating large deflections between adjacent ramps. We came up with several promising seal concepts for this application and shared them with Rocketdyne.
Bakan, Mefkur; Topuz, Ufuk; Esen, Asim; Basaranoglu, Gokcen; Ozturk, Erdogan
2013-01-01
The anesthesiologist must be aware of the causes, diagnosis and treatment of venous air embolism and adopt the practice patterns to prevent its occurrence. Although venous air embolism is a known complication of cesarean section, we describe an unusual inattention that causes iatrogenic near fatal venous air embolism during a cesarean section under spinal anesthesia. One of the reasons for using self-collapsible intravenous (IV) infusion bags instead of conventional glass or plastic bottles is to take precaution against air embolism. We also demonstrated the risk of air embolism for two kinds of plastic collapsible intravenous fluid bags: polyvinyl chloride (PVC) and polypropylene-based. Fluid bags without self-sealing outlets pose a risk for air embolism if the closed system is broken down, while the flexibility of the bag limits the amount of air entry. PVC-based bags, which have more flexibility, have significantly less risk of air entry when IV administration set is disconnected from the outlet. Using a pressure bag for rapid infusion can be dangerous without checking and emptying all air from the IV bag. 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Bakan, Mefkur; Topuz, Ufuk; Esen, Asim; Basaranoglu, Gokcen; Ozturk, Erdogan
2013-01-01
The anesthesiologist must be aware of the causes, diagnosis and treatment of venous air embolism and adopt the practice patterns to prevent its occurrence. Although venous air embolism is a known complication of cesarean section, we describe an unusual inattention that causes iatrogenic near fatal venous air embolism during a cesarean section under spinal anesthesia. One of the reasons for using self-collapsible intravenous (IV) infusion bags instead of conventional glass or plastic bottles is to take precaution against air embolism. We also demonstrated the risk of air embolism for two kinds of plastic collapsible intravenous fluid bags: polyvinyl chloride (PVC) and polypropylene-based. Fluid bags without self-sealing outlets pose a risk for air embolism if the closed system is broken down, while the flexibility of the bag limits the amount of air entry. PVC-based bags, which have more flexibility, have significantly less risk of air entry when IV administration set is disconnected from the outlet. Using a pressure bag for rapid infusion can be dangerous without checking and emptying all air from the IV bag. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.
Pourghodrat, Abolfazl; Nelson, Carl A
2017-03-01
Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.
Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics
Pourghodrat, Abolfazl; Nelson, Carl A.
2017-01-01
Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications. PMID:28070227
NASA Astrophysics Data System (ADS)
Desbois, G.; Urai, J. L.
2009-04-01
Mudrocks and saltrocks form seals for hydrocarbon accumulations, aquitards and chemical barriers. The sealing capacity is controlled either by the rock microstructure or by chemical interactions between minerals and the permeating fluid. A detailed knowledge about the sealing characteristics is of particular interest in Petroleum Sciences. Other fields of interest are the storage of anthropogenic carbon dioxide and radioactive waste in geologic formations. A key factor to the understanding of sealing by mudstones and saltrocks is the study of their porosity. However, Halite and clay are so fluids sensitive that investigation on dried samples required by traditional methods of investigations (metal injection methods [6],[3]; magnetic susceptibility measurement [4]; SEM imaging of broken surfaces [5] and CT scanner computing [7]) are critical for robust interpretation. In one hand, none of these methods is able to directly describe the in-situ porosity at the pore scale and on the other hand, most of these methods require dried samples in which the natural structure of pores could be damaged due to the desiccation, dehydration and dissolution-recrystallisation of the fabric. SEM imaging is certainly the most direct approach to investigate the porosity but it is generally limited by the poor quality of the mechanically prepared surfaces. This problem is solved by the recent development of ion milling tools (FIB: Focussed Ion Beam or BIB: Broad Ion Beam, which allows producing in-situ high quality polished cross-sections suitable for high resolution pores SEM imaging at nano-scale. More over, new and innovative developments of the cryo-SEM approach in the Geosciences allow investigating samples under wet natural conditions. Thus, we are developing the combination of FIB/BIB-cryo-SEM methods ([1],[2]), which combine in one machine the vitrification of the pore fluids by very rapid cooling, the excavation of the sample by ion milling tool and SEM imaging. By these, we are able to stabilize the in-situ fluids in grain boundaries or pores, preserve the natural structures at nano scale, produce high quality polished cross-sections for high resolution SEM imaging and reconstruct accurately the grain boundary and the pore space networks in 3D by serial cross sectioning. Our first