Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Kinetic Theory and Fluid Dynamics
NASA Astrophysics Data System (ADS)
Sone, Yoshio
This monograph gives a comprehensive description of the relationship and connections between kinetic theory and fluid dynamics, mainly for a time-independent problem in a general domain. Ambiguities in this relationship are clarified, and the incompleteness of classical fluid dynamics in describing the behavior of a gas in the continuum limit—recently reported as the ghost effect—is also discussed. The approach used in this work engages an audience of theoretical physicists, applied mathematicians, and engineers. By a systematic asymptotic analysis, fluid-dynamic-type equations and their associated boundary conditions that take into account the weak effect of gas rarefaction are derived from the Boltzmann system. Comprehensive information on the Knudsen-layer correction is also obtained. Equations and their boundary conditions are carefully classified depending on the physical context of problems. Applications are presented to various physically interesting phenomena, including flows induced by temperature fields, evaporation and condensation problems, examples of the ghost effect, and bifurcation of flows. Key features: * many applications and physical models of practical interest * experimental works such as the Knudsen compressor are examined to supplement theory * engineers will not be overwhelmed by sophisticated mathematical techniques * mathematicians will benefit from clarity of definitions and precise physical descriptions given in mathematical terms * appendices collect key derivations and formulas, important to the practitioner, but not easily found in the literature Kinetic Theory and Fluid Dynamics serves as a bridge for those working in different communities where kinetic theory or fluid dynamics is important: graduate students, researchers and practitioners in theoretical physics, applied mathematics, and various branches of engineering. The work can be used in graduate-level courses in fluid dynamics, gas dynamics, and kinetic theory; some parts
Molecular theory of barycentric velocity: monatomic fluids.
Eu, Byung Chan
2008-05-28
The notion of barycentric velocity appears in irreversible thermodynamics and fluid mechanics, in which it is a field variable obeying the hydrodynamic equations or, more specifically, the momentum balance equation, which is coupled to the rest of hydrodynamic equations. Therefore, its behavior is not known until the hydrodynamic equations are solved for the flow problem of interest. Unlike diffusion fluxes, heat fluxes, or stresses, it does not have its own constitutive relation similar to Fick's law, Fourier's law, and Newton's law of viscosity. In this work, the constitutive equation is derived for it. In parallel to the phenomenological notion of barycentric velocity, the notion of mean fluid velocity appears in statistical mechanics of irreversible dynamic processes according to the theory of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)], and plays the same role of the phenomenological counterpart. In this work, we investigate the statistical mechanical meanings of the mean fluid velocity of a fluid in flow beyond its formal connection with the barycentric velocity. We show that it consists of two components; the center-of-gravity velocity of the packet of fluid molecules, which may be identified with the barycentric velocity in the phenomenological theory, and the diffusive contribution of its collective modes relative to the center of gravity. If the fluid is uniform in space or if the packet of fluid mass is rigid, the diffusive component vanishes. The statistical mechanical (molecular theory) formula for the mean fluid velocity provides the constitutive relation for it in terms of density and temperature gradients present in the fluid in flow. The constitutive relation obtained for the mean fluid velocity can be an important component in the theory of transport processes in liquids. Its significance to fluid mechanics is briefly discussed.
Theory of critical phenomena in fluids
NASA Astrophysics Data System (ADS)
Reatto, L.; Meroni, A.; Parola, A.
1990-12-01
The authors discuss a differential approach to the theory of fluids, the hierarchical reference theory, which, above the critical temperature, has been shown to be (i) as accurate as the most widespread theories of liquid state in the high density region and (ii) able to reproduce the renormalization group results in the critical region. In this region it predicts both the universal and the non-universal quantities. The authors have studied the Lennard-Jones fluid in detail but the method can be directly applied to more realistic interactions between molecules. The treatment of temperatures below the critical one presents some additional difficulties due to the presence of the inhomogeneous two-phase region. Preliminary results indicate that the theory gives the coexistence curve with the correct scaling behaviour without any need for an ad hoc Maxwell construction. The extension of the formalism to binary mixtures is under way.
Density-functional theory for complex fluids.
Wu, Jianzhong; Li, Zhidong
2007-01-01
Density-functional theory (DFT) and its variations provide a fruitful approach to the computational modeling of the microscopic structures and phase behavior of soft-condensed matter. The methodology takes deep root in quantum mechanics but shares a mathematical similarity with a number of classical approaches in statistical mechanics. This review discusses different strategies commonly used to formulate the free-energy functional of complex fluids for either phenomena-oriented applications or as a generic description of the thermodynamic nonideality owing to various components of intermolecular forces. We emphasize the connections among different schemes of DFT approximations, their underlying assumptions, and inherent limitations. We also address extensions of equilibrium DFT to phenomenological theories for the dynamic properties of complex fluids and for the kinetics of phase transitions. In addition, we highlight the recent literature concerning applications of DFT to diverse static and time-dependent phenomena in complex fluids.
Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G
2007-12-28
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.
NASA Astrophysics Data System (ADS)
Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G.
2007-12-01
A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.
Critique of fluid theory of magnetospheric phenomena. [kinetic theory vs two fluid models
NASA Technical Reports Server (NTRS)
Heikkila, W. J.
1973-01-01
Discussion of the limitations and shortcomings of the fluid theory of magnetospheric phenomena. Following a brief qualitative review of the various theoretical approaches and of their interrelation, some of the limitations of the fluid theory with respect to magnetospheric problems are outlined, and the subsequent fallacies are exposed. The idea of frozen field convection and the concept of field line annihilation or merging are criticized. In conclusion, a plea is made for a more balanced approach to magnetospheric problems.
Dynamic density functional theory versus kinetic theory of simple fluids.
Marini Bettolo Marconi, Umberto; Melchionna, Simone
2010-09-15
By combining methods of kinetic and density functional theory, we present a description of molecular fluids which accounts for their microscopic structure and thermodynamic properties as well as their hydrodynamic behavior. We focus on the evolution of the one-particle phase space distribution, rather than on the evolution of the average particle density which features in dynamic density functional theory. The resulting equation can be studied in two different physical limits: diffusive dynamics, typical of colloidal fluids without hydrodynamic interaction where particles are subject to overdamped motion resulting from coupling with a solvent at rest, and inertial dynamics, typical of molecular fluids. Finally, we propose an algorithm to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the lattice Boltzmann method.
Intermediate Temperature Fluids Life Tests - Theory
NASA Technical Reports Server (NTRS)
Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.
2008-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
Intermediate Temperature Fluids Life Tests - Theory
NASA Technical Reports Server (NTRS)
Tarau, Calin; Sarraf, David B.; Locci, Ivan E.; Anderson, William G.
2008-01-01
There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
Theory of inertial waves in rotating fluids
NASA Astrophysics Data System (ADS)
Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir
2017-04-01
The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E
Micromorphic Theory of Bubbly Fluid Mixtures
NASA Astrophysics Data System (ADS)
Li, Weiming; Paolucci, Samuel
2008-11-01
We use a continuum theory for multiphase immiscible mixtures with inner structure. Based on micromorphic theory, the average balance equations for the different phases, as well as for the mixture, result from a systematic averaging procedure. In addition to equations for mass, momentum, energy and entropy, the balance equations also include equations for microinertia and microspin tensors. These equations, together with appropriate constitutive equations consistent with the entropy inequality, enable the modeling of immiscible multiphase materials where internal parameters are important. Here, we apply the results to a two-phase simple microstretch (expansion or contraction) bubbly fluid mixture. We show that the equations for microspin and microinertia, under a number of simplifying assumptions, combine to yield a general form of the Rayleigh-Plesset equation.
Fluctuation solution theory of pure fluids
NASA Astrophysics Data System (ADS)
Ploetz, Elizabeth A.; Pallewela, Gayani N.; Smith, Paul E.
2017-03-01
Fluctuation Solution Theory (FST) provides an alternative view of fluid thermodynamics in terms of pair fluctuations in the particle number and excess energy observed for an equivalent open system. Here we extend the FST approach to provide a series of triplet and quadruplet particle and excess energy fluctuations that can also be used to help understand the behavior of fluids. The fluctuations for the gas, liquid, and supercritical regions of three fluids (H2O, CO2, and SF6) are then determined from accurate equations of state. Many of the fluctuating quantities change sign on moving from the gas to liquid phase and, therefore, we argue that the fluctuations can be used to characterize gas and liquid behavior. Further analysis provides an approach to isolate contributions to the excess energy fluctuations arising from just the intermolecular interactions and also indicates that the triplet and quadruplet particle fluctuations are related to the pair particle fluctuations by a simple power law for large regions of the phase diagram away from the critical point.
Generalized Langevin Theory for Inhomogeneous Fluids.
NASA Astrophysics Data System (ADS)
Grant, Martin Garth
This thesis presents a molecular theory of the dynamics of inhomogeneous fluids. Dynamical correlations in a nonuniform system are studied through the generalized Langevin approach. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamic-like quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We apply this formalism to several problems. We study the correlation of currents orthogonal to a diffuse planar, liquid-vapour, interface, introducing new nonlocal elastic moduli and new nonlocal, frequency dependent, viscosities. Novel symmetry breaking contributions are obtained, which are related to the Young-Laplace equation for pressure balance. The normal modes, associated with the symmetry breaking interface in the liquid-vapour system, are analyzed, taking into account the nonlocal nature of the diffuse planar interface. We obtain the classical dispersion relation for capillary waves, observed in light scattering experiments, from an adiabatic (molecular) approach. We consider the 'capillary wave model' (CWM) of the equilibrium liquid-vapour interface. CWM is reformulated to be consistent with capillary waves; corrections to the standard CWM results, due to self-consistent long range coupling, are obtained for finite surface area and nonzero gravitational acceleration. Finally, we obtain the Landau-Lifshitz theory of fluctuating hydrodynamics from the
Reactive collision terms for fluid transport theory
NASA Technical Reports Server (NTRS)
Eccles, J. V.; Raitt, W. J.
1992-01-01
A modified Bhatnagar-Gross-Krook (BGK) collision method is used for the derivation of reactive collision terms to allow for complete higher-moment approximations in fluid transport theory. The general reactive collision terms for the 8-, 10- and 13-moment approximation for binary reactions are derived. Then, reactive collision terms for specific chemistry are derived with the assumptions: (1) all reactants and products have 13-moment distribution functions; (2) simple, classical assumptions provide sufficient models for reaction dynamics; and (3) the reaction rate is energy-independent. The derived specific formulas reflect two extremes in reactive collision dynamics: direct and indirect reaction mechanisms. Finally, considerations for correct use of the reactive collision terms are discussed in the context of space plasma environments.
Statistical mechanical theory of fluid mixtures
NASA Astrophysics Data System (ADS)
Zhao, Yueqiang; Wu, Zhengming; Liu, Weiwei
2014-01-01
A general statistical mechanical theory of fluid mixtures (liquid mixtures and gas mixtures) is developed based on the statistical mechanical expression of chemical potential of components in the grand canonical ensemble, which gives some new relationships between thermodynamic quantities (equilibrium ratio Ki, separation factor α and activity coefficient γi) and ensemble average potential energy u for one molecule. The statistical mechanical expressions of separation factor α and activity coefficient γi derived in this work make the fluid phase equilibrium calculations can be performed by molecular simulation simply and efficiently, or by the statistical thermodynamic approach (based on the saturated-vapor pressure of pure substance) that does not need microscopic intermolecular pair potential functions. The physical meaning of activity coefficient γi in the liquid phase is discussed in detail from a viewpoint of molecular thermodynamics. The calculated Vapor-Liquid Equilibrium (VLE) properties of argon-methane, methanol-water and n-hexane-benzene systems by this model fit well with experimental data in references, which indicates that this model is accurate and reliable in the prediction of VLE properties for small, large and strongly associating molecules; furthermore the statistical mechanical expressions of separation factor α and activity coefficient γi have good compatibility with classical thermodynamic equations and quantum mechanical COSMO-SAC approach.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Density-functional theory for polar fluids at functionalized surfaces. I. Fluid-wall association
NASA Astrophysics Data System (ADS)
Tripathi, Sandeep; Chapman, Walter G.
2003-12-01
We present a novel perturbation density-functional theory (DFT) to describe adsorption of associating fluids on surfaces activated with polar sites to which fluid molecules can bond or associate, such as water adsorbing on activated carbon, silica, clay minerals, etc. Association is modeled within the framework of first order thermodynamic perturbation theory (TPT1). In this first of two papers, we explore in detail the changes brought about in a system due to fluid-wall (FW) association. Hence fluid-fluid association is not considered here. However, the theory can be coupled with existing DF theories of associating fluids to study the interplay between the wall-fluid and fluid-fluid association as is shown in a future paper by S. Tripathi. The proposed theory, in excellent agreement with simulations, shows that FW association significantly changes the fluid structure and adsorption behavior. The theory accurately predicts the distribution of bonded and nonbonded species away from the surface, adsorption characteristics and surface coverage over a range of conditions commonly found in several real systems. The most striking feature of the theory is that in addition to properties away from the wall, it also estimates the distribution of the fluid along the surface, or the three-dimensional (3D) structure, despite being one-dimensional (1D) in form.
Transport theory for the Lennard-Jones dense fluid
Karkheck, J.; Stell, G.; Xu, J.
1988-11-01
A kinetic theory for a fluid of particles interacting via a pair potential with hard-core plus truncated tail is described and used to derive a transport theory for the Lennard-Jones fluid as well as the square-well fluid. Numerical results for shear viscosity, thermal conductivity, and the self-diffusion coefficient are given for the Lennard-Jones fluid and compared with simulation and experimental results. Our Lennard-Jones theory proves quantitatively useful over a wide range of states.
Exact collisional moments for plasma fluid theories
NASA Astrophysics Data System (ADS)
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rates.
Exact collisional moments for plasma fluid theories
Pfefferlé, D.; Hirvijoki, E.; Lingam, M.
2017-04-01
The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely, the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow, or mass ratio of the species. The result can bemore » applied to both the classic transport theory of plasmas that relies on the Chapman-Enskog method, as well as to derive collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum-and energy-transfer rates.« less
An improved renormalization group theory for real fluids.
Mi, Jianguo; Zhong, Chongli; Li, Yi-Gui; Tang, Yiping
2004-09-15
On the basis of White's theory, an improved renormalization group (RG) theory is developed for chain bonding fluids inside the critical region. Outside the critical region, the statistical associating fluid theory based on the first-order mean sphere approximation [Fluid Phase Equilibria 171, 27 (2000)] is adopted and all the microscopic parameters are taken directly from its earlier application of real fluids. Inside the critical region, the RG transformation for long-range density fluctuation is derived in the k space, which illustrates explicitly the contributions from the mean-field term, the local density fluctuation, and the nonlocal density fluctuation. The RG theory is applied to describe physical behavior of ten n alkanes (C1-C10) both near to and far from the critical point. With no additional parameters for chain bonding fluids, good results are obtained for critical specific heat and phase coexistence curves and the resulting critical exponents are in good agreement with the reported nonclassic values.
Theory and applications of drilling fluid hydraulics
Whittaker, A.
1985-01-01
A reference on drilling fluid hydraulics, this text provides information, nomenclature and equations. Chapter 1 introduces the basic principles of fluid properties. Chapter 2 discusses the general principles, models and measurements related to fluid flow. Newtonian, Bingham, Power Law, Casson, Robertson-Stiff and Herschel-Bulkley models are all discussed. Chapters 3 through 10 analyze hydraulic problems specific to drilling fluids and the drilling process including: viscometric measurements, pressure losses, swab and surge pressures, cuttings transport, and hydraulics optimization. Each chapter concludes with a bibliography. For consistency, nomenclature remains constant and SI units are used throughout the text. All key equations using oilfield units are listed in the appendices.
A Causal, Covariant Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-04-01
The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.
Theory of Brownian motion in a Jeffreys fluid
Raikher, Yu. L.; Rusakov, V. V.
2010-11-15
We have constructed a kinetic theory of Brownian motion in a rheologically complex medium-a Jeffreys fluid that is characterized by a combination of two viscosity mechanisms: ordinary and delayed. This model is shown to be much better suited for the interpretation of experiments on the microrheology of viscoelastic media than the standard Maxwell model. In particular, no oscillations of the mean-square particle displacement arise in a Jeffreys fluid, which is a nonremovable artifact of the theory of Brownian motion in a Maxwell fluid. The developed approach can to be used also consider the diffusion of particles in other complex fluids whose rheology is described by phenomenological schemes.
Critical asymmetry in renormalization group theory for fluids.
Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun
2013-06-21
The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.
Density functional theory for Yukawa fluids.
Hatlo, Marius M; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-14
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Density functional theory for semiflexible and cyclic polyatomic fluids.
Cao, Dapeng; Wu, Jianzhong
2004-09-01
The effects of bond angle and chain stiffness on the structures of semiflexible polyatomic fluids are investigated by incorporating the bending potential into a density functional theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 2368 (2002)] that combines a modified fundamental measure theory for the excluded-volume effects and the first-order thermodynamics perturbation theory for the chain connectivity. The refined density functional theory faithfully reproduces the density profiles and conformational properties of a variety of triatomic fluids near a hard wall in which extensive Monte Carlo simulation data are available. In particular, the theory is able to capture the structures of rigid cyclic trimers where all segments are identical. The variation of local density profiles with respect to the chain length of confined polyatomic fluids is also explored. For quadratomic fluids confined in slit pores, the density profile of the middle segments exhibits novel double peaks that are absent in a fully flexible chain model. In addition, the density functional theory is applied to predicting the conformational properties and adsorption behavior of heterogeneous triatomic fluids of type "ABB" mimicking surfactant molecules. The competition between surface adsorption and self-association of trimers consisting of surface active and self-binding "A" segments and neutral "B" segment is explored. (c) 2004 American Institute of Physics
Theory and application of drilling fluid hydraulics
Whittaker, A.
1985-01-01
The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some common expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.
A perturbative density functional theory for square-well fluids.
Jin, Zhehui; Tang, Yiping; Wu, Jianzhong
2011-05-07
We report a perturbative density functional theory for quantitative description of the structural and thermodynamic properties of square-well fluids in the bulk or at inhomogeneous conditions. The free-energy functional combines a modified fundamental measure theory to account for the short-range repulsion and a quadratic density expansion for the long-range attraction. The long-correlation effects are taken into account by using analytical expressions of the direct correlation functions of bulk fluids recently obtained from the first-order mean-spherical approximation. The density functional theory has been calibrated by extensive comparison with simulation data from this work and from the literature. The theory yields good agreement with simulation results for the radial distribution function of bulk systems and for the density profiles of square-well fluids near the surfaces of spherical cavities or in slit pores over a broad range of the parameter space and thermodynamic conditions.
Karakatsani, Eirini K; Economou, Ioannis G
2006-05-11
The perturbed chain statistical associating fluid theory (PC-SAFT) is extended to polar molecular fluids, namely dipolar and quadrupolar fluids. The extension is based on the perturbation theory for polar fluids by Stell and co-workers. Appropriate expressions are proposed for dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions. Furthermore, induced dipole interactions are calculated explicitly in the model. The new polar PC-SAFT model is relatively complex; for this purpose, a truncated polar PC-SAFT model is proposed using only the leading term in the polynomial expansion for polar interactions. The new model is used for the calculation of thermodynamic properties of various quadrupolar pure fluids. In all cases, the agreement between experimental data and model predictions is very good.
Existence Theory for Stochastic Power Law Fluids
NASA Astrophysics Data System (ADS)
Breit, Dominic
2015-06-01
We consider the equations of motion for an incompressible non-Newtonian fluid in a bounded Lipschitz domain during the time interval (0, T) together with a stochastic perturbation driven by a Brownian motion W. The balance of momentum reads as where v is the velocity, the pressure and f an external volume force. We assume the common power law model and show the existence of martingale weak solution provided . Our approach is based on the -truncation and a harmonic pressure decomposition which are adapted to the stochastic setting.
Archer, A J
2009-01-07
In recent years, a number of dynamical density functional theories (DDFTs) have been developed for describing the dynamics of the one-body density of both colloidal and atomic fluids. In the colloidal case, the particles are assumed to have stochastic equations of motion and theories exist for both the case when the particle motion is overdamped and also in the regime where inertial effects are relevant. In this paper, we extend the theory and explore the connections between the microscopic DDFT and the equations of motion from continuum fluid mechanics. In particular, starting from the Kramers equation, which governs the dynamics of the phase space probability distribution function for the system, we show that one may obtain an approximate DDFT that is a generalization of the Euler equation. This DDFT is capable of describing the dynamics of the fluid density profile down to the scale of the individual particles. As with previous DDFTs, the dynamical equations require as input the Helmholtz free energy functional from equilibrium density functional theory (DFT). For an equilibrium system, the theory predicts the same fluid one-body density profile as one would obtain from DFT. Making further approximations, we show that the theory may be used to obtain the mode coupling theory that is widely used for describing the transition from a liquid to a glassy state.
Communication: Fundamental measure theory for hard disks: fluid and solid.
Roth, Roland; Mecke, Klaus; Oettel, Martin
2012-02-28
Two-dimensional hard-particle systems are rather easy to simulate but surprisingly difficult to treat by theory. Despite their importance from both theoretical and experimental points of view, theoretical approaches are usually qualitative or at best semi-quantitative. Here, we present a density functional theory based on the ideas of fundamental measure theory for two-dimensional hard-disk mixtures, which allows for the first time an accurate description of the structure of the dense fluid and the equation of state for the solid phase within the framework of density functional theory. The properties of the solid phase are obtained by freely minimizing the functional.
Generalized fluid theory including non-Maxwellian kinetic effects
Izacard, Olivier
2017-03-29
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closuresmore » from the nonlinear Landau Fokker–Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function. One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. Here, the results shown here could provide the insights to break some of the unsolved puzzles of turbulence.« less
Generalized fluid theory including non-Maxwellian kinetic effects
NASA Astrophysics Data System (ADS)
Izacard, Olivier
2017-04-01
The results obtained by the plasma physics community for the validation and the prediction of turbulence and transport in magnetized plasmas come mainly from the use of very central processing unit (CPU)-consuming particle-in-cell or (gyro)kinetic codes which naturally include non-Maxwellian kinetic effects. To date, fluid codes are not considered to be relevant for the description of these kinetic effects. Here, after revisiting the limitations of the current fluid theory developed in the 19th century, we generalize the fluid theory including kinetic effects such as non-Maxwellian super-thermal tails with as few fluid equations as possible. The collisionless and collisional fluid closures from the nonlinear Landau Fokker-Planck collision operator are shown for an arbitrary collisionality. Indeed, the first fluid models associated with two examples of collisionless fluid closures are obtained by assuming an analytic non-Maxwellian distribution function (e.g. the INMDF (Izacard, O. 2016b Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas. Phys. Plasmas 23, 082504) that stands for interpreted non-Maxwellian distribution function). One of the main differences with the literature is our analytic representation of the distribution function in the velocity phase space with as few hidden variables as possible thanks to the use of non-orthogonal basis sets. These new non-Maxwellian fluid equations could initiate the next generation of fluid codes including kinetic effects and can be expanded to other scientific disciplines such as astrophysics, condensed matter or hydrodynamics. As a validation test, we perform a numerical simulation based on a minimal reduced INMDF fluid model. The result of this test is the discovery of the origin of particle and heat diffusion. The diffusion is due to the competition between a growing INMDF on short time scales due to spatial gradients and the thermalization on longer time scales. The results
Perfect fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. J.
1982-01-01
It is pointed out that whereas most of the discussion of the Einstein-Cartan (EC) theory involves the relationship between gravitation and elementary particles, it is possible that the theory, if correct, may be important in certain extreme astrophysical and cosmological problems. The latter would include something like the collapse of a spinning star or an early universe with spin. A set of equations that describe a macroscopic perfect fluid in the EC theory is derived and examined. The equations are derived starting from the fundamental variational principle for a perfect fluid in general relativity. A brief review of the study by Ray (1972) is included, and the results for the EC theory are presented.
Perfect fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, J. R.; Smalley, L. J.
1982-01-01
It is pointed out that whereas most of the discussion of the Einstein-Cartan (EC) theory involves the relationship between gravitation and elementary particles, it is possible that the theory, if correct, may be important in certain extreme astrophysical and cosmological problems. The latter would include something like the collapse of a spinning star or an early universe with spin. A set of equations that describe a macroscopic perfect fluid in the EC theory is derived and examined. The equations are derived starting from the fundamental variational principle for a perfect fluid in general relativity. A brief review of the study by Ray (1972) is included, and the results for the EC theory are presented.
Perturbation theory for multipolar discrete fluids.
Benavides, Ana L; Gámez, Francisco
2011-10-07
An analytical expression for the Helmholtz free energy of discrete multipolar potentials as a function of density, temperature, and intermolecular parameters is obtained as an extension of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994)]. The presented procedure is suitable for the description of a more general intermolecular potential model taking into account the overlap and dispersion forces through a discrete potential represented by a sequence of square-shoulders and wells, as well as electrostatic interactions. The main advantage of this approach is that since the Helmholtz free energy is given as an explicit expression in terms of the intermolecular parameters characterizing the interaction, the properties of interest can be easily obtained through usual thermodynamic relations. Besides, since a great variety of discretized potentials can be used with this equation of state, its applicability is very vast. By varying the intermolecular parameters, some illustrative cases are considered, and their phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the vapor-liquid equilibrium of the chosen potentials with different multipole moment of varied strengths, except in the critical region. © 2011 American Institute of Physics
Perturbation theory for multipolar discrete fluids
NASA Astrophysics Data System (ADS)
Benavides, Ana L.; Gámez, Francisco
2011-10-01
An analytical expression for the Helmholtz free energy of discrete multipolar potentials as a function of density, temperature, and intermolecular parameters is obtained as an extension of the multipolar square-well perturbation theory [A. L. Benavides, Y. Guevara, and F. del Río, Physica A 202, 420 (1994), 10.1016/0378-4371(94)90469-3]. The presented procedure is suitable for the description of a more general intermolecular potential model taking into account the overlap and dispersion forces through a discrete potential represented by a sequence of square-shoulders and wells, as well as electrostatic interactions. The main advantage of this approach is that since the Helmholtz free energy is given as an explicit expression in terms of the intermolecular parameters characterizing the interaction, the properties of interest can be easily obtained through usual thermodynamic relations. Besides, since a great variety of discretized potentials can be used with this equation of state, its applicability is very vast. By varying the intermolecular parameters, some illustrative cases are considered, and their phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the vapor-liquid equilibrium of the chosen potentials with different multipole moment of varied strengths, except in the critical region.
Improved renormalization group theory for critical asymmetry of fluids.
Wang, Long; Zhao, Wei; Wu, Liang; Li, Liyan; Cai, Jun
2013-09-28
We develop an improved renormalization group (RG) approach incorporating the critical vapor-liquid equilibrium asymmetry. In order to treat the critical asymmetry of vapor-liquid equilibrium, the integral measure is introduced in the Landau-Ginzbug partition function to achieve a crossover between the local order parameter in Ising model and the density of fluid systems. In the implementation of the improved RG approach, we relate the integral measure with the inhomogeneous density distribution of a fluid system and combine the developed method with SAFT-VR (statistical associating fluid theory of variable range) equation of state. The method is applied to various fluid systems including square-well fluid, square-well dimer fluid and real fluids such as methane (CH4), ethane (C2H6), trifluorotrichloroethane (C2F3Cl3), and sulfur hexafluoride (SF6). The descriptions of vapor-liquid equilibria provided by the developed method are in excellent agreement with simulation and experimental data. Furthermore, the improved method predicts accurate and qualitatively correct behavior of coexistence diameter near the critical point and produces the non-classical 3D Ising criticality.
Black hole solutions surrounded by perfect fluid in Rastall theory
NASA Astrophysics Data System (ADS)
Heydarzade, Y.; Darabi, F.
2017-08-01
In this work, we obtain uncharged∖charged Kiselev-like black holes as a new class of black hole solutions surrounded by perfect fluid in the context of Rastall theory. Then, we study the specific cases of the uncharged∖charged black holes surrounded by regular matter like dust and radiation, or exotic matter like quintessence, cosmological constant and phantom fields. By comparing the Kiselev-like black hole solutions in Rastall theory with the Kiselev black hole solutions in GR, we find an effective perfect fluid behavior for the black hole's surrounding field. It is shown that the corresponding effective perfect fluid has interesting characteristic features depending on the different ranges of the parameters in Rastall theory. For instance, Kiselev-like black holes surrounded by regular matter in Rastall theory may be considered as Kiselev black holes surrounded by exotic matter in GR, or Kiselev-like black holes surrounded by exotic matter in Rastall theory may be considered as Kiselev black holes surrounded by regular matter in GR.
Generalized approach to global renormalization-group theory for fluids
NASA Astrophysics Data System (ADS)
Ramana, A. Sai Venkata; Menon, S. V. G.
2012-04-01
The global renormalization-group theory (GRGT) for fluids is derived starting with the square-gradient approximation for the Helmholtz free energy functional such that any mean-field free energy density and direct correlation function can be employed. The new derivation uses Wilson's functions for representing density fluctuations, thereby relaxing the assumption of cosine variation of density fluctuations used in earlier approaches. The generality of the present approach is shown by deriving the relationships to the earlier developments. A qualitative way to infer the free parameters in the present form of GRGT is also suggested. The new theory is applied to square-well fluids of ranges 1.5 and 3.0 (in units of hard-sphere diameter) and Lennard-Jones fluids. It is shown that the present theory produces a flat isotherm in the two-phase region. Thus the theory accounts for fluctuations at all length scales and avoids the use of Maxwell's construction. An analysis of the liquid-vapor phase diagrams and the critical constants obtained for different potentials shows that, with a mean-field free energy density that is accurate away from the critical region and an appropriate coarse graining length for the mean-field theory, GRGT can provide results in good agreement with the simulation and experimental results.
Composition dependence of fluid thermophysical properties: Theory and modeling
Ely, J.F.
1993-03-29
Objectives are studies of equilibrium/nonequilibrium properties of asymmetric fluid mixtures through computer simulation (CS), development of predictive theories of mixture equilibrium properties, development and application of selection algorithm methodology for mixture equations of state, and use of theory to develop new engineering design models for fluid mixtures. Kirwood charging method CS of Lennard-Jones mixtures with large size ratios verified the Kirkwood-Buff/Baxter method of calculating chemical potentials. CS of n-butane showed that the rheology is not a function of system size. A modified stepwise regression algorithm was developed and applied to HFC R134a. An analytical expression was developed for conformal solution size correction for mixtures. The extended corresponding states theory (ECST) can be applied to systems having large polarity differences; an accurate representation was developed of bulk phase properties of water-hydrocarbon systems. It was found how to force ECST to reach the correct virial limit.
Thermodynamic properties of fluids from Fluctuation Solution Theory
O`Connell, J.P.
1990-12-31
Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested.
Thermodynamic properties of fluids from Fluctuation Solution Theory
O'Connell, J.P.
1990-01-01
Fluctuation Theory develops exact relations between integrals of molecular correlation functions and concentration derivatives of pressure and chemical potential. These quantities can be usefully correlated, particularly for mechanical and thermal properties of pure and mixed dense fluids and for activities of strongly nonideal liquid solutions. The expressions yield unique formulae for the desirable thermodynamic properties of activity and density. The molecular theory origins of the flucuation properties, their behavior for systems of technical interest and some of their successful correlations will be described. Suggestions for fruitful directions will be suggested.
A fundamental measure theory for the sticky hard sphere fluid.
Hansen-Goos, Hendrik; Wettlaufer, J S
2011-01-07
We construct a density functional theory (DFT) for the sticky hard sphere (SHS) fluid which, like Rosenfeld's fundamental measure theory (FMT) for the hard sphere fluid [Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989)], is based on a set of weighted densities and an exact result from scaled particle theory (SPT). It is demonstrated that the excess free energy density of the inhomogeneous SHS fluid Φ(SHS) is uniquely defined when (a) it is solely a function of the weighted densities from Kierlik and Rosinberg's version of FMT [E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990)], (b) it satisfies the SPT differential equation, and (c) it yields any given direct correlation function (DCF) from the class of generalized Percus-Yevick closures introduced by Gazzillo and Giacometti [J. Chem. Phys. 120, 4742 (2004)]. The resulting DFT is shown to be in very good agreement with simulation data. In particular, this FMT yields the correct contact value of the density profiles with no adjustable parameters. Rather than requiring higher order DCFs, such as perturbative DFTs, our SHS FMT produces them. Interestingly, although equivalent to Kierlik and Rosinberg's FMT in the case of hard spheres, the set of weighted densities used for Rosenfeld's original FMT is insufficient for constructing a DFT which yields the SHS DCF.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2017-02-01
In this manuscript we extend Wertheim's two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
NASA Astrophysics Data System (ADS)
Dujko, Sasa
2016-09-01
In this work we review the progress achieved over the last few decades in the fundamental kinetic theory of charged particle swarms with the focus on numerical techniques for the solution of Boltzmann's equation for electrons, as well as on the development of fluid models. We present a time-dependent multi term solution of Boltzmann's equation valid for electrons and positrons in varying configurations of electric and magnetic fields. The capacity of a theory and associated computer code will be illustrated by considering the heating mechanisms for electrons in radio-frequency electric and magnetic fields in a collision-dominated regime under conditions when electron transport is greatly affected by non-conservative collisions. The kinetic theory for solving the Boltzmann equation will be followed by a fluid equation description of charged particle swarms in both the hydrodynamic and non-hydrodynamic regimes, highlighting (i) the utility of momentum transfer theory for evaluating collisional terms in the balance equations and (ii) closure assumptions and approximations. The applications of this theory are split into three sections. First, we will present our 1.5D model of Resistive Plate Chambers (RPCs) which are used for timing and triggering purposes in many high energy physics experiments. The model is employed to study the avalanche to streamer transition in RPCs under the influence of space charge effects and photoionization. Second, we will discuss our high-order fluid model for streamer discharges. Particular emphases will be placed on the correct implementation of transport data in streamer models as well as on the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the last segment of this work, we will present our model to study the avalanche to streamer transition in non-polar fluids. Using a Monte Carlo simulation technique we have calculated transport coefficients for electrons in
Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis
NASA Astrophysics Data System (ADS)
Yip, Sidney
35 years ago Berni J. Alder showed the Boltzmann-Enskog kinetic theory failed to adequately account for the viscosity of fluids near solid density as determined by molecular dynamics simulation. This work, along with other notable simulation findings, provided great stimulus to the statistical mechanical studies of transport phenomena, particularly in dealing with collective effects in the time correlation functions of liquids. An extended theoretical challenge that remains partially resolved at best is the shear viscosity of supercooled liquids. How can one give a unified explanation of the so-called fragile and strong characteristic temperature behavior, with implications for the dynamics of glass transition? In this tribute on the occasion of his 90th birthday symposium, we recount a recent study where simulation, combined with heuristic (transition-state) and first principles (linear response) theories, identifies the molecular mechanisms governing glassy-state relaxation. Such an interplay between simulation and theory is progress from the early days; instead of simulation challenging theory, now simulation and theory complement each other.
Two-Fluid Theory for Spin Superfluidity in Magnetic Insulators
NASA Astrophysics Data System (ADS)
Flebus, Benedetta; Bender, Scott; Tserkovnyak, Yaroslav; Duine, Rembert; UU Team; UCLA Team
We investigate coupled spin and heat transport in easy-plane magnetic insulators. These materials display a continuous phase transition between normal and condensate states that is controlled by an external magnetic field. Using hydrodynamic equations supplemented by Gross-Pitaevski phenomenology and magnetoelectric circuit theory, we derive a two-fluid model to describe the dynamics of thermal and condensed magnons, and the appropriate boundary conditions in a hybrid normal-metal|magnetic-insulator|normal-metal heterostructure. We discuss how the emergent spin superfluidity can be experimentally probed via a spin Seebeck effect measurement.
Two-Fluid Theory for Spin Superfluidity in Magnetic Insulators
NASA Astrophysics Data System (ADS)
Flebus, B.; Bender, S. A.; Tserkovnyak, Y.; Duine, R. A.
2016-03-01
We investigate coupled spin and heat transport in easy-plane magnetic insulators. These materials display a continuous phase transition between normal and condensate states that is controlled by an external magnetic field. Using hydrodynamic equations supplemented by Gross-Pitaevski phenomenology and magnetoelectric circuit theory, we derive a two-fluid model to describe the dynamics of thermal and condensed magnons, and the appropriate boundary conditions in a hybrid normal-metal-magnetic-insulator-normal-metal heterostructure. We discuss how the emergent spin superfluidity can be experimentally probed via a spin Seebeck effect measurement.
Zeng, Ming; Mi, Jianguo; Zhong, Chongli
2010-03-25
Nanoconfined fluids exhibit complicated behavior such as phase transitions, prewetting, wetting transitions, universal critical properties, and critical point shifts, attributed to the cooperative interactions of short- and long-range density fluctuations. In this work, a theoretical approach, an integrated density functional (DF) and renormalization group (RG) theory, is developed to investigate the critical properties of fluids confined in slit pores or bounded by single wall surfaces. The approach can take into account both the local and the long-range density fluctuations of confined fluids self-consistently. The predicted critical order parameter exponent beta is about 1/8, and the wetting exponent beta(s) is 1.056 +/- 0.011. These values are quite close to the two-dimensional Ising values, demonstrating that the new theoretical approach is reliable as a description of criticality in nanoconfined fluids. Correspondingly, the global phase transitions and surface wetting transitions are analyzed.
Fu, Dong
2006-10-05
An equation of state (EOS) applicable for both the uniform and nonuniform fluids is established by using the density-gradient theory (DGT). In the bulk phases, the EOS reduces to statistical associating fluid theory (SAFT). By combining the EOS with the renormalization group theory (RGT), the vapor-liquid-phase equilibria and surface tensions for 10 nonpolar chainlike fluids are investigated from low temperature up to the critical point. The obtained results agree well with the experimental data.
A theory of convection: Modelling by two buoyant interacting fluids
NASA Astrophysics Data System (ADS)
Cushman-Roisin, Benoit
A new model of convection and mixing is presented. The fluid is envisioned as being composed of two buoyant interacting fluids, called thermals and anti-thermals. In the context of the Boussinesq approximation, pairs of governing equations are derived for thermals and anti-thermals. Each pair meets an Invariance Principle as a consequence of the reciprocity in the roles played by thermals and anti-thermals. Each pair is transformed into an average equation for which interaction terms cancel and another very simple equation linking the two fluid properties. An important parameter of the model is the fraction, f, of area occupied by thermals to the total area. A dynamic saturation equilibrium between thermals and antithermals is assumed. This implies a constant values of f throughout the system. The set of equations is written in terms of mean values and root-mean-square fluctuations, in keeping with equations of turbulence theories. The final set consists of four coupled non-linear differential equations. The model neglects dissipation and can be applied to any convective situations where molecular viscosity and diffusivity may be neglected. Applications of the model to mixed-layer deepening and penetrative convection are presented in subsequent papers.
