NASA Astrophysics Data System (ADS)
Na, S.; Sun, W.; Yoon, H.; Choo, J.
2016-12-01
Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Malashetty, M. S.; Basavaraja, D.
The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed.
Standing Torsional Waves in Fluid-Saturated Porous Circular Cylinder
NASA Astrophysics Data System (ADS)
Solorza, S.; Sahay, P. N.
2002-12-01
For dynamic measurement of elastic constants of a porous material saturated with viscous fluid when resonance-bar technique is applied, one also observes attenuation of the wave field. The current practice is to interpret it in terms of solid-viscosity by assuming a viscoelastic rheology for porous material. The likely mechanisms of attenuation in a fluid saturated porous material are: 1) motion of the fluid with respect to the solid frame and 2) viscous loss within the pore fluid. Therefore, it is appropriate to assume a poroelastic rheology and link the observed attenuation value to fluid properties and permeability. In the framework of poroelastic theory, the explicit formula linking attenuation to the properties of solid and fluid constituents and permeability are not worked out yet. In order to established such a link one has to workout solutions of appropriate boundary value problems in such a framework. Here, we have carried out the solution of boundary value problem associated with torsional oscillation of a finite poroelastic circular cylinder, casted in the framework of volume-averaged theory of poroelasticity. Analysing this solution by a perturbative approach we are able to develop explicit expressions for resonance frequency and attenuation for this mode of vibration. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry porous frame due to the effect of the fluid-mass.
Wave propagation in fluid-saturated porous media
NASA Astrophysics Data System (ADS)
Ren, Jiaxiang
The wave propagation in fluid-saturated porous media is studied by solving the Biot equations, the governing equations for the motion of the porous medium. Methods are devised to solve the Biot equations for different problems and medium models. The problem of the reflection and transmission at an interface is solved by using the eigen-analysis of the Biot equations. The displacement-stress vectors in the media on both sides of the interface are represented by corresponding upgoing and downgoing wave vectors which are then linked by the boundary conditions on the interface. The reflection and transmission coefficients are extracted from the proportionalities between the upgoing and downgoing waves. For an incident fast wave or shear wave, the reflection and transmission coefficients for the reflected and transmitted slow waves are very sensitive to frequency and interface permeability (kappasb{I}); while those for the reflected and transmitted fast waves and shear waves are not, except when incident angles are close to and greater than critical angles. For sandstones, the amplitudes of the reflected and transmitted slow waves could be several percent of the amplitude of the incident fast wave or shear wave. Higher interface permeabilities favor the generation of the slow wave. The slow waves generated at an open interface (kappasb{I}->infty) and a sealed interface (kappasb{I}=0) could be one-order different in amplitude. The reflection and transmission at an interface have been extended to the model composed of multi-layers of porous media. An algorithm based on the compact finite-difference method is developed for 2-D seismic modeling. The compact finite-difference method is used to estimate the spatial derivatives in the Biot equations, with a 6sp{th}-order accuracy. It needs fewer grid intervals to represent a mono-wavelength function than the traditional 2sp{nd}-order central-difference method. Therefore, the algorithm based on the compact finite
Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall
Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.
1997-12-01
Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.
Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks.
Garra, Roberto
2011-09-01
We study a fractional time derivative generalization of a previous Natale-Salusti model about nonlinear temperature and pressure waves, propagating in fluid-saturated porous rocks. Their analytic solutions, i.e., solitary shock waves characterized by a sharp front, are here generalized, introducing a formalism that allows memory mechanisms. In realistic wave propagation in porous media we must take into account spatial or temporal variability of permeability, diffusivity, and other coefficients due to the system "history." Such a rock fracturing or fine particulate migration could affect the rock and its pores. We therefore take into account these phenomena by introducing a fractional time derivative to simulate a memory-conserving formalism. We also discuss this generalized model in relation to the theory of dynamic permeability and tortuosity in fluid-saturated porous media. In such a realistic model we obtain exact solutions of Burgers' equation with time fractional derivatives in the inviscid case.
Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks
NASA Astrophysics Data System (ADS)
Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua
2016-12-01
Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.
Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks
NASA Astrophysics Data System (ADS)
Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua
2017-03-01
Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.
Study of Surface Wave Propagation in Fluid-Saturated Porous Solids.