investigations on wet halite and wet clay materials produced unprecedented high quality images of fully preserved fluid-filled pore space as appear in nature. We have thus validated the use of the FIB/BIB-cryo-SEM technology for the in-situ investigations of the elusive structures in wet geomaterials paving the way towards a fuller understanding of how pore geometry can affect physical properties of rocks. [1] Desbois G. And Urai J.L. (submitted). In-situ morphology of meso-porosity in Boom clay (Mol site, Belgium) inferred by the innovative FIB-cryo-SEM method. E-earth. [2] Desbois G., Urai J.L., Burkhardt C., Drury M., Hayles M. and Humbel B. (2008). Cryogenic vitrification and 3D serial sectioning using high resolution cryo-FIB-SEM technology for brine-filled grain boundaries in halite: first results. Geofluids, 8: 60-72 [3] Esteban L., Géraud Y. And Bouchez J.L. (2006). Pore network geometry in low permeability argillites from magnetic fabric data and oriented mercury injections. Geophysical Research Letters, vol. 33, L18311, doi : 10.1029/2006GL026908. [4] Esteban L., Géraud Y. And Bouchez J.L. (2007). Pore network connectivity anisotropy in Jurassic argillite specimens from eastern Paris Basin (France). Physics and Chemistry of the Earth, 32(1) :161-169. [5] Hildenbrand A., Krooss B. M. and Urai J. L. (2005). Relationship between pore structure and fluid transport in argillaceous rocks. Solid Mechanics and Its Applications, IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media, 125 : 231-237, doi : 10.1007/1-4020-3865-8_26. [6] Hildenbrand A. and Urai J.L. (2003) Investigation of the morphology of pore space in mudstones—first results. Marine and Petroleum Geology, 20(10):1185-1200. [7] H. Taud H., Martinez-Angeles R., Parrot J.F., Hernandez-Escobedo L. (2005). Porosity estimation method by X-ray computed tomography. Journal of Petroleum Science and Engineering, (47), 3-4, 30: 209-217
Seals Flow Code Development 1993
NASA Technical Reports Server (NTRS)
Liang, Anita D. (Compiler); Hendricks, Robert C. (Compiler)
1994-01-01
Seals Workshop of 1993 code releases include SPIRALI for spiral grooved cylindrical and face seal configurations; IFACE for face seals with pockets, steps, tapers, turbulence, and cavitation; GFACE for gas face seals with 'lift pad' configurations; and SCISEAL, a CFD code for research and design of seals of cylindrical configuration. GUI (graphical user interface) and code usage was discussed with hands on usage of the codes, discussions, comparisons, and industry feedback. Other highlights for the Seals Workshop-93 include environmental and customer driven seal requirements; 'what's coming'; and brush seal developments including flow visualization, numerical analysis, bench testing, T-700 engine testing, tribological pairing and ceramic configurations, and cryogenic and hot gas facility brush seal results. Also discussed are seals for hypersonic engines and dynamic results for spiral groove and smooth annular seals.
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Hylton, Sonya; Kartuzova, Olga
2017-01-01
Integral to all phases of NASA's projected space and planetary expeditions is affordable and reliable cryogenic fluid storage for use in propellant or life support systems. Cryogen vaporization due to heat leaks into the tank from its surroundings and support structure can cause self-pressurization relieved through venting. This has led to a desire to develop innovative pressure control designs based on mixing of the bulk tank fluid together with some form of active or passive cooling to allow storage of the cryogenic fluid with zero or reduced boil-off. The Zero-Boil-Off Tank (ZBOT) Experiments are a series of small scale tank pressurization and pressure control experiments aboard the International Space Station (ISS) that use a transparent volatile simulant fluid in a transparent sealed tank to delineate various fundamental fluid flow, heat and mass transport, and phase change phenomena that control storage tank pressurization and pressure control in microgravity. The hardware for ZBOT-1 flew to ISS on the OA-7 flight in April 2017 and operations are planned to begin in September 2017, encompassing more than 90 tests. This paper presents preliminary results from ZBOT's ground-based research delineating both pressurization and pressure reduction trends in the sealed test tank. Tank self-pressurization tests are conducted under three modes: VJ heating, strip heating and simultaneous VJ and strip heating in attempt to simulate heat leaks from the environment, the support structure and both. The jet mixing pressure control studies are performed either from an elevated uniform temperature condition or from thermally stratified conditions following a self-pressurization run. Jet flow rates are varied from 2-25 cm/s spanning a range of jet Re number in laminar, transitional, and turbulent regimes and a range of Weber numbers covering no ullage penetration, partial penetration and complete ullage penetration and break-up (only in microgravity). Numerical prediction of a two-phase CFD model are compared to experimental 1g results to both validate the model and also indicate the effect of the residual non-condensable gas on evolution of pressure and temperature distributions in the tank during pressurization and pressure control.