Chen, Jiale; Gao, Zhe
2013-08-15
The second-order velocity distribution function was calculated from the second-order rf kinetic theory [Jaeger et al., Phys. Plasmas 7, 641 (2000)]. However, the nonresonant ponderomotive force in the radial direction derived from the theory is inconsistent with that from the fluid theory. The inconsistency arises from that the multiple-timescale-separation assumption fails when the second-order Vlasov equation is directly integrated along unperturbed particle orbits. A slowly ramped wave field including an adiabatic turn-on process is applied in the modified kinetic theory in this paper. Since this modification leads only to additional reactive/nonresonant response relevant with the secular resonant response from the previous kinetic theory, the correct nonresonant ponderomotive force can be obtained while all the resonant moments remain unchanged.
Weighted density-functional theory for simple fluids: Prewetting of a Lennard-Jones fluid
NASA Astrophysics Data System (ADS)
Sweatman, M. B.
2002-01-01
The prewetting of a Lennard-Jones fluid is studied using weighted density-functional theory. The intrinsic Helmholtz free-energy functional is separated into repulsive and attractive contributions. An accurate functional for hard spheres is used for the repulsive functional and a weighted density-functional method is used for the attractive part. The results for this theory are compared against mean-field density-functional theory, the theory of Velasco and Tarazona [E. Velasco and P. Tarazona, J. Chem. Phys. 91, 7916 (1989)] and grand canonical ensemble simulation results. The results demonstrate that the weighted density functional for attractive forces may offer a significant increase in accuracy over the other theories. The density-functional and simulation results also indicate that a previous estimate of the wetting temperature for a model of the interaction of argon with solid carbon dioxide, obtained from simulations [J. E. Finn and P. A. Monson, Phys. Rev. A, 39, 6402 (1989)], is incorrect. The weighted density-functional method indicates that triple-point prewetting is observed for this model potential.
Theory of trapped-particle-induced resistive fluid turbulence
Biglari, H.; Diamond, P.H.
1987-05-01
A theory of anomalous electron heat transport, evolving from trapped-particle-induced resistive interchange modes, is proposed. These latter are a new branch of the resistive interchange-ballooning family of instabilities, destabilized when the pressure carried by the unfavorably-drifting trapped particles is sufficiently large to overcome stabilizing contributions coming from favorable average curvature. Expressions for the turbulent heat diffusivity and anomalous electron thermal conductivity at saturation are derived for two regimes of trapped particle energy: (1) a moderately-energetic regime, which is ''fluid-like'' in the sense that the unstable mode grows faster than the time that it takes for particles in this energy range to precess once around the torus; and (2) a highly-energetic regime, where the trapped species has sufficiently high energy as to be able to resonantly interact with the mode. Unlike previous theories of anomalous transport, the estimates of diffusion and transport obtained here are self-consistent, since the trapped particles do not ''see'' the magnetic flutter due to their rapid bounce motion. The theory is valid for moderate electron-temperature, high ion-temperature (auxiliary-heated) plasmas, and as such, is relevant for present and future-generation experimental fusion devices.
Microscopic theory of topologically entangled fluids of rigid macromolecules
NASA Astrophysics Data System (ADS)
Sussman, Daniel M.; Schweizer, Kenneth S.
2011-06-01
We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
NASA Astrophysics Data System (ADS)
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Discrete perturbation theory for continuous soft-core potential fluids.
Cervantes, L A; Jaime-Muñoz, G; Benavides, A L; Torres-Arenas, J; Sastre, F
2015-03-21
In this work, we present an equation of state for an interesting soft-core continuous potential [G. Franzese, J. Mol. Liq. 136, 267 (2007)] which has been successfully used to model the behavior of single component fluids that show some water-type anomalies. This equation has been obtained using discrete perturbation theory. It is an analytical expression given in terms of density, temperature, and the set of parameters that characterize the intermolecular interaction. Theoretical results for the vapor-liquid phase diagram and for supercritical pressures are compared with previous and new simulation data and a good agreement is found. This work also clarifies discrepancies between previous Monte Carlo and molecular dynamics simulation results for this potential.
Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics
NASA Astrophysics Data System (ADS)
Silbermann, C. B.; Ihlemann, J.
2017-03-01
Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.
Minimal continuum theories of structure formation in dense active fluids
NASA Astrophysics Data System (ADS)
Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.
2013-04-01
Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.
Simulation and theory of fluid fluid interfaces in binary mixtures of hard spheres and hard rods
NASA Astrophysics Data System (ADS)
Bolhuis, Peter G.; Brader, Joseph M.; Schmidt, Matthias
2003-12-01
We consider the free interface between demixed fluid phases in a mixture of hard spheres and vanishingly thin hard rods using Monte Carlo simulations and density functional theory. Both approaches treat the full binary mixture and hence include all rod-induced many-body depletion interactions between spheres. The agreement between theoretical and simulation results for density and orientation order profiles across the interface is remarkable, even for states not far from the critical point. The simulation results confirm the previously predicted preferred vertical (parallel) alignment of rod orientation to the interface plane at the sphere-rich (sphere-poor) side. This ordering should be experimentally observable in phase-separated colloidal rod-sphere mixtures.
Theory of surface light scattering from a fluid-fluid interface with adsorbed polymeric surfactants
NASA Astrophysics Data System (ADS)
Buzza, D. M. A.; Jones, J. L.; McLeish, T. C. B.; Richards, R. W.
1998-09-01
We present a microscopic theory for the interfacial rheology of a fluid-fluid interface with adsorbed surfactant and calculate the effect of this on surface light scattering from the interface. We model the head and tail groups of the surfactant as polymer chains, a description that becomes increasingly accurate for large molecular weight surfactants, i.e., polymeric surfactants. Assuming high surface concentrations so that we have a double-sided polymer brush monolayer, we derive microscopic scaling expressions for the surface viscoelastic constants using the Alexander-deGennes model. Our results for the surface elastic constants agree with those in the literature, while the results for the viscous constants are new. We find that four elastic constants, i.e., γ (surface tension), ɛ (dilational elasticity), κ (bending modulus), λ (coupling constant), and three viscous constants, i.e., ɛ',κ',λ' (the viscous counterparts of ɛ, κ, and λ, respectively) are required for a general description of interfacial viscoelasticity (neglecting in-plane shear). In contrast to current phenomenological models, we find (1) there is no viscous counterpart to γ, i.e., γ'≡0; (2) there are two additional complex surface constants (i.e., λ+iωλ' and κ+iωκ') due to the finite thickness of the monolayer. Excellent agreement is found comparing our microscopic theory with measurements on diblock copolymer monolayers. We further derive the dispersion relation governing surface hydrodynamic modes and the power spectrum for surface quasielastic light scattering (SQELS) for a general interface parameterized by all the surface viscoelastic constants. Limiting results are presented for (1) liquid-air interfaces; (2) liquid-liquid interfaces with ultralow γ. The significant contribution of κ in the latter case opens up the possibility for a direct measurement of κ using SQELS for polymeric surfactant monolayers. Finally, we show that the coupling constant λ can lead to
NASA Astrophysics Data System (ADS)
Haghmoradi, Amin; Wang, Le; Chapman, Walter G.
2017-02-01
In this manuscript we extend Wertheim’s two-density formalism beyond its first order to model a system of fluid molecules with a single association site close to a planar hard wall with association sites on its surface in a density functional theory framework. The association sites of the fluid molecules are small enough that they can form only one bond, while the wall association sites are large enough to bond with more than one fluid molecule. The effects of temperature and of bulk fluid and wall site densities on the fluid density profile, extent of association, and competition between single and double bonding of fluid segments at the wall sites versus distance from the wall are presented. The theory predictions are compared with new Monte Carlo simulation results and they are in good agreement. The theory captures the surface coverage over wide ranges of temperature and bulk density by introducing the effect of steric hindrance in fluid association at a wall site.
Fluid and Crystallized Intelligence--Theory and Research in Later Adulthood.
ERIC Educational Resources Information Center
Willis, Sherry L.; Baltes, Paul B.
Two studies examined modifiability in intellectual functioning in older adults. The fluid-crystallized theory provided a theory base for the research. (Fluid intelligence follows a normative decline through adulthood, while crystallized intelligence remains stable or even increases.) In the first study thirty subjects (average age 69.2)…
Fluids Density Functional Theory of Diblock Copolymers for Electrolyte Applications
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
We use classical, fluids density functional theory (fDFT) to study microphase separation in block copolymer systems. We are motivated by systems used as battery electrolytes or in other transport applications, in which the two blocks of the system have different mechanical, dielectric, and transport properties that allow one phase to act as a charge/penetrant carrier and the other to make the film mechanically strong. We find density profiles of penetrants, showing to what degree they segregate into the A phase and their concentration near the interface, depending on the penetrant-A and penetrant-B interaction strengths as well as the A-B segregation strength. We also study the effect of tapering, or adding a gradient region (taper) between the pure A and B blocks of an AB diblock copolymer; the taper changes in composition along its length from pure A to pure B (or from B to A for an inverse taper). The effect of both penetrants and tapering on microphase domain spacing as a function of segregation strength will be discussed. Adjusting taper length allows one to tune the phase behavior of the system for easier processing or access to specific desired microphase structures. Based upon work supported by NSF Grant 1454343 and DOE Grant SC0014209.
Density functional theory for inhomogeneous ring polymeric fluids.
Jiang, Jian; Xu, Xiaofei; Cao, Dapeng
2012-10-01
The modeling of ring polymers remains a challenge in classical density functional theory (DFT) due to the difficulty in solving the direct bond connectivity of the ring architecture without free ends. By considering the feature that all of the segments in a ring are equivalent, we give an algorithm to solve the integral of direct bond connectivity for ideal ring polymers, and therefore propose a DFT for inhomogeneous ring polymers, where the excess free energy functional is extended from an equation of state (EOS). This EOS exhibits better agreement than other EOSs for the compressibility factors, compared to Monte Carlo data. Importantly, the DFT satisfactorily reproduces the data of the configurational-bias Monte Carlo (CBMC) simulations for ring polymers. The local density profiles from the DFT show that the bead density of inhomogeneous ring fluids is independent of ring size, which is also confirmed by the CBMC simulations. Interestingly, the behavior of solvation force for ring polymers is quite similar to that of the polymers with infinite chain length.
Experimental Confirmation of a Causal, Covariant, Relativistic Theory of Dissipative Fluid Flow
NASA Astrophysics Data System (ADS)
Scofield, Dillon; Huq, Pablo
2015-11-01
Using newtonian viscous dissipation stress in covariant, relativistic fluid flow theories leads to a violation of the second law of thermodynamics and to acausality of their predictions. E.g., the Landau & Lifshitz theory, a Lorentz covariant formulation, suffers from these defects. These problems effectively limit such theories to time-independent flow régimes. Thus, these theories are of little fundamental interest to astrophysical, geophysical, or thermonuclear flow modeling. We discuss experimental confirmation of the new geometrodynamical theory of fluids solving these problems. This theory is derived from recent results of geometrodynamics showing current conservation implies gauge field creation; the vortex field lemma.
Marshall, Bennett D; Chapman, Walter G
2013-08-07
We develop a new theory for associating fluids with multiple association sites. The theory accounts for small bond angle effects such as steric hindrance, ring formation, and double bonding. The theory is validated against Monte Carlo simulations for the case of a fluid of patchy colloid particles with three patches and is found to be very accurate. Once validated, the theory is applied to study the phase diagram of a fluid composed of three patch colloids. It is found that bond angle has a significant effect on the phase diagram and the very existence of a liquid-vapor transition.
Malijevský, Alexandr; Jackson, George; Varga, Szabolcs
2008-10-14
The extension of Onsager's second-virial theory [L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949)] for the orientational ordering of hard rods to mixtures of nonspherical hard bodies with finite length-to-breadth ratios is examined using the decoupling approximations of Parsons [Phys. Rev. A 19, 1225 (1979)] and Lee [J. Chem. Phys. 86, 6567 (1987); 89, 7036 (1988)]. Invariably the extension of the Parsons-Lee (PL) theory to mixtures has in the past involved a van der Waals one-fluid treatment in which the properties of the mixture are approximated by those of a reference one-component hard-sphere fluid with an effective diameter which depends on the composition of the mixture and the molecular parameters of the various components; commonly this is achieved by equating the molecular volumes of the effective hard sphere and of the components in the mixture and is referred to as the PL theory of mixtures. It is well known that a one-fluid treatment is not the most appropriate for the description of the thermodynamic properties of isotropic fluids, and inadequacies are often rectified with a many-fluid (MF) theory. Here, we examine MF theories which are developed from the virial theorem and the virial expansion of the Helmholtz free energy of anisotropic fluid mixtures. The use of the decoupling approximation of the pair distribution function at the level of a multicomponent hard-sphere reference system leads to our MF Parsons (MFP) theory of anisotropic mixtures. Alternatively the mapping of the virial coefficients of the hard-body mixtures onto those of equivalent hard-sphere systems leads to our MF Lee (MFL) theory. The description of the isotropic-nematic phase behavior of binary mixtures of hard Gaussian overlap particles is used to assess the adequacy of the four different theories, namely, the original second-virial theory of Onsager, the usual PL one-fluid theory, and the MF theories based on the Lee (MFL) and Parsons (MFP) approaches. A comparison with the
Kijowski, J. ); Smolski, A. ); Gornicka, A. )
1990-03-15
The Hamiltonian formulation of the theory of a gravitational field interacting with a perfect fluid is considered. There is a natural gauge related to the mechanical and thermodynamical properties of the fluid, which enables us to describe 2 degrees of freedom of the gravitational field and 4 degrees of freedom of the fluid (together with 6 conjugate momenta) by nonconstrained data ({ital g},{ital P}) where {ital g} is a 3-dimensional metric and {ital P} is the corresponding Arnowitt-Deser-Misner momentum. The Hamiltonian of the theory, numerically equal to the entropy of the fluid, generates uniquely the evolution of the data. The Hamiltonian vanishes on the data satisfying the vacuum constraint equations and tends to infinity elsewhere as the amount of the matter tends to zero. In this way the vacuum theory with constraints is obtained as a limiting case of a deep potential well'' theory.
Hard sphere perturbation theory for fluids with soft-repulsive-core potentials
NASA Astrophysics Data System (ADS)
Ben-Amotz, Dor; Stell, George
2004-03-01
The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g0(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n⩽6), and predicts free energies that are within 0.3kT of simulation results up to the fluid freezing point.
Quasi-stationary fluid theory of the hole-boring process
Pei, Zhikun; Shen, Baifei Shi, Yin; Ji, Liangliang; Wang, Wenpeng; Zhang, Xiaomei; Zhang, Lingang; Xu, Tongjun; Liu, Chen
2016-04-15
We present a quasi-stationary fluid theory to precisely describe the hole-boring process. The corresponding distributions of the electrostatic field and the particle density are theoretically obtained, which give more details than the previous stationary theory. The theoretical result is confirmed by one-dimensional particle-in-cell simulations. Such quasi-stationary fluid theory may help in understanding the basic mechanisms of ion acceleration in the radiation pressure acceleration.
On the theory of phase transitions in magnetic fluids
Zubarev, A. Yu. Iskakova, L. Yu.
2007-11-15
Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.
Inclusion of ion orbit loss and intrinsic rotation in plasma fluid rotation theory
Stacey, W. M.; Wilks, T. M.
2016-01-15
The preferential ion orbit loss of counter-current directed ions leaves a predominantly co-current ion distribution in the thermalized ions flowing outward through the plasma edge of tokamak plasmas, constituting a co-current intrinsic rotation. A methodology for representing this essentially kinetic phenomenon in plasma fluid theory is described and combined with a previously developed methodology of treating ion orbit particle and energy losses in fluid theory to provide a complete treatment of ion orbit loss in plasma fluid rotation theory.
Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory
NASA Astrophysics Data System (ADS)
Martinez, Alejandro; Castro, Martin; McCabe, Clare; Gil-Villegas, Alejandro
2007-02-01
A molecular thermodynamics approach is developed in order to describe the adsorption of fluids on solid surfaces. The new theory is based on the statistical associating fluid theory for potentials of variable range [A. Gil-Villegas et al., J. Chem. Phys. 106, 4168 (1997)] and uses a quasi-two-dimensional approximation to describe the properties of adsorbed fluids. The theory is tested against Gibbs ensemble Monte Carlo simulations and excellent agreement with the theoretical predictions is achieved. Additionally the authors use the new approach to describe the adsorption isotherms for nitrogen and methane on dry activated carbon.
Predicting adsorption isotherms using a two-dimensional statistical associating fluid theory.
Martinez, Alejandro; Castro, Martin; McCabe, Clare; Gil-Villegas, Alejandro
2007-02-21
A molecular thermodynamics approach is developed in order to describe the adsorption of fluids on solid surfaces. The new theory is based on the statistical associating fluid theory for potentials of variable range [A. Gil-Villegas et al., J. Chem. Phys. 106, 4168 (1997)] and uses a quasi-two-dimensional approximation to describe the properties of adsorbed fluids. The theory is tested against Gibbs ensemble Monte Carlo simulations and excellent agreement with the theoretical predictions is achieved. Additionally the authors use the new approach to describe the adsorption isotherms for nitrogen and methane on dry activated carbon.
Keshavarzi, Ezat; Kamalvand, Mohammad
2009-04-23
The structure and properties of fluids confined in nanopores may show a dramatic departure from macroscopic bulk fluids. The main reason for this difference lies in the influence of system walls. In addition to the entropic wall effect, system walls can significantly change the energy of the confined fluid compared to macroscopic bulk fluids. The energy effect of the walls on a nanoconfined fluid appears in two forms. The first effect is the cutting off of the intermolecular interactions by the walls, which appears for example in the integrals for calculation of the thermodynamic properties. The second wall effect involves the wall-molecule interactions. In such confined fluids, the introduction of wall forces and the competition between fluid-wall and fluid-fluid forces could lead to interesting thermodynamic properties, including new kinds of phase transitions not observed in the macroscopic fluid systems. In this article, we use the perturbative fundamental measure density functional theory to study energy effects on the structure and properties of a hard core two-Yukawa fluid confined in a nanoslit. Our results show the changes undergone by the structure and phase transition of the nanoconfined fluids as a result of energy effects.
Falling bodies through sharply stratified fluids: theory and experiments
NASA Astrophysics Data System (ADS)
McLaughlin, Richard; Camassa, Roberto; Falcon, Claudia; Harenberg, Steve; Mertens, Keith; Reis, Johnny; Schlieper, William; Watson, Bailey; White, Brian; UNC RTG Fluids Group Team
2011-11-01
The motion of bodies and fluids moving through a stratified background fluid arises naturally in the context of carbon (marine snow) settling in the ocean, as well as less naturally in the context of the DWH Gulf oil spill. The details of the settling rates may affect the ocean contribution to the earth's carbon cycle. We look at phenomena associated with many falling spheres in stratified fluids, as well as behavior of multiphase buoyant plumes penetrating strong stratification. We present careful measurements critical heights for fully miscible jets and companion analytical prediction. In turn, we examine cases involving clouds of sinking particulate and rising buoyant oil emulsions and associated plume trapping behaviors. NSF DMS RTG 0943851, NSF DMS 1009750, NSF CMG ARC-1025523, NSF RAPID CBET-1045653.
Fluid Stochastic Petri Nets: Theory, Applications, and Solution
NASA Technical Reports Server (NTRS)
Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.
1996-01-01
In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.
Trejos, Víctor M; Gil-Villegas, Alejandro
2012-05-14
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.
Nonadditive hard-sphere fluid mixtures: a simple analytical theory.
Fantoni, Riccardo; Santos, Andrés
2011-10-01
We construct a nonperturbative fully analytical approximation for the thermodynamics and the structure of nonadditive hard-sphere fluid mixtures. The method essentially lies in a heuristic extension of the Percus-Yevick solution for additive hard spheres. Extensive comparison with Monte Carlo simulation data shows a generally good agreement, especially in the case of like-like radial distribution functions.
Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.
Marconi, Umberto Marini Bettolo; Melchionna, Simone
2009-07-07
Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids.
Riley, Emily E; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Empirical resistive-force theory for slender biological filaments in shear-thinning fluids
NASA Astrophysics Data System (ADS)
Riley, Emily E.; Lauga, Eric
2017-06-01
Many cells exploit the bending or rotation of flagellar filaments in order to self-propel in viscous fluids. While appropriate theoretical modeling is available to capture flagella locomotion in simple, Newtonian fluids, formidable computations are required to address theoretically their locomotion in complex, nonlinear fluids, e.g., mucus. Based on experimental measurements for the motion of rigid rods in non-Newtonian fluids and on the classical Carreau fluid model, we propose empirical extensions of the classical Newtonian resistive-force theory to model the waving of slender filaments in non-Newtonian fluids. By assuming the flow near the flagellum to be locally Newtonian, we propose a self-consistent way to estimate the typical shear rate in the fluid, which we then use to construct correction factors to the Newtonian local drag coefficients. The resulting non-Newtonian resistive-force theory, while empirical, is consistent with the Newtonian limit, and with the experiments. We then use our models to address waving locomotion in non-Newtonian fluids and show that the resulting swimming speeds are systematically lowered, a result which we are able to capture asymptotically and to interpret physically. An application of the models to recent experimental results on the locomotion of Caenorhabditis elegans in polymeric solutions shows reasonable agreement and thus captures the main physics of swimming in shear-thinning fluids.
Gas bearings. [fluid lubrication theory of sliding contact surfaces
NASA Technical Reports Server (NTRS)
Pan, C. H. T.
1980-01-01
The present work deals with the fundamentals of gas lubrication theory, which forms the foundation of all analytical design tools for gas bearings. Most of the hard lessons learned in the past are outlined with reference to dry contact, debris ingestion, sliding speed, and chemical stability of lubricant. The mathematical theory of gas lubrication is described for scaling rules in thin-film viscous flow, momentum conservation, mass conservation, energy conservation, isothermal gas bearing theory, coupling effects, and global bearing characteristics. Particular attention is given to the governing differential equations for common bearing configurations. Also discussed are representative solutions of self-acting gas bearings, externally pressurized bearings, and time-dependent effects.
Gas bearings. [fluid lubrication theory of sliding contact surfaces
NASA Technical Reports Server (NTRS)
Pan, C. H. T.
1980-01-01
The present work deals with the fundamentals of gas lubrication theory, which forms the foundation of all analytical design tools for gas bearings. Most of the hard lessons learned in the past are outlined with reference to dry contact, debris ingestion, sliding speed, and chemical stability of lubricant. The mathematical theory of gas lubrication is described for scaling rules in thin-film viscous flow, momentum conservation, mass conservation, energy conservation, isothermal gas bearing theory, coupling effects, and global bearing characteristics. Particular attention is given to the governing differential equations for common bearing configurations. Also discussed are representative solutions of self-acting gas bearings, externally pressurized bearings, and time-dependent effects.
Generalized Langevin theory for inhomogeneous fluids: The equations of motion
NASA Astrophysics Data System (ADS)
Grant, Martin; Desai, Rashmi C.
1982-05-01
We use the generalized Langevin approach to study the dynamical correlations in an inhomogeneous system. The equations of motion (formally exact) are obtained for the number density, momentum density, energy density, stress tensor, and heat flux. We evaluate all the relevant sum rules appearing in the frequency matrix exactly in terms of microscopic pair potentials and an external field. We show using functional derivatives how these microscopic sum rules relate to more familiar, though now nonlocal, hydrodynamiclike quantities. The set of equations is closed by a Markov approximation in the equations for stress tensor and heat flux. As a result, these equations become analogous to Grad's 13-moment equations for low-density fluids and constitute a generalization to inhomogeneous fluids of the work of Schofield and Akcasu-Daniels. We also indicate how the resulting general set of equations would simplify for systems in which the inhomogeneity is unidirectional, e.g., a liquid-vapor interface.
The effective field theory of multi-component fluids
Ballesteros, Guillermo; Bellazzini, Brando; Mercolli, Lorenzo E-mail: brando.bellazzini@cea.fr
2014-05-01
We study the effective Lagrangian, at leading order in derivatives, that describes the propagation of density and metric fluctuations in a fluid composed by an arbitrary number of interacting components. Our results can be applied to any situation in cosmology where different species have non-gravitational interactions. In time-dependent backgrounds, such as FLRW, the quadratic action can only be diagonalized at fixed time slices and flavour mixing is unavoidable as time flows. In spite of this, the fluid can be interpreted at the level of the linear equations of motion as an ensemble of individual interacting species. We show that interactions lead to anisotropic stresses that depend on the mixing terms in the quadratic action for perturbations. In addition to the standard entrainment among different components, we find a new operator in the effective action that behaves as a cosmological constant when it dominates the dynamics.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Thermodynamic properties of double square-well fluids: computer simulations and theory.
Solana, J R
2008-12-28
Computer simulations have been performed to obtain the thermodynamic properties of fluids with double square-well potentials, that is, potentials consisting of two adjacent square wells with different depths. The compressibility factor, excess energy, chemical potential, constant-volume excess heat capacity, and other derived properties have been obtained. These data have been used to test the performance of several perturbation theories for predicting the thermodynamic properties of this kind of fluids. Good agreement is found on the whole between theory and simulation at supercritical temperatures. The possible presence of anomalous behavior at high densities in the fluids considered has been also analyzed in light of the same theories, with the result that in general, they do not predict such anomalous behavior, with the possible exception of a Monte Carlo-based perturbation theory for relatively large potential widths at high densities and very low temperatures.
Molecular theory of thermal conductivity of the Lennard-Jones fluid
NASA Astrophysics Data System (ADS)
Eskandari Nasrabad, Afshin; Laghaei, Rozita; Eu, Byung Chan
2006-02-01
In this paper the thermal conductivity of the Lennard-Jones fluid is calculated by applying the combination of the density-fluctuation theory, the modified free volume theory of diffusion, and the generic van der Waals equation of state. A Monte Carlo simulation method is used to compute the equilibrium pair-correlation function necessary for computing the mean free volume and the coefficient in the potential-energy and virial contributions to the thermal conductivity. The theoretical results are compared with our own molecular dynamics simulation results and with those reported in the literature. They agree in good accuracy over wide ranges of density and temperature examined in molecular dynamics simulations. Thus the combined theory represents a molecular theory of thermal conductivity of the Lennard-Jones fluid and by extension simple fluids, which enables us to compute the nonequilibrium quantity by means of the Monte Carlo simulations for the equilibrium pair-correlation function.
Fluid Registration of Diffusion Tensor Images Using Information Theory
Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.
2008-01-01
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342
Gyro-fluid and two-fluid theory and simulations of edge-localized-modes
Xu, X. Q.; Dimits, A.; Joseph, I.; Umansky, M. V.; Xi, P. W.; Xia, T. Y.; Gui, B.; Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H.; Diamond, P. H.; Dudson, B.; Snyder, P. B.
2013-05-15
This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete “gyroviscous cancellation” in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (T{sub i}≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T{sub i} because the FLR effect is proportional to T{sub i}. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid
Systematic investigation of theories of transport in the Lennard-Jones fluid
Dyer, Kippi M.; Pettitt, B. M.; Stell, George
2008-01-01
Three kinetic theories of transport are investigated for the single-species Lennard-Jones model fluid. Transport coefficients, including diffusion, shear, and bulk viscosity, are calculated from these theories for the Lennard-Jones fluid across the fluid regions of the phase diagram. The results are systematically compared against simulation. It is found that for each transport property considered, there is at least one theoretical result based on approximations that have been systematically derived from a first-principles starting point that is quantitatively useful over a wide range of densities and temperatures. To the authors' knowledge, this article constitutes the first such compendium of results for the Lennard-Jones model fluid that has been assembled. PMID:17249879
Systematic investigation of theories of transport in the Lennard-Jones fluid.
Dyer, Kippi M; Pettitt, B M; Stell, George
2007-01-21
Three kinetic theories of transport are investigated for the single-species Lennard-Jones model fluid. Transport coefficients, including diffusion, shear, and bulk viscosity, are calculated from these theories for the Lennard-Jones fluid across the fluid regions of the phase diagram. The results are systematically compared against simulation. It is found that for each transport property considered, there is at least one theoretical result based on approximations that have been systematically derived from a first-principles starting point that is quantitatively useful over a wide range of densities and temperatures. To the authors' knowledge, this article constitutes the first such compendium of results for the Lennard-Jones model fluid that has been assembled.
Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory
NASA Astrophysics Data System (ADS)
Kluwick, A.
2017-03-01
The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the
Is there a "most perfect fluid" consistent with quantum field theory?
Cohen, Thomas D
2007-07-13
It was recently conjectured that the ratio of the shear viscosity to entropy density eta/s for any fluid always exceeds [formula: see text]. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on eta/s, at least for metastable fluids.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints.
Woodward, Clifford E; Forsman, Jan
2008-08-07
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of "site functions" for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
Exact density functional theory for ideal polymer fluids with nearest neighbor bonding constraints
NASA Astrophysics Data System (ADS)
Woodward, Clifford E.; Forsman, Jan
2008-08-01
We present a new density functional theory of ideal polymer fluids, assuming nearest-neighbor bonding constraints. The free energy functional is expressed in terms of end site densities of chain segments and thus has a simpler mathematical structure than previously used expressions using multipoint distributions. This work is based on a formalism proposed by Tripathi and Chapman [Phys. Rev. Lett. 94, 087801 (2005)]. Those authors obtain an approximate free energy functional for ideal polymers in terms of monomer site densities. Calculations on both repulsive and attractive surfaces show that their theory is reasonably accurate in some cases, but does differ significantly from the exact result for longer polymers with attractive surfaces. We suggest that segment end site densities, rather than monomer site densities, are the preferred choice of ``site functions'' for expressing the free energy functional of polymer fluids. We illustrate the application of our theory to derive an expression for the free energy of an ideal fluid of infinitely long polymers.
Density functional theory for inhomogeneous associating chain fluids.
Bryk, P; Sokołowski, S; Pizio, O
2006-07-14
We propose a nonlocal density functional theory for associating chain molecules. The chains are modeled as tangent spheres, which interact via Lennard-Jones (12,6) attractive interactions. A selected segment contains additional, short-ranged, highly directional interaction sites. The theory incorporates an accurate treatment of the chain molecules via the intramolecular potential formalism and should accurately describe systems with strongly varying external fields, e.g., attractive walls. Within our approach we investigate the structure of the liquid-vapor interface and capillary condensation of a simple model of associating chains with only one associating site placed on the first segment. In general, the properties of inhomogeneous associating chains depend on the association energy. Similar to the bulk systems we find the behavior of associating chains of a given length to be in between that for the nonassociating chains of the same length and that for the nonassociating chains twice as large.
Theory of trapped-particle-induced resistive fluid turbulence
Biglari, H.; Diamond, P.H.
1987-12-01
A theory of anomalous electron heat transport, evolving from trapped-particle-induced resistive interchange modes, is proposed. The latter are a new branch of the resistive interchange-ballooning family of instabilities, destabilized when the pressure carried by the unfavorably drifting trapped particles is sufficiently large to overcome stabilizing contributions coming from favorable average curvature. Expressions for the turbulent heat diffusivity and anomalous electron thermal conductivity at saturation are derived for two regimes of trapped-particle energy: (I) a moderately energetic regime, which is ''fluidlike'' in the sense that the unstable mode grows faster than the time that it takes for particles in this energy range to precess once around the torus, and (II) a highly energetic regime, where the trapped species has sufficiently high energy as to be able to interact resonantly with the mode. Unlike previous theories of anomalous transport, the estimates of diffusion and transport obtained here are self-consistent since the trapped particles do not ''see'' the magnetic flutter due to their rapid bounce motion. The theory is valid for moderate electron-temperature, high ion-temperature (auxiliary heated) plasmas and as such, is relevant for present- and future-generation experimental fusion devices.
grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories
NASA Astrophysics Data System (ADS)
Chandra, Mani; Foucart, Francois; Gammie, Charles F.
2017-03-01
Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.
Theory and Fluid Simulations of Boundary Plasma Fluctuations
Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S
2007-01-09
Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.
Tensorial density functional theory for non-spherical hard-body fluids.
Hansen-Goos, Hendrik; Mecke, Klaus
2010-09-15
In a recent publication (Hansen-Goos and Mecke 2009 Phys. Rev. Lett. 102 018302) we constructed a free energy functional for the inhomogeneous hard-body fluid, which reduces to Rosenfeld's fundamental measure theory (Rosenfeld 1989 Phys. Rev. Lett. 63 980) when applied to hard spheres. The new functional is able to yield the isotropic-nematic transition for the hard-spherocylinder fluid in contrast to Rosenfeld's fundamental measure theory for non-spherical particles (Rosenfeld 1994 Phys. Rev. E 50 R3318). The description of inhomogeneous isotropic fluids is also improved when compared with data from Monte Carlo simulations for hard spherocylinders in contact with a planar hard wall. However, the new functional for the inhomogeneous fluid in general does not comply with the exact second order virial expansion. We introduced the ζ correction in order to minimize the deviation from Onsager's exact result in the isotropic bulk fluid. In this article we give a detailed account of the construction of the new functional. An extension of the ζ correction makes the latter better suited for non-isotropic particle distributions. The extended ζ correction is shown to improve the description of the isotropic-nematic bulk phase diagram while it has little effect on the results for the isotropic but inhomogeneous hard-spherocylinder fluid. We argue that the gain from using higher order tensorial weighted densities in the theory is likely to be inferior to the associated increase in complexity.
Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.
Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W
2016-06-23
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.
NASA Astrophysics Data System (ADS)
Khlyupin, Aleksey; Aslyamov, Timur
2017-06-01
Realistic fluid-solid interaction potentials are essential in description of confined fluids especially in the case of geometric heterogeneous surfaces. Correlated random field is considered as a model of random surface with high geometric roughness. We provide the general theory of effective coarse-grained fluid-solid potential by proper averaging of the free energy of fluid molecules which interact with the solid media. This procedure is largely based on the theory of random processes. We apply first passage time probability problem and assume the local Markov properties of random surfaces. General expression of effective fluid-solid potential is obtained. In the case of small surface irregularities analytical approximation for effective potential is proposed. Both amorphous materials with large surface roughness and crystalline solids with several types of fcc lattices are considered. It is shown that the wider the lattice spacing in terms of molecular diameter of the fluid, the more obtained potentials differ from classical ones. A comparison with published Monte-Carlo simulations was discussed. The work provides a promising approach to explore how the random geometric heterogeneity affects on thermodynamic properties of the fluids.
Simple and accurate theory for strong shock waves in a dense hard-sphere fluid.
Montanero, J M; López de Haro, M; Santos, A; Garzó, V
1999-12-01
Following an earlier work by Holian et al. [Phys. Rev. E 47, R24 (1993)] for a dilute gas, we present a theory for strong shock waves in a hard-sphere fluid described by the Enskog equation. The idea is to use the Navier-Stokes hydrodynamic equations but taking the temperature in the direction of shock propagation rather than the actual temperature in the computation of the transport coefficients. In general, for finite densities, this theory agrees much better with Monte Carlo simulations than the Navier-Stokes and (linear) Burnett theories, in contrast to the well-known superiority of the Burnett theory for dilute gases.
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth S.
2014-05-01
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
Attenuation of seismic waves in rocks saturated with multiphase fluids: theory and experiments
NASA Astrophysics Data System (ADS)
Tisato, N.; Quintal, B.; Chapman, S.; Podladchikov, Y.; Burg, J. P.
2016-12-01
Albeit seismic tomography could provide a detailed image of subsurface fluid distribution, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. However, tomographic information is important because the upward migration of multiphase fluids through the crust of the Earth can cause hazardous events such as eruptions, explosions, soil-pollution and earthquakes. In addition, multiphase fluids, such as hydrocarbons, represent important resources for economy. Seismic tomography can be improved considering complex elastic moduli and the attenuation of seismic waves (1/Q) that quantifies the energy lost by propagating elastic waves. In particular, a significant portion of the energy carried by the propagating wave is dissipated in saturated media by the wave-induced-fluid-flow (WIFF) and the wave-induced-gas-exsolution-dissolution (WIGED) mechanism. The latter describes how a propagating wave modifies the thermodynamic equilibrium between different fluid phases causing exsolution and dissolution of gas bubbles in the liquid, which in turn causes a significant frequency-dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but was only recently demonstrated and extended to bubbly water. We report the theory and laboratory experiments that have been performed to confirm the WIGED theory. In particular, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Then, we extend the theory to fluids and pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. This work etends the knowledge of attenuation in rocks saturated with multiphase fluid and
Bicompartmental analysis of cerebrospinal fluid circulation. Theory and clinical applications.
Cabanes, J; Marti, J; Orozco, M; Beltran, A
1983-08-01
A new model for cerebrospinal fluid (CSF) circulation is proposed. Specific activity/time curves for CSF kinetics determined after intraventricular injection of a radiotracer were produced by fitting a biexponential function to data points and developing a two-compartmental model. Calculation of kinetic parameters of the model provides quantitative data about CSF dynamics. The study of each compartment separately and of the intercompartmental relationship is possible with this model. Sequential scan images and graphic plots of the variations of radioactivity in both compartments, derived from this model, add supplementary information in the evaluation of patients. Ventriculography was performed in 80 patients, who fell into four groups: those with normal CSF circulation, hydrocephalus, infantile hydrocephalus, and functioning ventricular shunts. Normal and hydrocephalic patients showed significant differences between the two groups in the means of some numerical parameters calculated from the new model. An increase of intraventricular radioactivity at 24 hours (p less than 10(-4)) and of the volume of Compartment 1 (p less than 0.01) with decreased volume of Compartment 2 (p less than 10(-4)) and total flow outside the system (p less than 10(-3)) were found in patients with hydrocephalus. The limiting values for normal patients were also estimated. Communicating and obstructive hydrocephalus could be differentiated by this method; however, no differences in mean values were found relating to the etiology or clinical course of the hydrocephalus. Normal-pressure hydrocephalus and cerebral atrophy produced significantly different mean values for the volume of Compartment 2 (p less than 0.01), flow out of the system (p less than 0.01), and intercompartmental flow (p less than 0.01).