NASA Astrophysics Data System (ADS)
Azcuaga, Valery Francisco Godinez
1995-01-01
This study addresses the surface wave propagation phenomena on fluid-saturated porous solids. The analytical method for calculation of surface wave velocities (Feng and Johnson, JASA, 74, 906, 1983) is extended to the case of a porous solid saturated with a wetting fluid in contact with a non-wetting fluid, in order to study a material combination suitable for experimental investigation. The analytical method is further extended to the case of a non-wetting fluid/wetting fluid-saturated porous solid interface with an arbitrary finite surface stiffness. These extensions of the analytical method allows to theoretically study surface wave propagation phenomena during the saturation process. A modification to the 2-D space-time reflection Green's function (Feng and Johnson, JASA, 74, 915, 1983) is introduced in order to simulate the behavior of surface wave signals detected during the experimental investigation of surface wave propagation on fluid-saturated porous solids (Nagy, Appl. Phys. Lett., 60, 2735, 1992). This modification, together with the introduction of an excess attenuation for the Rayleigh surface mode, makes it possible to explain the apparent velocity changes observed on the surface wave signals during saturation. Experimental results concerning the propagation of surface waves on an alcohol-saturated porous glass are presented. These experiments were performed at frequencies of 500 and 800 kHz and show the simultaneous propagation of the two surface modes predicted by the extended analytical method. Finally an analysis of the displacements associated with the different surface modes is presented. This analysis reveals that it is possible to favor the generation of the Rayleigh surface mode or of the slow surface mode, simply by changing the type of transducer used in the generation of surface waves. Calculations show that a shear transducer couples more energy into the Rayleigh mode, whereas a longitudinal transducer couples more energy into the slow
NASA Astrophysics Data System (ADS)
Tuck, David M.; Bierck, Barnes R.; Jaffé, Peter R.
1998-06-01
Multiphase flow in porous media is an important research topic. In situ, nondestructive experimental methods for studying multiphase flow are important for improving our understanding and the theory. Rapid changes in fluid saturation, characteristic of immiscible displacement, are difficult to measure accurately using gamma rays due to practical restrictions on source strength. Our objective is to describe a synchrotron radiation technique for rapid, nondestructive saturation measurements of multiple fluids in porous media, and to present a precision and accuracy analysis of the technique. Synchrotron radiation provides a high intensity, inherently collimated photon beam of tunable energy which can yield accurate measurements of fluid saturation in just one second. Measurements were obtained with precision of ±0.01 or better for tetrachloroethylene (PCE) in a 2.5 cm thick glass-bead porous medium using a counting time of 1 s. The normal distribution was shown to provide acceptable confidence limits for PCE saturation changes. Sources of error include heat load on the monochromator, periodic movement of the source beam, and errors in stepping-motor positioning system. Hypodermic needles pushed into the medium to inject PCE changed porosity in a region approximately ±1 mm of the injection point. Improved mass balance between the known and measured PCE injection volumes was obtained when appropriate corrections were applied to calibration values near the injection point.
The use of agarose gels for quantitative determination of fluid saturations in porous media.
Chang, C T; Mandava, S; Watson, A T; Sarkar, S; Edwards, C M
1993-01-01
The use of agarose gel reference standards for quantifying petrophysical properties in porous media is described. The specific interest is to determine the values of fluid saturations and porosity in oil bearing rocks; the MRI methodology for estimating these properties is discussed. It is shown that the relaxation times of the gel reference standard and the relaxation times of the fluid contained in the porous media affect the estimation process. The determination of porosity and fluid saturations can be greatly simplified if the relaxation times of the reference standard and the relaxation times of the fluid are closely matched. Gel concentration of paramagnetic impurities in the form of copper ions is used to control the longitudinal relaxation properties. The relaxation properties of agarose gels, as a function of agarose and paramagnetic impurity concentrations, have been measured at 2.0 T. The data are well fitted by a simple polynomial in agarose concentration and paramagnetic impurity concentration. Finally, a one-dimensional imaging example of use of agarose gels as reference phantoms is discussed.
Tao, Chao; Jiang, Jack J; Czerwonka, Lukasz
2010-05-01
The human vocal fold is treated as a continuous, transversally isotropic, porous solid saturated with liquid. A set of mathematical equations, based on the theory of fluid-saturated porous solids, is developed to formulate the vibration of the vocal fold tissue. As the fluid-saturated porous tissue model degenerates to the continuous elastic tissue model when the relative movement of liquid in the porous tissue is ignored, it can be considered a more general description of vocal fold tissue than the continuous, elastic model. Using the fluid-saturated porous tissue model, the vibration of a bunch of one-dimensional fibers in the vocal fold is analytically solved based on the small-amplitude assumption. It is found that the vibration of the tissue will lead to the accumulation of excess liquid in the midmembranous vocal fold. The degree of liquid accumulation is positively proportional to the vibratory amplitude and frequency. The correspondence between the liquid distribution predicted by the porous tissue theory and the location of vocal nodules observed in clinical practice, provides theoretical evidence for the liquid accumulation hypothesis of vocal nodule formation (Jiang, Ph.D., dissertation, 1991, University of Iowa). (c) 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Manole, D.M.; Lage, J.L.; Antohe, B.V.