Bearing Tester Data Compilation Analysis, and Reporting and Bearing Math Modeling
NASA Technical Reports Server (NTRS)
1985-01-01
The magnitude and direction of fluid induced torques and forces on the 57 mm bearing cage is considered to be a contributing factor in possible cage instabilities that can produce intermittent high heating in the bearing. Analyses of the fluid forces and torques are presented. Heat generated by viscous fluid work was estimated for two flow diverter configurations and a coolant flow of 10 lbs/sec to support the thermal evaluation of the LOX Bearing Materials Tester. Results of the analysis of the LOX turbopump turbine end bearings are discussed. Coolant velocities for the no. 4 LOX turbopump turbine end bearings were estimated as a function of shaft speed and coolant flow rate. Contact angles and track width data were developed for the 57 mm bearing as functions of shaft speed, and axial and radial loads. The Advanced Dynamics of Rolling Elements (ADORE) computer program was installed on the MSFC UNIVAC 1100 and a test case successfully run. Both the text output and the plotting output were verified. The Bearing Seal and Materials Tester - Test Condition Data Base was developed. The parametric analysis of the operating characteristics of the LOX turbopump pump end bearing using the 45 mm bearing thermal model was begun.
Analysis of a Compressible Fluid Soft Recoil (CFSR) Concept Applied to a 155 MM Howitzer
1979-03-01
Nitrile or Buna-N ( NBR ) rubber with ’ backup rings of nylotron. HITRILE NVLOTRON Piston seals An unresolved problem is that the coefficient of...fluid at atmospheric pressure Poisson’s ratio for Nitrile rubber dynamic coefficient of friction for rubber mass of recoiling parts weight of...Greene, tweed 5 Co. Palmetto catalog.) 43 [i^ - 0.50 = coefficient of friction (An approximate figure for rubber supplied by RIA Rubber
Prevention of water-contamination of ethanol-saturated dentin and hydrophobic hybrid layers
Sauro, Salvatore; Watson, Timothy F; Mannocci, Francesco; Tay, Franklin R; Pashley, David H
2013-01-01
SUMMARY Purpose This in vitro study evaluated the amount and the distribution of outward fluid flow that occurred when an experimental etch-and-rinse hydrophobic adhesive was applied to ethanol-saturated dentin before and after oxalate pretreatment. Materials and methods Measurements of dentin permeability were performed under a constant pulpal pressure of 20 cm H2O in deep and middle dentin. A lucifer yellow solution was placed in the pulp chamber to determine the distribution of the water contamination of the hybrid layers. Results The distribution of fluorescence in dentin specimens that were not pretreated with oxalate revealed that the dye permeated around the resin tags and filled the hybrid layer. Dentin specimens pretreated with oxalate prior to resin bonding, showed 80–83% less (p<0.05) water contamination compared to controls. The dentin permeability results obtained before and after oxalate pretreatment showed that oxalate decreased dentin permeability by 98% (p<0.05) compared to acid-etched controls. This prevented outward fluid movement during bonding resulting in better resin sealing of dentin due to the formation of a double seal of resin tags over calcium oxalate crystals in the tubules. Conclusion Outward dentinal fluid flow may contaminate hybrid layers during adhesive bonding procedures. Pretreatment of acid-etched dentin with 3% oxalic acid prior to bonding procedures can prevent outward fluid flow during bonding and water contamination of the hydrophobic hybrid layers. PMID:19701507
Water displacement mercury pump
Nielsen, Marshall G.
1985-01-01
A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.
Water displacement mercury pump
Nielsen, M.G.
1984-04-20
A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.
Split driveshaft pump for hazardous fluids
Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.
1995-01-01
A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.
NASA Technical Reports Server (NTRS)
Walowit, Jed A.
1994-01-01
A viewgraph presentation is made showing the capabilities of the computer code SPIRALI. Overall capabilities of SPIRALI include: computes rotor dynamic coefficients, flow, and power loss for cylindrical and face seals; treats turbulent, laminar, Couette, and Poiseuille dominated flows; fluid inertia effects are included; rotor dynamic coefficients in three (face) or four (cylindrical) degrees of freedom; includes effects of spiral grooves; user definable transverse film geometry including circular steps and grooves; independent user definable friction factor models for rotor and stator; and user definable loss coefficients for sudden expansions and contractions.