Molecular rattling in two-dimensional fluids: Simulations and theory
NASA Astrophysics Data System (ADS)
Variyar, Jayasankar E.; Kivelson, Daniel; Tarjus, Gilles; Talbot, Julian
1992-01-01
We have carried out molecular dynamic simulations over a range of densities for two-dimensional fluids consisting of hard, soft, and Lennard-Jones disks. For comparison we have also carried out simulations for the corresponding systems in which all but one particle are frozen in position. We have studied the velocity autocorrelation functions and the closely related velocity-sign autocorrelation functions, and have examined the probabilities per unit time that a particle will undergo a first velocity sign reversal after an elapsed time t measured alternately from the last velocity reversal or from a given arbitrary time. At all densities studied, the first of these probabilities per unit time is zero at t=0 and rises to a maximum at a later time, but as the hardness of the disks is increased, the maximum moves in toward t→0. This maximum can be correlated with the ``negative'' dip observed in the velocity correlation functions when plotted versus time. Our conclusion is that all these phenomena can be explained qualitatively on the basis of a model where memory does not extend back beyond the last velocity reversal. However, at high density, the velocity-sign-autocorrelation function not only shows a negative dip (which is explained by the model) but also a second ``oscillation'' which is not described, even qualitatively, by the model. We conclude that the first dip in the velocity and velocity-sign correlation functions can occur even if there are no correlated or coherent librations, but the existence of a ``second'' oscillation is a better indication of such correlations.
Urbic, Tomaz
2017-02-01
In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles.
ERIC Educational Resources Information Center
Grable-Wallace, Lisa; And Others
1989-01-01
Evaluates seven courseware packages covering the topics of fluid dynamics, kinetic theory, and thermal properties. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects some packages based on the criteria. (YP)
ERIC Educational Resources Information Center
Grable-Wallace, Lisa; And Others
1989-01-01
Evaluates seven courseware packages covering the topics of fluid dynamics, kinetic theory, and thermal properties. Discusses the price range, sub-topics, program type, interaction, time, calculus required, graphics, and comments of each courseware. Selects some packages based on the criteria. (YP)
The application of the nonsmooth critical point theory to the stationary electrorheological fluids
NASA Astrophysics Data System (ADS)
Qian, Chenyin
2016-06-01
In this paper, we prove the existence of variational solutions to systems modeling electrorheological fluids in the stationary case. Our method of proof is based on the nonsmooth critical point theory for locally Lipschitz functional and the properties of the generalized Lebesgue-Sobolev space.
Continuous media theory for MR fluids in non-shearing flows
NASA Astrophysics Data System (ADS)
Ruiz-López, J. A.; Hidalgo-Alvarez, R.; de Vicente, J.
2013-02-01
The enhanced mechanical response of magnetorheological fluids under slow compression has been investigated by means of experiments, theory and particle-level simulations. A wide range of magnetic field strengths (0-354 kA/m), dispersing medium viscosities (20-500 mPa·s) and particle concentrations (5-30 vol%) were investigated. Plastic media theory in compressive flow was in good agreement with experimental data. Slight deviations from the theory were associated to the so-called strengthening effect as the yield shear stress could increase during compression. Particle-level simulations were in good agreement with both experiments and simulations.
Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik
2013-01-21
The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.
Bianchi Type VI1 Viscous Fluid Cosmological Model in Wesson´s Theory of Gravitation
NASA Astrophysics Data System (ADS)
Khadekar, G. S.; Avachar, G. R.
2007-03-01
Field equations of a scale invariant theory of gravitation proposed by Wesson [1, 2] are obtained in the presence of viscous fluid with the aid of Bianchi type VIh space-time with the time dependent gauge function (Dirac gauge). It is found that Bianchi type VIh (h = 1) space-time with viscous fluid is feasible in this theory, whereas Bianchi type VIh (h = -1, 0) space-times are not feasible in this theory, even in the presence of viscosity. For the feasible case, by assuming a relation connecting viscosity and metric coefficient, we have obtained a nonsingular-radiating model. We have discussed some physical and kinematical properties of the models.
Composition dependence of fluid thermophysical properties: Theory and modeling. Progress report
Ely, J.F.
1993-03-29
Objectives are studies of equilibrium/nonequilibrium properties of asymmetric fluid mixtures through computer simulation (CS), development of predictive theories of mixture equilibrium properties, development and application of selection algorithm methodology for mixture equations of state, and use of theory to develop new engineering design models for fluid mixtures. Kirwood charging method CS of Lennard-Jones mixtures with large size ratios verified the Kirkwood-Buff/Baxter method of calculating chemical potentials. CS of n-butane showed that the rheology is not a function of system size. A modified stepwise regression algorithm was developed and applied to HFC R134a. An analytical expression was developed for conformal solution size correction for mixtures. The extended corresponding states theory (ECST) can be applied to systems having large polarity differences; an accurate representation was developed of bulk phase properties of water-hydrocarbon systems. It was found how to force ECST to reach the correct virial limit.
Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory.
Buyukdagli, S; Blossey, R
2016-09-01
Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent-a dipolar Coulomb fluid-including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.
Equation of state for expanded fluid mercury: Variational theory with many-body interaction
NASA Astrophysics Data System (ADS)
Kitamura, Hikaru
2007-04-01
A variational associating fluid theory is proposed to describe equations of state for expanded fluid mercury. The theory is based on the soft-sphere variational theory, incorporating an ab initio diatomic potential and an attractive many-body potential; the latter is evaluated with quatnum chemical methods and expressed as a function of the local atomic coordination number and the nearest-neighbor distance. The resultant equation of state can reproduce the observed gas-liquid coexistence curve with good accuracy, without introducing phenomenological effective pair potentials. Various thermodynamic quantities such as pressure, isochoric thermal pressure coefficient, adiabatic sound velocity, and specific heat are calculated over a wide density-temperature range and compared with available experimental data.
Thermodynamic perturbation theory for associating fluids confined in a one-dimensional pore
Marshall, Bennett D.
2015-06-21
In this paper, a new theory is developed for the self-assembly of associating molecules confined to a single spatial dimension, but allowed to explore all orientation angles. The interplay of the anisotropy of the pair potential and the low dimensional space results in orientationally ordered associated clusters. This local order enhances association due to a decrease in orientational entropy. Unlike bulk 3D fluids which are orientationally homogeneous, association in 1D necessitates the self-consistent calculation of the orientational distribution function. To test the new theory, Monte Carlo simulations are performed and the theory is found to be accurate. It is also shown that the traditional treatment in first order perturbation theory fails to accurately describe this system. The theory developed in this paper may be used as a tool to study hydrogen bonding of molecules in 1D zeolites as well as the hydrogen bonding of molecules in carbon nanotubes.
NASA Astrophysics Data System (ADS)
Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati
2013-06-01
We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.
Kakad, Amar; Omura, Yoshiharu; Kakad, Bharati
2013-06-15
We perform one-dimensional fluid simulation of ion acoustic (IA) solitons propagating parallel to the magnetic field in electron-ion plasmas by assuming a large system length. To model the initial density perturbations (IDP), we employ a KdV soliton type solution. Our simulation demonstrates that the generation mechanism of IA solitons depends on the wavelength of the IDP. The short wavelength IDP evolve into two oppositely propagating identical IA solitons, whereas the long wavelength IDP develop into two indistinguishable chains of multiple IA solitons through a wave breaking process. The wave breaking occurs close to the time when electrostatic energy exceeds half of the kinetic energy of the electron fluid. The wave breaking amplitude and time of its initiation are found to be dependent on characteristics of the IDP. The strength of the IDP controls the number of IA solitons in the solitary chains. The speed, width, and amplitude of IA solitons estimated during their stable propagation in the simulation are in good agreement with the nonlinear fluid theory. This fluid simulation is the first to confirm the validity of the general nonlinear fluid theory, which is widely used in the study of solitary waves in laboratory and space plasmas.
A coupled theory of fluid permeation and large deformations for elastomeric materials
NASA Astrophysics Data System (ADS)
Chester, Shawn A.; Anand, Lallit
2010-11-01
An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model for the free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. As representative examples of application of the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.
Toward Quantitative Coarse-Grained Models of Lipids with Fluids Density Functional Theory.
Frink, Laura J Douglas; Frischknecht, Amalie L; Heroux, Michael A; Parks, Michael L; Salinger, Andrew G
2012-04-10
We describe methods to determine optimal coarse-grained models of lipid bilayers for use in fluids density functional theory (fluids-DFT) calculations. Both coarse-grained lipid architecture and optimal parametrizations of the models based on experimental measures are discussed in the context of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers in water. The calculations are based on a combination of the modified-iSAFT theory for bonded systems and an accurate fundamental measures theory (FMT) for hard sphere reference fluids. We furthermore discuss a novel approach for pressure control in the fluids-DFT calculations that facilitates both partitioning studies and zero tension control for the bilayer studies. A detailed discussion of the numerical implementations for both solvers and pressure control capabilities are provided. We show that it is possible to develop a coarse-grained lipid bilayer model that is consistent with experimental properties (thickness and area per lipid) of DPPC provided that the coarse-graining is not too extreme. As a final test of the model, we find that the predicted area compressibility moduli and lateral pressure profiles of the optimized models are in reasonable agreement with prior results.
Hebb and Cattell: The Genesis of the Theory of Fluid and Crystallized Intelligence.
Brown, Richard E
2016-01-01
Raymond B. Cattell is credited with the development of the theory of fluid and crystallized intelligence. The genesis of this theory is, however, vague. Cattell, in different papers, stated that it was developed in 1940, 1941 or 1942. Carroll (1984, Multivariate Behavioral Research, 19, 300-306) noted the similarity of Cattell's theory to "Hebb's notion of two types of intelligence," which was presented at the 1941 APA meeting, but the matter has been left at that. Correspondence between Cattell, Donald Hebb and George Humphrey of Queen's University, Kingston, Ontario, however, indicates that Cattell adopted Hebb's ideas of intelligence A and B and renamed them. This paper describes Hebb's two types of intelligence, and shows how Cattell used them to develop his ideas of crystallized and fluid intelligence. Hebb and Cattell exchanged a number of letters before Cattell's paper was rewritten in such a way that everyone was satisfied. This paper examines the work of Hebb and Cattell on intelligence, their correspondence, the development of the ideas of fluid and crystallized intelligence, and why Cattell (1943, p. 179) wrote that "Hebb has independently stated very clearly what constitutes two thirds of the present theory."
Hebb and Cattell: The Genesis of the Theory of Fluid and Crystallized Intelligence
Brown, Richard E.
2016-01-01
Raymond B. Cattell is credited with the development of the theory of fluid and crystallized intelligence. The genesis of this theory is, however, vague. Cattell, in different papers, stated that it was developed in 1940, 1941 or 1942. Carroll (1984, Multivariate Behavioral Research, 19, 300-306) noted the similarity of Cattell's theory to “Hebb's notion of two types of intelligence,” which was presented at the 1941 APA meeting, but the matter has been left at that. Correspondence between Cattell, Donald Hebb and George Humphrey of Queen's University, Kingston, Ontario, however, indicates that Cattell adopted Hebb's ideas of intelligence A and B and renamed them. This paper describes Hebb's two types of intelligence, and shows how Cattell used them to develop his ideas of crystallized and fluid intelligence. Hebb and Cattell exchanged a number of letters before Cattell's paper was rewritten in such a way that everyone was satisfied. This paper examines the work of Hebb and Cattell on intelligence, their correspondence, the development of the ideas of fluid and crystallized intelligence, and why Cattell (1943, p. 179) wrote that “Hebb has independently stated very clearly what constitutes two thirds of the present theory.” PMID:28018191
Shen, Gulou; Ji, Xiaoyan; Lu, Xiaohua
2013-06-14
A hybrid statistical mechanical model, which is fully consistent with the bulk perturbed-chain statistical associating fluid theory (PC-SAFT) in describing properties of fluids, was developed by coupling density functional theory with PC-SAFT for the description of the inhomogeneous behavior of real chain molecules in nanopores. In the developed model, the modified fundamental measure theory was used for the hard sphere contribution; the dispersion free energy functional was represented with weighted density approximation by averaging the density in the range of interaction, and the chain free energy functional from interfacial statistical associating fluid theory was used to account for the chain connectivity. Molecular simulation results of the density profile were compared with model prediction, and the considerable agreement reveals the reliability of the proposed model in representing the confined behaviors of chain molecules in an attractive slit. The developed model was further used to represent the adsorptions of methane and carbon dioxide on activated carbons, in which methane and carbon dioxide were modeled as chain molecules with the parameters taken from the bulk PC-SAFT, while the parameters of solid surface were obtained from the fitting of gas adsorption isotherms measured experimentally. The results show that the model can reliably reproduce the confined behaviors of physically existing substances in nanopores.
Solid-fluid equilibrium of fused-hard-sphere systems: Free-volume theories and simulation
NASA Astrophysics Data System (ADS)
Gay, Shawn Christian
Historically, the theoretical investigation of solid-fluid phase equilibrium has largely focused on the freezing of hard spheres. Only relatively recently have theories begun to address the phase equilibria of systems of nonspherical molecules. This thesis details the application of various theoretical methods to predict the solid-fluid phase equilibria of systems of nonspherical molecules. The general approach is to first calculate the properties of systems of fused-hard-sphere molecules, and then model real systems by extending the fused-hard-sphere results using generalized van der Waals theory and perturbation theory to describe the effects of longer range interactions. Results of original research are presented that demonstrate the effectiveness of the theories, often by direct comparison with Monte Carlo simulation results and, where applicable, by comparison with experiment. We use a simple cell theory to calculate the free energy of the heteronuclear hard-dumbbell solid and an analytic equation of state to calculate the free energy of the fluid. Decreasing the ratio of the diameters of the spheres composing the dumbbell is found to increase the pressure at freezing. We have also calculated the distribution of free volumes in the solid phase of two-dimensional hard dumbbells. This information allows us to characterize a fluctuating cell theory as well as new statistical geometry relations for fused-hard-sphere systems presented in this thesis. Finally, we use simple cell theory results for hard dumbbells in a generalized van der Waals theory to calculate the solid-liquid phase transition for a system of dipolar hard dumbbells. Our model is chosen to approximate a methyl chloride molecule. Thermodynamic perturbation theory is used to include dipolar effects in the fluid equation of state, and static-lattice sums are used to approximate dipolar effects in the solid phase. We find that the presence of a dipole moment stabilizes a non-closepacking crystal
NASA Astrophysics Data System (ADS)
Jover, Julio; Galindo, Amparo; Jackson, George; Müller, Erich A.; Haslam, Andrew J.
2015-09-01
Using both theory and continuum simulation, we examine a system comprising a mixture of polymer chains formed from 100 hard-sphere (HS) segments and HS colloids with a diameter which is 20 times that of the polymer segments. According to Wertheim's first-order thermodynamic perturbation theory (TPT1) this athermal system is expected to phase separate into a colloid-rich and a polymer-rich phase. Using a previously developed continuous pseudo-HS potential [J. F. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A. Muller, J. Chem. Phys. 137, 144505 (2012)], we simulate the system at a phase point indicated by the theory to be well within the two-phase binodal region. Molecular-dynamics simulations are performed from starting configurations corresponding to completely phase-separated and completely pre-mixed colloids and polymers. Clear evidence is seen of the stabilisation of two coexisting fluid phases in both cases. An analysis of the interfacial tension of the phase-separated regions is made; ultra-low tensions are observed in line with previous values determined with square-gradient theory and experiment for colloid-polymer systems. Further simulations are carried out to examine the nature of these coexisting phases, taking as input the densities and compositions calculated using TPT1 (and corresponding to the peaks in the probability distribution of the density profiles obtained in the simulations). The polymer chains are seen to be fully penetrable by other polymers. By contrast, from the point of view of the colloids, the polymers behave (on average) as almost-impenetrable spheres. It is demonstrated that, while the average interaction between the polymer molecules in the polymer-rich phase is (as expected) soft-repulsive in nature, the corresponding interaction in the colloid-rich phase is of an entirely different form, characterised by a region of effective intermolecular attraction.
Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces.
Ledesma-Aguilar, R; Hernández-Machado, A; Pagonabarraga, I
2013-06-28
We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor-liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
Thermodynamic of fluids from a general equation of state: The molecular discrete perturbation theory
Gámez, Francisco
2014-06-21
An extensive generalisation of the discrete perturbation theory for molecular multipolar non-spherical fluids is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape and multipolar dependence. By varying the intermolecular parameters through their geometrical and multipolar dependence, a set of molecular fluids are considered and their vapor–liquid phase diagrams are tested against available simulation data. Concretely, multipolar and non-polar Kihara and chainlike fluids are tested and it is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected molecular potentials, except near the critical region.
Theory of Wetting-Induced Fluid Entrainment by Advancing Contact Lines on Dry Surfaces
NASA Astrophysics Data System (ADS)
Ledesma-Aguilar, R.; Hernández-Machado, A.; Pagonabarraga, I.
2013-06-01
We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.
Díez, A; Largo, J; Solana, J R
2006-08-21
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.
Hlushak, Stepan
2015-09-28
An analytical expression for the Laplace transform of the radial distribution function of a mixture of hard-sphere chains of arbitrary segment size and chain length is used to rigorously formulate the first-order Barker-Henderson perturbation theory for the contribution of the segment-segment dispersive interactions into thermodynamics of the Lennard-Jones chain mixtures. Based on this approximation, a simple variant of the statistical associating fluid theory is proposed and used to predict properties of several mixtures of chains of different lengths and segment sizes. The theory treats the dispersive interactions more rigorously than the conventional theories and provides means for more accurate description of dispersive interactions in the mixtures of highly asymmetric components.
Hlushak, Stepan
2015-09-28
An analytical expression for the Laplace transform of the radial distribution function of a mixture of hard-sphere chains of arbitrary segment size and chain length is used to rigorously formulate the first-order Barker-Henderson perturbation theory for the contribution of the segment-segment dispersive interactions into thermodynamics of the Lennard-Jones chain mixtures. Based on this approximation, a simple variant of the statistical associating fluid theory is proposed and used to predict properties of several mixtures of chains of different lengths and segment sizes. The theory treats the dispersive interactions more rigorously than the conventional theories and provides means for more accurate description of dispersive interactions in the mixtures of highly asymmetric components.
Paleo Structure of the Earth's mantle derived from Fluid Dynamic Inverse Theory
NASA Astrophysics Data System (ADS)
Bunge, H.-P.; Horbach, A.
2012-04-01
Fluid dynamic conservation equations, akin to those that govern the evolution of the atmosphere and oceans describe the motion of the mantle. While powerful computer models exist to simulate the circulation of the mantle, sophisticated fluid dynamic inverse theory is now at hand that makes it possible to track mantle motion back into the recent geologic past. A major opportunity exists in applying this theory to our understanding of the paleo-circulation of Earth's mantle and constructing a quantitative model of past Earth structure (PaleoEarth). Important in its own right, such model would provide vital information on the history of plate driving forces, the temporal evolution of the core mantle boundary and its associated impact upon the geodynamo, time variability of Earth's geoid, as well as a deeper understanding into the development of sedimentary basins. We will explore some early applications of the approach, focusing on uncertainty in particular on the choice of residuals that drive the inverse problem.
Classical density functional theory for associating fluids in orienting external fields.
Marshall, Bennett D; Chapman, Walter G; Telo da Gama, Margarida M
2013-12-01
We develop a classical density functional theory (DFT) for two-site associating fluids in spatially homogeneous external fields which exhibit orientational inhomogeneities. The Helmholtz free-energy functional is obtained using Wertheim's thermodynamic perturbation theory and the orientational distribution function is obtained using DFT in the canonical ensemble. It is shown that an orientating field significantly enhances association by ordering the molecules, thereby reducing the entropic penalty of association. It is also shown that association enhances the orientational order for fixed field strength.
Microscopic theories of the structure and glassy dynamics of ultra-dense hard sphere fluids
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Schweizer, Kenneth
2013-03-01
We construct a new thermodynamically self-consistent integral equation theory (IET) for the equilibrium metastable fluid structure of monodisperse hard spheres that incorporates key features of the jamming transition. A two Yukawa generalized mean spherical IET closure for the direct correlation function tail is employed to model the distinctive short and long range contributions for highly compressed fluids. The exact behavior of the contact value of the radial distribution function (RDF) and isothermal compressibility are enforced, as well as an approximate theory for the RDF contact derivative. Comparison of the theoretical results for the real and Fourier space structure with nonequilibrium jammed simulations reveals many similarities, but also differences as expected. The new structural theory is used as input into the nonlinear Langevin equation (NLE) theory of activated single particle dynamics to study the alpha relaxation time, and good agreement with recent experiments and simulations is found. We demonstrate it is crucial to accurately describe the very high wave vector Fourier space to reliably extract the dynamical predictions of NLE theory, and structural precursors of jamming play an important role in determining entropic barriers.
Kok Yan Chan, G.; Sclavounos, P. D.; Jonkman, J.; Hayman, G.
2015-04-02
A hydrodynamics computer module was developed for the evaluation of the linear and nonlinear loads on floating wind turbines using a new fluid-impulse formulation for coupling with the FAST program. The recently developed formulation allows the computation of linear and nonlinear loads on floating bodies in the time domain and avoids the computationally intensive evaluation of temporal and nonlinear free-surface problems and efficient methods are derived for its computation. The body instantaneous wetted surface is approximated by a panel mesh and the discretization of the free surface is circumvented by using the Green function. The evaluation of the nonlinear loads is based on explicit expressions derived by the fluid-impulse theory, which can be computed efficiently. Computations are presented of the linear and nonlinear loads on the MIT/NREL tension-leg platform. Comparisons were carried out with frequency-domain linear and second-order methods. Emphasis was placed on modeling accuracy of the magnitude of nonlinear low- and high-frequency wave loads in a sea state. Although fluid-impulse theory is applied to floating wind turbines in this paper, the theory is applicable to other offshore platforms as well.
Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
Berkouk, K; Carpenter, P W; Lucey, A D
2003-12-01
Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.
Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.
Edison, J R; Monson, P A
2013-11-12
We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.
Accurate statistical associating fluid theory for chain molecules formed from Mie segments.
Lafitte, Thomas; Apostolakou, Anastasia; Avendaño, Carlos; Galindo, Amparo; Adjiman, Claire S; Müller, Erich A; Jackson, George
2013-10-21
A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson et al.) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second
Schuff, M M; Gore, J P; Nauman, E A
2013-05-01
In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2013-12-21
In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.
Ghobadi, Ahmadreza F; Elliott, J Richard
2013-12-21
In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.
Fluids density functional theory studies of supramolecular polymers at a hard surface.
McGarrity, E S; Thijssen, J M; Besseling, N A M
2010-08-28
We have applied a fluids density functional theory based on that of Yu and Wu [J. Chem. Phys. 116, 7094 (2002)] to treat reversible supramolecular polymers near a hard surface. This approach combines a hard-sphere fluids density functional theory with the first-order thermodynamic perturbation theory of Wertheim. The supramolecular polymers are represented in the theory by hard-spheres with two associating sites. We explore the effects of the bonding scheme, monomer concentration, and association energy upon the equilibrium chain sizes and the depletion lengths. This study is performed on simple systems containing two-site monomers and binary mixtures of two-site monomers combined with end stopper monomers which have only a single association site. Our model has correct behavior in the dilute and overlap regimes and the bulk results can be easily connected to simpler random-flight models. We find that there is a nonmonotonic behavior of the depletion length of the polymers as a function of concentration and that this depletion length can be controlled through the concentration of end stoppers. These results are applicable to the study of colloidal dispersions in supramolecular polymer solutions.
Ghosh, Satinath; Ghosh, Swapan K
2013-08-07
Vapor to liquid condensation in presence of spherical seed particle of any arbitrary radius ranging from zero to infinity has been investigated using density functional theory, by modeling the local Helmholtz free energy density functional as well as the density profile at the vapor-liquid interface. A general theory is, thus, obtained which provides the different modes of nucleation based on the size of the seed ranging from zero (corresponding to the homogeneous mode of nucleation) to infinity (corresponding to the heterogeneous nucleation on flat surface). The theory is applied to the Lennard-Jones fluid and the optimized shape (i.e., contact angle) and formation free energy of droplets of any arbitrary size have been obtained in this work. The change of the shape (optimized) with the variation of the size of the liquid droplet as well as with the size of the solid substrate has been studied, thus predicting the shape-size relationship in the course of vapor to liquid heterogeneous nucleation on a spherical solid substrate of any particular size. The spinodal decomposition of vapor has also been observed at higher strength of the solid-fluid interaction. The results have been compared with the results of the conventional classical nucleation theory.
Shen, Gulou; Ji, Xiaoyan; Öberg, Sven; Lu, Xiaohua
2013-11-21
The perturbed-chain statistical associating fluid theory (PC-SAFT) density functional theory developed in our previous work was extended to the description of inhomogeneous confined behavior in nanopores for mixtures. In the developed model, the modified fundamental measure theory and the weighted density approximation were used to represent the hard-sphere and dispersion free energy functionals, respectively, and the chain free energy functional from interfacial statistical associating fluid theory was used to account for the chain connectivity. The developed model was verified by comparing the model prediction with molecular simulation results, and the agreement reveals the reliability of the proposed model in representing the confined behaviors of chain mixtures in nanopores. The developed model was further used to predict the adsorption of methane-carbon dioxide mixtures on activated carbons, in which the parameters of methane and carbon dioxide were taken from the bulk PC-SAFT and those for solid surface were determined from the fitting to the pure-gas adsorption isotherms measured experimentally. The comparison of the model prediction with the available experimental data of mixed-gas adsorption isotherms shows that the model can reliably reproduce the confined behaviors of physically existing mixtures in nanopores.
Beyond Poisson-Boltzmann: fluctuations and fluid structure in a self-consistent theory
NASA Astrophysics Data System (ADS)
Buyukdagli, S.; Blossey, R.
2016-09-01
Poisson-Boltzmann (PB) theory is the classic approach to soft matter electrostatics and has been applied to numerous physical chemistry and biophysics problems. Its essential limitations are in its neglect of correlation effects and fluid structure. Recently, several theoretical insights have allowed the formulation of approaches that go beyond PB theory in a systematic way. In this topical review, we provide an update on the developments achieved in the self-consistent formulations of correlation-corrected Poisson-Boltzmann theory. We introduce a corresponding system of coupled non-linear equations for both continuum electrostatics with a uniform dielectric constant, and a structured solvent—a dipolar Coulomb fluid—including non-local effects. While the approach is only approximate and also limited to corrections in the so-called weak fluctuation regime, it allows us to include physically relevant effects, as we show for a range of applications of these equations.
The behavior of fluids near solutes: A density functional theory and computer simulation study
NASA Astrophysics Data System (ADS)
Reddy, Govardhan; Yethiraj, Arun
2004-09-01
The density distribution of solvent near a solute particle is studied using density functional theory and Monte Carlo simulation. The fluid atoms interact with each other via a hard sphere plus Yukawa potential, and interact with the solute via a hard sphere potential. For small solute sizes, the solvent displays liquidlike ordering near the particle. When the solute become larger, a drying transition is observed at state points near the coexistence conditions of the solvent. These predictions are similar to those of a recent theory for the hydrophobic effect by Lum, Chandler, and Weeks [J. Phys. Chem. 103, 4570 (1999)], although a comparison with simulations shows that the theory of this work is quantitatively more accurate. The connection between density functional methods and the LCW approach is also established.
Transport properties of Mie(14,7) fluids: molecular dynamics simulation and theory.
Eskandari Nasrabad, Afshin; Oghaz, Nader Mansoori; Haghighi, Behzad
2008-07-14
An extensive computer simulation study is presented for the self-diffusion coefficient, the shear viscosity, and the thermal conductivity of Mie(14,7) fluids. The time-correlation function formalism of Green-Kubo is utilized in conjunction with molecular dynamics (MD) simulations. In addition to molecular simulations, the results of a recent study [A. Eskandari Nasrabad, J. Chem. Phys. 128, 154514 (2008)] for the mean free volume are applied to calculate the self-diffusion coefficients within a free volume theory framework. A detailed comparison between the MD simulation and free volume theory results for the diffusion coefficient is given. The density fluctuation theory of shear viscosity is used to compute the shear viscosity and the results are compared to those from MD simulations. The density and temperature dependences of different time-correlation functions and transport coefficients are studied and discussed.
NASA Astrophysics Data System (ADS)
Gillespie, Dirk
2010-03-01
Classical density functional theory (DFT) of fluids (not quantum mechanical DFT of electron orbitals) has the potential to be a powerful modeling technique in many areas of science including ionic liquids, colloids, polymers, and proteins. DFT of fluids is a thermodynamic (statistical) theory in the grand canonical ensemble; given the particle interactions, equations are solved directly for the ensemble-averaged quantities. Because DFT is a thermodynamic theory where the ensemble-averaged quantities are computed directly, it computes results quickly (minutes for 1D problems, ˜1 hour for 3D) and in arbitrarily low concentrations and it produces steady-state results. The DFT method is generally applicable to fluids in confining geometries or at interfaces. In this presentation the focus is on new results of DFT applications to electrolytes at charged interfaces and ion current through biological ion channels. A new technical advance of a DFT for dielectric interfaces will also be presented.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Xu, Lixin; Tan, Hongyan; Gao, Shanshan
2014-03-01
Varying gravitational constant G(t) (VG) cosmology is studied in this paper, where the modified Friedmann equation and the modified energy conservation equation are given with respect to the constant-G theory. Considering the extended Chaplygin gas (ECG) as background fluid (or thinking that ECG fluid is induced by the variation of G), the unified model of dark matter and dark energy is obtained in VG theory. The parameter spaces are investigated in the VG-ECG model by using the recent cosmic data. Constraint results show β =-G/.HG =-0.003-0.020-0.055+0.021+0.034 for the VG-GCG unified model and β=-0.027-0.032-0.066+0.032+0.059 for the VG-MCG unified model. Equivalently, they correspond to the limits on the current variation of Newton's gravitational constant at 95.4% confidence level |G/.G|today≲4.1×10-12 yr-1 and |G/.G|today≲6.6×10-12 yr-1. And for z ≤3.5, bounds on the variation of G/.G in the VG-ECG unified model are in accordance with the experiment explorations of varying G. In addition, in VG theory the used observational data point still cannot distinguish the VG-GCG and VG-MCG unified model from the most popular ΛCDM cosmology. Furthermore, to see the effects of varying G and physical properties for VG-ECG fluid, we discuss the evolutionary behaviors of cosmological quantities in VG theory, such as G/.G, G./.G and equation of state w, etc. For β <0 a quintom scenario crossing over w=-1 can be realized in the VG-GCG model.
Vortex Dynamics in 2-D Fluid Turbulence: Theory and Experiments Using Non-neutral Plasmas
NASA Astrophysics Data System (ADS)
Dubin, Daniel H. E.
2001-04-01
The free relaxation of turbulence in inviscid, incompressible 2D fluids (Euler fluids) plays an important role in geophysical and astrophysical flows, as well as in magnetized plasmas. Such flows can be described as a collection of intense self-trapped vortices interacting, merging, and shearing apart as they move through a diffuse background vorticity. The background can either be present initially (as in the potential vorticity gradient created by planetary rotation), or can be created by filamentation of the intense vortices. This talk will review recent theories and experiments analyzing the interaction between intense vortices and a diffuse background vorticity. The experiments employ magnetized pure electron plasma columns as a simulacrum of a 2D Euler fluid. The plasma evolves according to 2D ``E × B'' dynamics, which is isomorphic to Euler flow dynamics, with the plasma density proportional to the vorticity of the flow. The experiments observe that the intense vortices can strongly affect the background dynamics, launching surface waves on vorticity edges; these waves can eventually break and filament.(J. Fajans and D. Durkin, Phys. Rev. Lett. 85), 4052 (2000); D.Z. Jin and D. Dubin, Phys. Fluids (in press). Theory for the filamentation time matches the experiments. Experiments also show that even a diffuse background can substantially alter the motion of the intense vortices. For example, a background vorticity gradient causes an intense vortex to move up or down the gradient. New experimental and theoretical results(Y. Kimamoto et al.), Phys. Rev. Lett. 85, 3173 (2000); D. Schecter and D. Dubin, Phys. Rev. Lett. 83, 2191 (1999). will be presented for this venerable problem, which show that the rate at which the intense vortex moves can change by an order of magnitude or more, depending on whether the vortex rotates with or against the background shear flow. Another example is the surprising spontaneous formation of vortex crystal states during the free
Fluid flow and damage in two-phase media: theory and application to carbon sequestration
NASA Astrophysics Data System (ADS)
Cai, Z.; Bercovici, D.
2010-12-01
Carbon sequestration is a leading mitigation approach to reduce CO2 levels caused by fossil fuel consumption. The most stable sequestration strategy is geological sequestration, which injects CO2 into reservoir of mafic and ultramafic rocks underground to form stable carbonates. One challenge for this strategy would be the saturated mineral-fluid contact surfaces during reactions. Hydrofracturing might be the best mechanism or opening up new surfaces and increasing permeability to enhance fluid phase uptake and reactions. We investigate the basic physics of compaction with damage theory proposed by Bercovici et. al.[2001a, JGR] and present preliminary results of both steady-state and time-dependent transport when fluid migrates through porous medium. This work provides a framework for understanding the percolating fluid migration with a pore-generating damage front. The propagation velocity of porosity waves in two-phase media is strongly dependent on damage, which can theoretically transform dispersive waves into rapidly propagating shock waves and effectively creates new contact surfaces. Further development and expansion with necessary physical conditions, forcings and chemical reactions would help examine the viability of CO2 injection into subterranean formations.
Density functional theory for crystal-liquid interfaces of Lennard-Jones fluid.
Wang, Xin; Mi, Jianguo; Zhong, Chongli
2013-04-28
A density functional approach is presented to describe the crystal-liquid interfaces and crystal nucleations of Lennard-Jones fluid. Within the theoretical framework, the modified fundamental measure theory is applied to describe the free energy functional of hard sphere repulsion, and the weighted density method based on first order mean spherical approximation is used to describe the free energy contribution arising from the attractive interaction. The liquid-solid equilibria, density profiles within crystal cells and at liquid-solid interfaces, interfacial tensions, nucleation free energy barriers, and critical cluster sizes are calculated for face-centered-cubic and body-centered-cubic nucleus. Some results are in good agreement with available simulation data, indicating that the present model is quantitatively reliable in describing nucleation thermodynamics of Lennard-Jones fluid.
Euler's friction of fluids theory and the estimation of fountain jet heights
NASA Astrophysics Data System (ADS)
Bistafa, Sylvio R.
2015-09-01
In 1761, Leonhard Euler (1707-1783) published a treatise with the title "Attempt at a Theory of the Friction of Fluids", in which he assumed that, as is the case for solid friction, fluid friction is proportional to pressure. Several experiments were proposed by Euler to derive a friction factor, which were intended to experimentally confirm his equations. Detailed developments of five different problems of discharge were presented in his treatise, taking into account the loss of head in the conduits. In the Appendix, an example is given of the calculation of the jet heights of a particular fountain, fed with conduits of different cross-sectional areas. Application of the current method for the calculation of head losses in pipes reveals that Euler grossly overestimated the fountain jet heights.
Equilibrium properties of dense hydrogen isotope gases based on the theory of simple fluids.
Kowalczyk, Piotr; MacElroy, J M D
2006-08-03
We present a new method for the prediction of the equilibrium properties of dense gases containing hydrogen isotopes. The proposed approach combines the Feynman-Hibbs effective potential method and a deconvolution scheme introduced by Weeks et al. The resulting equations of state and the chemical potentials as functions of pressure for each of the hydrogen isotope gases depend on a single set of Lennard-Jones parameters. In addition to its simplicity, the proposed method with optimized Lennard-Jones potential parameters accurately describes the equilibrium properties of hydrogen isotope fluids in the regime of moderate temperatures and pressures. The present approach should find applications in the nonlocal density functional theory of inhomogeneous quantum fluids and should also be of particular relevance to hydrogen (clean energy) storage and to the separation of quantum isotopes by novel nanomaterials.
Solutions of the Optimized Closure Integral Equation Theory: Heteronuclear Polyatomic Fluids
Marucho, M.; Kelley, C. T.; Pettitt, B. Montgomery
2008-01-01
Recently, we developed a thermodynamically optimized integral equation method which has been successfully tested on both simple and homonuclear diatomic Lennard-Jones fluids [J. Chem. Phys. 2007, 126, 124107]. The systematic evaluation of correlation functions required by the optimization of the chemical potential has shown a clear need for more efficient algorithms to solve these integral equations. In the present paper we introduce a high-performance algorithm which is found to be faster and more efficient than the direct Picard iteration. Here we have utilized this to solve the aforementioned optimized theory for molecules more complex than those considered previously. We analyzed representative models for heteronuclear diatomic and triatomic polar molecular fluids. We include results for several modified SPC-like models for water, obtaining site–site correlation functions in good agreement with simulation data. PMID:19234594
Cluster perturbation theory for the self-assembly of associating fluids into complex structures.
Marshall, Bennett D
2014-12-01
Wertheim's two-density thermodynamic perturbation theory (TPT) has proven to be an indispensable statistical mechanical tool in the description of associating fluids with a single association site. TPT was developed to enforce the monovalence of the hydrogen bond and only recently has been extended to account for divalent association sites. It has been shown through experiment and molecular simulation that certain one-site associating fluids can self-assemble into complex extended supramolecular structures as a result of multiple bonding of association sites. In this paper we reorganize TPT into a form that is more easily applied to complex associated structures. The derived theory is general to all possible self-assemble structures. We obtain the free energy and bonding fractions in a general way in terms of single-cluster partition functions and averages. The new formalism removes any reference to graph theory allowing for the conceptually straightforward application of the two-density formalism to complex self-assembled structures.
Equilibrium theory of fluids in the presence of three-body forces
NASA Astrophysics Data System (ADS)
Sinha, S. K.; Ram, J.; Singh, Y.
1985-10-01
Using the functional differentiation and topological reduction technique, we derive effective pair potentials to describe the correlation functions and thermodynamic properties of fluids in the presence of three-body forces. Relations between effective pair potentials derived from different properties are discussed. The pair correlation function is calculated using the Percus-Yevick integral equation theory and the hypernetted chain integral equation perturbation theory, the results are reported for neon, argon and xenon. Monte Carlo simulation is also done for Xe using the effective pair potential. The agreement found between the pair correlation function calculated from the integral equation perturbation theory and Monte Carlo simulation is good. The effect of the triple dipole and dipole-dipole-quadrupole interactions on the structure of fluid is found to be very small except near the first peak. We, however, except the sizable change in the structure factor S( q) for q < 1.0 Å -1. The effect of the three-body interactions on the thermodynamic properties like internal energy and pressure is always measurable.
Gibbs' principle for the lattice-kinetic theory of fluid dynamics.