1995-12-31
Hadley circulation induced by horizontal and vertical temperature gradients imposed on a fluid saturated porous medium layer is simulated numerically. The flow is assumed to be longitudinal, that is the secondary flow is composed of cells with axes transverse to the direction of the Hadley circulation. Critical (bifurcation) states predicted theoretically via linear stability analysis are verified by the numerical results giving confidence on the accuracy of the method. Several values of horizontal Rayleigh number, Ra{sub h}, and vertical Rayleigh number, Ra{sub v}, are studied. Results indicate that beyond a threshold horizontal Rayleigh number value the flow and temperature fields evolve from subcritical Hadley circulation to a supercritical time periodic flow. The secondary flow emerges in the form of a traveling wave aligned with the main (Hadley) flow direction. This traveling wave is characterized, at supercritical low vertical Rayleigh numbers, by the continuous drifting of two horizontal layers of flow cells that move in opposite directions. As the vertical Rayleigh number increases, the traveling wave becomes characterized by a unique layer of cells drifting in the direction opposite to the applied horizontal temperature gradient. Numerical animation unravels the main features of the transport process. This simplified model is of fundamental and practical importance, for instance, to the study of geothermal activities, underground transport of pollutants, paper processing, crystal growth, building insulation, and gas reservoirs.
Diffusion of high-frequency energy in fluid-saturated porous media
NASA Astrophysics Data System (ADS)
Savin, Eric
2004-05-01
The modern mathematical theory of microlocal analysis shows that the energy associated with the high-frequency solutions of hyperbolic partial differential equations (such as the wave or the Navier equations) satisfy Liouville-type transport equations, or radiative transfer equations for randomly heterogeneous media. For long propagation times the latter can be approached by diffusion equations. Some classical results of the structural acoustics literature about the heat conduction analogy and the statistical energy analysis of structural dynamics at higher frequencies are recovered in this process. The purpose of this communication is to focus on such a diffusive regime for isotropic, fluid-saturated porous media. More specifically, we have derived the diffusion parameters (transport mean-free path and diffusion constant) for such media. Our model considers Biot's equations of poroelasticity, where thermal and viscous effects are modelized by dynamic tortuosity and compressibility with singular memory kernels. The macroscopic bulk modulus and density of the dry solid phase are assumed to be homogeneous random processes, while tortuosity and porosity remain constant.
Do seismic waves and fluid flow sense the same permeability in fluid-saturated porous rocks?
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Monachesi, L. B.; Guarracino, L.; Müller, T. M.; Holliger, K.
2012-04-01
Wave-induced flow due to the the presence of mesoscopic heterogeneities, that is, heterogeneities that are larger than the pore size but smaller than the prevailing seismic wavelengths, represents an important seismic attenuation mechanism in fluid-saturated porous rocks. In this context, it is known that in the presence of strong permeability fluctuations, there is a discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow. While this subject has been analyzed for the case of random 1D media, the corresponding 2D and 3D cases remain unexplored, mainly due to the fact that, as opposed to the 1D case, there is no simple expression for the effective flow permeability. In this work we seek to address this problem through the numerical analysis of 2D rock samples having strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by homogeneous fields, with permeability values given by the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that the attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.
Modeling of wave processes in blocky media with porous and fluid-saturated interlayers
NASA Astrophysics Data System (ADS)
Sadovskii, Vladimir M.; Sadovskaya, Oxana V.; Lukyanov, Alexander A.