Note: An improved solenoid driver valve for miniature shock tubes.
Lynch, P T
2016-05-01
A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality.
Kim, Jeong-Gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon; Kim, Kyu-Won
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer's vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development.
Claudin5a is required for proper inflation of Kupffer's vesicle lumen and organ laterality
Kim, Jeong-gyun; Bae, Sung-Jin; Lee, Hye Shin; Park, Ji-Hyeon
2017-01-01
Left-right asymmetric organ development is critical to establish a proper body plan of vertebrates. In zebrafish, the Kupffer’s vesicle (KV) is a fluid-filled sac which controls asymmetric organ development, and a properly inflated KV lumen by means of fluid influx is a prerequisite for the asymmetric signal transmission. However, little is known about the components that support the paracellular tightness between the KV luminal epithelial cells to sustain hydrostatic pressure during KV lumen expansion. Here, we identified that the claudin5a (cldn5a) is highly expressed at the apical surface of KV epithelial cells and tightly seals the KV lumen. Downregulation of cldn5a in zebrafish showed a failure in organ laterality that resulted from malformed KV. In addition, accelerated fluid influx into KV by combined treatment of forskolin and 3-isobutyl-1-methylxanthine failed to expand the partially-formed KV lumen in cldn5a morphants. However, malformed KV lumen and defective heart laterality in cldn5a morphants were significantly rescued by exogenous cldn5a mRNA, suggesting that the tightness between the luminal epithelial cells is important for KV lumen formation. Taken together, these findings suggest that cldn5a is required for KV lumen inflation and left-right asymmetric organ development. PMID:28771527
Liquid belt radiator design study
NASA Technical Reports Server (NTRS)
Teagan, W. P.; Fitzgerald, K. F.
1986-01-01
The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).
Elastomers in mud motors for oil field applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrik, J.
1997-08-01
Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less
Multilayer compressive seal for sealing in high temperature devices
Chou, Yeong-Shyung [Richland, WA; Stevenson, Jeffry W [Richland, WA
2007-08-21
A mica based compressive seal has been developed exhibiting superior thermal cycle stability when compared to other compressive seals known in the art. The seal is composed of compliant glass or metal interlayers and a sealing (gasket) member layer composed of mica that is infiltrated with a glass forming material, which effectively reduces leaks within the seal. The compressive seal shows approximately a 100-fold reduction in leak rates compared with previously developed hybrid seals after from 10 to about 40 thermal cycles under a compressive stress of from 50 psi to 100 psi at temperatures in the range from 600.degree. C. to about 850.degree. C.
Development of a new seal for use on large openings of pressurized spacecraft
NASA Technical Reports Server (NTRS)
Weddendorf, B.
1994-01-01
The goal of this project was to design, build, and test an example of the seal invented by the author for use on Space Station Freedom and patented in 1991. The seal features a metallic spring core and replaceable elastomeric sealing elements. The metallic spring is designed to retain the sealing force of the elastomeric element against both sides of face seal gland for any specified amount of waviness or separation of the glands. A seal able to tolerate at least 1.3 mm (0.05 in) of flange distortion or separation and a test fixture of this seal which allowed direct comparison testing of O-rings were built. These designs were tested to compare leakage at different amounts of flange deflection. Results of the testing show the development seal exceeded its requirement to seal 1.3 mm of flange separation by 1 mm. This compared with the O-ring leakage, increasing dramatically at 0.5 mm of separation. The development seal also leaked at a lower rate than the O-ring seals in all tests.
Lessons Learned From the Analysis of the SAFOD Downhole Instrument Package.
NASA Astrophysics Data System (ADS)
Johnson, Wade; Mencin, David; Mattioli, Glen
2013-04-01
In September of 2008 a downhole instrument package (DIP) consisting of a string of seismometers and tilt meters in isolated pressure vessels (PODs) was installed in the SAFOD main borehole. This package was designed to protect the sensors from the corrosive borehole environment and to operate for two years. The SAFOD borehole is not sealed at the bottom allowing borehole gasses and fluids infiltratration. Previous short-term installations of instruments in the SAFOD main borehole had also failed as a result of corrosion of the wireline cable head. The average failure time for these installations was two weeks. The use of stainless steel tubing connected to the pressure vessels through gas tight fittings was designed to block borehole fluid and gas infiltration of the individual instruments within the PODs. Unfortunately, the DIP completely failed within a month of its installation. In October of 2010, the DIP was removed from the borehole and a failure analysis was performed. This analysis involved to following steps: 1. Analysis of data to understand timeline of failure 2. Remove instrument safely, maintaining integrity of spliced section and documenting any external clues. Test instrument at surface 3. Open PODs in a way that allows for sampling and avoids damaging instruments. 4. Chemical analysis of fluids recovered from splices and PODs. 5. Instrument failure analysis by the instrument manufacturers. The analysis found that there were several design flaws in the DIP. This included the use of motor oil to take up air space in the individual PODs, use of a large number of gas tight seals, lack of internal seals, poorly done solder joints, use of non-temperature rated sensors, and lack of management oversight. The lessons learned from the attempts to instrument the SAFOD borehole are critical to the success of future deep borehole projects.