Karlin, I V; Bösch, F; Chikatamarla, S S
2014-09-01
Gibbs' seminal prescription for constructing optimal states by maximizing the entropy under pertinent constraints is used to derive a lattice kinetic theory for the computation of high Reynolds number flows. The notion of modifying the viscosity to stabilize subgrid simulations is challenged in this kinetic framework. A lattice Boltzmann model for direct simulation of turbulent flows is presented without any need for tunable parameters and turbulent viscosity. Simulations at very high Reynolds numbers demonstrate a major extension of the operation range for fluid dynamics.
Bianchi type-II universe with wet dark fluid in general theory of relativity
NASA Astrophysics Data System (ADS)
Mahanta, Chandra Rekha; Sheikh, Azizur Rahman
2017-09-01
In this paper, dark energy models of the universe filled with wet dark fluid are constructed in the frame work of LRS Bianchi type-II space-time in General Theory of Relativity. A new equation of state modeled on the equation of state p = γ ( ρ - ρ_{*} ), which can describe liquid including water, is used. The exact solutions of Einstein's field equations are obtained in quadrature form and the models corresponding to the cases γ = 0 and γ = 1 are discussed in details.
Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks.
Toner, John
2012-09-01
I reanalyze the hydrodynamic theory of fluid, polar-ordered flocks. I find new linear terms in the hydrodynamic equations which slightly modify the anisotropy, but not the scaling, of the damping of sound modes. I also find that the nonlinearities allowed in equilibrium do not stabilize long-ranged order in spatial dimensions d=2, in accord with the Mermin-Wagner theorem. Nonequilibrium nonlinearities do stabilize long-ranged order in d=2, as argued by earlier work. Some of these were missed by earlier work; it is unclear whether or not they change the scaling exponents in d=2.
Fluid dynamic instabilities: theory and application to pattern forming in complex media
NASA Astrophysics Data System (ADS)
Gallaire, François; Brun, P.-T.
2017-04-01
In this review article, we exemplify the use of stability analysis tools to rationalize pattern formation in complex media. Specifically, we focus on fluid flows, and show how the destabilization of their interface sets the blueprint of the patterns they eventually form. We review the potential use and limitations of the theoretical methods at the end, in terms of their applications to practical settings, e.g. as guidelines to design and fabricate structures while harnessing instabilities. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications'.
Denicol, G. S.; Koide, T.; Rischke, D. H.
2010-10-15
We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
Sai Venkata Ramana, A.
2014-04-21
The coupling parameter series expansion and the high temperature series expansion in the thermodynamic perturbation theory of fluids are shown to be equivalent if the interaction potential is pairwise additive. As a consequence, for the class of fluids with the potential having a hardcore repulsion, if the hard-sphere fluid is chosen as reference system, the terms of coupling parameter series expansion for radial distribution function, direct correlation function, and Helmholtz free energy follow a scaling law with temperature. The scaling law is confirmed by application to square-well fluids.
Unified theory of non-suspended sediment transport mediated by a Newtonian fluid
NASA Astrophysics Data System (ADS)
Pähtz, Thomas; Durán, Orencio
2017-04-01
We present a unified theory of steady, homogeneous, non-suspended transport of nearly uniform spheres mediated by an arbitrary Newtonian fluid. The theory consists of elements that are rigorously derived from Newton's axioms and of semi-empirical elements that well describe simulation data, obtained using a coupled DEM/RANS numerical model of sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), for the entire simulated range of the particle-fluid-density ratio s=ρ_p/ρ_f, particle Reynolds number Re_p=√{(s-1)gd^3}/ν, and Shields number Θ=τ/[(ρ_p-ρ_f)gd], where g is the gravitational constant, d the mean particle diameter, and ν the kinematic viscosity. The theory takes into account our recent numerical finding that the mode of entrainment of bed sediment is controlled by the `impact number' Im=Re_p√{s+0.5} (https://arxiv.org/abs/1605.07306), with entrainment through particle-bed impacts dominating most conditions (including turbulent bedload transport). Despite not being fitted to experimental data, the theory simultaneously reproduces measurements in air (s≈2100) and liquids (s≈1{-}5) of the transport cessation threshold Θ^ext (https://arxiv.org/abs/1602.07079), obtained from extrapolation to vanishing transport, and the dimensionless value Q^\\ast=Q/(ρ_p√{(s-1)gd^3}) of the sediment transport rate Q. From the theory and simulations, we learn that considering added-mass, lubrication, fluid lift, and/or history forces is not required to quantitatively reproduce measurements. However, collisions between transported particles cannot be neglected as they are strongly influencing the scaling of Q_\\ast with Θ. We find such collisions are behind the asymptotic scaling Q_\\ast∝Θ^3Rep measured for transport in viscous liquids and also indirectly behind a transition from a linear scaling Q_\\ast∝√{Θ^ex_t}(Θ-Θ^ex_t) to a non-linear scaling Q_\\ast∝√{Θ}(Θ-Θ^ex_t) of the transport rate in turbulent bedload and
Flexible Charged Macromolecules on Mixed Fluid Lipid Membranes: Theory and Monte Carlo Simulations
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-01-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein. PMID:16126828
Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
Tzlil, Shelly; Ben-Shaul, Avinoam
2005-11-01
Fluid membranes containing charged lipids enhance binding of oppositely charged proteins by mobilizing these lipids into the interaction zone, overcoming the concomitant entropic losses due to lipid segregation and lower conformational freedom upon macromolecule adsorption. We study this energetic-entropic interplay using Monte Carlo simulations and theory. Our model system consists of a flexible cationic polyelectrolyte, interacting, via Debye-Hückel and short-ranged repulsive potentials, with membranes containing neutral lipids, 1% tetravalent, and 10% (or 1%) monovalent anionic lipids. Adsorption onto a fluid membrane is invariably stronger than to an equally charged frozen or uniform membrane. Although monovalent lipids may suffice for binding rigid macromolecules, polyvalent counter-lipids (e.g., phosphatidylinositol 4,5 bisphosphate), whose entropy loss upon localization is negligible, are crucial for binding flexible macromolecules, which lose conformational entropy upon adsorption. Extending Rosenbluth's Monte Carlo scheme we directly simulate polymer adsorption on fluid membranes. Yet, we argue that similar information could be derived from a biased superposition of quenched membrane simulations. Using a simple cell model we account for surface concentration effects, and show that the average adsorption probabilities on annealed and quenched membranes coincide at vanishing surface concentrations. We discuss the relevance of our model to the electrostatic-switch mechanism of, e.g., the myristoylated alanine-rich C kinase substrate protein.
Warshavsky, V B; Zeng, X C
2013-10-07
We have studied interfacial structure and properties of liquid-vapor interfaces of dipolar fluids and quadrupolar fluids, respectively, using the classical density functional theory (DFT). Towards this end, we employ the fundamental measure DFT for a reference hard-sphere (HS) part of free energy and the modified mean field approximation for the correlation function of dipolar or quadrupolar fluid. At low temperatures we find that both the liquid-vapor interfacial density profile and orientational order parameter profile exhibit weakly damped oscillatory decay into the bulk liquid. At high temperatures the decay of interfacial density and order parameter profiles is entirely monotonic. The scaled temperature τ = 1 - T/T(c) that separates the two qualitatively different interfacial structures is in the range 0.10-0.15. At a given (dimensionless) temperature, increasing the dipolar or quadrupolar moment enhances the density oscillations. Application of an electric field (normal to the interface) will damp the oscillations. Likewise, at the given temperature, increasing the strength of any multipolar moment also increases the surface tensions while increasing the strength of the applied electric field will reduce the surface tensions. The results are compared with those based on the local-density approximations (LDA) for the reference HS part of free energy as well as with results of numerical experiments.
Marini-Bettolo-Marconi, Umberto; Tarazona, Pedro; Cecconi, Fabio
2007-04-28
The authors present a study of the nonequilibrium statistical properties of a one dimensional hard-rod fluid dissipating energy via inelastic collisions and subject to the action of a Gaussian heat bath, simulating an external driving mechanism. They show that the description of the fluid based on the one-particle phase-space reduced distribution function, in principle necessary because of the presence of velocity dependent collisional dissipation, can be contracted to a simpler description in configurational space. Indeed, by means of a multiple-time-scale method the authors derive a self-consistent governing equation for the particle density distribution function. This equation is similar to the dynamic density functional equation employed in the study of colloids, but contains additional terms taking into account the inelastic nature of the fluid. Such terms cannot be derived from a Liapunov generating functional and contribute not only to the relaxational properties, but also to the nonequilibrium steady state properties. A validation of the theory against molecular dynamics simulations is presented in a series of cases, and good agreement is found.
A Second Order Continuum Theory of Fluids - Beyond the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Paolucci, Samuel
2016-11-01
The Navier-Stokes equations have proved very valuable in modeling fluid flows over the last two centuries. However, there are some cases where it has been demonstrated that they do not provide accurate results. In such cases, very large variations in velocity and/or thermal fields occur in the flows. It is recalled that the Navier-Stokes equations result from linear approximations of constitutive quantities. Using continuum mechanics principles, we derive a second order constitutive theory that application of which should provide more accurate results is such cases. One important case is the structure of gas-dynamic shock waves. It has been demonstrated experimentally that the Navier-Stokes formulation yields incorrect shock profiles even at moderate Mach numbers. Current continuum theories, and indeed most statistical mechanics theories, that have been advanced to reconcile such discrepancies have not been fully successful. Thus, application of the second order theory based solely on a continuum formulation provides an excellent test problem. Results of the second-order equations applied to the shock structure are obtained for monatomic and diatomic gases over a large range of Mach numbers and are compared to experimental results.
Fluids of hard natural and Gaussian ellipsoids: A comparative study by integral equation theories.
Perera, Aurélien
2008-11-21
The hard Gaussian overlap (HGO) model for ellipsoids is compared to the hard ellipsoid of revolution (HER) model, in the isotropic fluid phase and within the framework of the Percus-Yevick (PY) and hypernetted chain (HNC) integral equation theories. The former model is often used in place of the latter in many approximate theories. Since the HGO model slightly overestimates the contact distance when the two ellipsoids are perpendicular to each other, it leads to small differences in the Mayer function of the two models, but nearly none in the integrals of these functions and particularly for the second virial coefficients. However, it leads to notable differences in the pair correlation functions, as obtained by the Percus-Yevick and the hypernetted chain theories, especially at high densities. The prediction of the stability of the isotropic phase with respect to orientational order, at high densities, is notably influenced by these small differences. Both theories predict that, for same aspect ratios, the HGO model overestimates the ordering, when compared to the HER model. This explains why the PY approximation predicts ordering for the HGO model with aspect ratio of 1:3, while it does not for the HER model, in accordance with the very first integral equation results obtained for this system, and at variance with many opposite claims from subsequent publications that used the HGO model in place of the HER model.
NASA Astrophysics Data System (ADS)
Zimmermann, Urs; Smallenburg, Frank; Löwen, Hartmut
2016-06-01
Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.
Zimmermann, Urs; Smallenburg, Frank; Löwen, Hartmut
2016-06-22
Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in Paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover, and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases, and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus, and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of the growth with cooling of an activation volume, which is strongly correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation, and other approaches are performed, and a fundamental basis for empirically extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
NASA Astrophysics Data System (ADS)
Mirigian, Stephen; Schweizer, Kenneth S.
2014-05-01
Building on the elastically collective nonlinear Langevin equation theory developed for hard spheres in Paper I, we propose and implement a quasi-universal theory for the alpha relaxation of thermal liquids based on mapping them to an effective hard sphere fluid via the dimensionless compressibility. The result is a zero adjustable parameter theory that can quantitatively address in a unified manner the alpha relaxation time over 14 or more decades. The theory has no singularities above zero Kelvin, and relaxation in the equilibrium low temperature limit is predicted to be of a roughly Arrhenius form. The two-barrier (local cage and long range collective elastic) description results in a rich dynamic behavior including apparent Arrhenius, narrow crossover, and deeply supercooled regimes, and multiple characteristic or crossover times and temperatures of clear physical meaning. Application of the theory to nonpolar molecules, alcohols, rare gases, and liquids metals is carried out. Overall, the agreement with experiment is quite good for the temperature dependence of the alpha time, plateau shear modulus, and Boson-like peak frequency for van der Waals liquids, though less so for hydrogen-bonding molecules. The theory predicts multiple growing length scales upon cooling, which reflect distinct aspects of the coupled local hopping and cooperative elastic physics. Calculations of the growth with cooling of an activation volume, which is strongly correlated with a measure of dynamic cooperativity, agree quantitatively with experiment. Comparisons with elastic, entropy crisis, dynamic facilitation, and other approaches are performed, and a fundamental basis for empirically extracted crossover temperatures is established. The present work sets the stage for addressing distinctive glassy phenomena in polymer melts, and diverse liquids under strong confinement.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory
NASA Astrophysics Data System (ADS)
Evans, Robert; Stewart, Maria C.; Wilding, Nigel B.
2017-07-01
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
Drying and wetting transitions of a Lennard-Jones fluid: Simulations and density functional theory.
Evans, Robert; Stewart, Maria C; Wilding, Nigel B
2017-07-28
We report a theoretical and simulation study of the drying and wetting phase transitions of a truncated Lennard-Jones fluid at a flat structureless wall. Binding potential calculations predict that the nature of these transitions depends on whether the wall-fluid attraction has a long ranged (LR) power law decay or is instead truncated, rendering it short ranged (SR). Using grand canonical Monte Carlo simulation and classical density functional theory, we examine both cases in detail. We find that for the LR case wetting is first order, while drying is continuous (critical) and occurs exactly at zero attractive wall strength, i.e., in the limit of a hard wall. In the SR case, drying is also critical but the order of the wetting transition depends on the truncation range of the wall-fluid potential. We characterize the approach to critical drying and wetting in terms of the density and local compressibility profiles and via the finite-size scaling properties of the probability distribution of the overall density. For the LR case, where the drying point is known exactly, this analysis allows us to estimate the exponent ν∥, which controls the parallel correlation length, i.e., the extent of vapor bubbles at the wall. Surprisingly, the value we obtain is over twice that predicted by mean field and renormalization group calculations, despite the fact that our three dimensional system is at the upper critical dimension where mean field theory for critical exponents is expected to hold. Possible reasons for this discrepancy are discussed in the light of fresh insights into the nature of near critical finite-size effects.
A statistical associating fluid theory for electrolyte solutions (SAFT-VRE)
NASA Astrophysics Data System (ADS)
Gil-Villegas, A.; Galindo, A.; Jackson, G.
A general theory for electrolyte solutions is examined within the framework of the statistical associating fluid theory for potentials of variable range (SAFT-VR). A first extension of the theory (SAFT-VRE) has already been used to describe the thermodynamics and phase equilibria of aqueous solutions of alkali-halide salts [GALINDO,A.,GIL-VILLEGAS,A.,JACKSON, G. and BURGESS, A. N., 1999, J. phys. Chem. , 103, 10272]. The approach incorporates separate contributions describing the monomer, associating and ionic interactions. In the spirit of the SAFT-VR approach the monomer contribution is written as a high-temperature perturbation expansion up to second order; the separate effects of solvent-solvent, solvent-ion and ion-ion interactions on the phase equilibria are studied. Water is taken to be the solvent throughout the study, with the same four-site model and parameters as in the previous work. The association contribution is essential to account for the hydrogen bonding interactions present in water. The effects of ion pairing and solvent-ion association are also examined. For the ionic contribution several levels of approximation are discussed. The effect of the different molecular parameters on the phase behaviour of a model aqueous solution is examined for the different choices.
Quantum fluid density functional theory of time-dependent phenomena: Ion-atom collisions
NASA Astrophysics Data System (ADS)
Deb, B. M.; Chattaraj, P. K.
1988-07-01
Using a recently proposed kinetic energy density functional and an amalgamation of density functional theory with quantum fluid dynamics, a time-dependent Kohn-Sham-type equation in three-dimensional space, which is a new non-linear Schrödinger equation, has been derived. The equation is also derived through the stochastic interpretation of quantum mechanics. A molecular "thermodynamic" viewpoint is suggested in terms of space-time-dependent quantities. Numerical solution of the above equation yields the time-dependent charge density, current density, effective potential and chemical potential. Perspective plots of these quantities for the proton-neon 25 keV head-on collision are presented.
On the mode-coupling theory of vibrational line broadening in near-critical fluids.
Lawrence, C P; Skinner, J L
2004-05-08
Molecular-dynamics simulations of a neat atomic fluid, coupled with a simple model for vibrational frequency perturbations, are used to investigate vibrational line broadening near the liquid-gas critical point. All features of our simulations are in qualitative agreement with recent Raman experiments on nitrogen. We also use our simulation results to assess the validity of the mode-coupling theories that have been used to analyze experiment. We find that the theoretical results are not in good agreement with simulation, both for the temperature dependence of the linewidth, and for the frequency time-correlation functions. However, the mode-coupling prediction that critical line broadening is due to the diverging correlation time of the frequency fluctuations is shown to be correct.
Liquid-Liquid Phase Transitions in Tetrahedrally Coordinated Fluids via Wertheim Theory.
Smallenburg, Frank; Filion, Laura; Sciortino, Francesco
2015-07-23
Network interpenetration has been proposed as a mechanism for generating liquid-liquid phase transitions in one component systems. We introduce a model of four coordinated particles, which explicitly treats the system as a mixture of two interacting interpenetrating networks that can freely exchange particles. This model can be solved within Wertheim's theory for associating fluids and shows liquid-liquid phase separations (in addition to the gas-liquid) for a wide range of model parameters. We find that originating a liquid-liquid transition requires a small degree of interpenetrability and a preference for intranetwork bonding. Physically, these requirements can be seen as controlling the softness of the particle-particle interaction and the bond flexibility, in full agreement with recent findings [Smallenburg, F.; Filion, L.; Sciortino, F. Nat. Phys. 2014, 10, 653].
Beatification: Flattening the Poisson bracket for two-dimensional fluid and plasma theories
NASA Astrophysics Data System (ADS)
Viscondi, Thiago F.; Caldas, Iberê L.; Morrison, Philip J.
2017-03-01
A perturbative method called beatification is presented for a class of two-dimensional fluid and plasma theories. The Hamiltonian systems considered, namely, the Euler, Vlasov-Poisson, Hasegawa-Mima, and modified Hasegawa-Mima equations, are naturally described in terms of noncanonical variables. The beatification procedure amounts to finding the correct transformation that removes the explicit variable dependence from a noncanonical Poisson bracket and replaces it with a fixed dependence on a chosen state in the phase space. As such, beatification is a major step toward casting the Hamiltonian system in its canonical form, thus enabling or facilitating the use of analytical and numerical techniques that require or favor a representation in terms of canonical, or beatified, Hamiltonian variables.
The Enskog theory for classical vibrational energy relaxation in fluids with continuous potentials
NASA Astrophysics Data System (ADS)
Bagchi, Biman; Srinivas, Goundla; Miyazaki, Kunimasa
2001-09-01
The recently developed Enskog theory for binary friction for fluids with continuous potentials, such as the Lennard-Jones, has been extended to calculate the frequency dependence of this friction, ζE(ω). This ζE(ω) is then applied to study vibrational energy relaxation of low-frequency modes via the Landau-Teller expression. The agreement with simulation results is found to be satisfactory. In the present approach we provide an exact prescription for the binary friction and thus remove a lacuna in this area. ζE(ω) shows an interesting structure with a hump at low frequency, the signature of which has already been seen in many simulation studies.
Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory
NASA Astrophysics Data System (ADS)
Stephens, James
2005-11-01
The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Oscillating bubbles are important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude. The expansion to second order is inverted to express the time dependence of the oscillation.
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.
Warm Fluid Theory of the Normal Modes of Non-neutral Plasma Pancakes
NASA Astrophysics Data System (ADS)
Spencer, Ross L.; Paulson, Deborah
1997-11-01
Radial transport in Penning traps causes a plasma cloud to become flatter and flatter until it looks like a thin pancake of charge. In this limit we have been able to solve for density profiles under the assumption of global thermal equilibrium and have now begun to study the dynamics of these plasmas. In this presentation the warm fluid equations are used to describe the axial dynamics. Radial effects are handled by coupling charges at different radii through Poisson's equation, using the electrostatic Green's function to obtain an integral eigenvalue problem of Fredholm type. The axial problem gives rise to a Sturm-Liouville problem similar to the one that gives Hermite polynomials, with the weight function being the axial density profile from the global thermal equilibrium problem. The goal is to be able to calculate thermal corrections to the mode frequencies obtained from Dubin's cold fluid theory (Daniel H. E. Dubin, Phys. Rev. Lett. 66), 2076 (1991). to better understand vibration frequencies observed in experiments ( Carl S. Weimer, et al.), Phys. Rev. A 49, 3842 (1994). and simulations. ( G. W. Mason et al.), Phys. Plasmas 3, 1502 (1996).
Unification of Plasma Fluid and Kinetic Theory via Gaussian Radial Basis Functions
NASA Astrophysics Data System (ADS)
Candy, J. M.
2015-11-01
A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev. 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator contains friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, nonlinear (bilinear) operator. Numerical discretization of the operator, in particular for collisions of unlike species, is extremely challenging. In this work, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also have a deep physical interpretation in statistical mechanics and plasma physics as local thermodynamic equilibria. We outline the general theory, highlight the connection to plasma fluid theories, and also give 2D and 3D numerical solutions of the nonlinear Fokker-Planck equation. A broad spectrum of applications for the new method is anticipated in both astrophysical and laboratory plasmas. In particular, we believe that the RBF method may provide a new bridge between fluid and kinetic descriptions of magnetized plasma. Work supported in part by US DOE under DE-FG02-08ER54963.
NASA Astrophysics Data System (ADS)
Holtzman, R.; Szulczewski, M.; Darby, J.; Juanes, R.
2011-12-01
Predicting and, possibly, controlling the morphology of gas invasion in porous media is critical in many natural and engineered processes like enhanced oil recovery, hydraulic fracturing, methane venting from organic-rich sediments, and filter design. Here, we study fluid-fluid displacement in a deformable granular medium by means of laboratory experiments, computer simulations and scaling analysis. Experimentally, we inject air into a water-saturated glass beads packed in a slender cylindrical container, and record the evolution of the invasion pattern. We have three control variables: the injection rate, the bead size, and the confining stress. Under large confinement, when the granular pack behaves as a rigid medium, the invasion pattern experiences a transition from viscous to capillary fingering by decreasing the injection rate, in agreement with classical results [1]. We show, however, that for a fixed injection rate the system exhibits a crossover from fingering to "fracturing" as the bead size is decreased or the level of confinement is reduced. Thus, fracture opening is the dominant gas invasion mechanism in fine, soft sediments. Our mechanistic model and scaling analysis allow us to rationalize the different regimes of fluid displacement as a function of the properties of the fluids (interfacial tension and viscosity) and solid particles (particle size and stiffness), pore-scale disorder, injection rate and external confinement. We identify two dimensionless groups that describe the interplay between capillarity, viscosity and elasticity, and control the mode of fluid displacement [2].
Ree, F.H.
1990-05-01
A statistical mechanical theory that can describe both solids and fluids in a self-consistent way is described. This theory utilizes a optimized reference potential whose repulsive range shrinks with density. A unique feature of the new theory is that solid- and fluid-phase thermodynamic properties are both computed within a single theoretical framework. Hence, it allows us to study melting phenomena in a self-consistent manner. For solids, the new theory treats both harmonic and anharmonic effects in thermodynamic properties on equal footing. Applications to several model and rare gas systems show that the new theory can accurately predict fluid, solid, and fluid-solid transition properties. Effective pair potentials inferred from the analysis of krypton and xenon isotherms contain short- and long-range modifications to the Aziz-Slaman pair potential. The long-range correction is repulsive and originates from the Axilrod-Teller three-body force, while the short-range correction probably originates from many-body forces. Using the computed melting curves of krypton and neon, we discuss the range of validity of the corresponding states principle for rare gas systems. 68 refs., 8 figs., 6 tabs.
Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories
NASA Astrophysics Data System (ADS)
Spillane, Michael
In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T << m.. Additionally, we calculate thermal corrections to Renyi entropies for free massless fermions on R x S d-1. By expanding the density matrix in a Boltzmann sum, the problem of finding the Renyi entropies can be mapped to the problem of calculating a two point function on an n-sheeted cover of the sphere. We map the problem on the sphere to a conical region in Euclidean space. By using the method of images, we calculate the two point function and recover the Renyi entropies. At large length scales hydrodynamics is a useful way to study quantum field theories. We review recent interest in the Riemann problem as a method for generating a non-equilibrium steady state. The initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The resulting fluid flow contains a fixed temperature region with a nonzero flux. We briefly discuss the effects of a conserved charge. Next we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids. Finally, we study
Momentary fitting in a fluid environment: A grounded theory of triage nurse decision making.
Reay, Gudrun; Rankin, James A; Then, Karen L
2016-05-01
Triage nurses control access to the Emergency Department (ED) and make decisions about patient acuity, patient priority, and placement of the patient in the ED. Understanding the processes and strategies that triage nurses use to make decisions is therefore vital for patient safety and the operation of the ED. The aim of the current study was to generate a substantive grounded theory (GT) of decision making by emergency triage Registered Nurses (RNs). Data collection consisted of seven observations of the triage environment at three tertiary care hospitals where RNs conducted triage and twelve interviews with triage RNs. The data were analyzed by constant comparison in accordance with the classical GT method. In the resultant theory, Momentary Fitting in a Fluid Environment, triage is conceptualized as a process consisting of four categories, determining acuity, anticipating needs, managing space, and creating space. The findings indicate that triage RNs continually strive to achieve fit, while simultaneously considering the individual patient and the ED as a whole entity. Triage RNs require appropriately designed triage environments and computer technology that enable them to secure real time knowledge of the ED to maintain situation awareness. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim
2015-11-01
Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Closure-based density functional theory applied to interfacial colloidal fluids.
Lu, Mingqing; Bevan, Michael A; Ford, David M
2007-12-04
The behavior of dense colloidal fluids near surfaces can now be probed in great detail with experimental techniques like confocal microscopy. In fact, we are approaching a point where quantitative comparisons of experiment with particle-level theory, such as classical density functional theory (DFT), are appropriate. In a forward sense, we may use a known surface potential to predict a particle density distribution function from DFT; in an inverse sense, we may use an experimentally measured particle density distribution function to predict the underlying surface potential from DFT. In this paper, we tested the ability of the closure-based DFT of Zhou and Ruckenstein (J. Chem. Phys. 2000, 112, 8079-8082) to perform forward and inverse calculations on potential models commonly employed for colloidal particles and surfaces. To reduce sources of uncertainty in this initial study, Monte Carlo simulation results played the role of experimental data. The combination of Rogers-Young and modified-Verlet closures consistently performed well across the different potential models. For a reasonable range of choices of the density, temperature, and potential parameters, the inversion procedure yielded particle-surface potentials to an accuracy on the order of 0.1kT.
Bonilla, Mauricio R; Bhatia, Suresh K
2012-01-10
Molecular transport in nanoconfined spaces plays a key role in many emerging technologies for gas separation and storage, as well as in nanofluidics. The infiltration of fluid mixtures into the voids of porous frameworks having complex topologies is common place to these technologies, and optimizing their performance entails developing a deeper understanding of how the flow of these mixtures is affected by the morphology of the pore space, particularly its pore size distribution and pore connectivity. Although several techniques have been developed for the estimation of the effective diffusivity characterizing the transport of single fluids through porous materials, this is not the case for fluid mixtures, where the only alternatives rely on a time-consuming solution of the pore network equations or adaptations of the single fluid theories which are useful for a limited type of systems. In this paper, a hybrid multicomponent effective medium-correlated random walk theory for the calculation of the effective transport coefficients matrix of fluid mixtures diffusing through porous materials is developed. The theory is suitable for those systems in which component fluxes at the single pore level can be related to the potential gradients of the different species through linear flux laws and corresponds to a generalization of the classical single fluid effective medium theory for the analysis of random resistor networks. Comparison with simulation of the diffusion of binary CO(2)/H(2)S and ternary CO(2)/H(2)S/C(3)H(8) gas mixtures in membranes modeled as large networks of randomly oriented pores with both continuous and discrete pore size distributions demonstrates the power of the theory, which was tested using the well-known generalized Maxwell-Stefan model for surface diffusion at the single pore level.
Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids
NASA Astrophysics Data System (ADS)
Lee, Sanghyuk; Budil, David E.; Freed, Jack H.
1994-10-01
A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It encompasses the full range of motional rates from fast through very slow motions, and it also provides for microscopic as well as macroscopic molecular ordering. In these respects it is as sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction decay (FID) or echo decay is sampled. Important distinctions are made among the sources of inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied to simulate experiments of nitroxide spin labels in complex fluids such as membrane vesicles, where the MOMD model applies and these distinctions are particularly relevant, in order to extract dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY experiments on complex fluids with significant inhomogeneous broadening is also described. The theory is applied to the ultraslow motional regime, and a simple method is developed to determine rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a
Radial oscillation of a gas bubble in a fluid as a problem in canonical perturbation theory
NASA Astrophysics Data System (ADS)
Stephens, James
2006-11-01
The oscillation of a gas bubble is in a fluid is of interest in many areas of physics and technology. Lord Rayleigh treated the pressure developed in the collapse of cavitation bubbles and developed an expression for the collapse period. Minnaert developed a harmonic oscillator approximation to bubble oscillation in his study of the sound produced by running water. Besides recent interest in bubble oscillation in connection to sonoluminescence, an understanding of oscillating bubbles is of important to oceanographers studying the sound spectrum produced by water waves, geophysicists employing air guns as acoustic probes, mechanical engineers concerned with erosion of turbine blades, and military engineers concerned with the acoustic signatures developed by the propeller screws of ships and submarines. For the oceanographer, Minnaert's approximation is useful, for the latter two examples, Lord Rayleigh's analysis is appropriate. For the case of the airgun, a period of twice Rayleigh's period for the ``total collapse'' of the cavitation bubble is often cited as a good approximation for the period of an air bubble ejected from an air gun port, typically at ˜2000 psi), however for the geophysical example, numerical integration is employed from the outset to determine the dynamics of the bubble and the emitted acoustic energy. On the one hand, a bubble can be treated as a harmonic oscillator in the small amplitude regime, whereas even in the relatively moderate pressure regime characteristic of air guns the oscillation is strongly nonlinear and amplitude dependent. Is it possible to develop an analytic approximation that affords insight into the behavior of a bubble beyond the harmonic approximation of Minnaert? In this spirit, the free radial oscillation of a gas bubble in a fluid is treated as a problem in canonical perturbation theory. Several orders of the expansion are determined in order to explore the dependence of the oscillation frequency with bubble amplitude
Marshall, Bennett D; García-Cuéllar, Alejandro J; Chapman, Walter G
2013-05-28
A Monte Carlo density functional theory is developed for chain molecules which both intra and intermolecularly associate. The approach can be applied over a range of chain lengths. The theory is validated for the case of an associating 4-mer fluid in a planar hard slit pore. Once validated, the new theory is used to study the effect of chain length and temperature on the competition between intra and intermolecular association near a hard wall. We show that this competition enhances intramolecular association near wall contact and inverts the chain length dependence of the fraction bonded intermolecularly in the inhomogeneous region.
Klimachkov, D. A. Petrosyan, A. S.
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
Instantaneous pair theory for high-frequency vibrational energy relaxation in fluids
NASA Astrophysics Data System (ADS)
Larsen, Ross E.; Stratt, Richard M.
1999-01-01
behind the relaxation is not in the complex, underlying liquid dynamics, but in the relatively easy-to-understand nonlinear solute-solvent coupling. There are implications, as well, for the independent binary collision (IBC) theory of vibrational relaxation in liquids. The success of the instantaneous-pair approach certainly provides a measure of justification for the IBC model's focus on few-body dynamics. However, the pair theory neither needs nor supports the basic IBC factoring of relaxation rates into many-body and few-body dynamical components — into collision rates and relaxation rates per collision. Rather, our results favor taking an instantaneous perspective: the relaxation rate is indeed exercise in few-body dynamics, but a different exercise for each instantaneous liquid configuration. The many-body features therefore appear only in the guise of a purely equilibrium problem, that of finding the likelihood of particularly effective solvent arrangements around the solute. All of these results are tested numerically on model diatomic solutes dissolved in atomic fluids (including the experimentally and theoretically interesting case of I2 dissolved in Xe). The instantaneous pair theory leads to results in quantitative agreement with those obtained from far more laborious exact molecular dynamics simulations.
Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards’ field theory
NASA Astrophysics Data System (ADS)
Morse, David C.
2006-10-01
Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules, and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of
NASA Astrophysics Data System (ADS)
Tau, M.; Parola, A.; Pini, D.; Reatto, L.
1995-09-01
The hierarchical reference theory (HRT) is applied to the Lennard-Jones fluid below the critical temperature Tc. This study completes a previous one performed above Tc using the same kind of approximate closure for the direct correlation function. Results for several thermodynamic quantities and for the two-particle correlations are reported and compared both with other theories and with simulation data. In the two-phase region the theory correctly yields rigorously flat isotherms; this feature allows a straightforward and accurate determination of the coexistence curve without resorting to the Maxwell construction. In the critical region our analysis is consistent with the previously developed one for T>Tc and displays nontrivial critical exponents. We also study a fluid with the Girifalco model potential for C60. The critical point of the liquid-vapor transition is found at Tc=2138 K and ρc=0.50 nm-3. When the HRT result is supplemented with Verlet's freezing criterion a triple point is found at Tt=1979 K and ρt=0.848 nm-3.
NASA Technical Reports Server (NTRS)
Bellan, J.; Ohaska, K.
2001-01-01
The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.
Urbic, Tomaz
2017-07-01
In this paper we applied analytical theories for the two dimensional chain-forming fluid. Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids were used to study thermodynamical and structural properties of the chain-forming model. The model has polymerizing points at arbitrary position from center of the particles. Calculated analytical results were tested against corresponding results obtained by Monte Carlo computer simulations to check the accuracy of the theories. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. The IET's pair correlation functions of the model agree well with computer simulations. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, chemical potential and ratios of free, once and twice bonded particles.
Applications of Koopman Operator Theory to Model Reduction in Fluid Mechanics
NASA Astrophysics Data System (ADS)
Arbabi, Hassan; Mezić, Igor
2014-11-01
We discuss some applications of the Koopman operator theory to the problems in fluid mechanics. These applications involve the Koopman mode decomposition (KMD), which describes the nonlinear evolution of the flow field observables, such as velocity or vorticity field, in terms of a linear expansion - analogous to the normal mode analysis in linear oscillations. By applying KMD to the incompressible flow in a 2D rectangular cavity, we identify the spectrum of the flow with the associated global modes, both in periodic and aperiodic regime. We also apply KMD to in-vivo measurements of the blood velocity field inside human's heart, and extract the Koopman modes and frequencies based on the assumption of evolution on an attractor. The dominant Koopman modes are then combined to create a low-dimensional model for both the cavity and heart flow. The mesochronic analysis shows that those reduced models capture the mixing topology with an accuracy comparable to that of the original data. Comparison in the L2-norm also shows that the reduced models obtained by KMD could give a more accurate representation of the flow field compared to POD.
Fluids density functional theory and initializing molecular dynamics simulations of block copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.
2016-03-01
Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.
Characterization of Phase Transition in Heisenberg Fluids from Density Functional Theory
NASA Astrophysics Data System (ADS)
Li, Liang-Sheng; Li, Li; Chen, Xiao-Song
2009-02-01
The phase transition of Heisenberg fluid has been investigated with the density functional theory in mean-field approximation (MF). The matrix of the second derivatives of the grand canonical potential Ω with respect to the particle density fluctuations and the magnetization fluctuations has been investigated and diagonalized. The smallest eigenvalue being 0 signalizes the phase instability and the related eigenvector characterizes this phase transition. We find a Curie line where the order parameter is pure magnetization and a spinodal where the order parameter is a mixture of particle density and magnetization. Along the spinodal, the character of phase instability changes continuously from predominant condensation to predominant ferromagnetic phase transition with the decrease of total density. The spinodal meets the Curie line at the critical endpoint with the reduced density ρ* = ρσ3 = 0.224 and the reduced temperature T* = kT/in = 1.87 (σ is the diameter of Heisenberg hard sphere and in is the coupling constant).
Perturbation theory for non-spherical fluids based on discretization of the interactions
NASA Astrophysics Data System (ADS)
Gámez, Francisco; Benavides, Ana Laura
2013-03-01
An extension of the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97(12), 1225 (1999), 10.1080/00268979909482924] accounting for non-spherical interactions is presented. An analytical expression for the Helmholtz free energy for an equivalent discrete potential is given as a function of density, temperature, and intermolecular parameters with implicit shape dependence. The presented procedure is suitable for the description of the thermodynamics of general intermolecular potential models of arbitrary shape. The overlap and dispersion forces are represented by a discrete potential formed by a sequence of square-well and square-shoulders potentials of shape-dependent widths. By varying the intermolecular parameters through their geometrical dependence, some illustrative cases of square-well spherocylinders and Kihara fluids are considered, and their vapor-liquid phase diagrams are tested against available simulation data. It is found that this theoretical approach is able to reproduce qualitatively and quantitatively well the Monte Carlo data for the selected potentials, except near the critical region.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.
2016-03-01
Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.
Selection principles and pattern formation in fluid mechanics and nonlinear shell theory
NASA Technical Reports Server (NTRS)
Sather, Duane P.
1987-01-01
Research accomplishments are summarized and publications generated under the contract are listed. The general purpose of the research was to investigate various symmetry breaking problems in fluid mechanics by the use of structure parameters and selection principles. Although all of the nonlinear problems studied involved systems of partial differential equations, many of these problems led to the study of a single nonlinear operator equation of the form F(w, lambda, gamma) = 0, (w is an element of H), (lambda is an element of R1), (gamma is an element of R1). Instead of varying only the load parameter lambda, as is often done in the study of such equations, one of the main ideas used was to vary the structure parameter gamma in such a way that stable solutions were obtained. In this way one determines detailed stability results by making use of the structure of the model equations and the known physical parameters of the problem. The approach was carried out successfully for Benard-type convection problems, Taylor-like problems for short cylinders, rotating Couette-Poiseuille channel flows, and plane Couette flows. The main focus of the research was on wave theory of vortex breakdown in a tube. A number of preliminary results for inviscid axisymmetric flows were obtained.
Brown, Jonathan R; Seo, Youngmi; Maula, Tiara Ann D; Hall, Lisa M
2016-03-28
Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.
NASA Astrophysics Data System (ADS)
Yeh, E.; Suppe, J.