2017-09-01
The wave processes in blocky media are analyzed by applying different mathematical models, wherein the elastic blocks interact with each other via pliant interlayers with the complex mechanical properties. Four versions of constitutive equations are considered. In the first version, an elastic interaction between the blocks is simulated within the framework of linear elasticity theory, and the model of elastic-plastic interlayers is constructed to take into account the appearance of irreversible deformation of interlayers at short time intervals. In the second one, the effects of viscoelastic shear in the interblock interlayers are taken into the consideration using the Poynting-Thomson rheological scheme. In the third option, the model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. In the fourth case, the model of a fluid-saturated material with open pores is examined based on Biot's equations. The collapse of pores is modeled by the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact, which is used to describe the behavior of materials with the different resistance to tension and compression. It was shown that the thermodynamically consistent model is provided, which means that the energy balance equation is fulfilled for an entire blocky structure, where the kinetic and potential energy of the system is the sum of the kinetic and potential energies of the blocks and interlayers. Under numerical implementation of the interlayers models, the dissipationless finite difference Ivanov's method was used. The splitting method by spatial variables in the combination with the Godunov gap decay scheme was applied in the blocks. As a result, robust and stable computational algorithms are built and
Yang, Zhixin; Wang, Shaowei; Zhao, Moli; Li, Shucai; Zhang, Qiangyong
2013-01-01
The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.
Seddeek, M A
2006-01-01
Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.
NASA Astrophysics Data System (ADS)
Bhadauria, B. S.; Singh, M. K.; Singh, A.; Singh, B. K.; Kiran, P.
2016-12-01
In this paper, we investigate the combined effect of internal heating and time periodic gravity modulation in a viscoelastic fluid saturated porous medium by reducing the problem into a complex non-autonomous Ginzgburg-Landau equation. Weak nonlinear stability analysis has been performed by using power series expansion in terms of the amplitude of gravity modulation, which is assumed to be small. The Nusselt number is obtained in terms of the amplitude for oscillatory mode of convection. The influence of viscoelastic parameters on heat transfer has been discussed. Gravity modulation is found to have a destabilizing effect at low frequencies and a stabilizing effect at high frequencies. Finally, it is found that overstability advances the onset of convection, more with internal heating. The conditions for which the complex Ginzgburg-Landau equation undergoes Hopf bifurcation and the amplitude equation undergoes supercritical pitchfork bifurcation are studied.
Tsiklauri, David
2002-09-01
It is known that a boundary slip velocity starts to play an important role when the length scale over which the fluid velocity changes approaches the slip length, i.e., when the fluid is highly confined, for example, fluid flow through porous rock or blood vessel capillaries. Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established the existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micrometers. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot [J. Acoust. Soc. Am. 28, 179-191 (1956)] is investigated. Namely, the effect of introduction of boundary slip upon the function F(kappa) that measures the deviation from Poiseuille flow friction as a function of frequency parameter kappa is studied. By postulating phenomenological dependence of the slip velocity upon frequency, notable deviations in the domain of intermediate frequencies in the behavior of F(kappa) are introduced with the incorporation of the boundary slip into the model. It is known that F(kappa) crucially enters Biot's equations, which describe dynamics of fluid-saturated porous solid. Thus, consequences of the nonzero boundary slip by calculating the phase velocities and attenuation coefficients of both rotational and dilatational waves with the variation of frequency are investigated. The new model should allow one to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. In fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the
Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers
Pillatsis, G.; Taslim, M.E.; Narusawa, U. )
1987-08-01
A linear stability analysis is performed for a horizontal Darcy porous layer of depth 2d{sub m} sandwiched between two fluid layers of depth d (each) with the top and bottom boundaries being dynamically free and kept at fixed temperatures. The Beavers-Joseph condition is employed as one of the interfacial boundary conditions between the fluid and the porous layer. The critical Rayleigh number and the horizontal wave number for the onset of convective motion depend on the following four dimensional parameters: {cflx d} (= d{sub m}/d, the depth ratio), {delta} (= {radical}K/d{sub m} with K being the permeability of the porous medium) {alpha} (the proportionality constant in the Beavers-Joseph condition), and k/k{sub m} (the thermal conductivity ratio). In order to analyze the effect of these parameters on the stability condition, a set of numerical solutions is obtained in terms of a convergent series for the respective layers, for the case in which the thickness of the porous layer is much greater than that of the fluid layer. A comparison of this study with the previously obtained exact solution for the case of constant heat flux boundaries is made to illustrate quantitative effects of the interfacial and the top/bottom boundaries on the thermal instability of a combined system of porous and fluid layers.
Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )
1988-11-01
A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.
NASA Astrophysics Data System (ADS)
Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle
2017-10-01
Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.
Turbulent flow over a channel with fluid-saturated porous bed
USDA-ARS?s Scientific Manuscript database
The characteristics of fully developed turbulent flow in a hybrid domain channel, which consists of a clear fluid region and a porous bed, are examined numerically using a model based on the macroscopic Reynolds-averaged Navier–Stokes equations. By adopting the classical continuity interface conditi...
(Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)
Adler, L.