Dust Tolerant Commodity Transfer Interface Mechanisms for Planetary Surfaces
NASA Technical Reports Server (NTRS)
Townsend, Ivan I.; Mueller, Robert P.; Tamasy, Gabor J.
2014-01-01
Regolith is present on most planetary surfaces such as Earth's moon, Mars, and Asteroids. If human crews and robotic machinery are to operate on these regolith covered surfaces, they must face the consequences of interacting with regolith fines which consist of particles below 100 microns in diameter down to as small as submicron scale particles. Such fine dust will intrude into mechanisms and interfaces causing a variety of problems such as contamination of clean fluid lines, jamming of mechanisms and damaging connector seals and couplings. Since multiple elements must be assembled in space for system level functionality, it will be inevitable that interfaces will be necessary for structural connections, and to pass commodities such as cryogenic liquid propellants, purge and buffer gases, water, breathing air, pressurizing gases, heat exchange fluids, power and data. When fine regolith dust is present in the environment it can be lofted into interfaces where it can compromise the utility of the interface by preventing the connections from being successfully mated, or by inducing fluid leaks or degradation of power and data transmission. A dust tolerant, hand held "quick-disconnect" cryogenic fluids connector housing has been developed at NASA KSC which can be used by astronaut crews to connect flex lines that will transfer propellants and other useful fluids to the end user. In addition, a dust tolerant, automated, cryogenic fluid, multiple connector, power and data interface mechanism prototype has been developed, fabricated and demonstrated by NASA at Kennedy Space Center (KSC). The design and operation of these prototypes are explained and discussed.
Multiscale Multiphysics Caprock Seal Analysis: A Case Study of the Farnsworth Unit, Texas, USA
NASA Astrophysics Data System (ADS)
Heath, J. E.; Dewers, T. A.; Mozley, P.
2015-12-01
Caprock sealing behavior depends on coupled processes that operate over a variety of length and time scales. Capillary sealing behavior depends on nanoscale pore throats and interfacial fluid properties. Larger-scale sedimentary architecture, fractures, and faults may govern properties of potential "seal-bypass" systems. We present the multiscale multiphysics investigation of sealing integrity of the caprock system that overlies the Morrow Sandstone reservoir, Farnsworth Unit, Texas. The Morrow Sandstone is the target injection unit for an on-going combined enhanced oil recovery-CO2 storage project by the Southwest Regional Partnership on Carbon Sequestration (SWP). Methods include small-to-large scale measurement techniques, including: focused ion beam-scanning electron microscopy; laser scanning confocal microscopy; electron and optical petrography; core examinations of sedimentary architecture and fractures; geomechanical testing; and a noble gas profile through sealing lithologies into the reservoir, as preserved from fresh core. The combined data set is used as part of a performance assessment methodology. The authors gratefully acknowledge the U.S. Department of Energy's (DOE) National Energy Technology Laboratory for sponsoring this project through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Overview of NASA Glenn Seal Developments
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.
2004-01-01
Turbine engine studies have shown that reducing high pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin and increase range. Dr. Lattime presented the design and development status of a new Active Clearance Control Test rig aimed at demonstrating advanced ACC approaches and sensors. Mr. Melcher presented controls considerations for turbine active clearance control. Mr. Geisheimer of Radatech presented an overview of their microwave blade tip sensor technology. Microwave tip sensors show promise of operation in the extreme gas temperatures present in the HPT location. Mr. Justak presented an overview of non-contacting seal developments at Advanced Technologies Group. Dr. Braun presented investigations into a non-contacting finger seal under development by NASA GRC and University of Akron. Dr. Stango presented analytical assessments of the effects of flow-induced radial loads on brush seal behavior. Mr. Flaherty presented innovative seal and seal fabrication developments at FlowServ. Mr. Chappel presented abradable seal developments at Technetics. Dr. Daniels presented an overview of NASA GRC s acoustic seal developments. NASA is investigating the ability to harness high amplitude acoustic waves, possible through a new field of acoustics called Resonant Macrosonic Synthesis, to effect a non-contacting, low leakage seal. Dr. Daniels presented early results showing the ability to restrict flow via acoustic pressures. Dr. Athavale presented numerical results simulating the flow blocking capability of a pre-prototype acoustic seal.