2008-12-01
It is easily shown that many well-imaged accretionary wedges are mechanically heterogeneous based on spatial variations in wedge taper. For example, the toes of active accretionary wedges such as the Nankai trough and Barbados display deceasing surface slope α away from the toe, with no associated variation in the detachment dip β. Likely sources of this heterogeneity in taper are spatial variations in fluid pressure, cohesion and fault strength. However progress in understanding the mechanics of these active accretionary wedges is challenging because of [1] the obvious in-situ observational difficulties, combined with [2] the substantial complexity of heterogeneous wedge theory, making it difficult to apply to natural wedges. Here we present progress on both fronts, emphasizing the role of heterogeneity in pore-fluid pressure. We show that the spatial gradients in pore-fluid pressure can be effectively constrained using seismic velocity data, as well as borehole data, using standard petroleum techniques. Furthermore, the gradients in fluid pressure can be approximated by a single easily observable parameter, the fluid-retention depth zFRD below which compaction is strongly diminished. The Hubbert-Rubey weakening (1- λ) is a simple function of fluid-retention depth and depth (1-λ)=(1-λh)[zFRD/z]. We find that the heterogeneous critical taper wedge theory of Dahlen (1990) can be recast in terms of this fluid-retention depth, which leads to more concise and easily applied critical-taper wedge equations. The key observable parameters in addition to wedge taper (α, β) are zFRD/H, where H is the depth to detachment, and d zFRD/d z. We illustrate the application of these results with several natural examples, including the Barbados accretionary wedge and the Brazos area of offshore Texas, which is an extensional critical-taper wedge with extensive data.
Papaioannou, Vasileios; Lafitte, Thomas; Avendaño, Carlos; Adjiman, Claire S; Jackson, George; Müller, Erich A; Galindo, Amparo
2014-02-07
A generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem. Phys. 139, 154504 (2013)] is formulated within the framework of a group contribution approach (SAFT-γ Mie). Molecules are represented as comprising distinct functional (chemical) groups based on a fused heteronuclear molecular model, where the interactions between segments are described with the Mie (generalized Lennard-Jonesium) potential of variable attractive and repulsive range. A key feature of the new theory is the accurate description of the monomeric group-group interactions by application of a high-temperature perturbation expansion up to third order. The capabilities of the SAFT-γ Mie approach are exemplified by studying the thermodynamic properties of two chemical families, the n-alkanes and the n-alkyl esters, by developing parameters for the methyl, methylene, and carboxylate functional groups (CH3, CH2, and COO). The approach is shown to describe accurately the fluid-phase behavior of the compounds considered with absolute average deviations of 1.20% and 0.42% for the vapor pressure and saturated liquid density, respectively, which represents a clear improvement over other existing SAFT-based group contribution approaches. The use of Mie potentials to describe the group-group interaction is shown to allow accurate simultaneous descriptions of the fluid-phase behavior and second-order thermodynamic derivative properties of the pure fluids based on a single set of group parameters. Furthermore, the application of the perturbation expansion to third order for the description of the reference monomeric fluid improves the predictions of the theory for the fluid-phase behavior of pure components in the near-critical region. The predictive capabilities of the approach stem from its formulation within a group-contribution formalism: predictions of the fluid-phase behavior and thermodynamic derivative properties of
NASA Astrophysics Data System (ADS)
Lapotre, M. G. A.; Lamb, M. P.; Ewing, R. C.; McElroy, B. J.
2016-12-01
Current ripples form on riverbeds and on the seafloor from viscous drag exerted by water flow over sand and are thought to be absent in subaerial systems, where ripple formation is dominated by a mechanism involving the impacting and splashing of sand grains. A fluid-drag mechanism, however, is not precluded in subaerial conditions and was originally hypothesized by R. A. Bagnold. Despite decades of observations in the field and in the laboratory, no universal scaling relation exists to predict the size of fluid-drag ripples. We combine dimensional analysis and a new extensive data compilation to develop a relationship and predict the equilibrium wavelength of current ripples. Our analysis shows that ripples are spaced farther apart when formed by more viscous fluids, smaller bed shear velocities, in coarser grains, or for smaller sediment specific gravity. Our scaling relation also highlights the abrupt transition between current ripples and subaqueous dunes, and thus allows for a process-based segregation of ripples from dunes. When adjusting for subaerial conditions, we predict the formation of decimeter-scale wind-drag ripples on Earth and meter-scale wind-drag ripples on Mars. The latter are ubiquitous on the Red Planet, and are found to co-exist with smaller decimeter-scale ripples, which we interpret as impact ripples. Because the predicted scale of terrestrial wind-drag ripples overlaps with that of impact ripples, it is possible that wind-drag ripples exist on Earth too, but are not recognized as such. When preserved in rocks, fluid-drag ripple stratification records flow directions and fluid properties that are crucial to constrain paleo-environments. Our new theory allows for predictions of ripple size, perhaps in both fluvial and eolian settings, and thus potentially represents a powerful tool for paleo-environmental reconstructions on different planetary bodies.
NASA Technical Reports Server (NTRS)
Lee, Y. M.
1971-01-01
Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.
NASA Astrophysics Data System (ADS)
Bueno, Jesus; Bona-Casas, Carles; Bazilevs, Yuri; Gomez, Hector
2015-06-01
There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.
The role of fluid-wall interactions on confined liquid diffusion using Mori theory
NASA Astrophysics Data System (ADS)
Devi, Reena; Srivastava, Sunita; Tankeshwar, K.
2015-07-01
The dynamics of fluid confined in a nano-channel with smooth walls have been studied through velocity autocorrelation function within the memory function approach by incorporating the atomic level interactions of fluid with the confining wall. Expressions for the second and fourth sum rules of velocity autocorrelation have been derived for nano-channel which involves fluid-fluid and fluid-wall interactions. These expressions, in addition, involve pair correlation function and density profiles. The numerical contributions of fluid-wall interaction to sum rules are found to play a very significant role, specifically at smaller channel width. Results obtained for velocity autocorrelation and self-diffusion coefficient of a fluid confined to different widths of the nanochannel have been compared with the computer simulation results. The comparison shows a good agreement except when the width of the channel is of the order of two atomic diameters, where it becomes difficult to estimate sum rules involving the triplet correlation's contribution.
NASA Astrophysics Data System (ADS)
Zeighampour, Hamid; Tadi Beni, Y.
2014-07-01
This work investigated vibrations and instability of double-walled carbon nanotube (DWCNT) conveying fluid by a modified couple stress theory. For this purpose, Donnell's shell model was developed and, using the modified couple stress theory, the equations of motion and corresponding classical and non-classical boundary conditions of DWCNT were obtained through Hamilton's principle. Then, DWCNT with simple-simple and clamped-clamped supports were investigated. The effect of the van der Waals (vdW) forces was considered between the two walls, and the DWCNT surroundings were modeled as a visco-Pasternak foundation. The governing equations of motion and corresponding boundary conditions were discretized through differential quadrature method (DQM), and the vibration problem was solved by using the boundary conditions. The results show that the effects of fluid velocity, stiffness and damping of the visco-Pasternak foundation, nanotube length, and size parameter in the modified couple stress theory are stronger than in the classical theory. Finally, the effect of vdW forces and presence of fluid in the DWCNT examined on the natural frequencies of DWCNT.
NASA Astrophysics Data System (ADS)
Munaò, G.; Costa, D.; Caccamo, C.
2009-04-01
We revisit the thermodynamic and structural properties of fluids of homonuclear hard dumbbells in the framework provided by the reference interaction site model (RISM) theory of molecular fluids. Besides the previously investigated Percus-Yevick (PY) approximation, we test the accuracy of other closures to the RISM equations, imported from the theory of simple fluids; specifically, we study the hypernetted chain (HNC), the modified HNC (MHNC) and, less extensively, the Verlet approximations. We implement our approach for models characterized by several different elongations, up to the case of tangent diatomics, and investigate the whole fluid density range. The theoretical predictions are assessed against Monte Carlo simulations, either available from literature or newly generated by us. The HNC and PY equations of state, calculated via different routes, share on the whole the same level of accuracy. The MHNC is applied by enforcing an internal thermodynamic consistency constraint, leading to good predictions for the equation of state as the elongation of the dumbbell increases. As for the radial distribution function, the MHNC appears superior to other theories, especially for tangent diatomics in the high density limit; the PY approximation is better than the HNC and Verlet closures in the high density or elongation regime. Our structural analysis is supplemented by an accurate inversion procedure to reconstruct from Monte Carlo data and RISM the "exact" direct correlation function. In agreement with such calculations and consistent with the forecast of rigorous diagrammatic analysis, all theories predict the occurrence in the direct correlation function of a first cusp inside the dumbbell core and (with the obvious exception of the PY) of a second cusp outside; the cusps' heights are also qualitatively well reproduced by the theories, except at high densities.
Siderius, Daniel W; Gelb, Lev D
2009-02-03
We introduce a nonlocal on-lattice version of density functional theory (DFT) that allows for efficient modeling of fluids in complex inhomogeneous materials. In its previous implementations, classical DFT has required fine discretization of the fluid density. As a result, in studies of gas adsorption it has been used only in idealized pore models with high symmetry. Our new lattice DFT dramatically reduces the computational demand required to model simple fluids and hence can be efficiently applied to complex materials with multiple directions of asymmetry. We apply our new lattice DFT to study nitrogen adsorption in a slit pore with open ends and directly obtain the correct desorption hysteresis. We also apply our DFT to predict hydrogen adsorption accurately in an atomistic model of a metal-organic framework.
NASA Astrophysics Data System (ADS)
Sowers, Susanne Lynn
1997-11-01
Microporous sorbents such as carbons, silicas and aluminas are used commercially in a variety of separation, purification and selective reaction applications. A detailed study of the effects of the porous material characteristics on the adsorption equilibrium properties such as selectivity and phase equilibria of fluid mixtures can enhance our understanding of adsorption on a molecular level. Such knowledge will improve our utilization of such adsorbents and provide a tool for directing the future of tailoring sorbents for particular separation processes. The effect of pore size, shape and pressure on the selective adsorption of trace pollutants from an inert gas was studied using prototype mixtures of Lennard-Tones (LJ) N2/CCl4, CF4, and SO2. Both nonlocal density functional theory (DFT) and grand canonical Monte Carlo (GCMC) molecular simulations were used in order to investigate the validity of the theory, which is much quicker and easier to use. Our results indicate that there is an optimal pore size and shape for which the pollutant selectivity is greatly enhanced. In many industrial adsorption processes relative humidity can greatly affect the life of an adsorbent bed, as seen in breakthrough curves. Therefore, the influence of water vapor on the selective adsorption of CCl4 from a mixture of N2/CCl4/H20 in activated carbon was studied using GCMC simulations. The equilibrium adsorption properties are found to be dependent upon both the density of active sites on the pore walls and the relative humidity. Liquid-liquid transitions in porous materials are of interest in connection with oil recovery, lubrication, coating technology and pollution control. The results of a study on the effect of confinement on the liquid-liquid equilibrium of binary LJ mixtures using DFT are compared with those of molecular simulation and experiments. Our findings show that the phase coexistence for the confined mixture is in general decreased and shifted toward the component which
NASA Astrophysics Data System (ADS)
Caccamo, Carlo; Pellicane, Giuseppe
2002-09-01
We investigate the accuracy of two well-known integral equation theories (IETs) of the fluid state, namely, the modified hypernetted chain (MHNC) approximation and the hybridized mean spherical approximation (HMSA), as applied to systems characterized by short-range interactions. The theoretical approaches are implemented by enforcing their thermodynamic consistency according to two different strategies: in one case the equality of the isothermal compressibility, as calculated via the virial and fluctuation routes from structure to thermodynamics, is imposed ["local" consistency (LC)] in the other case the equality of the pressure as calculated either via the two previous routes, or via the virial and the energy routes, is imposed ["global" consistency (GC)]. We show that for the class of potentials at issue the GC is in general considerably more accurate than the LC. We document this result by investigating the performances of the MHNC and the HMSA, as applied to the calculation of the thermodynamic and structural properties of the hard-core Yukawa (HCY) potential, the Derjaguin-Landau-Vervey-Overbeek (DLVO) potential and the Girifalco potential for fullerenes. The obtained results are then compared with Monte Carlo simulation data, that we also produce for the same model systems. As far as the HCY potential is concerned, the investigation covers a range of the Yukawa inverse decay length, z, spanning from z=1.8 when the interaction mimics the Lennard-Jones 12-6 potential, to z=7 when the potential mimics the "effective" short range interaction between globular proteins in a highly charge-screened aqueous solution. IETs are then applied to the DLVO potential with charge and Hamaker constant values which fit the dynamical interaction factor of lysozyme in a solution of high ionic strength, and to the Girifalco potential with parameters appropriate to model C60 and C70. It emerges from the present study that the GC is able to provide Helmholtz free energies and
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi
2003-01-01
Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.
Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers
NASA Astrophysics Data System (ADS)
Hall, Lisa
Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2015-10-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions.
Zhang, Rui; Schweizer, Kenneth S
2015-10-14
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
Zhang, Rui; Schweizer, Kenneth S.
2015-10-14
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant.
KnotPad: Visualizing and Exploring Knot Theory with Fluid Reidemeister Moves.
Zhang, Hui; Weng, Jianguang; Jing, Lin; Zhong, Yiwen
2012-12-01
We present KnotPad, an interactive paper-like system for visualizing and exploring mathematical knots; we exploit topological drawing and math-aware deformation methods in particular to enable and enrich our interactions with knot diagrams. Whereas most previous efforts typically employ physically based modeling to simulate the 3D dynamics of knots and ropes, our tool offers a Reidemeister move based interactive environment that is much closer to the topological problems being solved in knot theory, yet without interfering with the traditional advantages of paper-based analysis and manipulation of knot diagrams. Drawing knot diagrams with many crossings and producing their equivalent is quite challenging and error-prone. KnotPad can restrict user manipulations to the three types of Reidemeister moves, resulting in a more fluid yet mathematically correct user experience with knots. For our principal test case of mathematical knots, KnotPad permits us to draw and edit their diagrams empowered by a family of interactive techniques. Furthermore, we exploit supplementary interface elements to enrich the user experiences. For example, KnotPad allows one to pull and drag on knot diagrams to produce mathematically valid moves. Navigation enhancements in KnotPad provide still further improvement: by remembering and displaying the sequence of valid moves applied during the entire interaction, KnotPad allows a much cleaner exploratory interface for the user to analyze and study knot equivalence. All these methods combine to reveal the complex spatial relationships of knot diagrams with a mathematically true and rich user experience.
NASA Astrophysics Data System (ADS)
Ramesh, G. K.; Gireesha, B. J.; Shehzad, S. A.; Abbasi, F. M.
2017-07-01
Heat transport phenomenon of two-dimensional magnetohydrodynamic Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Further, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier’s theory of heat flux.
NASA Astrophysics Data System (ADS)
Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos
The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
Hlushak, Stepan P; McCabe, Clare; Cummings, Peter T
2012-09-14
We present a Fourier space density functional approach for hard particles with attractive interactions, which is based on a previously developed two-dimensional approach [S. Hlushak, W. Rżysko, and S. Sokołowski, J. Chem. Phys. 131, 094904 (2009)] for hard-sphere chains. The interactions are incorporated by means of a three-dimensional Fourier image of the direct correlation function that is obtained from the first-order mean-spherical approximation. In order to improve the computational efficiency, we make extensive use of fast Fourier transforms for calculating density convolution integrals. A two-dimensional implementation of the new density functional approach, based on the expansion of the functional around the bulk fluid density, is used to study structure and adsorption of two model fluids in narrow cylindrical pores. We also investigate two methods that improve the accuracy of the theory as compared to the conventional DFT approach, which expands the free energy functional around the bulk fluid density: One a variant of the reference fluid density functional theory used by Gillespie et al. [Phys. Rev. E 68, 031503 (2003)], and the second a weighted density approach with energy route thermodynamics. Results from these two methods are compared to the conventional approach and also to the results of Monte Carlo simulations. We find that the method of Gillespie et al. and the weighted density approach with energy route thermodynamics yield significant improvement over the conventional approach.
Belitz, D; Kirkpatrick, T R
2016-12-02
We present a scaling description of a metal-insulator transition in two-dimensional electron systems that is driven by a vanishing compressibility rather than a vanishing diffusion coefficient. A small set of basic assumptions leads to a consistent theoretical framework that is compatible with existing transport and compressibility measurements, and allows us to make predictions for other observables. We also discuss connections between these ideas and other theories of transitions to an incompressible quantum fluid.
Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics
NASA Astrophysics Data System (ADS)
Alves, Daniel W. F.; Hoyos, Carlos; Nastase, Horatiu; Sonnenschein, Jacob
2017-10-01
We examine knotted solutions, the most simple of which is the ;Hopfion;, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.
NASA Astrophysics Data System (ADS)
Varga, Szabolcs; Szalai, István; Liszi, János; Jackson, George
2002-05-01
We present a density-functional approach to describe the orientational ordering of nonpolar and dipolar Gay-Berne fluids. The first-order perturbation theory developed by Velasco et al. [J. Chem. Phys. 102, 8107 (1995)] for a Gay-Berne fluid is simplified and tested for molecules with a length to breath ratio of κ=3 and energy anisotropies of κ'=1, 1.25, 2.5, and 5. The theory is found to be in fair agreement with existing simulation data for the location of the isotopic-nematic phase transition, but it overestimates the vapor-liquid critical point of the fluid due to a description of the free energy at the mean-field level. The effect on the phase behavior of including a central longitudinal point dipole within the Gay-Berne molecule is studied using a correct treatment of the long-range dipolar contribution at the level of a second-order virial theory [B. Groh and S. Dietrich, Phys. Rev. E 50, 3814 (1994)]. For a given energy anisotropy of κ'=5 and reduced dipole moment μ*=0.5 we search for a stable ferroelectric nematic phase by changing the length to breath ratio κ. We do not find any evidence of ferroelectric nematic ordering for κ>1.5; the system only exhibits vapor-liquid and isotropic-nematic phase transitions for these values of the aspect ratios. For a slightly elongated and oblate shaped potential (e.g., κ=0.5), regions of stable isotropic-ferroelectric nematic and nematic-ferroelectric nematic phase coexistences are observed. The results of the theory indicate that a ferroelectic nematic fluid phase may be stabilized with respect to the positional ordering in the fluid of oblate dipolar particles. Comparison are made, where appropriate, with the existing results of Monte Carlo simulations for dipolar Gay-Berne fluids (Rull and co-workers, Molec. Phys. 94, 439 (1998); J. Chem. Phys. 109, 9529 (1998)).
Xia, Yidong; Andrs, David; Martineau, Richard Charles
2016-08-01
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for time integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.
The role of fluid-wall interactions on confined liquid diffusion using Mori theory
Devi, Reena; Srivastava, Sunita; Tankeshwar, K.
2015-07-14
The dynamics of fluid confined in a nano-channel with smooth walls have been studied through velocity autocorrelation function within the memory function approach by incorporating the atomic level interactions of fluid with the confining wall. Expressions for the second and fourth sum rules of velocity autocorrelation have been derived for nano-channel which involves fluid-fluid and fluid-wall interactions. These expressions, in addition, involve pair correlation function and density profiles. The numerical contributions of fluid-wall interaction to sum rules are found to play a very significant role, specifically at smaller channel width. Results obtained for velocity autocorrelation and self-diffusion coefficient of a fluid confined to different widths of the nanochannel have been compared with the computer simulation results. The comparison shows a good agreement except when the width of the channel is of the order of two atomic diameters, where it becomes difficult to estimate sum rules involving the triplet correlation’s contribution.
Kinetic theory of gases, magneto-fluid dynamics and their application
NASA Astrophysics Data System (ADS)
Grad, H.
1983-01-01
This paper describes research results and cites progress resulting from work performed during this period of the grant. The areas covered in this report are: (1) mathematical theory of turbulent fluctuations of a plasma near thermal equilibrium, (2) the theory of non-linear thermal and diffusive waves in finite mass and reacting media, (3) the development of algorithms for the Helmholtz equation, (4) progress in the development of theory for Queer Differential Equations, and (5) spectral theory of non-elliptic operators.
Edison, John R; Monson, Peter A
2014-07-14
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
Edison, John R.; Monson, Peter A.
2014-07-14
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
Kinetic theory of gases, magneto-fluid dynamics and their application
NASA Astrophysics Data System (ADS)
Grad, H.
1984-01-01
The areas covered in this report are: (1) mathematical theory of queer differential equations; (2) universal solutions in multidimensional diffusion equations; (3) exact integrals of the Emden-Fowler equation; (4) new results in the theory of turbulent self-diffusion; and (5) mathematical theory of the essential spectrum in magnetohydrodynamics.
Tao, Chao; Jiang, Jack J; Czerwonka, Lukasz
2010-05-01
The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small-amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph.D., dissertation, 1991, University of Iowa). (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Okamoto, Ryuichi; Onuki, Akira
2012-03-21
We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line.
NASA Astrophysics Data System (ADS)
Gloor, Guy J.; Jackson, George; Blas, Felipe J.; del Río, Elvira Martín; de Miguel, Enrique
2004-12-01
A Helmholtz free energy density functional is developed to describe the vapor-liquid interface of associating chain molecules. The functional is based on the statistical associating fluid theory with attractive potentials of variable range (SAFT-VR) for the homogenous fluid [A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, J. Chem. Phys. 106, 4168 (1997)]. A standard perturbative density functional theory (DFT) is constructed by partitioning the free energy density into a reference term (which incorporates all of the short-range interactions, and is treated locally) and an attractive perturbation (which incorporates the long-range dispersion interactions). In our previous work [F. J. Blas, E. Martı´n del Rı´o, E. de Miguel, and G. Jackson, Mol. Phys. 99, 1851 (2001); G. J. Gloor, F. J. Blas, E. Martı´n del Rı´o, E. de Miguel, and G. Jackson, Fluid Phase Equil. 194, 521 (2002)] we used a mean-field version of the theory (SAFT-HS) in which the pair correlations were neglected in the attractive term. This provides only a qualitative description of the vapor-liquid interface, due to the inadequate mean-field treatment of the vapor-liquid equilibria. Two different approaches are used to include the correlations in the attractive term: in the first, the free energy of the homogeneous fluid is partitioned such that the effect of correlations are incorporated in the local reference term; in the second, a density averaged correlation function is incorporated into the perturbative term in a similar way to that proposed by Toxvaerd [S. Toxvaerd, J. Chem. Phys. 64, 2863 (1976)]. The latter is found to provide the most accurate description of the vapor-liquid surface tension on comparison with new simulation data for a square-well fluid of variable range. The SAFT-VR DFT is used to examine the effect of molecular chain length and association on the surface tension. Different association schemes (dimerization, straight and
Ramos, J. J.
2010-08-15
A closed theoretical model to describe slow, macroscopic plasma processes in a fusion-relevant collisionality regime is set forward. This formulation is a hybrid one, with fluid conservation equations for particle number, momentum and energy, and drift-kinetic closures. Intended for realistic application to the core of a high-temperature tokamak plasma, the proposed approach is unconventional in that the ion collisionality is ordered lower than in the ion banana regime of neoclassical theory. The present first part of a two-article series concerns the electron system, which is still equivalent to one based on neoclassical electron banana orderings. This system is derived such that it ensures the precise compatibility among the complementary fluid and drift-kinetic equations, and the rigorous treatment of the electric field and the Fokker-Planck-Landau collision operators. As an illustrative application, the special limit of an axisymmetric equilibrium is worked out in detail.
Amokrane, S; Tchangnwa Nya, F; Ndjaka, J M
2017-02-01
The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators.
Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid
NASA Astrophysics Data System (ADS)
Hansen-Goos, Hendrik
2016-06-01
We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R, the modified weight functions have range 3R. Based on the augmented FMT, we calculate the radial distribution function g(r) up to second order in the density within Percus’ test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g(r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r > 6R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r = 2R) we construct a free energy which is based on the accurate Carnahan-Starling equation of state, rather than the Percus-Yevick compressibility equation underlying standard FMT.
A mode-coupling theory of vibrational line broadening in near-critical fluids.
Egorov, S A; Lawrence, C P; Skinner, J L
2005-04-14
We present a fully microscopic mode-coupling theory of near-critical line broadening. All the structural and dynamical input required by the theory is calculated directly from intermolecular potentials. We compute vibrational frequency time-correlation functions and line shapes as the critical point is approached along both the critical isochore and the liquid-gas coexistence curve. Theory is shown to be in good agreement with simulation.
Analysis, Control and Inverse Theory of Fluids,Waves, Materials Structures, and theirInteractions
2015-07-06
dimensional problem) C) Area concerning Inverse Theory of Partial Differential Equations ; more precisely, coefficient recovery via just one boundary...stability of a wave equation with strong damping and dynamic boundary conditions, Evolution Equations and Control Theory , Vol 2, Nr 4, pp 631-667, 2013...specialization of the known optimal control or min-max game theory of parabolic problems of the literature B) Area concerning flow-structure interaction
Equation-of-state spinning fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, John R.; Smalley, Larry L.
1987-01-01
The relativistic fluid equations may be completed in two physically distinct methods. One method assumes the mass, rho, (or particle number) is conserved, while the other method assumes an equation of state of the form P = P(rho). A variational principle for the mass conservation method both with and without an intrinsic spin for the fluid was constructed earlier (Ray and Smalley, 1982 and 1983). A variational principle for the fluid described by an equation of state both with and without spin is formulated. In all cases the variational principle is set in the Einstein-Cartan metric-torsion U4 geometry. The results for general relativity follow as a special case.
Equation-of-state spinning fluids in the Einstein-Cartan theory
NASA Technical Reports Server (NTRS)
Ray, John R.; Smalley, Larry L.
1987-01-01
The relativistic fluid equations may be completed in two physically distinct methods. One method assumes the mass, rho, (or particle number) is conserved, while the other method assumes an equation of state of the form P = P(rho). A variational principle for the mass conservation method both with and without an intrinsic spin for the fluid was constructed earlier (Ray and Smalley, 1982 and 1983). A variational principle for the fluid described by an equation of state both with and without spin is formulated. In all cases the variational principle is set in the Einstein-Cartan metric-torsion U4 geometry. The results for general relativity follow as a special case.
Ghosh, Satinath; Ghosh, Swapan K
2011-01-14
Density functional theory (DFT) with square gradient approximation for the free energy functional and a model density profile are used to obtain an analytical expression for the size-dependent free energy of formation of a liquid drop from the vapor through the process of homogeneous nucleation, without invoking the approximations used in classical nucleation theory (CNT). The density of the liquid drop in this work is not the same as the bulk liquid density but it corresponds to minimum free energy of formation of the liquid drop. The theory is applied to study the nucleation phenomena from supersaturated vapor of Lennard-Jones fluid. The barrier height predicted by this theory is significantly lower than the same in CNT which is rather high. The density at the center of the small liquid drop as obtained through optimization is less than the bulk density which is in agreement with other earlier works. Also proposed is a sharp interface limit of the proposed DFT of nucleation, which is as simple as CNT but with a modified barrier height and this modified classical nucleation theory, as we call it, is shown to lead to improved results.
An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids
NASA Astrophysics Data System (ADS)
Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad
The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.
NASA Astrophysics Data System (ADS)
Schleifenbaum, Johannes H.; Uam, Ju-Young; Schuh, Günther; Hinke, Christian
2010-06-01
Future production systems need to cope with a high degree of flexibility in terms of fluctuation of demand, product variants, etc. without loosing sight of an increasing cost pressure. For the resolution of this dilemma this work focuses on the adaption of basic principles of similitude and fluid dynamics to production theory in order to increase the production velocity while avoiding regions of instability, or turbulence, at the same time. Subsequently, an experimental setup for the verification of this analogy model is developed and discussed.
Dyamical Systems Theory and Lagrangian Data Assimilation in 4D Geophysical Fluid Dynamics
2017-06-30
applications in mind, there are many fields of science ( meteorology , astrophysics, geological fluid mechanics, etc.) as well as industrial applications in...Assimilating en-route Lagrangian observations. Tel/us A: Dynamic Meteorology and Oceanography, (65), 20319. Taylor, C. K. and S. G. Llewellyn Smith, 2016
A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory
NASA Technical Reports Server (NTRS)
Prozan, R. J.
1982-01-01
The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.
Goddard, B D; Nold, A; Savva, N; Yatsyshin, P; Kalliadasis, S
2013-01-23
Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier-Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor.
Towards a non-linear theory for fluid pressure and osmosis in shales
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Salusti, Ettore
2015-04-01
In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.
Zhao, Honggang; dos Ramos, M Carolina; McCabe, Clare
2007-06-28
A statistical associating fluid theory to model electrolyte fluids that explicitly accounts for solvent molecules by modeling water as a dipolar square-well associating fluid is presented. Specifically the statistical associating fluid theory for potentials of variable range (SAFT-VR) is combined with integral equation theory and the generalized mean spherical approximation using the nonprimitive model to describe the long-range ion-ion, ion-dipole, and dipole-dipole interactions. Isothermal-isobaric ensemble Monte Carlo simulations have been performed in order to test the new theoretical approach. In particular, simulations are performed for different ion concentrations and different ratios of the cation, anion, and solvent segment diameters. Predictions for the thermodynamic properties from the new equation of state are compared with the computer simulation data. Additionally, results from a combination of the SAFT-VR approach with Debye-Huckel theory and the primitive model are also presented and compared to those obtained with the nonprimitive model to illustrate the advantages of the new statistical associating fluid theory for potentials of variable range plus dipole and electrolytes (SAFT-VR+DE) approach. The results show that the proposed equation of state provides a good description of the PVT properties of electrolyte fluids with different sizes of ions and solvent.
Llovell, Fèlix; Galindo, Amparo; Blas, Felipe J; Jackson, George
2010-07-14
The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [G. J. Gloor et al., J. Chem. Phys. 121, 12740 (2004)] is revisited and generalized to treat mixtures. The Helmholtz free-energy functional, which is based on the SAFT-VR approach for homogeneous fluids, is constructed by partitioning the free-energy density into a reference term (which incorporates all of the short-range interactions and is treated locally) and an attractive perturbation (which incorporates the long-range dispersion interactions). In this work, two different functionals are compared. In the first, one uses a mean-field version of the theory to treat the long-range dispersive interaction, incorporating an approximate treatment of the effect of the correlations on the attractive energy between the segments by introducing a short-range attractive contribution in the reference term. In the second, one approximates the correlation function of the molecular segments in the inhomogeneous system with that of a homogeneous system for an average density of the two positions, following the ideas proposed by Toxvaerd [S. Toxvaerd, J. Chem. Phys. 64, 2863 (1976)]. The SAFT-VR DFT formalism is then used to study interfacial properties and adsorption phenomena at the interface. A detailed analysis of the influence of the molecular parameters on the surface tension and density/composition profiles of the mixtures is undertaken for binary mixtures of molecules of different chain length, segment diameter, dispersive energy, and attractive range. The effect of the asymmetry of the molecular species on the adsorption phenomena is examined in some depth. The adequacy of the approach is demonstrated by comparing the theoretical predictions with the interfacial properties of some real mixtures. The relative merits of the two approximate free-energy functionals are assessed by examining the vapor-liquid interfacial tension of
Kataoka, Hajime
2017-07-01
Body fluid volume regulation is a complex process involving the interaction of various afferent (sensory) and neurohumoral efferent (effector) mechanisms. Historically, most studies focused on the body fluid dynamics in heart failure (HF) status through control of the balance of sodium, potassium, and water in the body, and maintaining arterial circulatory integrity is central to a unifying hypothesis of body fluid regulation in HF pathophysiology. The pathophysiologic background of the biochemical determinants of vascular volume in HF status, however, has not been known. I recently demonstrated that changes in vascular and red blood cell volumes are independently associated with the serum chloride concentration, but not the serum sodium concentration, during worsening HF and its recovery. Based on these observations and the established central role of chloride in the renin-angiotensin-aldosterone system, I propose a unifying hypothesis of the "chloride theory" for HF pathophysiology, which states that changes in the serum chloride concentration are the primary determinant of changes in plasma volume and the renin-angiotensin-aldosterone system under worsening HF and therapeutic resolution of worsening HF. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coe, Joshua D; Sewell, Thomas D; Shaw, M Sam
2009-08-21
An optimized variant of the nested Markov chain Monte Carlo [n(MC)(2)] method [J. Chem. Phys. 130, 164104 (2009)] is applied to fluid N(2). In this implementation of n(MC)(2), isothermal-isobaric (NPT) ensemble sampling on the basis of a pair potential (the "reference" system) is used to enhance the efficiency of sampling based on Perdew-Burke-Ernzerhof density functional theory with a 6-31G(*) basis set (PBE6-31G(*), the "full" system). A long sequence of Monte Carlo steps taken in the reference system is converted into a trial step taken in the full system; for a good choice of reference potential, these trial steps have a high probability of acceptance. Using decorrelated samples drawn from the reference distribution, the pressure and temperature of the full system are varied such that its distribution overlaps maximally with that of the reference system. Optimized pressures and temperatures then serve as input parameters for n(MC)(2) sampling of dense fluid N(2) over a wide range of thermodynamic conditions. The simulation results are combined to construct the Hugoniot of nitrogen fluid, yielding predictions in excellent agreement with experiment.
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra; Ram, Jokhan
2011-11-01
The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.
Huggins, David J
2012-11-21
The structures of biomolecules and the strengths of association between them depend critically on interactions with water molecules. Thus, understanding these interactions is a prerequisite for understanding the structure and function of all biomolecules. Inhomogeneous fluid solvation theory provides a framework to derive thermodynamic properties of individual water molecules from a statistical mechanical analysis. In this work, two biomolecules are analysed to probe the distribution and thermodynamics of surrounding water molecules. The great majority of hydration sites are predicted to contribute favourably to the total free energy with respect to bulk water, though hydration sites close to non-polar regions of the solute do not contribute significantly. Analysis of a biomolecule with a positively and negatively charged functional group predicts that a charged species perturbs the free energy of water molecules to a distance of approximately 6.0 Å. Interestingly, short simulations are found to provide converged predictions if samples are taken with sufficient frequency, a finding that has the potential to significantly reduce the required computational cost of such analysis. In addition, the predicted thermodynamic properties of hydration sites with the potential for direct hydrogen bonding interactions are found to disagree significantly for two different water models. This study provides important information on how inhomogeneous fluid solvation theory can be employed to understand the structures and intermolecular interactions of biomolecules.
Statistical mechanical theory for and simulations of charged fluids and water
NASA Astrophysics Data System (ADS)
Rodgers, Jocelyn Michelle
Treatment of electrostatic interactions in simulations remains a topic of current research. These interactions are present in most biomolecular simulations, and they remain an expensive part of the simulation. Herein we explore the application of local molecular field (LMF) theory to this problem. Local molecular field theory splits the Coulomb potential 1/r into short-ranged and long-ranged components. The short-ranged component may be treated explicitly in simulations and the long-ranged component is contained in a mean-field-like average external electrostatic potential. In this thesis, the derivations and approximations inherent in using the previously developed LMF theory are explored, and connections to classical electrostatics are made. Further the approach is justified for molecular systems. The application of LMF theory to several systems is explored. First, a simple system of uniformly charged walls with neutralizing counterions is treated via simulations using LMF theory. We then explore systems involving molecular water at ambient conditions. A simple approximation to LMF theory using only the short-ranged component of 1/r is quite powerful for bulk water. A full treatment using LMF theory extends the validity of such spherical truncations to nonuniform systems. This thesis studies the successful treatment of water confined between hydrophobic walls with and without an applied electric field---a system which is a classic example of the failings of spherical truncations in molecular simulations. Additional results exemplify the applicability of LMF simulations to more molecularly realistic simulations. Connection is also made between these simulations of confined water and a related theory of hydrophobicity due to Lum, Chandler, and Weeks (1999).
Coupling LAMMPS with Lattice Boltzmann fluid solver: theory, implementation, and applications
NASA Astrophysics Data System (ADS)
Tan, Jifu; Sinno, Talid; Diamond, Scott
2016-11-01
Studying of fluid flow coupled with solid has many applications in biological and engineering problems, e.g., blood cell transport, particulate flow, drug delivery. We present a partitioned approach to solve the coupled Multiphysics problem. The fluid motion is solved by the Lattice Boltzmann method, while the solid displacement and deformation is simulated by Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). The coupling is achieved through the immersed boundary method so that the expensive remeshing step is eliminated. The code can model both rigid and deformable solids. The code also shows very good scaling results. It was validated with classic problems such as migration of rigid particles, ellipsoid particle's orbit in shear flow. Examples of the applications in blood flow, drug delivery, platelet adhesion and rupture are also given in the paper. NIH.
Continuum theories for fluid-particle flows: Some aspects of lift forces and turbulence
NASA Technical Reports Server (NTRS)
Mctigue, David F.; Givler, Richard C.; Nunziato, Jace W.
1988-01-01
A general framework is outlined for the modeling of fluid particle flows. The momentum exchange between the constituents embodies both lift and drag forces, constitutive equations for which can be made explicit with reference to known single particle analysis. Relevant results for lift are reviewed, and invariant representations are posed. The fluid and particle velocities and the particle volume fraction are then decomposed into mean and fluctuating parts to characterize turbulent motions, and the equations of motion are averaged. In addition to the Reynolds stresses, further correlations between concentration and velocity fluctuations appear. These can be identified with turbulent transport processes such as eddy diffusion of the particles. When the drag force is dominant, the classical convection dispersion model for turbulent transport of particles is recovered. When other interaction forces enter, particle segregation effects can arise. This is illustrated qualitatively by consideration of turbulent channel flow with lift effects included.
Scalar-fluid theories: cosmological perturbations and large-scale structure
Koivisto, Tomi S.; Saridakis, Emmanuel N.; Tamanini, Nicola E-mail: Emmanuel_Saridakis@baylor.edu
2015-09-01
Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. The implications of these to the formation of cosmological large-scale structure are uncovered here at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed term in the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint new signatures into the large-scale structure.
Fluid-solid transition in simple systems using density functional theory
Bharadwaj, Atul S.; Singh, Yashwant
2015-09-28
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard–Jones potential and the full Lennard–Jones potential. The results found for freezing parameters for the fluid-face centred cubic crystal transition are in very good agreement with simulation results. It is shown that although the contribution made by the symmetry broken part to the grand thermodynamic potential at the freezing point is small compared to that of the symmetry conserving part, its role is crucial in stabilizing the crystalline structure and on values of the freezing parameters.
Fluid-solid transition in simple systems using density functional theory.
Bharadwaj, Atul S; Singh, Yashwant
2015-09-28
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard-Jones potential and the full Lennard-Jones potential. The results found for freezing parameters for the fluid-face centred cubic crystal transition are in very good agreement with simulation results. It is shown that although the contribution made by the symmetry broken part to the grand thermodynamic potential at the freezing point is small compared to that of the symmetry conserving part, its role is crucial in stabilizing the crystalline structure and on values of the freezing parameters.