1992-01-01
During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.
[Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report
Adler, L.
1992-07-01
During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.
Onset of centrifugal convection in a magnetic-fluid-saturated porous medium
NASA Astrophysics Data System (ADS)
Saravanan, S.; Yamaguchi, H.
2005-08-01
This paper concerns the influence of magnetic field on the onset of centrifugal convection in a magnetic-fluid-filled differentially heated porous layer placed in zero-gravity environment by linear stability theory. The axis of rotation of the layer is placed anywhere within its boundaries, which leads to an alternating direction of the centrifugal body force. The critical centrifugal Rayleigh number, the critical wave number, and the eigenfunctions corresponding to two-dimensional flow pattern at the threshold are calculated using a combination of analytical and numerical methods. Results show significant effects even for low magnetic-field strength when the axis location is located near the cold boundary. It is found that the magnetic field has a destabilizing effect and can be suitably adjusted depending on the axis location and particle magnetization to induce more developed convection currents.
NASA Astrophysics Data System (ADS)
Chen, Jui-Sheng; Liu, Chen-Wuing; Lai, Geng-Xin; Ni, Chuen-Fa
2009-06-01
SummaryThe dissolution-induced finger or wormhole patterns in porous medium or fracture rock play a crucial role in a variety of scientific, industrial, and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front
NASA Astrophysics Data System (ADS)
Taleb, A.; BenHamed, H.; Ouarzazi, M. N.; Beji, H.
2016-05-01
We report theoretical and numerical results on bifurcations in thermal instability for a viscoelastic fluid saturating a porous square cavity heated from below. The modified Darcy law based on the Oldroyd-B model was used for modeling the momentum equation. In addition to Rayleigh number ℜ, two more dimensionless parameters are introduced, namely, the relaxation time λ1 and the retardation time λ2. Temporal stability analysis showed that the first bifurcation from the conductive state may be either oscillatory for sufficiently elastic fluids or stationary for weakly elastic fluids. The dynamics associated with the nonlinear interaction between the two kinds of instabilities is first analyzed in the framework of a weakly nonlinear theory. For sufficiently elastic fluids, analytical expressions of the nonlinear threshold above which a second hysteretic bifurcation from oscillatory to stationary convective pattern are derived and found to agree with two-dimensional numerical simulations of the full equations. Computations performed with high Rayleigh number indicated that the system exhibits a third transition from steady single-cell convection to oscillatory multi-cellular flows. Moreover, we found that an intermittent oscillation regime may exist with steady state before the emergence of the secondary Hopf bifurcation. For weakly elastic fluids, we determined a second critical value ℜ2 Osc ( λ 1 , λ 2 ) above which a Hopf bifurcation from steady convective pattern to oscillatory convection occurs. The well known limit of ℜ2 Osc ( λ 1 = 0 , λ 2 = 0 ) = 390 for Newtonian fluids is recovered, while the fluid elasticity is found to delay the onset of the Hopf bifurcation. The major new findings were presented in the form of bifurcation diagrams as functions of viscoelastic parameters for ℜ up to 420.
NASA Astrophysics Data System (ADS)
Kubik, J.; Cieszko, M.
2005-12-01
The compatibility conditions matching macroscopic mechanical fields at the contact surface between a fluid-saturated porous solid and an adjacent bulk fluid are considered. The general form of balance equations at that discontinuity surface are analyzed to obtain the compatibility conditions for the tangent and normal components of the velocity and the stress vector fields. Considerations are based on the procedure similar to that used in the phenomenological thermodynamics for derivation of constitutive relations, where the entropy inequality and the concept of Lagrange multipliers are applied. This procedure made possible to derive the compatibility conditions for the viscous fluid flowing tangentially and perpendicularly to the boundary surface of the porous solid and to formulate the generalized form of the so called slip condition for the fluid velocity field, postulated earlier by Beavers and Joseph, J. Fluid. Mech. 30, 197-207 (1967).
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
McClure, James E.; Berrill, Mark A.; Gray, William G.; ...
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-02
Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.
NASA Astrophysics Data System (ADS)
McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
McClure, James E; Berrill, Mark A; Gray, William G; Miller, Cass T
2016-09-01
Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides
NASA Astrophysics Data System (ADS)
Pažanin, Igor; Siddheshwar, Pradeep G.
2017-03-01
In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.