Development of braided rope seals for hypersonic engine applications: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Du, Guang-Wu; Ko, Frank
1992-01-01
A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures new analytical flow models are required. Two such models based on the Kozeny-Carman equations are developed herein and are compared to experimental leakage measurements for simulated pressure and seal gap conditions. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal. The first model treats the seal as a homogeneous fiber bed. The second model divides the seal into two homogeneous fiber beds identified as the core and the sheath of the seal. Flow resistances of each of the main seal elements are combined to determine the total flow resistance. Comparisons between measured leakage rates and model predictions for seal structures covering a wide range of braid architectures show good agreement. Within the experimental range, the second model provides a prediction within 6 to 13 percent of the flow for many of the cases examined. Areas where future model refinements are required are identified.
NASA Astrophysics Data System (ADS)
Busch, Andreas; Kampman, Niko; Hangx, Suzanne; Bertier, Pieter; Bickle, Mike; Harrington, Jon
2015-04-01
Understanding the long-term response of CO2 injected into porous reservoirs is one of the most important aspects to demonstrate safe and permanent storage. At the same time this is one of the least understood aspects of CCS in general. The reasons are that 'long-term', in the sense of hundreds to thousands of years, is impractical from a laboratory and rather idealised from a reservoir modelling perspective. However understanding the coupled long-term hydro-chemical-mechanical response of a reservoir-seal pair following CO2 injection is highly desirable to improve confidence and trust from a regulator and societal perspective, as well as to improve risk assessment and risk reduction. In order to provide one building block to advance understanding of this subject, in July 2012 Shell recovered some 300m of core from a scientific drill hole through a natural CO2 field near Green River, Utah. This core transected two sandstone formations (Entrada and Navajo) and one intervening seal layer, composed of interbedded marine clay-/silt and sandstones (Carmel Fm.). Fluid samples and core material were taken adjacent to the Little Grand Wash Fault (LGW), along which CO2-charged fluids traverse from depth to the surface and which is believed to be the migration pathway for CO2 inflow into the reservoirs. In-situ pH, CO2 concentrations, and fluid element and isotope geochemistry were determined from wireline downhole sampling of pressurized fluids taken from the Navajo reservoirs. The fluid geochemistry provides important constraints on reservoir filling by flow of CO2 -charged brines through the LGW fault damage zone, macro-scale fluid flow in the reservoirs and the state of fluid-mineral thermodynamic disequilibrium, from which the nature of the fluid-mineral reactions can be interpreted. In addition to core samples, we obtained control samples from stratigraphically equivalent outcrop locations and drill holes that were not subject to alterations by CO2 -charged fluids and served as a direct comparison to the altered samples. We obtained geomechanical, mineralogical, geochemical and petrophysical laboratory data along the entire length of the core and from the control samples. Furthermore, we performed more detailed studies through portions of the caprock in direct contact with the CO2-charged reservoirs. This was done to constrain the nature and penetration depths of the CO2-promoted fluid-mineral reaction fronts. These reactions have taken place in the last ~100,000 years, which has been set as an upper limit for the onset of CO2 influx into the formations. This data has been used as input for reactive (transport) modeling. In addition, we compared geomechanical data from the CO2 -exposed core and the unreacted control samples to assess the mechanical stability of reservoir and seal rocks in a CO2 storage complex following mineral dissolution and precipitation for thousands of years.