Shear-induced dilatancy of fluid-saturated faults: Experiment and theory
NASA Astrophysics Data System (ADS)
Samuelson, Jon; Elsworth, Derek; Marone, Chris
2009-12-01
Pore fluid pressure plays an important role in the frictional strength and stability of tectonic faults. We report on laboratory measurements of porosity changes associated with transient increases in shear velocity during frictional sliding within simulated fine-grained quartz fault gouge (d50 = 127 μm). Experiments were conducted in a novel true triaxial pressure vessel using the double-direct shear geometry. Shearing velocity step tests were used to measure a dilatancy coefficient (ɛ = Δϕ/Δln(v), where ϕ is porosity and v is shear velocity) under a range of conditions: background shearing rate of 1 μm/s with steps to 3, 10, 30, and 100 μm/s at effective normal stresses from 0.8 to 20 MPa. We find that the dilatancy coefficient ranges from 4.7 × 10-5 to 3.0 × 10-4 and that it does not vary with effective normal stress. We use our measurements to model transient pore fluid depressurization in response to dilation resulting from step changes in shearing velocity. Dilatant hardening requires undrained response with the transition from drained to undrained loading indexed by the ratio of the rate of porosity change to the rate of drained fluid loss. Undrained loading is favored for high slip rates on low-permeability thick faults with low critical slip distances. Although experimental conditions indicate negligible depressurization due to relatively high system permeability, model results indicate that under feasible, but end-member conditions, shear-induced dilation of fault zones could reduce pore pressures or, correspondingly, increase effective normal stresses, by several tens of megapascals. Our results show that transient increases in shearing rate cause fault zone dilation. Such dilation would tend to arrest nucleation of unstable slip. Pore fluid depressurization would exacerbate this effect and could be a significant factor in generation of slow earthquakes, nonvolcanic tremors, and related phenomena.
NASA Astrophysics Data System (ADS)
Hughes, Adam P.; Thiele, Uwe; Archer, Andrew J.
2017-02-01
For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π =-∂g /∂h . The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.
Hughes, Adam P; Thiele, Uwe; Archer, Andrew J
2017-02-14
For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function of the film thickness h and also the closely related (structural) disjoining pressure Π=-∂g/∂h. The wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness corresponds to the value at the minimum of g(h). Here, the method we developed in the work of Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas model, is used with continuum density functional theory (DFT) to calculate the binding potential for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure theory and so incorporates the influence of the layered packing of molecules at the surface and the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale models from which liquid drop shapes and even dynamics can be calculated. Here we show that the equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the profiles calculated directly from the microscopic DFT. For liquids composed of particles where the range of the attraction is much less than the diameter of the particles, we find that at low temperatures g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid droplets.
Yu, Yang-Xin
2009-07-14
A novel weighted density functional theory (WDFT) for an inhomogeneous 12-6 Lennard-Jones fluid is proposed based on the modified fundamental measure theory for repulsive contribution, the mean-field approximation for attractive contribution, and the first-order mean-spherical approximation with a weighted density for correlation contribution. Extensive comparisons of the theoretical results with molecular simulation and experimental data indicate that the new WDFT yields accurate density profiles, adsorption isotherms, fluid-solid interfacial tensions, as well as disjoining potentials and pressures of simple gases such as argon, nitrogen, methane, ethane, and neon confined in slitlike pores or near graphitic solid surfaces. The present WDFT performs better than the nonlocal density functional theory, which is frequently used in the study of adsorption on porous materials. Since the proposed theory possesses a good dimensional crossover and is able to correctly reduce to two-dimensional case, it performs very well even in very narrow pores. In addition, the present WDFT reproduces very well the supercritical fluid-solid interfacial tensions, whereas the theory of Sweatman underestimates them at high bulk densities. The present WDFT predicts that the increase in the fluid-wall attraction may change the sign of the interfacial tension and hence may make the wall from "phobic" to "philic" with respect to the fluid. The new WDFT is computationally as simple and efficient as the mean-field theory and avoids the second-order direct correlation function as an input. It provides a universal way to construct the excess Helmholtz free-energy functional for inhomogeneous fluids such as Yukawa, square-well, and Sutherland fluids.
Kinetic Theory of Gases, Magneto-Fluid Dynamics and Their Application.
1983-01-01
Queer Differential Equations, and (5) spectral theory of non-elliptic operators. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (fthM. E aotnlme40...3) the development of algorithms for the Helm- holtz equation, 4) progress in the development of theory for Queer Differential Equations, 5...functions of time. In the bulk of our work, the family of solutions (p,a,q) will be narrowed to a special one-parameter family (p,l,l-p) i.e., q=l-p, a
Xu, Xiaofei; Cao, Dapeng
2010-09-28
We developed a new density-functional theory (DFT) for inhomogeneous hyperbranched polymers that is able to describe the polydisperse degree of branching quantitatively. The topological contributions of the polymer chains to the Helmholtz free energy take into account the effect of triple connections that are absent in previous DFT investigations. One key advantage of the new theory is that the computational cost shows only a linear relationship with the molecular weight (rather than an exponential relationship). The practical utility of the new DFT is illustrated by investigating colloidal stability in the presence of monodisperse and polydisperse hyperbranched polymers.
Ghobadi, Ahmadreza F; Elliott, J Richard
2014-07-14
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the
NASA Astrophysics Data System (ADS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-07-01
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess
Multigrid methods for a semilinear PDE in the theory of pseudoplastic fluids
NASA Technical Reports Server (NTRS)
Henson, Van Emden; Shaker, A. W.
1993-01-01
We show that by certain transformations the boundary layer equations for the class of non-Newtonian fluids named pseudoplastic can be generalized in the form the vector differential operator(u) + p(x)u(exp -lambda) = 0, where x is a member of the set Omega and Omega is a subset of R(exp n), n is greater than or equal to 1 under the classical conditions for steady flow over a semi-infinite flat plate. We provide a survey of the existence, uniqueness, and analyticity of the solutions for this problem. We also establish numerical solutions in one- and two-dimensional regions using multigrid methods.
NASA Astrophysics Data System (ADS)
Wang, S. C.; Lee, C. S.
2016-12-01
In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our
Reading Educational Reform with Actor Network Theory: Fluid Spaces, Otherings, and Ambivalences
ERIC Educational Resources Information Center
Fenwick, Tara
2011-01-01
In considering two extended examples of educational reform efforts, this discussion traces relations that become visible through analytic approaches associated with actor-network theory (ANT). The strategy here is to present multiple readings of the two examples. The first reading adopts an ANT approach to follow ways that all actors--human and…
Reading Educational Reform with Actor Network Theory: Fluid Spaces, Otherings, and Ambivalences
ERIC Educational Resources Information Center
Fenwick, Tara
2011-01-01
In considering two extended examples of educational reform efforts, this discussion traces relations that become visible through analytic approaches associated with actor-network theory (ANT). The strategy here is to present multiple readings of the two examples. The first reading adopts an ANT approach to follow ways that all actors--human and…
Understanding the fluid nature of personhood - the ring theory of personhood.
Radha Krishna, Lalit Kumar; Alsuwaigh, Rayan
2015-03-01
Familial determination, replete with its frequent usurping of patient autonomy, propagation of collusion, and circumnavigation of direct patient involvement in their own care deliberations, continues to impact clinical practice in many Asian nations. Suggestions that underpinning this practice, in Confucian-inspired societies, is the adherence of the populace to the familial centric ideas of personhood espoused by Confucian ethics, provide a novel means of understanding and improving patient-centred care at the end of life. Clinical experience in Confucian-inspired Singapore, however, suggests that personhood is conceived in broader terms. This diverging view inspired a study of local conceptions of personhood and scrutiny of the influence of the family upon it. From the data gathered, a culturally appropriate, clinically relevant and ethically sensitive concept of personhood was proposed: the Ring Theory of Personhood (Ring Theory) that better captures the nuances of local conceptions of personhood. The Ring Theory highlights the fact that, far from being solely dependent upon familial centric ideals, local conceptions of personhood are dynamic, context dependent, evolving ideas delineated by four dimensions. Using the Ring Theory, the nature of familial influences upon the four dimensions of personhood - the Innate, Individual, Relational and Societal - are examined to reveal that, contrary to perceived knowledge, conceptions of personhood within Confucian societies are not the prime reason for the continued presence of this decision-making model but remain present within local thinking and practices as a sociocultural residue and primarily because of inertia in updating ideas.
Theory and simulation of time-fractional fluid diffusion in porous media
NASA Astrophysics Data System (ADS)
Carcione, José M.; Sanchez-Sesma, Francisco J.; Luzón, Francisco; Perez Gavilán, Juan J.
2013-08-01
We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald-Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’.
NASA Astrophysics Data System (ADS)
van Swol, Frank; Henderson, J. R.
1991-03-01
This paper reports on studies of wetting phase behavior and interfacial structure of square-well fluid adsorbed at square-well walls. Choosing a particular wetting isotherm at bulk liquid-vapor coexistence, we present our final and complete comparison between molecular-dynamics (MD) simulation and weighted-density-approximation (WDA) density-functional theory. The properties of wall-liquid, wall-vapor, and liquid-vapor interfaces are measured and used to determine contact angles and to locate the positions and order of interfacial phase transitions (wetting and drying). Due to the presence of a suitable collective mode, it was possible to directly observe the collective dynamics of the fluctuation-induced first-order drying transition in MD simulation. A practical implementation of contact-angle measurement by generalized WDA density-functional theory is detailed, enabling one to input the bulk equation of state as a boundary condition. An attempt is made to gauge the generality of our results by comparison with simulation data from other systems and with alternative versions of WDA theory.
NASA Astrophysics Data System (ADS)
Krasinsky, G. A.
2006-11-01
Improved differential equations of the rotation of the deformable Earth with the two-layer fluid core are developed. The equations describe both the precession-nutational motion and the axial rotation (i.e. variations of the Universal Time UT). Poincaré’s method of modeling the dynamical effects of the fluid core, and Sasao’s approach for calculating the tidal interaction between the core and mantle in terms of the dynamical Love number are generalized for the case of the two-layer fluid core. Some important perturbations ignored in the currently adopted theory of the Earth’s rotation are considered. In particular, these are the perturbing torques induced by redistribution of the density within the Earth due to the tidal deformations of the Earth and its core (including the effects of the dissipative cross interaction of the lunar tides with the Sun and the solar tides with the Moon). Perturbations of this kind could not be accounted for in the adopted Nutation IAU 2000, in which the tidal variations of the moments of inertia of the mantle and core are the only body tide effects taken into consideration. The equations explicitly depend on the three tidal phase lags δ, δ c, δ i responsible for dissipation of energy in the Earth as a whole, and in its external and inner cores, respectively. Apart from the tidal effects, the differential equations account for the non-tidal interaction between the mantle and external core near their boundary. The equations are presented in a simple close form suitable for numerical integration. Such integration has been carried out with subsequent fitting the constructed numerical theory to the VLBI-based Celestial Pole positions and variations of UT for the time span 1984 2005. Details of the fitting are given in the second part of this work presented as a separate paper (Krasinsky and Vasilyev 2006) hereafter referred to as Paper 2. The resulting Weighted Root Mean Square (WRMS) errors of the residuals d θ, sin θd φ for
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-07-14
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory
Density-functional theory for fluid-solid and solid-solid phase transitions
NASA Astrophysics Data System (ADS)
Bharadwaj, Atul S.; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u (r ) =ɛ "close="1 /n )">σ /r n , where parameter n measures softness of the potential. We find that for 1 /n ≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
Scacchi, Alberto; Krüger, Matthias; Brader, Joseph M
2016-06-22
The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement.
Density-functional theory for fluid-solid and solid-solid phase transitions.
Bharadwaj, Atul S; Singh, Yashwant
2017-03-01
We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.
NASA Astrophysics Data System (ADS)
Scacchi, Alberto; Krüger, Matthias; Brader, Joseph M.
2016-06-01
The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement.
Selection principles and pattern formation in fluid mechanics and nonlinear shell theory
NASA Technical Reports Server (NTRS)
Sather, Duane P.
1987-01-01
Wave theories of vortex breakdown were studied. A setting which involved dynamical systems and bifurcations of homoclinic and heteroclinic orbits in infinite-dimensional spaces was investigated. The determination of axisymmetric inviscid flows bifurcating from the primary flow lead to the study of a system of ordinary differential equations. The problem of rotating plane Couette flow was solved by means of the structure parameter approach.
Two-Yukawa fluid at a hard wall: Field theory treatment
Kravtsiv, I.; Patsahan, T.; Holovko, M.; Caprio, D. di
2015-05-21
We apply a field-theoretical approach to study the structure and thermodynamics of a two-Yukawa fluid confined by a hard wall. We derive mean field equations allowing for numerical evaluation of the density profile which is compared to analytical estimations. Beyond the mean field approximation, analytical expressions for the free energy, the pressure, and the correlation function are derived. Subsequently, contributions to the density profile and the adsorption coefficient due to Gaussian fluctuations are found. Both the mean field and the fluctuation terms of the density profile are shown to satisfy the contact theorem. We further use the contact theorem to improve the Gaussian approximation for the density profile based on a better approximation for the bulk pressure. The results obtained are compared to computer simulation data.
NASA Astrophysics Data System (ADS)
Nielaba, P.; Sengupta, S.
1997-03-01
We study the temperature-density phase diagram of a fluid in two dimensions consisting of hard disks which, in addition, possess an internal (Ising) spin degree of freedom. The Ising spin of each disk couples with those of its neighbors via a short-ranged antiferromagnetic (AF) interaction. Recent Monte Carlo simulations have shown that this system undergoes a gas-liquid transition followed by a gas-AF-ordered-square-solid sublimation transition at low temperatures. Using a perturbative density functional approach we obtain, in addition to the observed transitions, a freezing transition at high density to a frustrated triangular solid phase. Interestingly, the calculated phase diagram suggests that at low temperatures, this transition is suppressed so that over a range of parameters, the system refuses to crystallize.
Quan, W L; Chen, Q F; Fu, Z J; Sun, X W; Zheng, J; Gu, Y J
2015-02-01
A consistent theoretical model that can be applied in a wide range of densities and temperatures is necessary for understanding the variation of a material's properties during compression and heating. Taking argon as an example, we show that the combination of self-consistent fluid variational theory and linear response theory is a promising route for studying warm dense matter. Following this route, the compositions, equations of state, and transport properties of argon plasma are calculated in a wide range of densities (0.001-20 g/cm(3)) and temperatures (5-100 kK). The obtained equations of state and electrical conductivities are found in good agreement with available experimental data. The plasma phase transition of argon is observed at temperatures below 30 kK and density about 2-6g/cm(3). The minimum density for the metallization of argon is found to be about 5.8 g/cm(3), occurring at 30-40 kK. The effects of many-particle correlations and dynamic screening on the electrical conductivity are also discussed through the effective potentials.
NASA Astrophysics Data System (ADS)
Roco, J. M. M.; Hernández, A. Calvo; Velasco, S.
1995-12-01
We present a spectral theory for the far-infrared absorption spectrum of a very diluted solution of diatomic molecules in a rare-gas fluid, that includes permanent and induced contributions. The absorption coefficient is given as the convolution of a translational spectrum and a rotational spectrum. The former is described in terms of time correlation functions associated to the induced dipole moment. The latter is discussed on the basis of a model consisting of a quantum rigid rotor interacting with a thermal bath, making use of time correlation functions associated to the different anisotropic orders of the solute-solvent intermolecular potential. Non-Markovian and line mixing effects are taken into account. Explicit expressions for the five leading contributions of the induced dipole moment are given.
Paduszyński, Kamil; Domańska, Urszula
2011-11-03
Ionic liquids (ILs) reveal many unique properties which make them very interesting for applications in modern "green" technologies. For that reason, detailed knowledge about correlations between the ions' structure, their combinations, and the bulk properties is of great importance. That knowledge can be accessed by reliable measurements and modeling of systems with ILs in terms of various theoretical approaches. In this paper we report new experimental results on liquid-liquid equilibrium (LLE) measurements of 10 binary systems composed of piperidinium ILs [namely, 1-propyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide and 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide] and aliphatic hydrocarbons (n-hexane, n-heptane, n-octane, cyclohexane, and cycloheptane). Moreover, new results on liquid density of pure 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide are presented. Upper critical solution temperature type of phase behavior for all studied systems was observed. Decrease of solubility of n-alkane with an increase of its alkyl chain length and increase of solubility when changing linear into cyclic structure of hydrocarbon were detected. LLE modeling of investigated systems was performed in terms of two modern theories, namely, perturbed-chain statistical associating fluid theory (PC-SAFT) and nonrandom hydrogen-bonding theory (NRHB). Pure fluid parameters of the models were obtained from fitting of experimental liquid density and solubility parameter data at ambient pressure and tested against high pressure densities. Then literature values of activity coefficients of n-alkanes and cycloalkanes at infinitely diluted mixtures with ILs were used to optimize binary interaction parameters of the models. Finally, the LLE phase diagrams were calculated with average absolute relative deviations of 4.1% and 3.4% of the IL mole fraction for PC-SAFT and NRHB, respectively. The PC-SAFT and NRHB models were both able to capture phase
Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid
NASA Astrophysics Data System (ADS)
Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.
2016-08-01
Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100
NASA Astrophysics Data System (ADS)
Garagash, D.
2012-12-01
We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate
Ely, J.F.
1995-02-01
In this report, we highlight the progress made and expected during the three-year period August 1, 1992 through July 31, 1995 on DOE Grant DE-FG02-92ER14294. Since the latter date is several months away, we include some discussion of work in progress and expected results, although we primarily concentrate on work that has been completed. The objectives of this research are four-fold: 1) Fundamental investigation of the equilibrium and nonequilibrium properties of asymmetric fluid mixtures through computer simulation; 2) Development of advanced, highly accurate predictive theories of mixture equilibrium properties; 3) Development and application of selection algorithm methodology and results from fundamental theory to the design of high accuracy mixture equations of state; 4) Application of new theoretical concepts and insights to the development of engineering design models. Significant progress is being been made in all of these areas as is described in the next two sections. In addition, publications, presentations and theses presenting the results of our ongoing DOE sponsored studies are in press or have appeared during the reporting period. These are summarized in the last section. 33 refs., 6 figs., 2 tabs.
Fundamental measure theory for lattice fluids with hard-core interactions
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Cuesta, José A.
2002-11-01
We present the extension of Rosenfeld's fundamental measure theory to lattice models by constructing a density functional for d-dimensional mixtures of parallel hard hypercubes on a simple hypercubic lattice. The one-dimensional case is exactly solvable and two cases must be distinguished: all the species with the same length parity (additive mixture), and arbitrary length parity (nonadditive mixture). To the best of our knowledge, this is the first time that the latter case has been considered. Based on the one-dimensional exact functional form, we propose the extension to higher dimensions by generalizing the zero-dimensional cavity method to lattice models. This assures the functional will have correct dimensional crossovers to any lower dimension, including the exact zero-dimensional limit. Some applications of the functional to particular systems are also shown.
Wide range equation of state for fluid hydrogen from density functional theory
Wang, Cong; Zhang, Ping
2013-09-15
Wide range equation of state (EOS) for liquid hydrogen is ultimately obtained by combining two kinds of density functional theory (DFT) molecular dynamics simulations, namely, first-principles molecular dynamics simulations and orbital-free molecular dynamics simulations. Specially, the present introduction of short cutoff radius pseudopotentials enables the EOS to be available in the range from 9.82 × 10{sup −4} to 1.347 × 10{sup 3} g/cm{sup 3} and up to 5 × 10{sup 7} K. By comprehensively comparing with various attainable experimental and theoretical data, we derive the conclusion that our DFT-EOS can be readily and reliably applied to hydrodynamic simulations of the inertial confinement fusion.
NASA Astrophysics Data System (ADS)
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch.
2016-10-01
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Malijevský, Alexandr; Santos, Andrés
2006-02-21
Bounded potentials are good models to represent the effective two-body interaction in some colloidal systems, such as the dilute solutions of polymer chains in good solvents. The simplest bounded potential is that of penetrable spheres, which takes a positive finite value if the two spheres are overlapped, being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model is far from trivial, since interactions are not restricted to nearest neighbors and so its exact solution is not known. In this paper the structural properties of one-dimensional penetrable rods are studied. We first derive the exact correlation functions of the penetrable-rod fluids to second order in density at any temperature, as well as in the high-temperature and zero-temperature limits at any density. It is seen that, in contrast to what is generally believed, the Percus-Yevick equation does not yield the exact cavity function in the hard-rod limit. Next, two simple analytic theories are constructed: a high-temperature approximation based on the exact asymptotic behavior in the limit T--> infinity and a low-temperature approximation inspired by the exact result in the opposite limit T--> 0. Finally, we perform Monte Carlo simulations for a wide range of temperatures and densities to assess the validity of both theories. It is found that they complement each other quite well, exhibiting a good agreement with the simulation data within their respective domains of applicability and becoming practically equivalent on the borderline of those domains. A comparison with numerical solutions of the Percus-Yevick and the hypernetted-chain approximations is also carried out. Finally, a perspective on the extension of our two heuristic theories to the more realistic three-dimensional case is provided.
Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch
2016-10-07
Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.
Titan's atmosphere and surface liquid: New calculation using Statistical Associating Fluid Theory
NASA Astrophysics Data System (ADS)
Tan, Sugata P.; Kargel, Jeffrey S.; Marion, Giles M.
2013-01-01
The application of PC-SAFT equation of state (EOS) in analyzing the in situ measurement of atmospheric data by Huygens probe reveals new insights into Titan's atmosphere and surface liquids. The EOS offers the most reliable and accurate calculations in fluid phase equilibria at the cryogenic conditions encountered in Titan and other extra-terrestrial bodies. This paper and a succeeding one pertaining to solid phases are foundational introductions to a new thermodynamics tool (new to planetary science) and will open the way for many diverse planetological applications, but here we limit applications to Titan. Titan's lower stratosphere and lower troposphere are modeled as a well-mixed chemical solution with fixed overall composition of nine components. Using this model in the lower stratosphere, the dew point, below which condensation occurs, is calculated to be at an altitude of 65.3 km (T = 91.3 K, P = 0.031 bar). The first drop of liquid at this point is almost pure propane, which would form a haze (not a dense cloud) due to the minor abundance of this species. Using this model in the lower troposphere, the atmospheric methane mole fractions measured by Huygens probe is well predicted up to an altitude of 29 km, thus validates the model and the EOS. The surface liquid, which is assumed to be in thermodynamic equilibrium with the ground-level atmosphere, is dominated by C2H6, CH4, C3H8, and N2 with mole percents of 53%, 32%, 7%, and 7%, respectively, at a density of 614 kg/m3 in the equator. The effects of the temperature on the surface liquid composition are also discussed. Despite the small surface temperature difference between equatorial and polar regions (3.7 K), the composition of liquid in polar regions is very different from that in the equator: 68% CH4, 22% N2, and 8% C2H6 with the amount of liquid nine times larger than that in the equator at a 10%-smaller density of 551 kg/m3. The system is accurately estimated using the binary of CH4 and N2 only at an
ERIC Educational Resources Information Center
Kvist, Ann Valentin; Gustafsson, Jan-Eric
2008-01-01
According to Cattell's [Cattell, R.B. (1987). "Intelligence: Its structure, growth and action." New York: North-Holland.] Investment theory individual differences in acquisition of knowledge and skills are partly the result of investment of Fluid Intelligence ("Gf") in learning situations demanding insights in complex…
ERIC Educational Resources Information Center
Kvist, Ann Valentin; Gustafsson, Jan-Eric
2008-01-01
According to Cattell's [Cattell, R.B. (1987). "Intelligence: Its structure, growth and action." New York: North-Holland.] Investment theory individual differences in acquisition of knowledge and skills are partly the result of investment of Fluid Intelligence ("Gf") in learning situations demanding insights in complex…
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
NASA Astrophysics Data System (ADS)
Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A.
2014-05-01
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
Guo, Yachong; Baulin, Vladimir A.; Pogodin, Sergey
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
General model of phospholipid bilayers in fluid phase within the single chain mean field theory.
Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
Thermophysical Properties of Fluids and Fluid Mixtures
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
NASA Astrophysics Data System (ADS)
Schertzer, D.; Falgarone, E.
appropriate editorial structure, in particular a large number of editors covering a wide range of methodologies, expertises and schools. At least two of its sections (Scaling and Multifractals, Turbulence and Diffusion) were directly related to the topics of the workshop, in any case contributors were invited to choose their editor freely. 2 Goals of the Workshop The objective of this meeting was to enhance the confrontation between turbulence theories and empirical data from geophysics and astrophysics fluids with very high Reynolds numbers. The importance of these data seems to have often been underestimated for the evaluation of theories of fully developed turbulence, presumably due to the fact that turbulence does not appear as pure as in laboratory experiments. However, they have the great advantage of giving access not only to very high Reynolds numbers (e.g. 1012 for atmospheric data), but also to very large data sets. It was intended to: (i) provide an overview of the diversity of potentially available data, as well as the necessary theoretical and statistical developments for a better use of these data (e.g. treatment of anisotropy, role of processes which induce other nonlinearities such as thermal instability, effect of magnetic field and compressibility ... ), (ii) evaluate the means of discriminating between different theories (e.g. multifractal intermittency models) or to better appreciate the relevance of different notions (e.g. Self-Organized Criticality) or phenomenology (e.g. filaments, structures), (iii) emphasise the different obstacles, such as the ubiquity of catastrophic events, which could be overcome in the various concerned disciplines, thanks to theoretical advances achieved. 3 Outlines of the Workshop During the two days of the workshop, the series of presentations covered many manifestations of turbulence in geophysics, including: oceans, troposphere, stratosphere, very high atmosphere, solar wind, giant planets, interstellar clouds... up to the
NASA Astrophysics Data System (ADS)
Yang, Kang; Guo, Zhaoli
2016-04-01
In this paper, a lattice Boltzmann equation (LBE) model is proposed for binary fluids based on a quasi-incompressible phase-field model [J. Shen et al., Commun. Comput. Phys. 13, 1045 (2013), 10.4208/cicp.300711.160212a]. Compared with the other incompressible LBE models based on the incompressible phase-field theory, the quasi-incompressible model conserves mass locally. A series of numerical simulations are performed to validate the proposed model, and comparisons with an incompressible LBE model [H. Liang et al., Phys. Rev. E 89, 053320 (2014), 10.1103/PhysRevE.89.053320] are also carried out. It is shown that the proposed model can track the interface accurately. As the stationary droplet and rising bubble problems, the quasi-incompressible LBE gives nearly the same predictions as the incompressible model, but the compressible effect in the present model plays a significant role in the phase separation problem. Therefore, in general cases the present mass-conserving model should be adopted.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We study universal critical adsorption on a solid sphere and a solid cylinder in a fluid at bulk criticality, where preferential adsorption occurs. We use a local functional theory proposed by Fisher et al. [M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris Ser. B 287, 207 (1978); M. E. Fisher and H. Au-Yang, Physica A 101, 255 (1980), 10.1016/0378-4371(80)90112-0]. We calculate the mean order parameter profile ψ (r ) , where r is the distance from the sphere center and the cylinder axis, respectively. The resultant differential equation for ψ (r ) is solved exactly around a sphere and numerically around a cylinder. A strong adsorption regime is realized except for very small surface field h1, where the surface order parameter ψ (a ) is determined by h1 and is independent of the radius a . If r considerably exceeds a , ψ (r ) decays as r-(1 +η ) for a sphere and r-(1 +η )/2 for a cylinder in three dimensions, where η is the critical exponent in the order parameter correlation at bulk criticality.
NASA Astrophysics Data System (ADS)
Amabili, M.
2003-05-01
The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.
Forte, Esther; Llovell, Felix; Vega, Lourdes F; Trusler, J P Martin; Galindo, Amparo
2011-04-21
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Gross, Joachim
2017-07-01
The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and of Weeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges ρ*=0 -1.5 and T*=0.5 -12 ) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism.
NASA Astrophysics Data System (ADS)
Wolterbeek, Tim; van Noort, Reinier; Spiers, Chris
2017-04-01
When chemical reactions that involve an increase in solid volume proceed in a confined space, this may under certain conditions lead to the development of a so-called force of crystallisation (FoC). In other words, reaction can result in stress being exerted on the confining boundaries of the system. In principle, any thermodynamic driving force that is able to produce a supersaturation with respect to a solid product can generate a FoC, as long as precipitation can occur under confined conditions, i.e. within load-bearing grain contacts. Well-known examples of such reactions include salt damage, where supersaturation is caused by evaporation and surface curvature effects, and a wide range of mineral reactions where the solid products comprise a larger volume than the solid reactants. Frost heave, where crystallisation is driven by fluid under-cooling, i.e. temperature change, is a similar process. In a geological context, FoC-development is widely considered to play an important role in pseudomorphic replacement, vein formation, and reaction-driven fracturing. Chemical reactions capable of producing a FoC such as the hydration of CaO (lime), which is thermodynamically capable of producing stresses in the GPa range, also offer obvious engineering potential. Despite this, relatively few studies have been conducted where the magnitude of the FoC is determined directly. Indeed, the maximum stress obtainable by CaO hydration has not been validated or determined experimentally. Here we report uni-axial compaction/expansion experiments performed in an oedometer-type apparatus on pre-compacted CaO powder, at 65 °C and at atmospheric pore fluid pressure. Using this set-up, the FoC generated during CaO hydration could be measured directly. Our results show FoC-induced stresses reaching up to 153 MPa, with the hydration reaction stopping or slowing down significantly before completion. Failure to achieve the GPa stresses predicted by thermodynamic theory is attributed to
Eisenberg, Bob; Hyon, Yunkyong; Liu, Chun
2010-09-14
Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new
Eisenberg, Bob; Hyon, YunKyong; Liu, Chun
2010-01-01
Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton’s least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an “extra layer” of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler–Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components
NASA Astrophysics Data System (ADS)
Eisenberg, Bob; Hyon, YunKyong; Liu, Chun
2010-09-01
Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new
NASA Astrophysics Data System (ADS)
Lymperiadis, Alexandros; Adjiman, Claire S.; Galindo, Amparo; Jackson, George
2007-12-01
A predictive group-contribution statistical associating fluid theory (SAFT-γ) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-γ over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-γ approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-γ description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH3, CH2, CH3CH, ACH, ACCH2, CH2, CH , and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for
NASA Astrophysics Data System (ADS)
Munera, Hector A.
2015-08-01
The formal analogy between electromagnetism (EM) and gravitation was noted by Maxwell and Faraday, and later on by Heaviside in the 1890s; the analogy was extensively used in the gravito-magnetism of the 20th century. The connection between EM and fluid theory is explicit in Maxwell’s work, and the equivalence of Maxwell equations (ME) to various wave equations is explained in electrodynamics textbooks (say, Jackson’s) additionally, a little-known paper presented by Henri Malet to the Paris Academy of Sciences (1926), demonstrated that the validity of ME concurrently requires the validity of the vector and the scalar homogeneous wave equations.In the 1990s the present author reported in Foundations of Physics Letters the existence of novel solutions for the homogeneous wave equation in spherical coordinates; it turns out that one class of our solutions (the nonharmonic functions of the first-kind, NHFFK) is equivalent to the unified force of nature proposed around 1760 by Boscovich from philosophical considerations, but without a formal mathematical basis. Our finding is significant because it lends a mathematical foundation to Boscovich’s force, which has extremely interesting properties, as quantization in energy and distance —noted by J. J. Thomson before Bohr’s quantum theory.Associated with spherical surfaces in gravitational equilibrium, the family of even NHFFKs described here predict Titius-Body structures at different scales, as the solar system and the moons of Mars, Jupiter, Uranus, Saturn, and Neptune. Each calculated radius is compared to an average distance of moons/planets: the correlation and the R2 coefficients are quite high. The same NHFFK also predict the existence of ring structures, as those observed in Saturn, and in asteroids belts in our solar system. Newtonian gravity appears as the limit at very large distances from the center of force. The family of odd NHFFK exhibits a non-zero limit as distance tends to infinity, feature that
NASA Astrophysics Data System (ADS)
Munera, Hector A.
Following the discovery of quantum phenomena at laboratory scale (Couder & Fort 2006), de Broglie pilot wave theory (De Broglie 1962) has been revived under a hydrodynamic guise (Bush 2015). Theoretically, it boils down to solving the transport equations for the energy and linear momentum densities of a postulated fundamental fluid in terms of classical wave equations, which inherently are Lorentz-invariant and scale-invariant. Instead of the conventional harmonic solutions, for astronomical and gravitational problems the novel solutions for the homogeneous wave equation in spherical coordinates are more suitable (Munera et al. 1995, Munera & Guzman 1997, and Munera 2000). Two groups of solutions are particularly relevant: (a) The inherently-quantized helicoidal solutions that may be applicable to describe spiral galaxies, and (b) The non-harmonic solutions with time (t) and distance (r) entangled in the single variable q = Ct/r (C is the two-way local electromagnetic speed). When these functions are plotted against 1/q they manifestly depict quantum effects in the near field, and Newtonian-like gravity in the far-field. The near-field predicts quantized effects similar to ring structures and to Titius-Bode structures, both in our own solar system and in exoplanets, the correlation between predicted and observed structures being typically larger than 99 per cent. In the far-field, some non-harmonic functions have a rate of decrement with distance slower than inverse-square thus explaining the flat rotation rate of galaxies. Additional implications for Trojan orbits, and quantized effects in photon deflection were also noted.
Butler, William E; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour-specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory-driven GUI to accommodate and stimulate the semantic web of EV science.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Edison, John R; Monson, Peter A
2013-06-21
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
NASA Astrophysics Data System (ADS)
White, M.; Sayma, A. I.; Markides, C. N.
2017-03-01
A significant improvement in the economy-of-scale of small-scale organic Rankine cycle (ORC) systems can arise from the appropriate design of components that can be manufactured in large volumes and implemented flexibly into a wide range of systems and potential applications. This, in turn, requires accurate predictions of component performance that can capture variations in the cycle conditions, parameters or changes to the working fluid. In this paper previous work investigating a modified similitude theory used to predict the performance of subsonic ORC turbines is extended to analyse the supersonic flow of organic fluids within 2D converging-diverging nozzles. Two nozzles are developed using a minimum length method of characteristics design model coupled to REFPROP. These are designed for R245fa and Toluene as working fluids with nozzle exit Mach numbers of 1.4 and 1.7 respectively. First, the nozzle performance is confirmed using CFD simulations, and then further CFD simulations are performed to evaluate the performance of the same nozzles over a range of different inlet conditions and with different working fluids. The CFD simulations are compared to predictions made using the original and modified similitude theories, and also to predictions made by conserving the Prandtl-Meyer function for the different operating conditions. The results indicate that whilst the modified similitude model does not accurately predict nozzle performance, conserving the Prandtl-Meyer function allows to predict the nozzle outlet Mach number to within 2% providing there is not a significant change in the polytropic index. Finally, the effect of working fluid replacement on the ORC system is discussed, and preliminary results demonstrate the possibility of matching a particular turbine to a heat source through optimal working fluid selection.
NASA Astrophysics Data System (ADS)
Majumdar, Priyadarshi
We formulate a modified theory of gravity and equivalent second-order gravity theory for a Lagrangian containing R and (1)/(R) term in spatially homogeneous and isotropic background. The (1)/(R) term in the action can be thought of as equivalent to a source term in Einstein's gravity, which can be assumed to be equivalent with a perfect fluid characterized by density ρ and pressure p. The pressure p is a function of ρ, scale factor a and the curvature parameter R. We present a few analytical solutions of evolution equation for deceleration parameter q as a function of p and ρ.
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
NASA Astrophysics Data System (ADS)
Giner, Beatriz; Bandrés, Isabel; Carmen López, M.; Lafuente, Carlos; Galindo, Amparo
2007-10-01
A study of the phase equilibrium (experimental and modeled) of mixtures formed by a cyclic ether and haloalkanes has been derived. Experimental data for the isothermal vapor liquid equilibrium of mixtures formed by tetrahydrofuran and tetrahydropyran and isomeric chlorobutanes at temperatures of 298.15, 313.15, and 328.15K are presented. Experimental results have been discussed in terms of both molecular characteristics of pure compounds and potential intermolecular interaction between them using thermodynamic information of the mixtures obtained earlier. The statistical associating fluid theory for potential of variable range (SAFT-VR) approach together with standard combining rules without adjustable parameters has been used to model the phase equilibrium. Good agreement between experiment and the prediction is found with such a model. Mean absolute deviations for pressures are of the order of 1kPa, while less than 0.013mole fraction for vapor phase compositions. In order to improve the results obtained, a new modeling has been carried out by introducing a unique transferable parameter kij, which modifies the strength of the dispersion interaction between unlike components in the mixtures, and is valid for all the studied mixtures being not temperature or pressure dependent. This parameter together with the SAFT-VR approach provides a description of the vapor-liquid equilibrium of the mixtures that is in excellent agreement with the experimental data for most cases. The absolute deviations are of the order of 0.005mole fraction for vapor phase compositions and less than 0.3kPa for pressure, excepting for mixtures containing 2-chloro-2-methylpropane which deviations for pressure are larger. Results obtained in this work in the modeling of the phase equilibrium with the SAFT-VR equation of state have been compared to the ones obtained in a previous study when the approach was used to model similar mixtures with clear differences in the thermodynamic behavior. We
Liu, Chang; Dodin, Ilya Y.
2015-08-15
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
NASA Astrophysics Data System (ADS)
Takahashi, Koichi
2017-08-01
A new mean-field theory of turbulence that treats the effective viscosity as a dynamical degree of freedom is presented on the basis of the stationary action principle, and is shown to reproduce some experiments for the mean flow profile of turbulence in the laboratory. Comparison with eddy viscosity models is also made. Then, with the help of the viscosity expansion method, the theory is applied to a rotating thin fluid disk for the purpose of evaluating the viscosity effect in the dynamics of a spiral galaxy or protoplanetary nebula. We find two types of physically interesting solution. In the first type, the rotation curve at long distances from the disk center is flat as a natural feature of the rotating viscous fluid with neither strong radial motion nor radial pressure gradient. The flow is gravitationally maintained only when a sufficient amount of matter other than viscous fluid is present. In the second type, the rotation is Keplerian with a centrally localized mass distribution. In both types of solution, the effective viscosity tends to act to stabilize perturbation in the region of shorter distances.
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
NASA Astrophysics Data System (ADS)
Pai, S.-I.