NASA Astrophysics Data System (ADS)
Chandler, Richard N.; Johnson, David Linton
1981-05-01
We have established in a simple and straightforward fashion that the analysis of quasistatic flow in fluid-saturated porous media due to Rice and Cleary is derivable from the low-frequency limit of Biot's slow compressional/diffusive mode. The single material parameter of the problem, the diffusivity, is simply related to the bulk and shear moduli and permeability of the skeletal frame and to the viscous and elastic properties of the constitutive media. Since this common theory treats fluid and solid displacements on an equal footing, it is the most general linearized description of the problem; other treatments are special cases. These latter include the rigid frame approximation used in the petroleum industry and the weak frame approximation used by De Gennes to describe the motion of polymer gels.
NASA Astrophysics Data System (ADS)
Mehta, C. B.; Singh, M.; Kumar, S.
2016-02-01
An investigation is made on the effect of Hall currents on thermal instability of a compressible couple-stress fluid in the presence of a horizontal magnetic field saturated in a porous medium. The analysis is carried out within the framework of the linear stability theory and normal mode technique. A dispersion relation governing the effects of viscoelasticity, Hall currents, compressibility, magnetic field and porous medium is derived. For the stationary convection a couple-stress fluid behaves like an ordinary Newtonian fluid due to the vanishing of the viscoelastic parameter. Compressibility, the magnetic filed and couple-stress parameter have stabilizing effects on the system whereas Hall currents and medium permeability have a destabilizing effect on the system, but in the absence of Hall current couple-stress has a destabilizing effect on the system. It has been observed that oscillatory modes are introduced due to the presence of viscoelasticity, magnetic field porous medium and Hall currents which were non-existent in their absence.
Carcione, J.M.; Quiroga-Goode, G.
1996-01-01
An analytical transient solution is obtained for propagation of compressional waves in a homogeneous porous dissipative medium. The solution, based on a generalization of Biot`s poroelastic equations, holds for the low- and high-frequency ranges, and includes viscoelastic phenomena of a very general nature, besides the Biot relaxation mechanism. The viscodynamic operator is used to model the dynamic behavior associated with the relative motion of the fluid in the pores at all frequency ranges. Viscoelasticity is introduced through the standard linear solid which allows the modeling of a general relaxation spectrum. The solution is used to study the influence of the material properties, such as bulk moduli, porosity, viscosity, permeability and intrinsic attenuation, on the kinematic and dynamic characteristics of the two compressional waves supported by the medium. The authors also obtain snapshots of the static mode arising from the diffusive behavior of the slow wave at low frequencies.
Berryman, J.G.
2009-11-20
Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.
Thermohaline instability in anisotropic porous media
Tyvand, P.A.
1980-04-01
The onset of thermohaline convection in a horizontal porous layer is investigated theoretically. The layer is homogeneous, anisotropic, and of infinite horizontal extent. Horizontal isotropy with respect to permeability, thermal diffusivity, and solute diffusivity is assumed. For porous media with thermally insulating solid matrices the stability diagram has the same shape as in the case of isotropy. The critical wave number is constant and equal to that of the one-component case. For thermally conducting matrices, new features may occur. The locus of the direct mode in the stability diagram may not be a straight line, and the corresponding wave number may be nonconstant. The initiation of salt fingers is studied by linear theory. It seems that the width of salt fingers is influenced by anisotropy in the diffusivities. Anisotrophy may or may not favor salt fingers, depending on a dimensionless diffusion parameter being greater than or less than one. 12 references.
NASA Astrophysics Data System (ADS)
Sunil; Choudhary, Shalu; Mahajan, Amit
2014-06-01
A nonlinear stability threshold for convection in a rotating couple-stress fluid saturating a porous medium with temperature- and pressure-dependent viscosity using a thermal non-equilibrium model is found to be exactly the same as the linear instability boundary. This optimal result is important because it shows that linear theory has completely captured the physics of the onset of convection. The effects of couple-stress fluid parameter F, temperature- and pressure-dependent viscosity Γ, interface heat transfer coefficient H, Taylor number TA, Darcy-Brinkman number D˜a, and porosity modified conductivity ratio γ on the onset of convection have been investigated. Asymptotic analysis for both small and large values of interface heat transfer coefficient H is also presented. An excellent agreement is found between the exact solutions and asymptotic solutions.
NASA Astrophysics Data System (ADS)
Sunil; Choudhary, Shalu; Mahajan, Amit
2013-08-01
A nonlinear stability threshold for rotation in a couple-stress fluid heated from below saturating a porous medium with temperature and pressure dependent viscosity is exactly the same as the linear instability boundary. This optimal result is important because it shows that linearized instability theory has captured completely the physics of the onset of convection. The effects of couple-stress parameter, variable dependent viscosity, medium permeability, Taylor number and Darcy-Brinkman number on the onset of convection are also analysed.