Boelter, Fred; Simmons, Catherine; Hewett, Paul
2011-04-01
Fluid sealing devices (gaskets and packing) containing asbestos are manufactured and blended with binders such that the asbestos fibers are locked in a matrix that limits the potential for fiber release. Occasionally, fluid sealing devices fail and need to be replaced or are removed during preventive maintenance activities. This is the first study known to pool over a decade's worth of exposure assessments involving fluid sealing devices used in a variety of applications. Twenty-one assessments of work activities and air monitoring were performed under conditions with no mechanical ventilation and work scenarios described as "worst-case" conditions. Frequently, the work was conducted using aggressive techniques, along with dry removal practices. Personal and area samples were collected and analyzed in accordance with the National Institute for Occupational Safety and Health Methods 7400 and 7402. A total of 782 samples were analyzed by phase contrast microscopy, and 499 samples were analyzed by transmission electron microscopy. The statistical data analysis focused on the overall data sets which were personal full-shift time-weighted average (TWA) exposures, personal 30-min exposures, and area full-shift TWA values. Each data set contains three estimates of exposure: (1) total fibers; (2) asbestos fibers only but substituting a value of 0.0035 f/cc for censored data; and (3) asbestos fibers only but substituting the limit of quantification value for censored data. Censored data in the various data sets ranged from 7% to just over 95%. Because all the data sets were censored, the geometric mean and geometric standard deviation were estimated using the maximum likelihood estimation method. Nonparametric, Kaplan-Meier, and lognormal statistics were applied and found to be consistent and reinforcing. All three sets of statistics suggest that the mean and median exposures were less than 25% of 0.1 f/cc 8-hr TWA sample or 1.0 f/cc 30-min samples, and that there is at least 95% confidence that the true 95th percentile exposures are less than 0.1 f/cc as an 8-hr TWA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Andy; Jain, Jinesh; Stewart, Brian
2012-01-01
Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.
Nonlinear dynamic analysis of a rotor-bearing-seal system under two loading conditions
NASA Astrophysics Data System (ADS)
Ma, Hui; Li, Hui; Niu, Heqiang; Song, Rongze; Wen, Bangchun
2013-11-01
The operating speed of the rotating machinery often exceeds the second or even higher order critical speeds to pursue higher efficiency. Thus, how to restrain the higher order mode instability caused by the nonlinear oil-film force and seal force at high speed as far as possible has become more and more important. In this study, a lumped mass model of a rotor-bearing-seal system considering the gyroscopic effect is established. The graphite self-lubricating bearing and the sliding bearing are simulated by a spring-damping model and a nonlinear oil-film force model based on the assumption of short bearings, respectively. The seal is simulated by Muszynska nonlinear seal force model. Effects of the seal force and oil-film force on the first and second mode instabilities are investigated under two loading conditions which are determined by API Standard 617 (Axial and Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas Industry Services, Seventh Edition). The research focuses on the effects of exciting force forms and their magnitudes on the first and second mode whips in a rotor-bearing-seal system by using the spectrum cascades, vibration waveforms, orbits and Poincaré maps. The first and second mode instability laws are compared by including and excluding the seal effect in a rotor system with single-diameter shaft and two same discs. Meanwhile, the instability laws are also verified in a rotor system with multi-diameter shaft and two different discs. The results show that the second loading condition (out-of-phase unbalances of two discs) and the nonlinear seal force can mainly restrain the first mode instability and have slight effects on the second mode instability. This study may contribute to a further understanding about the higher order mode instability of such a rotor system with fluid-induced forces from the oil-film bearings and seals.
Larsen, Anett K.; Nymo, Ingebjørg H.; Boysen, Preben; Tryland, Morten; Godfroid, Jacques
2013-01-01
A high prevalence of Brucella pinnipedialis serology and bacteriology positive animals has been found in the Northeast Atlantic stock of hooded seal ( Cystophora cristata ); however no associated gross pathological changes have been identified. Marine mammal brucellae have previously displayed different infection patterns in human and murine macrophages. To investigate if marine mammal Brucella spp. are able to invade and multiply in cells originating from a presumed host species, we infected alveolar macrophages from hooded seal with a B . pinnipedialis hooded seal isolate. Hooded seal alveolar macrophages were also challenged with B . pinnipedialis reference strain (NCTC 12890) from harbor seal ( Phoca vitulina ), B . ceti reference strain (NCTC 12891) from harbor porpoise ( Phocoena phocoena ) and a B . ceti Atlantic white-sided dolphin ( Lagenorhynchus acutus ) isolate (M83/07/1), to evaluate possible species-specific differences. Brucella suis 1330 was included as a positive control. Alveolar macrophages were obtained by post mortem bronchoalveolar lavage of euthanized hooded seals. Phenotyping of cells in the lavage fluid was executed by flow cytometry using the surface markers CD14 and CD18. Cultured lavage cells were identified as alveolar macrophages based on morphology, expression of surface markers and phagocytic ability. Alveolar macrophages were challenged with Brucella spp. in a gentamicin protection assay. Following infection, cell lysates from different time points were plated and evaluated quantitatively for colony forming units. Intracellular presence of B . pinnipedialis hooded seal isolate was verified by immunocytochemistry. Our results show that the marine mammal brucellae were able to enter hooded seal alveolar macrophages; however, they did not multiply intracellularly and were eliminated within 48 hours, to the contrary of B. suis that showed the classical pattern of a pathogenic strain. In conclusion, none of the four marine mammal strains tested were able to establish a persistent infection in primary alveolar macrophages from hooded seal. PMID:23936159
NASA Astrophysics Data System (ADS)
Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.