The properties of fluids are examined, taking into account fluids and modern fluid mechanics, the properties of liquids and gases, the properties of a plasma, the kinetic theory of fluids, the Boltzmann-Maxwellian laws of distribution, atomic and molecular structures, specific heats, enthalpy, ionization, radiation, viscosity, rheology, heat transfer, and the mixture of fluids. Statics of fluids are considered along with the fundamentals of fluid dynamics, giving attention to flow regimes, the conservation of mass, the equation of continuity, diffusion equations, the stream function, equations of motion, Kelvin's theorem, equations of motion from the Lagrangian point of view, boundary conditions, and initial conditions. Other topics discussed are related to dimensional analysis and dynamics similarity, aerothermochemistry, magnetofluid dynamics and plasma dynamics, radiation gasdynamics, rarefied gasdynamics, non-Newtonian fluids, two-phase flows, the multifluid theory of a plasma, and relativistic fluid mechanics
Hvozd, Taras V; Kalyuzhnyi, Yurij V
2017-02-15
We have studied the phase behavior of polydisperse Yukawa hard-sphere fluid confined in random porous media using extension and combination of high temperature approximation and scaled particle theory. The porous media are represented by the matrix of randomly placed hard-sphere obstacles. Due to the confinement, polydispersity effects are substantially enhanced. At an intermediate degree of fluid polydispersity and low density of the matrix, we observe two-phase coexistence with two critical points, and cloud and shadow curves forming closed loops of ellipsoidal shape. With the increase of the matrix density and the constant degree of polydispersity, these two critical points merge and disappear, and at lower temperatures the system fractionates into three coexisting phases. A similar phase behavior was observed in the absence of the porous media caused, however, by the increase of the polydispersity.
NASA Astrophysics Data System (ADS)
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.
2017-04-01
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
Bansal, Artee; Valiya Parambathu, Arjun; Asthagiri, D; Cox, Kenneth R; Chapman, Walter G
2017-04-28
We present a theory to predict the structure and thermodynamics of mixtures of colloids of different diameters, building on our earlier work [A. Bansal et al., J. Chem. Phys. 145, 074904 (2016)] that considered mixtures with all particles constrained to have the same size. The patchy, solvent particles have short-range directional interactions, while the solute particles have short-range isotropic interactions. The hard-sphere mixture without any association site forms the reference fluid. An important ingredient within the multi-body association theory is the description of clustering of the reference solvent around the reference solute. Here we account for the physical, multi-body clusters of the reference solvent around the reference solute in terms of occupancy statistics in a defined observation volume. These occupancy probabilities are obtained from enhanced sampling simulations, but we also present statistical mechanical models to estimate these probabilities with limited simulation data. Relative to an approach that describes only up to three-body correlations in the reference, incorporating the complete reference information better predicts the bonding state and thermodynamics of the physical solute for a wide range of system conditions. Importantly, analysis of the residual chemical potential of the infinitely dilute solute from molecular simulation and theory shows that whereas the chemical potential is somewhat insensitive to the description of the structure of the reference fluid, the energetic and entropic contributions are not, with the results from the complete reference approach being in better agreement with particle simulations.
2009-08-01
method [JChem. Phys. 130, 164104(2009) is applied to fluid N2. In this implementation of n(MC)2, isothermal - isobaric (NPT) ensemble sampling on the...Phys. 130, 164104 2009 is applied to fluid N2. In this implementation of nMC2, isothermal - isobaric NPT ensemble sampling on the basis of a pair...and Wk is a thermodynamic function appropriate to the ensemble being sampled. In the isothermal – isobaric NPT ensemble used below, W is defined as Wk
Bouras, I.; El, A.; Fochler, O.; Greiner, C.; Molnar, E.; Niemi, H.; Xu, Z.; Rischke, D. H.
2010-08-15
We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.
Krommes, J.A.
1985-11-01
The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs. (WRF)
DTIC Information for AFOSR Task 2304CP Lattice-Gas Theory and Computation for Complex Fluid Dynamics
1997-11-06
by ANSI Std Z39-18 ifested sound waves, surprising fluid-like behavior given the model’s simplicity and severe spacetime discretization. The transport...the integer lattice-gas: (1) is exactly computed on a discrete spacetime lattice (all the additive con- served quantities, e.g. mass and momentum, are
Diemer, K.L.
1992-01-01
Lattice gas automata models for hydrodynamics offer a method for simulating fluids in between the standard molecular dynamic models and finite difference schemes. The algorithm is especially suited to low Mach number flow around complex boundaries and can be implemented in a fully parallelizable, memory efficient manner using only boolean operations. The simplest lattice gas automata is reviewed. The modification of the standard Chapmann-Enskog expansion lattice gas case is reviewed. In the long wavelength and long time limit, the incompressible Navier-Stokes equation is derived. Analytic calculations of shear viscosity [eta], mean free path [lambda], and a reduced Reynolds number R are presented for a number of 2D and 3D lattice gas models. Comparisons of lattice gas results with analytical predictions and other numerical methods are reviewed. This is followed by a discussion of the zero velocity limit used in deriving the above analytic results. Lattice gas hydrodynamic models for flows through porous media in two and three dimensions are described. The computational method easily handles arbitrary boundaries and a large range of Reynolds numbers. Darcy's law is confirmed for Poiseuille flow and for complicated boundary flows. Lattice gas simulation results for permeability for one geometry are compared with experimental results and found to agree to within 10%. Lattice gas hydrodynamic models for two dimensional binary fluids are described. The scaling of the correlation function during late stage growth is examined. The domain growth kinetics during this period is also explored and compared with the work of Furukawa. A local lattice gas model for binary fluids with an adjustable parameter [lambda] which allows degree of miscibility is introduced. For [lambda] < [lambda][sub c] the fluids are immiscible while for [lambda] > [lambda][sub c] the fluids are miscible. Theoretical and numerical studies on the diffusive properties of this lattice gas are presented.
NASA Astrophysics Data System (ADS)
Cattes, Stefanie M.; Gubbins, Keith E.; Schoen, Martin
2016-05-01
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
Cattes, Stefanie M; Gubbins, Keith E; Schoen, Martin
2016-05-21
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases.
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.
Ebato, Yuki; Miyata, Tatsuhiko
2016-05-15
Ornstein-Zernike (OZ) integral equation theory is known to overestimate the excess internal energy, U{sup ex}, pressure through the virial route, P{sub v}, and excess chemical potential, μ{sup ex}, for one-component Lennard-Jones (LJ) fluids under hypernetted chain (HNC) and Kovalenko-Hirata (KH) approximatons. As one of the bridge correction methods to improve the precision of these thermodynamic quantities, it was shown in our previous paper that the method to apparently adjust σ parameter in the LJ potential is effective [T. Miyata and Y. Ebato, J. Molec. Liquids. 217, 75 (2016)]. In our previous paper, we evaluated the actual variation in the σ parameter by using a fitting procedure to molecular dynamics (MD) results. In this article, we propose an alternative method to determine the actual variation in the σ parameter. The proposed method utilizes a condition that the virial and compressibility pressures coincide with each other. This method can correct OZ theory without a fitting procedure to MD results, and possesses characteristics of keeping a form of HNC and/or KH closure. We calculate the radial distribution function, pressure, excess internal energy, and excess chemical potential for one-component LJ fluids to check the performance of our proposed bridge function. We discuss the precision of these thermodynamic quantities by comparing with MD results. In addition, we also calculate a corrected gas-liquid coexistence curve based on a corrected KH-type closure and compare it with MD results.
NASA Astrophysics Data System (ADS)
Edison, John R.; Monson, Peter A.
2013-06-01
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)], 10.1063/1.2837287. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
NASA Technical Reports Server (NTRS)
Tzvi, G. C.
1986-01-01
A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.
NASA Astrophysics Data System (ADS)
Sulak, M.; Dolejs, D.
2012-04-01
Magmatic activity and prograde devolatilization of subducting or underplating lithologies release large quantities of aqueous fluids that act as mass and heat transfer agents in the planetary interiors. Understanding of mineral-melt-fluid interactions is essential for evaluating the effects of fluid-mediated mass transport in subduction zones, collisional orogens as well as in igneous provinces. The thermodynamic properties of aqueous species were frequently described by the Helgeson-Kirkham-Flowers equation of state [1] but its utility is limited by inavailability of the solvent dielectric properties at high pressures and temperatures, and by decoupling of species-solvent mechanical and electrostatic interactions that cannot be separated within the Born theory. Systematic description of the hydration process in a Born-Haber cycle leads to the following thermochemical contributions: (i) thermodynamic properties of an unhydrated species, (ii) the pressure-volume work required to create a cavity within the solvent to accommodate the species, described by the scaled particle theory, (iii) entropic contribution related to changes in the solute's and the solvent's kinetic degrees of freedom, and (iv) contribution from the solute-solvent molecular interactions and corresponding rearrangement of the solvent molecules to form the hydration shell. Application of the spatial correlation functions [2, 3] results in apparent Gibbs energy of aqueous species, ΔaGi = a + bT + cTlnT + dP + eTlnρ + fTρlnρ, where athrough f represent constants related to standard thermodynamic properties of aqueous species (ΔfH, S, V, cP) and to solvent volumetric properties at 298.15 K and 1 bar (ρ, α, β etc.). In phase equilibrium calculations, the number of required parameters often reduces to four (c = f = 0) while noting that H2O density as the only solvent-related property is accurately known to extreme temperatures and pressures. The equation of state parameters were calibrated for 30
Luding, Stefan; Santos, Andrés
2004-11-01
We report molecular dynamics results for the contact values of the radial distribution functions of binary additive mixtures of hard disks. The simulation data are compared with theoretical predictions from expressions proposed by Jenkins and Mancini [J. Appl. Mech. 54, 27 (1987)] and Santos et al. [J. Chem. Phys. 117, 5785 (2002)]. Both theories agree quantitatively within a very small margin, which renders the former still a very useful and simple tool to work with. The latter (higher-order and self-consistent) theory provides a small qualitative correction for low densities and is superior especially in the high-density domain. (c) 2004 American Institute of Physics.
Peng, Bo; Yu, Yang-Xin
2008-12-04
A new density functional theory (DFT) for an inhomogeneous 12-6 Lennard-Jones fluid is proposed based on the modified fundamental measure theory for repulsive interaction and a weighted density functional for attractive interaction. The Helmholtz free energy functional for the attractive part is constructed using the modified Benedict-Webb-Rubin equation of state with a mean-field weight function. Comparisons of the theoretical results with molecular simulation data suggest that the new DFT yields accurate bulk surface tension, density distributions, adsorption-desorption isotherms, pore pressures, and capillary phase transitions for the Lennard-Jones fluid confined in slitlike pores with different widths and solid-fluid interactions. The new DFT reproduces well the vapor-liquid critical temperatures of the confined Lennard-Jones fluid, whereas the mean-field theory always overestimates the critical temperatures. Because the new DFT is computationally as simple and efficient as the mean-field theory, it will provide a good reference for further development of a statistical-thermodynamic theory of complex fluid under both homogeneous and inhomogeneous conditions when disperse force has to be considered.
Dahms, Rainer N
2015-05-01
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. The new model preserves the accuracy of previous temperature
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phase components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous
Dahms, Rainer N.
2014-12-31
The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of
NASA Technical Reports Server (NTRS)
Borgia, Andrea; Spera, Frank J.
1990-01-01
This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.
NASA Technical Reports Server (NTRS)
Borgia, Andrea; Spera, Frank J.
1990-01-01
This work discusses the propagation of errors for the recovery of the shear rate from wide-gap concentric cylinder viscometric measurements of non-Newtonian fluids. A least-square regression of stress on angular velocity data to a system of arbitrary functions is used to propagate the errors for the series solution to the viscometric flow developed by Krieger and Elrod (1953) and Pawlowski (1953) ('power-law' approximation) and for the first term of the series developed by Krieger (1968). A numerical experiment shows that, for measurements affected by significant errors, the first term of the Krieger-Elrod-Pawlowski series ('infinite radius' approximation) and the power-law approximation may recover the shear rate with equal accuracy as the full Krieger-Elrod-Pawlowski solution. An experiment on a clay slurry indicates that the clay has a larger yield stress at rest than during shearing, and that, for the range of shear rates investigated, a four-parameter constitutive equation approximates reasonably well its rheology. The error analysis presented is useful for studying the rheology of fluids such as particle suspensions, slurries, foams, and magma.
Theory of vibratory mobilization and break-up of non-wetting fluids entrapped in pore constrictions
NASA Astrophysics Data System (ADS)
Beresnev, I.; Li, W.; Vigil, D.
2006-12-01
Quantitative dynamics of a non-wetting (e. g., NAPL) ganglion entrapped in a pore constriction and subjected to vibrations can be approximated by the equation of motion of an oscillator moving under the effect of the external pressure gradient, inertial oscillatory force, and restoring capillary force. The solution of the equation provides the conditions under which the droplet experiences forced oscillations without being mobilized or is liberated upon the acceleration of the wall exceeding an "unplugging" threshold. This solution provides a quantitative tool for the estimation of the parameters of vibratory fields needed to liberate entrapped non-wetting fluids. For typical pore sizes encountered in reservoirs and aquifers, wall accelerations must exceed at least several m/sec2 and even higher levels to mobilize the droplets of NAPL; however, in the populations of ganglia entrapped in natural porous environments, many may reside very near their mobilization thresholds and may be mobilized by extremely low accelerations as well. For given acceleration, lower seismic frequencies are more efficient. The ganglia may also break up into smaller pieces when passing through pore constrictions. The snap-off is governed by the geometry only; for constrictions with sinusoidal profile (spatial wavelength of L and maximum and minimum radii of rmax and rmin, the break-up occurs if L > 2π(rmin rmax)1/2. Computational fluid dynamics shows the details of the break-up process.
NASA Technical Reports Server (NTRS)
Ferrari, C
1936-01-01
The report studies the problem of the transport of vorticity or of momentum in light of the Taylor and Prandtl theories which are briefly reviewed. It also show how the formulas of Prandtl could be brought into agreement with experimental results in those cases where they agree with the principle of statistic similitude of Karman, and particularly in the problem of the distribution of velocity and temperature in the wake of a heated cylindrical obstacle.
1992-09-01
Waves. Wiley, New York. Miles, J. W. 1979. "On the Korteweg - deVries Equation for a Gradually Varying Channel," J.M Vol 91, pp 181-190. 1980. "Solitary... equations , are difficult to solve . One popular 3 approach has been to systematically simplify the three-dimensional equations and their boundary conditions...from three dimensions to two. This theory yields governing equations for the flow, which are solved numerically in a more efficient manner than those
Lee, Lloyd L
2011-11-28
The third-order Ornstein-Zernike equation (OZ3) is used in the construction of a bridge functional that improves over conventional liquid-theory closures (for example, the hypernetted chain or the Percus-Yevick equations). The OZ3 connects the triplet direct correlation C((3)) to the triplet total correlation h((3)). By invoking the convolution approximation of Jackson and Feenberg, we are able to express the third-order bridge function B(3) as a functional of the indirect correlation γ. The resulting expression is generalized to higher-order bridge terms. This new closure is tested on the adsorption of Lennard-Jones fluid on planar hard surfaces by calculating the density profiles and comparing with Monte Carlo simulations. Particular attention is paid to the cases where molecular depletion on the substrate is evident. The results prove to be highly accurate and improve over conventional closures.
Ghosh, Satinath; Ghosh, Swapan K
2011-09-28
A double well type Helmholtz free energy density functional and a model density profile for a two phase vapor-liquid system are used to obtain the size-dependent interfacial properties of the vapor-liquid interface at coexistence condition along the lines of van der Waals and Cahn and Hilliard density functional formalism of the interface. The surface tension, temperature-density curve, density profile, and thickness of the interface of Lennard-Jones fluid droplet-vapor equilibrium, as predicted in this work are reported. The planar interfacial properties, obtained from consideration of large radius of the liquid drop, are in good agreement with the results of other earlier theories and experiments. The same free energy model has been tested by solving the equations numerically, and the results compare well with those from the use of model density profile. © 2011 American Institute of Physics
Semenov, Alexander; Babikov, Dmitri
2013-04-28
The theory of two seemingly different quantum∕classical approaches to collisional energy transfer and ro-vibrational energy flow is reviewed: a heuristic fluid-rotor method, introduced earlier to treat recombination reactions [M. Ivanov and D. Babikov, J. Chem. Phys. 134, 144107 (2011)], and a more rigorous method based on the Ehrenfest theorem. It is shown analytically that for the case of a diatomic molecule + quencher these two methods are entirely equivalent. Notably, they both make use of the average moment of inertia computed as inverse of average of inverse of the distributed moment of inertia. Despite this equivalence, each of the two formulations has its own advantages, and is interesting on its own. Numerical results presented here illustrate energy and momentum conservation in the mixed quantum∕classical approach and open opportunities for computationally affordable treatment of collisional energy transfer.
Peng, Bo; Yu, Yang-Xin
2008-11-04
A density functional theory (DFT) constructed from the modified fundamental-measure theory and the modified Benedict-Webb-Rubin equation of state is presented. The Helmholtz free energy functional due to attractive interaction is expressed as a functional of attractive weighted-density in which the weight function is a mean-field-like type. An obvious advantage of the present theory is that it reproduces accurate bulk properties such as chemical potential, bulk pressure, vapor-liquid interfacial tension, and so forth when compared with molecular simulations and experiments with the same set of molecular parameters. Capabilities of the present DFT are demonstrated by its applicability to adsorption of argon and nitrogen on, respectively, a model cylindrical pore and mesoporous MCM-41 materials. Comparison of the theoretical results of argon in the model cylindrical pore with those from the newly published molecular simulations indicates that the present DFT predicts accurate average densities in the pore, slightly overestimates the pore pressure, and correctly describes the effect of the fluid-pore wall interaction on average densities and pressures in the pore. Application to adsorption of nitrogen on MCM-41 at 77.4 K shows that the present DFT predicts density profiles and adsorption isotherms in good agreement with those from molecular simulations and experiments. In contrast, the hysteresis loop of adsorption calculated from the mean-field theory shifts toward the low pressure region because a low bulk saturated pressure is produced from the mean-field equation of state. The present DFT offers a good way to describe the adsorption isotherms of porous materials as a function of temperature and pressure.
NASA Technical Reports Server (NTRS)
Chung, P. M.
1976-01-01
The solution of the two nonequilibrium-degree kinetic equation was first determined for the effective length scale and turbulence energy for a spatially homogeneous turbulence field with two characteristic length scales, where the source for one family of eddies exists. This solution was applied to the evaluation of the eddy diffusivity in the combustion chamber of an internal combustion engine. The result was compared with another existing solution. This was carried out to demonstrate the feasibility of obtaining an effective length-scale equation within the context of the kinetic theory. A formulation and partial solution of the compressible plane shear layer are also presented.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth S.
2012-04-01
We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.
Capitán, José A; Cuesta, José A
2007-07-01
In this article we obtain a fundamental measure functional for the model of aligned hard hexagons in the plane. Our aim is not just to provide a functional for an admittedly academic model, but to investigate the structure of fundamental measure theory. A model of aligned hard hexagons has similarities with the hard disk model. Both share "lost cases," i.e. admit configurations of three particles in which there is pairwise overlap but not triple overlap. These configurations are known to be problematic for fundamental measure functionals, which are not able to capture their contribution correctly. This failure lies in the inability of these functionals to yield a correct low density limit of the third order direct correlation function. Here we derive the functional by projecting aligned hard cubes on the plane x+y+z=0 . The correct dimensional crossover behavior of these functionals permits us to follow this strategy. The functional of aligned hard cubes, however, does not have lost cases, so neither had the resulting functional for aligned hard hexagons. The latter exhibits, in fact, a peculiar structure as compared to the one for hard disks. It depends on a uniparametric family of weighted densities through an additional term not appearing in the functional for hard disks. Apart from studying the freezing of this system, we discuss the implications of the functional structure for further developments of fundamental measure theory.
Nhu, Nguyen Van; Singh, Mahendra; Leonhard, Kai
2008-05-08
We have computed molecular descriptors for sizes, shapes, charge distributions, and dispersion interactions for 67 compounds using quantum chemical ab initio and density functional theory methods. For the same compounds, we have fitted the three perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state (EOS) parameters to experimental data and have performed a statistical analysis for relations between the descriptors and the EOS parameters. On this basis, an analysis of the physical significance of the parameters, the limits of the present descriptors, and the PCP-SAFT EOS has been performed. The result is a method that can be used to estimate the vapor pressure curve including the normal boiling point, the liquid volume, the enthalpy of vaporization, the critical data, mixture properties, and so on. When only two of the three parameters are predicted and one is adjusted to experimental normal boiling point data, excellent predictions of all investigated pure compound and mixture properties are obtained. We are convinced that the methodology presented in this work will lead to new EOS applications as well as improved EOS models whose predictive performance is likely to surpass that of most present quantum chemically based, quantitative structure-property relationship, and group contribution methods for a broad range of chemical substances.
NASA Astrophysics Data System (ADS)
Nold, Andreas; Sibley, David N.; Goddard, Benjamin D.; Kalliadasis, Serafim
2014-07-01
We examine the nanoscale behavior of an equilibrium three-phase contact line in the presence of long-ranged intermolecular forces by employing a statistical mechanics of fluids approach, namely, density functional theory (DFT) together with fundamental measure theory (FMT). This enables us to evaluate the predictive quality of effective Hamiltonian models in the vicinity of the contact line. In particular, we compare the results for mean field effective Hamiltonians with disjoining pressures defined through (i) the adsorption isotherm for a planar liquid film, and (ii) the normal force balance at the contact line. We find that the height profile obtained using (i) shows good agreement with the adsorption film thickness of the DFT-FMT equilibrium density profile in terms of maximal curvature and the behavior at large film heights. In contrast, we observe that while the height profile obtained by using (ii) satisfies basic sum rules, it shows little agreement with the adsorption film thickness of the DFT results. The results are verified for contact angles of 20°, 40°, and 60°.
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
ERIC Educational Resources Information Center
Bird, R. Byron
1980-01-01
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sumit; Tsang, Yvonne W.
2008-10-01
Flowing fluid temperature logging (FFTL) has recently been proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this article, we present a simplified conceptualization of FFTL in unsaturated fractured rock and develop a semi-analytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. On the basis of the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this article is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel article, we extend the conceptual model to evaluate some of these assumptions. In that paper, we also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.
Mukhopadhyay, Sumit; Tsang, Yvonne W.
2008-08-01
Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.
ERIC Educational Resources Information Center
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
ERIC Educational Resources Information Center
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
Boeker, Peter; Leppert, Jan; Mysliwietz, Bodo; Lammers, Peter Schulze
2013-10-01
The Deans' switch is an effluent switching device based on controlling flows of carrier gas instead of mechanical valves in the analytical flow path. This technique offers high inertness and a wear-free operation. Recently new monolithic microfluidic devices have become available. In these devices the whole flow system is integrated into a small metal device with low thermal mass and leak-tight connections. In contrast to a mechanical valve-based system, a flow-controlled system is more difficult to calculate. Usually the Deans' switch is used to switch one inlet to one of two outlets, by means of two auxiliary flows. However, the Deans' switch can also be used to deliver the GC effluent with a specific split ratio to both outlets. The calculation of the split ratio of the inlet flow to the two outlets is challenging because of the asymmetries of the flow resistances. This is especially the case, if one of the outlets is a vacuum device, such as a mass spectrometer, and the other an atmospheric detector, e.g. a flame ionization detector (FID) or an olfactory (sniffing) port. The capillary flows in gas chromatography are calculated with the Hagen-Poiseuille equation of the laminar, isothermal and compressible flow in circular tubes. The flow resistances in the new microfluidic devices have to be calculated with the corresponding equation for rectangular cross-section microchannels. The Hagen-Poiseuille equation underestimates the flow to a vacuum outlet. A corrected equation originating from the theory of rarefied flows is presented. The calculation of pressures and flows of a Deans' switch based chromatographic system is done by the solution of mass balances. A specific challenge is the consideration of the antidiffusion resistor between the two auxiliary gas lines of the Deans' switch. A full solution for the calculation of the Deans' switch including this restrictor is presented. Results from validation measurements are in good accordance with the developed
Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.
1998-10-01
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included
NASA Astrophysics Data System (ADS)
Härtel, Andreas; Samin, Sela; van Roij, René
2016-06-01
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.
Härtel, Andreas; Samin, Sela; van Roij, René
2016-06-22
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.
Salerno, K Michael; Frischknecht, Amalie L; Stevens, Mark J
2016-07-07
Negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP-NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depth and location of the minimum in the interaction depend strongly on the NPs' charge. For certain parameters, the depth of the attractive well can reach 8-10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP-NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.
NASA Astrophysics Data System (ADS)
Valera, M.; Pinski, F. J.; Johnson, D. D.
2003-06-01
Recently we solved, via discrete numerical grids, the Ramakrishna-Yossouff density-functional theory equations for the freezing transition and obtained an intricate phase diagram of hard-sphere mixtures. Even though such methods provide more variational freedom than basis-set methods, we found that the thermodynamic quantities were sensitive to the spacing of numerical grids employed and observed numerically induced false minima. Dasgupta and Valls have commented that these false minima were due to our use of k-space methods and, hence, their early works based on a fully r-space approach are qualitatively correct, despite also being sensitive to the mesh granularity. Here, we clarify the issues of achieving correct thermodynamic limit from grid-based methods and respond to their Comment, concluding that r-space calculations using coarse meshes may provide correct thermodynamic quantities (only by extrapolation) and thus their previous work should be called into question. In general, both methods, k-space or r-space, suffer from grid-induced problems.
Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.
2016-04-08
Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less
Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.
2016-04-08
Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depth and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k_{B}T, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.
Fluid mechanics in fluids at rest
NASA Astrophysics Data System (ADS)
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity vv. The term “compressibility” as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci.10.1016/j.ijengsci.2012.01.006 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and
Fluid mechanics in fluids at rest.
Brenner, Howard
2012-07-01
Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.
NASA Astrophysics Data System (ADS)
Chan, Ho Yin; Lubchenko, Vassiliy
2015-09-01
We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.
Frolov, Andrey I
2015-05-12
Accurate calculation of solvation free energies (SFEs) is a fundamental problem of theoretical chemistry. In this work we perform a careful validation of the theory of solutions in energy representation (ER method) developed by Matubayasi et al. [J. Chem. Phys. 2000, 113, 6070-6081] for SFE calculations in supercritical solvents. This method can be seen as a bridge between the molecular simulations and the classical (not quantum) density functional theory (DFT) formulated in energy representation. We performed extensive calculations of SFEs of organic molecules of different chemical natures in pure supercritical CO2 (sc-CO2) and in sc-CO2 with addition of 6 mol % of ethanol, acetone, and n-hexane as cosolvents. We show that the ER method reproduces SFE data calculated by a method free of theoretical approximations (the Bennett's acceptance ratio) with the mean absolute error of only 0.05 kcal/mol. However, the ER method requires by an order less computational resources. Also, we show that the quality of ER calculations should be carefully monitored since the lack of sampling can result into a considerable bias in predictions. The present calculations reproduce the trends in the cosolvent-induced solubility enhancement factors observed in experimental data. Thus, we think that molecular simulations coupled with the ER method can be used for quick calculations of the effect of variation of temperature, pressure, and cosolvent concentration on SFE and hence solubility of bioactive compounds in supercritical fluids. This should dramatically reduce the burden of experimental work on optimizing solvency of supercritical solvents.
Chan, Ho Yin; Lubchenko, Vassiliy
2015-09-28
We set up the problem of finding the transition state for phase nucleation in multi-component fluid mixtures, within the Landau-Ginzburg density functional. We establish an expression for the coordinate-dependent local pressure that applies to mixtures, arbitrary geometries, and certain non-equilibrium configurations. The expression allows one to explicitly evaluate the pressure in spherical geometry, à la van der Waals. Pascal's law is recovered within the Landau-Ginzburg density functional theory, formally analogously to how conservation of energy is recovered in the Lagrangian formulation of mechanics. We establish proper boundary conditions for certain singular functional forms of the bulk free energy density that allow one to obtain droplet solutions with thick walls in essentially closed form. The hydrodynamic modes responsible for mixing near the interface are explicitly identified in the treatment; the composition at the interface is found to depend only weakly on the droplet size. Next we develop a Landau-Ginzburg treatment of the effects of amphiphiles on the surface tension; the amphiphilic action is seen as a violation of Pascal's law. We explicitly obtain the binding potential for the detergent at the interface and the dependence of the down-renormalization of the surface tension on the activity of the detergent. Finally, we argue that the renormalization of the activation barrier for escape from long-lived structures in glassy liquids can be viewed as an action of uniformly seeded, randomly oriented amphiphilic molecules on the interface separating two dissimilar aperiodic structures. This renormalization is also considered as a "wetting" of the interface. The resulting conclusions are consistent with the random first order transition theory.
NASA Astrophysics Data System (ADS)
Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo
2014-09-01
An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.
Veress, T
1994-05-13
A mathematical model based on the diffusion-layer theory was elaborated in order to calculate the extraction time in dynamic supercritical fluid extraction required to reach a predefined level of extraction recovery. The goodness of the model is demonstrated by application to the extraction of the main neutral cannabinoids from marihuana and hashish samples. For monitoring of the cannabinoid content of extracts normal-phase HPLC was applied. To obtain reliable quantitative results, the extraction time ensuring a predefined level of recovery should be calculated for each individual sample according to the model because the extraction recovery depends on the sample matrix. The systematic error caused by the unextracted compounds can be eliminated by correction of the experimental data. For semi-quantitative determinations, where a knowledge of the correct value of the extraction recovery is not important, as a rule of thumb the extraction of marihuana with carbon dioxide of density 0.9 g/ml at 40 degrees C for 34 min and of hashish for 18 min can be suggested. The application of the proposed extraction times ensured at least a 95% recovery for the main neutral cannabinoids.
1981-03-31
measured and appear to be comparable to those predicted by the Vlasov-fluid theory of Seylerl and the finite Larmor radius theory of Freidberg and...C.E. Seyler, "Vlasov-Fluid Stability of a Rigidly Rotating Theta Pinch," Phys. Fluids 22, 2324, (1979). 2. J.P. Freidberg , L.D. Pearlstein
NASA Astrophysics Data System (ADS)
Noah-Vanhoucke, Joyce E.; Andersen, Hans C.
2007-08-01
We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is
Oliveira, M B; Llovell, F; Coutinho, J A P; Vega, L F
2012-08-02
In this work, the soft statistical associating fluid theory (soft-SAFT) equation of state (EoS) has been used to provide an accurate thermodynamic characterization of the pyridinium-based family of ionic liquids (ILs) with the bis(trifluoromethylsulfonyl)imide anion [NTf(2)](-). On the basis of recent molecular simulation studies for this family, a simple molecular model was proposed within the soft-SAFT EoS framework. The chain length value was transferred from the equivalent imidazolium-based ILs family, while the dispersive energy and the molecular parameters describing the cation-anion interactions were set to constant values for all of the compounds. With these assumptions, an appropriate set of molecular parameters was found for each compound fitting to experimental temperature-density data at atmospheric pressure. Correlations for the nonconstant parameters (describing the volume of the IL) with the molecular weight were established, allowing the prediction of the parameters for other pyridiniums not included in the fitting. Then, the suitability of the proposed model and its optimized parameters were tested by predicting high-pressure densities and second-order thermodynamic derivative properties such as isothermal compressibilities of selected [NTf(2)] pyridinium ILs, in a large range of thermodynamic conditions. The surface tension was also provided using the density gradient theory coupled to the soft-SAFT equation. Finally, the soft-SAFT EoS was applied to describe the phase behavior of several binary mixtures of [NTf(2)] pyridinium ILs with carbon dioxide, sulfur dioxide, and water. In all cases, a temperature-independent binary parameter was enough to reach quantitative agreement with the experimental data. The description of the solubility of CO(2) in these ILs also allowed identification of a relation between the binary parameter and the molecular weight of the ionic liquid, allowing the prediction of the CO(2) + C(12)py[NTf(2)] mixture. The good
Ko, N-Y; Yeh, S-H; Tsay, S-L; Ma, H-J; Chen, C-H; Pan, S-M; Feng, M-C; Chiang, M-C; Lee, Y-W; Chang, L-H; Jang, J-F
2011-04-01
Nurses are at significant risk from occupationally acquired bloodborne virus infections following a needlestick and sharps injury. This study aimed to apply the theory of planned behaviour (TPB) to predict nurses' intention to comply with occupational post-exposure management. A cross-sectional survey was applied to select registered nurses who worked in human immunodeficiency virus (HIV)-designated hospitals. An anonymous, self-administered questionnaire based on the TPB was distributed to 1630 nurses and 1134 (69.5%) questionnaires were returned. From these, a total of 802 nurses (71%) reported blood and body fluid exposure incidents during 2003-2005 and this group was used for analysis. Only 44.6% of the 121 exposed nurses who were prescribed post-exposure prophylaxis (PEP) by infectious disease doctors returned to the clinic for interim monitoring, and only 56.6% of exposed nurses confirmed their final serology status. Structural equation modelling was used to test the TPB indicating perceived behavioural control (the perception of the difficulty or ease of PEP management, β=0.58), subjective norm (the perception of social pressure to adhere to PEP, β=0.15), and attitudes (β=0.12) were significant direct effects on nurses' intention to comply with post-exposure management. The hypothesised model test indicated that the model fitted with the expected relationships and directions of theoretical constructs [χ(2) (14, N=802)=23.14, P=0.057, GFI=0.987, RMSEA=0.039]. The TPB model constructs accounted for 54% of the variance in nurses' intention to comply with post-exposure management. The TPB is an appropriate model for predicting nurses' intention to comply with post-exposure management. Healthcare facilities should have policies to decrease the inconvenience of follow-up to encourage nurses to comply with post-exposure management.
Pizio, O; Bucior, K; Patrykiejew, A; Sokołowski, S
2005-12-01
We consider a density-functional theory to describe nonuniform fluids composed of chain molecules, containing a charged segment each, and spherical counterions. The chain molecules are modeled as freely jointed chains of hard spheres, the counterions are oppositely charged spheres of the same diameter as all segments of chain molecules. The theory is applied to study the structure of adsorbed layers, the excess adsorption isotherms, the capacitance of the double layer, and the potential of the zero charge. We show that all electric properties are strongly dependent on the length of the chain molecules. Moreover, these properties are also dependent on the position of the charged segment in the chain.
Fluid damping and fluid stiffness of tube arrays in crossflow
Chen, S.S.; Zhu, S.; Jendrzejczyk, J.A.
1994-06-01
Motion-dependent fluid forces acting on a tube array were measured as a function of excitation frequency, excitation amplitude, and flow velocity. Fluid-damping and fluid-stiffness coefficients were obtained from measured motion-dependent fluid forces as a function of reduced flow velocity and excitation amplitude. The water channel and test setup provide a sound facility for obtaining key coefficients for fluidelastic instability of tube arrays in crossflow. Once the motion-dependent fluid-force coefficients have been measured, a reliable design guideline, based on the unsteady flow theory, can be developed for fluidelastic instability of tube arrays in crossflow.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
Fukuma, Masafumi; Sakatani, Yuho
2011-08-15
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Neves, Catarina M S S; Held, Christoph; Mohammad, Sultan; Schleinitz, Miko; Coutinho, João A P; Freire, Mara G
2015-12-21
Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg(-1)). At salt molalities higher than 0.2 mol kg(-1), all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.2 mol kg(-1). To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K(+) and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K(+)/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid-liquid phase behaviour.
2002-12-12
These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.
ERIC Educational Resources Information Center
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
ERIC Educational Resources Information Center
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
ERIC Educational Resources Information Center
Collyer, A. A.
1974-01-01
Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)
NASA Technical Reports Server (NTRS)
Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.
1987-01-01
It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.
NASA Technical Reports Server (NTRS)
Bradas, James C.; Fennelly, Alphonsus J.; Smalley, Larry L.
1987-01-01
It is shown that a generalized (or 'power law') inflationary phase arises naturally and inevitably in a simple (Bianchi type-I) anisotropic cosmological model in the self-consistent Einstein-Cartan gravitation theory with the improved stress-energy-momentum tensor with the spin density of Ray and Smalley (1982, 1983). This is made explicit by an analytical solution of the field equations of motion of the fluid variables. The inflation is caused by the angular kinetic energy density due to spin. The model further elucidates the relationship between fluid vorticity, the angular velocity of the inertially dragged tetrads, and the precession of the principal axes of the shear ellipsoid. Shear is not effective in damping the inflation.
An Introduction to Fluid Dynamics
NASA Astrophysics Data System (ADS)
Batchelor, G. K.
2000-02-01
First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.
Adolf, D.; Anderson, R.; Garino, T.; Halsey, T.C.; Hance, B.; Martin, J.E.; Odinek, J.
1996-10-01
An Electrorheological fluid is normally a low-viscosity colloidal suspension, but when an electric field is applied, the fluid undergoes a reversible transition to a solid, being able to support considerable stress without yield. Commercial possibilities for such fluids are enormous, including clutches, brakes, valves,shock absorbers, and stepper motors. However, performance of current fluids is inadequate for many proposed applications. Our goal was to engineer improved fluids by investigating the key technical issues underlying the solid-phase yield stress and the liquid to solid switching time. Our studies focused on field-induced interactions between colloidal particles that lead to solidification, the relation between fluid structure and performance (viscosity, yield stress), and the time evolution of structure in the fluid as the field is switched on or off.
Hansen, J S; Daivis, Peter J; Todd, B D
2009-10-01
In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.
ERIC Educational Resources Information Center
Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Primi, Caterina
2012-01-01
This article is aimed at evaluating the possibility that Set I of the Advanced Progressive Matrices (APM-Set I) can be employed to assess fluid ability in a short time frame. The APM-Set I was administered to a sample of 1,389 primary and secondary school students. Confirmatory factor analysis attested to the unidimensionality of the scale. Item…
ERIC Educational Resources Information Center
Chiesi, Francesca; Ciancaleoni, Matteo; Galli, Silvia; Primi, Caterina
2012-01-01
This article is aimed at evaluating the possibility that Set I of the Advanced Progressive Matrices (APM-Set I) can be employed to assess fluid ability in a short time frame. The APM-Set I was administered to a sample of 1,389 primary and secondary school students. Confirmatory factor analysis attested to the unidimensionality of the scale. Item…
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1986-03-01
We study the analytic properties of the hypernetted-chain (HNC) and soft-mean-spherical (SMSA) theories in the asymptotic high-density limit (AHDL). The scaling properties of the inverse power potentials lead to the introduction of the SMSA-Ewald functions, which correspond to the ``overlap-volume'' functions for hard spheres. The HNC and SMSA theories for soft interactions, as well as the Percus-Yevick theory for hard spheres, feature the same AHDL analytic structure of the pair correlation functions, which is dictated by the hard-sphere Ewald functions. The general discussion is supplemented by detailed results for the one-component plasma. Implications to the analysis of the density-functional theory, of dense matter, near its exact Thomas-Fermi limit are pointed out.