Lifting a large object from an anisotropic porous bed
NASA Astrophysics Data System (ADS)
Karmakar, Timir; Raja Sekhar, G. P.
2016-09-01
An analytical study of two dimensional problem of lifting an object from the top of a fully saturated rigid porous bed is discussed. It is assumed that the porous bed is anisotropic in nature. The flow within the gap region between the object and the porous bed is assumed to be governed by Stokes equation while the flow within the porous bed is governed by Brinkman equation. The breakout phenomenon for different kinds of soil is reported. The effect of mechanical properties like anisotropic permeability, grain diameter size, and porosity on streamlines, velocity, and force is analyzed. Relevant comparison with C. C. Mei, R. W. Yeung, and K. F. Liu ["Lifting a large object from a porous bed," J. Fluid. Mech. 152, 203-215 (1985)] and Y. Chang, L. H. Huang and F. P. Y. Yang ["Two-dimensional lift-up problem for a rigid porous bed," Phys. Fluids, 27, 053101 (2015)] is done.
Liquid Crystal Elastomer Actuators from Anisotropic Porous Polymer Template.
Wang, Qian; Yu, Li; Yu, Meina; Zhao, Dongyu; Song, Ping; Chi, Hun; Guo, Lin; Yang, Huai
2017-08-01
Controlling self-assembly behaviors of liquid crystals is a fundamental issue for designing them as intelligent actuators. Here, anisotropic porous polyvinylidene fluoride film is utilized as a template to induce homogeneous alignment of liquid crystals. The mechanism of liquid crystal alignment induced by anisotropic porous polyvinylidene fluoride film is illustrated based on the relationship between the alignment behavior of liquid crystals and surface microstructure of anisotropic polyvinylidene fluoride film. Liquid crystal elastomer actuators with fast responsiveness, large strain change, and reversible actuation behaviors are achieved by the photopolymerization of liquid crystal monomer in liquid crystal cells coated with anisotropic porous films. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hsu, S. Y.; Tsai, J. P.; Chang, L. C.
2014-12-01
The flow of three immiscible fluids - water, NAPL, air - in porous media is important in many subsurface processes. To model the three-fluid flow, the relation of relative permeability-saturation-capillary pressure (k-S-P) of three fluids is of central importance. In this experimental study, we directly measure the k-S-P of the water (wetting phase) when three fluids are coexist in a micromodel during the water drainage and imbibition. The results show that the sequence of the non-wetting fluids (air and NAPL) entering into the micromodel affects the fluid distributions as well as the relative permeability of water. During the drainage process, the relative permeability of water dropped drastically when the pathway of water from inlet to outlet of the micromodel was visually blocked by the non-wetting fluids. At this stage, the relative permeability of water was low but not down to zero. The water was still able to move via corner flows or thin-film flows. During the imbibition process, the water displaced two non-wetting liquids via both "snap-off" and "piston-type" motions. The relative permeability of water jumped when the water pathway was formed again. In addition, we found that the well-known scaling format proposed by Parker et al. [1] might fail when the interfaces between the most non-wetting (air) and the most wetting (water) fluids occurs in the three-fluids system. References[1] J. C. Parker, R. J. Lenhard, and T. Kuppusamy, Water Resources Research, 23, 4, 618-624 (1987)
Inhomogeneous Waves in Anisotropic Porous Layer Overlying Solid Bedrock
NASA Astrophysics Data System (ADS)
Vashishth, A. K.; Khurana, P.
2002-12-01
The problem of propagation of inhomogeneous waves in anisotropic porous layered medium is studied using transfer matrix. Firstly, transfer matrix for an anisotropic porous layer is derived. Biot's poro-elastic theory is incorporated to model the acoustics of anisotropic porous layer. The interface between porous layer and elastic half-space is considered as imperfect and modified boundary conditions are applied for this more realistic situation. The theory of transfer matrix is used to derive the analytical expression for the surface impedance. Numerical computation of results is done for different degrees of bonding in the low as well as high-frequency range. In the first case, which is relevant to geophysical studies, the surface impedance is predicted for low-frequency range and surface impedance for second model is computed in high-frequency range. It is observed that loose bondedness is accompanied by the loss of energy at the interface. The technique of transfer matrix is utilized to compute the surface impedance in both cases. The role of surface impedance in seismological studies and in the study of composites is discussed.