2017-12-01
The hysteretic relationship between capillary pressure (Pc) on saturation (S) has been shown to be a projection of a higher-dimensional surface that depends on interfacial area per volume (IAV) as the additional state variable. Most studies that validate the capillary-pressure-saturation-IAV relationship are performed on 2D micro-models or cores where scanning is performed in pressure and not in saturation. We have developed an EWOD technique (electro-wetting on dielectric) to internally manipulate fluid saturation to determine the effect on externally measured pressures. Applying electric fields to electrolytic fluids changes the contact angle among the fluids and the solid. For a parallel-plate electro-wetting set-up, the pressure difference is given by gsl (cosq'EW - cosqEW )/d', where d' is the aperture, qEQ and q'EW are the contact angles before and after the application of voltage, V, and gsl is the interfacial tension between the solid and liquid phases. This pressure difference enables direct control over internal fluid distributions. The contact angle reverts to the original value when V = 0. A sealed micro-model with Electro-Wetting on Dielectric (EWOD) electrodes was fabricated using a PDMS wedge-shaped channel with an entrance width of 1 mm and an exit width of 2 mm. The channel length was 2 mm, and had a depth of 0.9 mm. The PDMS channel was attached to an aluminum plate that served as the ground electrode. An ITO slide coated with PDMS formed the high voltage electrode and was used to seal the micro-model. X-ray Micro-CT scans showed that the contact angle between electrodes changes from from 110˚ (non-wetting) to 70˚ (wetting) for an applied voltage of 318 V AC. By applying voltage to the wedge-shaped micromodel, with the inlet and the outlet opened to the atmosphere, the externally measured capillary pressure remained constant even though the fluid-air interface moved and the saturation increased. For a closed system, the externally measured change in capillary pressure was 30 Pa and the saturation in the channel increased. EWOD provides method to assess the contributions of wettability to the fundamental physics of immiscible fluids in analog porous media. Acknowledgment: This research was supported by the National Science Foundation (1314663-EAR).
Cryogenic Fluid Management Technology Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, Brian; Caffrey, Jarvis; Hedayat, Ali; Stephens, Jonathan; Polsgrove, Robert
2015-01-01
The purpose of this paper is to investigate, facilitate a discussion and determine a path forward for technology development of cryogenic fluid management technology that is necessary for long duration deep space missions utilizing nuclear thermal propulsion systems. There are a number of challenges in managing cryogenic liquids that must be addressed before long durations missions into deep space, such as a trip to Mars can be successful. The leakage rate of hydrogen from pressure vessels, seals, lines and valves is a critical factor that must be controlled and minimized. For long duration missions, hydrogen leakage amounts to large increases in hydrogen and therefore vehicle mass. The size of a deep space vehicle, such as a mars transfer vehicle, must be kept small to control cost and the logistics of a multi launch, assembled in orbit vehicle. The boil off control of the cryogenic fluid is an additional obstacle to long duration missions. The boil off caused by heat absorption results in the growth of the propellant needs of the vehicle and therefore vehicle mass. This is a significant problem for a vehicle using nuclear (fission) propulsion systems. Radiation from the engines deposits large quantities of heat into the cryogenic fluid, greatly increasing boil off beyond that caused by environmental heat leakage. Addressing and resolving these challenges is critical to successful long duration space exploration. This paper discusses the state of the technology needed to address these challenges and discuss the path forward needed in technology development.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
Hot dynamic test rig for measuring hypersonic engine seal flow and durability
NASA Technical Reports Server (NTRS)
Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.
1994-01-01
A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was developed. The test fixture was developed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C and air pressure differentials of to 0.7 MPa. Performance of the seals can be measured while sealing against flat or engine-simulated distorted walls. In the fixture, two seals are preloaded against the sides of a 0.3 m long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this text fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are covered.
Code of Federal Regulations, 2011 CFR
2011-07-01
... unit that separates hydrogen sulfide and/or carbon dioxide from sour natural gas using liquid or solid... sealing compound), metal to metal compression, or fluid barrier through which natural gas or liquid can... gas or CO2. Condensate means hydrocarbon and other liquid, including both water and hydrocarbon...
Rippel, Wally E.; Kobayashi, Daryl M.
2005-10-11
An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.
Houck, Edward D.
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.