Fluid-fluid versus fluid-solid demixing in mixtures of parallel hard hypercubes
NASA Astrophysics Data System (ADS)
Lafuente, Luis; Martínez-Ratón, Yuri
2011-02-01
It is well known that increase of the spatial dimensionality enhances the fluid-fluid demixing of a binary mixture of hard hyperspheres, i.e. the demixing occurs for lower mixture size asymmetry as compared to the three-dimensional case. However, according to simulations, in the latter dimension the fluid-fluid demixing is metastable with respect to the fluid-solid transition. According to the results obtained from approximations to the equation of state of hard hyperspheres in higher dimensions, the fluid-fluid demixing might become stable for high enough dimension. However, this conclusion is rather speculative since none of these works have taken into account the stability of the crystalline phase (by a minimization of a given density functional, by spinodal calculations or by MC simulations). Of course, the lack of results is justified by the difficulty of performing density functional calculations or simulations in high dimensions and, in particular, for highly asymmetric binary mixtures. In the present work, we will take advantage of a well tested theoretical tool, namely the fundamental measure density functional theory for parallel hard hypercubes (in the continuum and in the hypercubic lattice). With this, we have calculated the fluid-fluid and fluid-solid spinodals for different spatial dimensions. We have obtained, no matter what the dimensionality, the mixture size asymmetry or the polydispersity (included as a bimodal distribution function centered around the asymmetric edge lengths), that the fluid-fluid critical point is always located above the fluid-solid spinodal. In conclusion, these results point to the existence of demixing between at least one solid phase rich in large particles and one fluid phase rich in small ones, preempting a fluid-fluid demixing, independently of the spatial dimension or the polydispersity.
Effective perfect fluids in cosmology
Ballesteros, Guillermo; Bellazzini, Brando E-mail: brando.bellazzini@pd.infn.it
2013-04-01
We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.
NASA Astrophysics Data System (ADS)
Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.
2017-01-01
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.
NASA Astrophysics Data System (ADS)
Jadrich, Ryan; Schweizer, Kenneth S.
2013-08-01
Building on the equation-of-state theory of Paper I, we construct a new thermodynamically consistent integral equation theory for the equilibrium pair structure of 3-dimensional monodisperse hard spheres applicable up to the jamming transition. The approach is built on a two Yukawa generalized mean spherical approximation closure for the direct correlation function (DCF) beyond contact that reproduces the exact contact value of the pair correlation function and isothermal compressibility. The detailed construction of the DCF is guided by the desire to capture its distinctive features as jamming is approached. Comparison of the theory with jamming limit simulations reveals good agreement for many, but not all, of the key features of the pair correlation function. The theory is more accurate in Fourier space where predictions for the structure factor and DCF are accurate over a wide range of wavevectors from significantly below the first cage peak to very high wavevectors. New features of the equilibrium pair structure are predicted for packing fractions below jamming but well above crystallization. For example, the oscillatory DCF decays very slowly at large wavevectors for high packing fractions as a consequence of the unusual structure of the radial distribution function at small separations. The structural theory is used as input to the nonlinear Langevin equation theory of activated dynamics, and calculations of the alpha relaxation time based on single particle hopping are compared to recent colloid experiments and simulations at very high volume fractions.
Jadrich, Ryan; Schweizer, Kenneth S
2013-08-07
Building on the equation-of-state theory of Paper I, we construct a new thermodynamically consistent integral equation theory for the equilibrium pair structure of 3-dimensional monodisperse hard spheres applicable up to the jamming transition. The approach is built on a two Yukawa generalized mean spherical approximation closure for the direct correlation function (DCF) beyond contact that reproduces the exact contact value of the pair correlation function and isothermal compressibility. The detailed construction of the DCF is guided by the desire to capture its distinctive features as jamming is approached. Comparison of the theory with jamming limit simulations reveals good agreement for many, but not all, of the key features of the pair correlation function. The theory is more accurate in Fourier space where predictions for the structure factor and DCF are accurate over a wide range of wavevectors from significantly below the first cage peak to very high wavevectors. New features of the equilibrium pair structure are predicted for packing fractions below jamming but well above crystallization. For example, the oscillatory DCF decays very slowly at large wavevectors for high packing fractions as a consequence of the unusual structure of the radial distribution function at small separations. The structural theory is used as input to the nonlinear Langevin equation theory of activated dynamics, and calculations of the alpha relaxation time based on single particle hopping are compared to recent colloid experiments and simulations at very high volume fractions.
Solutal Convection in a Magnetic Fluid
NASA Technical Reports Server (NTRS)
Leslie, Fred; Ramachandran, N.
2003-01-01
A theoretical and experimental study is presented on the stability of solutal convection of a magnetized fluid in the presence of a magnetic field. The total force on the fluid is derived and equilibrium positions are computed establishing the field necessary to counter fluid buoyancy. The requirements for stability are developed and compared with experiments with a paramagnetic fluid. The experiments are in good agreement not only with the theoretical predictions for equilibrium but also verify the stability theory which predicts both horizontal and vertical stability. Analogous to results for levitation, the theory indicates that solutal convection in paramagnetic fluids cannot be completely stabilized while that in diamagnetic liquid are possible.
ZENO: A Critical Fluid Light Scattering Experiment
NASA Technical Reports Server (NTRS)
1994-01-01
The ZENO experiment flew on the STS-62, it is designed to verify intriguing, but previously untested, theories in fluid physics. These theories attempt to describe dramatic changes in the properties of fluids near the critical temperature at which the vapor and liquid forms co-exist.
Computational astrophysical fluid dynamics
NASA Technical Reports Server (NTRS)
Norman, Michael L.; Clarke, David A.; Stone, James M.
1991-01-01
The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.
NASA Technical Reports Server (NTRS)
Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.;
2016-01-01
NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by
Dorsey, D.L.; Corley, W.T.
1983-12-27
A clay-based or clay-free aqueous thixotropic wellbore fluid having improved fluid loss control, desirable flow characteristics and low shale sensitivity for use in drilling a well comprising water or a brine base including an effective amount of an additive comprising a crosslinked potato starch, a heteropolysaccharide derived from a carbohydrate by bacteria of the genus Xanthomonas, and hydroxyethylcellulose or carboxymethylcellulose, is disclosed. This drilling fluid has been found to be nondamaging to the formations through which the well is drilled.
Chen, X.; Firouzjahi, H.; Namjoo, M.H.; Sasaki, M. E-mail: firouz@ipm.ir E-mail: misao@yukawa.kyoto-u.ac.jp
2013-09-01
In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.
NASA Astrophysics Data System (ADS)
Ozawa, Hisashi; Shimokawa, Shinya; Sakuma, Hirofumi
Turbulence is ubiquitous in nature, yet remains an enigma in many respects. Here we investigate dissipative properties of turbulence so as to find out a statistical "law" of turbulence. Two general expressions are derived for a rate of entropy increase due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is found with these equations that phenomenological properties of turbulence such as Malkus's suggestion on maximum heat transport in thermal convection as well as Busse's sug- gestion on maximum momentum transport in shear turbulence can rigorously be ex- plained by a unique state in which the rate of entropy increase due to the turbulent dissipation is at a maximum (dS/dt = Max.). It is also shown that the same state cor- responds to the maximum entropy climate suggested by Paltridge. The tendency to increase the rate of entropy increase has also been confirmed by our recent GCM ex- periments. These results suggest the existence of a universal law that manifests itself in the long-term statistics of turbulent fluid systems from laboratory-scale turbulence to planetary-scale circulations. Ref.) Ozawa, H., Shimokawa, S., and Sakuma, H., Phys. Rev. E 64, 026303, 2001.
NASA Astrophysics Data System (ADS)
Salacuse, J. J.; Egelstaff, P. A.
2001-11-01
We describe a method for obtaining the intermediate scattering function I(Q,t) from a computer simulation: it is an extension of our earlier calculation [Salacuse, Denton, and Egelstaff, Phys. Rev. E 53, 2382 (1996)] for the t-->0 limit. We use this approach to obtain I(Q,t) for low Q and t from molecular dynamics (MD) simulations of a model krypton fluid whose atoms interact via a truncated Aziz pair potential, and the results are compared over their range of validity to I(Q,t) determined by the standard MD method and also by a time expansion approach. In its range of validity our approach is much more efficient than the standard MD method; however, it covers a restricted range of t due to the movement of density fluctuations (sound waves) through the simulated fluid which produces an anomaly in the time behavior of I(Q,t). By analyzing I(Q=0,t) the velocity of sound in the simulation is determined, and the results compare favorably with published experimental results for the sound velocity of liquid krypton.
Salacuse, J J; Egelstaff, P A
2001-11-01
We describe a method for obtaining the intermediate scattering function I(Q,t) from a computer simulation: it is an extension of our earlier calculation [Salacuse, Denton, and Egelstaff, Phys. Rev. E 53, 2382 (1996)] for the t-->0 limit. We use this approach to obtain I(Q,t) for low Q and t from molecular dynamics (MD) simulations of a model krypton fluid whose atoms interact via a truncated Aziz pair potential, and the results are compared over their range of validity to I(Q,t) determined by the standard MD method and also by a time expansion approach. In its range of validity our approach is much more efficient than the standard MD method; however, it covers a restricted range of t due to the movement of density fluctuations (sound waves) through the simulated fluid which produces an anomaly in the time behavior of I(Q,t). By analyzing I(Q=0,t) the velocity of sound in the simulation is determined, and the results compare favorably with published experimental results for the sound velocity of liquid krypton.
Shell, F. J.
1985-12-17
The high temperature water loss property of alkaline well completion and well workover fluids is improved by the addition of an effective amount of a naphthalene sulfonate formaldehyde condensate in the form of its monovalent or bivalent metal salts.
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.;
2015-01-01
INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described
Halsey, T.C.; Martin, J.E.
1993-10-01
An electrorheological fluid is a substance whose form changes in the presence of electric fields. Depending on the strength of the field to which it is subjected, an electrorheological fluid can run freely like water, ooze like honey or solidify like gelatin. Indeed, the substance can switch from ne state to another within a few milliseconds. Electrorheological fluids are easy to make; they consist of microscopic particles suspended in an insulating liquid. Yet they are not ready for most commercial applications. They tend to suffer from a number of problems, including structural weakness as solids, abrasiveness as liquids and chemical breakdown, especially at high temperatures. Automotive engineers could imagine, for instance, constructing an electrorheological clutch. It was also hoped that electrorheological fluids would lead to valveless hydraulic systems, in which solidifying fluid would shut off flow through a thin section of pipe. Electrorheological fluids also offer the possibility of a shock absorber that provides response times of milliseconds and does not require mechanical adjustments. 3 refs.
The Propagation of the Gravity Current of Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Liu, Ye
2014-11-01
We are studying the spreading of the viscoplastic fluid of Bingham type over a horizontal plane, using both mathematical derivation and numerical experiments. We are interested in its final shape and whether theory and numerics correspond well. There are two theories for comparison: lubrication theory from asymptotics, and slipline theory from plasticity. The numerical method we are using is based on the volume-of-fluid method, with both regularization and Augmented Lagrangian for the constitutive law of Bingham type fluid. UBC IRSN.
Jiuxun, Sun
2003-12-01
A simple analytic expression with high precision for the radial distribution function of hard spheres is proposed. The form of the expression has been carefully selected to combine the well-known Camahan-Starling equation of state in it and satisfy the limit condition at low density, its simplicity and precision is superior to the well-known Percus-Yevick expression. The coefficients contained in the expression have been determined by fitting the Monte Carlo data for the first coordination shell, and by fitting both the Monte Carlo data and the numerical results of the Percus-Yevick expression for the second coordination shell. The expression has been applied to develop simple analytic equations of state for the hard-core single, double Yukawa fluids, and the hard-core Yukawa mixtures. The comparisons show that the agreement of our model with the computer simulation data is slightly better than the mean spherical approximation and other analytic models.
Fluid Management System (FMS) fluid systems overview
NASA Technical Reports Server (NTRS)
Baird, R. S.
1990-01-01
Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.
NASA Astrophysics Data System (ADS)
Bansal, Artee; Asthagiri, D.; Cox, Kenneth R.; Chapman, Walter G.
2016-08-01
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.
Bansal, Artee; Asthagiri, D; Cox, Kenneth R; Chapman, Walter G
2016-08-21
A mixture of solvent particles with short-range, directional interactions and solute particles with short-range, isotropic interactions that can bond multiple times is of fundamental interest in understanding liquids and colloidal mixtures. Because of multi-body correlations, predicting the structure and thermodynamics of such systems remains a challenge. Earlier Marshall and Chapman [J. Chem. Phys. 139, 104904 (2013)] developed a theory wherein association effects due to interactions multiply the partition function for clustering of particles in a reference hard-sphere system. The multi-body effects are incorporated in the clustering process, which in their work was obtained in the absence of the bulk medium. The bulk solvent effects were then modeled approximately within a second order perturbation approach. However, their approach is inadequate at high densities and for large association strengths. Based on the idea that the clustering of solvent in a defined coordination volume around the solute is related to occupancy statistics in that defined coordination volume, we develop an approach to incorporate the complete information about hard-sphere clustering in a bulk solvent at the density of interest. The occupancy probabilities are obtained from enhanced sampling simulations but we also develop a concise parametric form to model these probabilities using the quasichemical theory of solutions. We show that incorporating the complete reference information results in an approach that can predict the bonding state and thermodynamics of the colloidal solute for a wide range of system conditions.
NASA Technical Reports Server (NTRS)
Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.;
2014-01-01
NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
The theory of quasi-geostrophic von Kármán vortex streets in two-layer fluids on a beta-plane
NASA Astrophysics Data System (ADS)
Gryanik, Vladimir M.; Borth, Hartmut; Olbers, Dirk
2004-04-01
In this study self-organized periodic coherent vortex structures arising in geophysical turbulent flows at low Rossby number are investigated by developing a conceptual model based on an analytical theory of von Kármán vortex streets affected by stratification and differential rotation. In the framework of a quasi-geostrophic (QG) two-layer beta-plane model vortex streets with three different types of vertical structures (barotropic, upper layer and hetonic) are analysed using the point vortex approximation. The streets are found to be exact solutions of the potential vorticity equation and to be characterized by four non-dimensional parameters. Von Kármán streets are semi-localized solutions which form a bridge between vortex pairs (limit of symmetric dilute streets) and two parallel vortex sheets (limit of dense streets). On the beta-plane QG von Kármán streets can only move to the east, i.e. with a speed outside the range of speeds of Rossby waves, so that a dynamical asymmetry in the zonal direction is introduced. A complete classification on a diagram of states shows that critical bounds exist in the parameter space, prescribing for example a maximum distance between vortex rows beyond which no QG vortex streets can be found. Typically a fast and a slow vortex street with different flow structures are found in the region of existence. As a function of distance between vortex rows baroclinic QG vortex streets show a characteristic non-monotonic speed behaviour at scales of the order of the baroclinic Rossby radius. A wide region of possible existence of QG von Kármán streets is found in atmospheric, oceanic and planetary conditions as well as in rotating tank experiments. The theory can be applied to describe the coherent part of turbulent baroclinic intermittent zonal jet-like and frontal flows and provides a scaling for such flows.
Galilean relativistic fluid mechanics
NASA Astrophysics Data System (ADS)
Ván, P.
2017-03-01
Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.
Galilean relativistic fluid mechanics
NASA Astrophysics Data System (ADS)
Ván, P.
2017-01-01
Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.
A systems approach to theoretical fluid mechanics: Fundamentals
NASA Technical Reports Server (NTRS)
Anyiwo, J. C.
1978-01-01
A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.
NASA Astrophysics Data System (ADS)
Caserta, A.; Kanivetsky, R.; Salusti, E.
2017-08-01
We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.
Reentrant Wetting of Network Fluids
NASA Astrophysics Data System (ADS)
Bernardino, N. R.; Telo da Gama, M. M.
2012-09-01
We use a simple mesoscopic Landau-Safran theory of network fluids to show that a reentrant phase diagram, in the “empty liquid” regime, leads to nonmonotonic surface tension and reentrant wetting, as previously reported for binary mixtures. One of the wetting transitions is of the usual kind, but the low temperature transition may allow the display of the full range of fluctuation regimes predicted by renormalization group theory.
Ottino, J.M.
1989-01-01
What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils.
NASA Astrophysics Data System (ADS)
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Wai, Chien M.; Laintz, Kenneth E.
1999-01-01
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Fluid dynamics of bacterial turbulence.
Dunkel, Jörn; Heidenreich, Sebastian; Drescher, Knut; Wensink, Henricus H; Bär, Markus; Goldstein, Raymond E
2013-05-31
Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subtilis and compare them with a minimal fourth-order vector-field theory for incompressible bacterial dynamics. Velocimetry of bacteria and surrounding fluid, determined by imaging cells and tracking colloidal tracers, yields consistent results for velocity statistics and correlations over 2 orders of magnitude in kinetic energy, revealing a decrease of fluid memory with increasing swimming activity and linear scaling between kinetic energy and enstrophy. The best-fit model allows for quantitative agreement with experimental data.
Analytic studies of the hard dumbell fluid
NASA Astrophysics Data System (ADS)
Morriss, G. P.; Cummings, P. T.
A closed form analytic theory for the structure of the hard dumbell fluid is introduced and evaluated. It is found to be comparable in accuracy to the reference interaction site approximation (RISA) of Chandler and Andersen.
Fluid Dynamic Analysis of Volcanic Tremor,
1982-10-01
analytical potential of the fluid dynamic theory, we consider a single-phase fluid, a melt of Mount Hood andesite at 1250C, in which significant pressure...existing steady condition. A likely Volcanic earthquakes are known to occur at ba- mechanism, important during pre-eruptive periods, saltic, andesitic and...melts can be large. of Mount Hood andesite composed of 60% SiO2 . A numerical solution of the free vibrational eigen- The melt was totally fluid at
Spinning fluids: A group theoretical approach
NASA Astrophysics Data System (ADS)
Capasso, Dario; Sarkar, Debajyoti
2014-04-01
The aim of this article is to introduce a Lagrangian formulation of relativistic non-Abelian spinning fluids in group theory language. The corresponding Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of the de Sitter group has been proposed. The equation we find correctly boils down to the one for nonspinning fluids. Two alternative approaches based on a group theoretical formulation of particle dynamics are also explored.
The handbook of fluid dynamics
Johnson, R.W.
1998-07-01
This book provides professionals in the field of fluid dynamics with a comprehensive guide and resource. The book balances three traditional areas of fluid mechanics--theoretical, computational, and experimental--and expounds on basic science and engineering techniques. Each chapter introduces a topic, discusses the primary issues related to this subject, outlines approaches taken by experts, and supplies references for further information. Topics discussed include: (1) basic engineering fluid dynamics; (2) classical fluid dynamics; (3) turbulence modeling; (4) reacting flows; (5) multiphase flows; (6) flow and porous media; (7) high Reynolds number asymptotic theories; (8) finite difference method; (9) finite volume method; (10) finite element methods; (11) spectral element methods for incompressible flows; (12) experimental methods, such as hot-wire anemometry, laser-Doppler velocimetry, and flow visualization; and (13) applications, such as axial-flow compressor and fan aerodynamics, turbomachinery, airfoils and wings, atmospheric flows, and mesoscale oceanic flows.
Fluid Instabilities inside Astrophysical Explosions
NASA Astrophysics Data System (ADS)
Chen, Ke-Jung; Woosley, Stan; Heger, Alexander; Almgren, Ann; Zheng, Weiqun
2014-11-01
We present our results from the simulations of fluid instabilities inside supernovae with a new radiation-hydrodynamic code, CASTRO. Massive stars are ten times more massive than Sun. Observational and theoretical studies suggest that these massive stars tend to end their lives with energetic explosions, so-called supernovae. Many fluid instabilities occur during the supernova explosions. The fluid instabilities can be driven by hydrodynamics, nuclear burning, or radiation. In this talk, we discuss about the possible physics of fluid instabilities found in our simulations and how the resulting mixing affects the observational signatures of supernovae. This work was supported by the DOE HEP Program under contract DE-SC0010676; the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX14AH34G).
NASA Astrophysics Data System (ADS)
Busse, F. H.
In the past 8 years, since Pedlosky's book was first published, it has found a well established place in the literature of dynamical meteorology and physical oceanography. Geophysicists less familiar with these fields may need to be reminded that the subject of geophysical fluid dynamics, in the narrow definition used in the title of the book, refers to the theory of the large-scale motions of the atmosphere and the oceans. Topics such as thermal convection in the atmosphere or in Earth's mantle and core are not treated in this book, and the reader will search in vain for a discussion of atmospheric or oceanic tides. The theory of quasi-geostrophic flow is described comprehensively, however, and its major applications to problems of atmospheric and oceanic circulations are considered in detail.
Atmospheric and Oceanic Fluid Dynamics
NASA Astrophysics Data System (ADS)
Vallis, Geoffrey K.
2006-11-01
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692. Includes end of chapter review questions to aid understanding Unified and comprehensive treatment of both atmospheric and oceanic fluid dynamics Covers many modern topics and provides up to date knowledge
Li, Zhan-Wei; Lu, Zhong-Yuan; Sun, Zhao-Yan; Li, Ze-Sheng; An, Li-Jia
2007-05-31
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments. As an example, in the framework of SLLFT, the spinodal curve for the iPP/PEOC blend is predicted at the low molecular weights that are used in the simulations.
Russell, J.A.; Patel, B.B.
1987-11-03
A drilling fluid additive mixture is described consisting essentially of a sulfoalkylated tannin in admixture with a non-sulfoalkylated alkali-solubilized lignite wherein the weight ratio of the sulfoalkylated tannin to the non-sulfoalkylated lignite is in the range from about 2:1 to about 1:1. The sulfoalkylated tannin has been sulfoalkylated with at least one -(C(R-)/sub 2/-SO/sub 3/M side chain, wherein each R is selected from the group consisting of hydrogen and alkyl radicals containing from 1 to about 5 carbon atoms, and M is selected from the group consisting of ammonium and the alkali metals.
Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.
Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V; Stanley, H Eugene; Reguera, David; Franzese, Giancarlo
2015-06-22
The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.
Fluid transport: a guide for the perplexed.
Hill, A E
2008-05-01
Readers of the physiological literature may be excused if they feel that fluid transport has become a complex and confusing field that is difficult to understand and to assess. The major theories of fluid-transporting epithelia are examined here with respect to their ability to explain quasi-isotonic fluid transport and its modulation by salt transport, osmotic permeability and basal tonicity. The basics of each theory are set out concisely, and their pros and cons are made explicit. Finally, a comparison is made in table form indicating their overall performance in relation to the problems of this difficult but important field.
Fluid Mechanics in Sommerfeld's School
NASA Astrophysics Data System (ADS)
Eckert, Michael
2015-01-01
Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.
Kerbel, G.D.
1981-01-20
A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.
Fluid turbulence - Deterministic or statistical
NASA Astrophysics Data System (ADS)
Cheng, Sin-I.
The deterministic view of turbulence suggests that the classical theory of fluid turbulence may be treating the wrong entity. The paper explores the physical implications of such an abstract mathematical result, and provides a constructive computational demonstration of the deterministic and the wave nature of fluid turbulence. The associated pressure disturbance for restoring solenoidal velocity is the primary agent, and its reflection from solid surface(s) the dominant mechanism of turbulence production. Statistical properties and their modeling must address to the statistics of the uncertainties of initial boundary data of the ensemble.
Cosmology with moving bimetric fluids
NASA Astrophysics Data System (ADS)
García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado
2016-12-01
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.
Rosensweig, R.E.; Zahn, M.
1986-04-01
A process is described for recovering a first fluid from a porous subterranean formation which comprises injecting a displacement fluid in an effective amount to displace the first fluid, injecting a ferrofluid, applying a magnetic field containing a gradient of field intensity within the formation, driving the displacement fluid through the formation with the ferrofluid and recovering first fluid.
Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.
2000-01-01
A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.
Temperature dependence of nucleation in Yukawa fluids
NASA Astrophysics Data System (ADS)
Li, J.-S.; Wilemski, G.
2002-03-01
We have studied the temperature dependence of gas-liquid nucleation in Yukawa fluids with gradient theory (GT) and density functional theory (DFT). Each of these nonclassical theories exhibits a weaker (i.e. better) temperature dependence than classical nucleation theory. At a given temperature, the difference between GT and DFT for the reversible work to form a critical nucleus gets smaller with increasing superaturation. For the temperature dependence, the reversible work for GT is very close to that for DFT at high temperatures. The difference between the two theories increases with decreasing temperature and supersaturation. Thus, in contrast to the behavior of a Peng-Robinson fluid, we find that GT can improve the temperature dependence over that of classical nucleation theory, although not always to the same degree as DFT.
2016-10-24
Saturn's clouds are full of raw beauty, but they also represent a playground for a branch of physics called fluid dynamics, which seeks to understand the motion of gases and liquids. Saturn's lack of a solid planetary surface (as on Earth, Mars or Venus) means that its atmosphere is free to flow around the planet essentially without obstruction. This is one factor that generates Saturn's pattern of alternating belts and zones -- one of the main features of its dynamic atmosphere. Winds in the belts blow at speeds different from those in the adjacent zones, leading to the formation of vortices along the boundaries between the two. And vigorous convection occasionally leads to storms and waves. Saturn's innermost rings are just visible at the bottom and in the upper left corner. This view is centered on clouds at 25 degrees north latitude on Saturn. The image was taken with the Cassini spacecraft wide-angle camera on July 20, 2016 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 728 nanometers. The view was obtained at a distance of approximately 752,000 miles (1.21 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 6 degrees. Image scale is 45 miles (72 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20503
Exact Pressure Evolution Equation for Incompressible Fluids
NASA Astrophysics Data System (ADS)
Tessarotto, M.; Ellero, M.; Aslan, N.; Mond, M.; Nicolini, P.
2008-12-01
An important aspect of computational fluid dynamics is related to the determination of the fluid pressure in isothermal incompressible fluids. In particular this concerns the construction of an exact evolution equation for the fluid pressure which replaces the Poisson equation and yields an algorithm which is a Poisson solver, i.e., it permits to time-advance exactly the same fluid pressure without solving the Poisson equation. In fact, the incompressible Navier-Stokes equations represent a mixture of hyperbolic and elliptic pde's, which are extremely hard to study both analytically and numerically. This amounts to transform an elliptic type fluid equation into a suitable hyperbolic equation, a result which usually is reached only by means of an asymptotic formulation. Besides being a still unsolved mathematical problem, the issue is relevant for at least two reasons: a) the proliferation of numerical algorithms in computational fluid dynamics which reproduce the behavior of incompressible fluids only in an asymptotic sense (see below); b) the possible verification of conjectures involving the validity of appropriate equations of state for the fluid pressure. Another possible motivation is, of course, the ongoing quest for efficient numerical solution methods to be applied for the construction of the fluid fields {ρ,V,p}, solutions of the initial and boundary-value problem associated to the incompressible N-S equations (INSE). In this paper we intend to show that an exact solution to this problem can be achieved adopting the approach based on inverse kinetic theory (IKT) recently developed for incompressible fluids by Tessarotto et al. [7, 6, 7, 8, 9]. In particular we intend to prove that the evolution of the fluid fields can be achieved by means of a suitable dynamical system, to be identified with the so-called Navier-Stokes (N-S) dynamical system. As a consequence it is found that the fluid pressure obeys a well-defined evolution equation. The result appears
Culture - pleural fluid ... is used to get a sample of pleural fluid. The sample is sent to a laboratory and ... the chest wall into the pleural space. As fluid drains into a collection bottle, you may cough ...
Dilley, Lorie
2013-01-01
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
Dilley, Lorie
2013-01-01
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
Criticality in confined ionic fluids
Flores-Mena, J. E.; Barbosa, Marcia C.; Levin, Yan
2001-06-01
A theory of a confined two-dimensional electrolyte is presented. The positive and negative ions, interacting by a 1/r potential, are constrained to move on an interface separating two solvents with dielectric constants {epsilon}{sub 1} and {epsilon}{sub 2}. It is shown that the Debye-Huckel type of theory predicts that this two-dimensional Coulomb fluid should undergo a phase separation into a coexisting liquid (high-density) and gas (low-density) phases. We argue, however, that the formation of polymerlike chains of alternating positive and negative ions can prevent this phase transition from taking place.
Saffman-Taylor instability for generalized Newtonian fluids.
Mora, S; Manna, M
2009-07-01
We study theoretically the linear Saffman-Taylor instability for non-Newtonian fluids in a Hele-Shaw cell. After introducing the notion of generalized Newtonian fluid we calculate the associated Darcy's law. We derive the relation governing the growth rate of normal modes for a large class of non-Newtonian flows. For shear-thinning fluids at high shear rate our theory provides Darcy's laws free of the nonphysical divergences appearing in the classical approaches. We characterize fluids which develop instabilities faster than Newtonian fluids under the same hydrodynamical conditions. Another primary result that this paper provides is that for some shear-thickening fluids, all normal modes are stable.
NASA Technical Reports Server (NTRS)
Studenick, D. K. (Inventor)
1977-01-01
An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.
Magnetic fields for fluid motion.
Weston, Melissa C; Gerner, Matthew D; Fritsch, Ingrid
2010-05-01
Three forces induced by magnetic fields offer unique control of fluid motion and new opportunities in microfluidics. This article describes magnetoconvective phenomena in terms of the theory and controversy, tuning by redox processes at electrodes, early-stage applications in analytical chemistry, mature applications in disciplines far afield, and future directions for micro total analysis systems. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html .).
Analogy between fluid cavitation and fracture mechanics
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mullen, R. L.; Braun, M. J.
1983-01-01
When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.
ERIC Educational Resources Information Center
Rindermann, Heiner; Flores-Mendoza, Carmen; Mansur-Alves, Marcela
2010-01-01
The investment theory of Cattell supposes an influence of fluid on crystallized intelligence. The development of fluid intelligence largely depends on biological factors, of crystallized intelligence on fluid intelligence and environmental stimulation. To test this theory two contrasting samples representing a broad ability range were chosen, a…
Theoretical prediction of multiple fluid-fluid transitions in monocomponent fluids
NASA Astrophysics Data System (ADS)
Cervantes, L. A.; Benavides, A. L.; del Río, F.
2007-02-01
The authors use the analytical equation of state obtained by the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to study the phase diagram of fluids with discrete spherical potentials formed by a repulsive square-shoulder plus an attractive square-well interaction (SS+SW). This interaction is characterized by the usual energy and size parameters plus three dimensionless parameters: two of them measuring the widths of the SS and the SW and the third the relative height of the SS. The matter of interest is that, for certain values of the interaction parameters, the SS +SW systems exhibit more than one first-order fluid-fluid transition. The evidence that several real substances (such as water, phosphorus, carbon, and silica, among others) exhibit an extra liquid-liquid transition has drawn interest into the study of interactions responsible for this behavior. The simple SS +SW fluid is one of the systems that, in spite of being spherically symmetric, shows multiple fluid-fluid transitions. In this work the authors investigate systematically the effect on the phase diagram of varying the interaction parameters. The use of an analytical free-energy equation gives a clear thermodynamic picture of the emergence of different types of critical points, throwing new light on the phase behavior of these fluids and thus clarifying previous results obtained by other techniques. The interplay of attractive and repulsive forces with several scale lengths produces very rich phase diagrams, including cases with three critical points. The region of the interaction-parameter space where multiple critical points appear is mapped for various families of interactions.
Vibrations in a Fluid-Loaded Poroelastic Hollow Cylinder Surrounded by a Fluid in Plane-Strain Form
NASA Astrophysics Data System (ADS)
Shanker, B.; Nath, C. N.; Shah, S. A.; Reddy, P. M.
2013-03-01
Plane-strain vibrations in a fluid-loaded poroelastic hollow cylinder surrounded by a fluid are investigated employing Biot's theory of wave propagation in poroelastic media. The poroelastic hollow cylinder is homogeneous and isotropic, while the inner and outer fluids are homogeneous, isotropic and inviscid. The frequency equation of the fluid-loaded poroelastic cylinder surrounded by a fluid is obtained along with several particular cases, namely, fluid-loaded poroelastic cylinder, fluid-loaded bore, poroelastic cylinder surrounded by a fluid and poroelastic solid cylinder submerged in a fluid. The frequency equations are obtained for axially symmetric, flexural and anti-symmetric vibrations each for a pervious and an impervious surface. Nondimensional frequency for propagating modes is computed as a function of the ratio of thickness to the inner radius of the core. The results are presented graphically for two types of poroelastic cylinders and then discussed.
Principles of Fluid Management.
Rewa, Oleksa; Bagshaw, Sean M
2015-10-01
Fluid therapy is the most common intervention received by acutely ill hospitalized patients; however, important questions on its optimal use remain. Its prescription should be patient and context specific, with clear indications and contradictions, and have the type, dose, and rate specified. Any fluid therapy, if provided inappropriately, can contribute unnecessary harm to patients. The quantitative toxicity of fluid therapy contributes to worse outcomes; this should prompt greater bedside attention to fluid prescription, fluid balance, development of avoidable complications attributable to fluid overload, and for the timely deresuscitation of patients whose clinical status and physiology allow active fluid mobilization. Copyright © 2015 Elsevier Inc. All rights reserved.
DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.
1995-01-01
An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.
DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.
1995-11-14
An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.
Analysis of Skylab fluid mechanics science demonstrations
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Butz, J. R.
1975-01-01
The results of the data reduction and analysis of the Skylab fluid mechanics demonstrations are presented. All the fluid mechanics data available from the Skylab missions were identified and surveyed. The significant fluid mechanics phenomena were identified and reduced to measurable quantities wherever possible. Data correlations were performed using existing theories. Among the phenomena analyzed were: static low-g interface shapes, oscillation frequency and damping of a liquid drop, coalescence, rotating drop, liquid films and low-g ice melting. A survey of the possible applications of the results was made and future experiments are recommended.
Fu, Dong; Li, Xiao-Sen
2006-08-28
The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.
Fluid Dynamics in an Ecological Context
NASA Astrophysics Data System (ADS)
Denny, Mark
2007-11-01
Fluid dynamics has long been an invaluable tool in the study of biological mechanics, helping to explain how animals swim and fly, how blood is pumped, gases are exchanged, and propagules are dispersed. The goal of understanding how the physics of fluids has affected the evolution of individual organisms provides strong impetus for teaching and learning fluid mechanics; a viable alternative to the more traditional goals of engineering. In recent years, a third alternative has arisen. The principles of fluid dynamics can be used to specify when and where individual organisms will exceed their physical capabilities, information that can in turn be used to predict species-specific survivorship in a given environment. In other words, biological fluid dynamics can be extended beyond the study of individual organisms to play an important role in our understanding of ecological dynamics. In a world where environmental change is of increasing concern, fluid dynamic aspect of ``ecomechanics'' may be of considerable practical importance. Teaching fluid mechanics in ecology will be discussed in the context of wave-swept rocky shores. Various wave theories can be used to predict the maximum water velocities and accelerations impinging on specific surf-zone plants and animals. Theories of lift, drag, and accelerational forces can then be used to predict the maximum loads imposed on these organisms, loads that can be compared to the organisms' structural limits to predict the fraction of the species that will be dislodged or damaged. Taken across relevant species, this information goes far towards explaining shoreline community dynamics. .
Postoperative fluid management
Kayilioglu, Selami Ilgaz; Dinc, Tolga; Sozen, Isa; Bostanoglu, Akin; Cete, Mukerrem; Coskun, Faruk
2015-01-01
Postoperative care units are run by an anesthesiologist or a surgeon, or a team formed of both. Management of postoperative fluid therapy should be done considering both patients’ status and intraoperative events. Types of the fluids, amount of the fluid given and timing of the administration are the main topics that determine the fluid management strategy. The main goal of fluid resuscitation is to provide adequate tissue perfusion without harming the patient. The endothelial glycocalyx dysfunction and fluid shift to extracellular compartment should be considered wisely. Fluid management must be done based on patient’s body fluid status. Patients who are responsive to fluids can benefit from fluid resuscitation, whereas patients who are not fluid responsive are more likely to suffer complications of over-hydration. Therefore, common use of central venous pressure measurement, which is proved to be inefficient to predict fluid responsiveness, should be avoided. Goal directed strategy is the most rational approach to assess the patient and maintain optimum fluid balance. However, accessible and applicable monitoring tools for determining patient’s actual fluid need should be further studied and universalized. The debate around colloids and crystalloids should also be considered with goal directed therapies. Advantages and disadvantages of each solution must be evaluated with the patient’s specific condition. PMID:26261771
Boundary Layer Theory. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
Fundamentals of Geophysical Fluid Dynamics
NASA Astrophysics Data System (ADS)
McWilliams, James C.
2006-07-01
Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org
Vibration characteristics of rectangular plate in compressible inviscid fluid
NASA Astrophysics Data System (ADS)
Liao, Chan-Yi; Ma, Chien-Ching
2016-02-01
This paper presents a mathematical derivation of the vibration characteristics of an elastic thin plate placed at the bottom of a three dimensional rectangular container filled with compressible inviscid fluid. A set of beam functions is used as the admissible functions of the plate in a fluid-plate system, and the motion of the fluid induced by the deformation of the plate is obtained from a three-dimensional acoustic equation. Pressure from the fluid over the fluid-plate interface is integrated to form a virtual mass matrix. The frequency equation of the fluid-plate system is derived by combining mass, stiffness, and the virtual mass matrix. Solving the frequency equation makes it possible to obtain the dynamic characteristic of the fluid-plate system, such as resonant frequencies, corresponding mode shapes, and velocity of the fluid. Numerical calculations were performed for plates coupled with fluids with various degrees of compressibility to illustrate the difference between compressible and incompressible fluids in a fluid-plate system. The proposed method could be used to predict resonant frequencies and mode shapes with accuracy compared to that of incompressible fluid theory (IFT). The proposed method can be used to analyze cases involving high value of sound velocity, such as incompressible fluids. When the sound velocity approaches infinity, the results obtained for compressible fluids are similar to those of incompressible fluids. We also examined the influence of fluid compressibility on vibration characteristics in which a decrease in sound velocity was shown to correspond to a decrease in resonant frequency. Additional modes, not observed in incompressible fluids, were obtained in cases of low sound velocity, particularly at higher resonant frequencies. Fluid velocity plots clearly reveal that the additional resonant modes can be attributed to the compressible behavior of the fluid.