Fabric dependence of wave propagation in anisotropic porous media
Cowin, Stephen C.; Cardoso, Luis
2012-01-01
Current diagnosis of bone loss and osteoporosis is based on the measurement of the Bone Mineral Density (BMD) or the apparent mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical relationships between measurable quantities such as Speed of Sound (SOS) and Broadband Ultrasound Attenuation (BUA) and the density of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal signature of poroelastic media, as predicted by Biot’s poroelastic wave propagation theory. In this paper the governing equations for wave motion in the linear theory of anisotropic poroelastic materials are developed and extended to include the dependence of the constitutive relations upon fabric - a quantitative stereological measure of the degree of structural anisotropy in the pore architecture of a porous medium. This fabric-dependent anisotropic poroelastic approach is a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone. PMID:20461539
Goloshubin, Gennady M.; Korneev, Valeri A.
2005-09-06
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
Goloshubin, Gennady M.; Korneev, Valeri A.
2006-11-14
A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.
Birefringence and anisotropic optical absorption in porous silicon
Efimova, A. I. Krutkova, E. Yu.; Golovan', L. A.; Fomenko, M. A.; Kashkarov, P. K.; Timoshenko, V. Yu.
2007-10-15
The refractive indices and the coefficients of optical absorption by free charge carriers and local vibrations in porous silicon (por-Si) films, comprising nanometer-sized silicon residues (nanocrystals) separated by nanometer-sized pores (nanopores) formed in the course of electrochemical etching of the initial single crystal silicon, have been studied by polarization-resolved IR absorption spectroscopy techniques. It is shown that the birefringence observed in por-Si is related to the anisotropic shapes of nanocrystals and nanopores, while the anisotropy (dichroism) of absorption by the local vibrational modes is determined predominantly by the microrelief of the surface of nanocrystals. It is demonstrated that silicon-hydrogen surface bonds in nanocrystals can be restored by means of selective hydrogen thermodesorption with the formation of a considerable number of H-terminated surface Si-Si dimers.
Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media
NASA Astrophysics Data System (ADS)
Monnig, N. D.; Benson, D. A.
2007-12-01
Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.
Stability of Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous layer
NASA Astrophysics Data System (ADS)
Deepu, P.; Anand, Prateek; Basu, Saptarshi
2015-08-01
We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail. It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous layer provides an effective means for passive control of the flow stability.
Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown
NASA Astrophysics Data System (ADS)
De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo
2017-02-01
In the present study, we use direct numerical simulations to examine the role of non-isotropic permeability on solutal convection in a fluid-saturated porous medium. The dense solute injected from the top boundary is driven downwards by gravity and follows a complex time-dependent dynamics. The process of solute dissolution, which is initially controlled by diffusion, becomes dominated by convection as soon as fingers appear, grow, and interact. The dense solute finally reaches the bottom boundary where, due to the prescribed impermeable boundary, it starts filling the domain so to enter the shutdown stage. We present the entire transient dynamics for large Rayleigh-Darcy numbers, Ra, and non-isotropic permeability. We also try to provide suitable and reliable models to parametrize it. With the conceptual setup presented here, we aim at mimicking the process of liquid CO2 sequestration into geological reservoirs.
Sanya, Arthur S O; Akowanou, Christian; Sanya, Emile A; Degan, Gerard
2014-01-01
The problems of steady film condensation on a vertical surface embedded in a thin porous medium with anisotropic permeability filled with pure saturated vapour are studied analytically by using the Brinkman-Darcy flow model. The principal axes of anisotropic permeability are oriented in a direction that non-coincident with the gravity force. On the basis of the flow permeability tensor due to the anisotropic properties and the Brinkman-Darcy flow model adopted by considering negligible macroscopic and microscopic inertial terms, boundary-layer approximations in the porous liquid film momentum equation is solved analytically. Scale analysis is applied to predict the order-of-magnitudes involved in the boundary layer regime. The first novel contribution in the mathematics consists in the use of the anisotropic permeability tensor inside the expression of the mathematical formulation of the film condensation problem along a vertical surface embedded in a porous medium. The present analytical study reveals that the anisotropic permeability properties have a strong influence on the liquid film thickness, condensate mass flow rate and surface heat transfer rate. The comparison between thin and thick porous media is also presented.
Numerical study on the permeability in a tensorial form for laminar flow in anisotropic porous media
NASA Astrophysics Data System (ADS)
Galindo-Torres, S. A.; Scheuermann, A.; Li, L.
2012-10-01
Pore-scale flow simulations were conducted to investigate the permeability tensor of anisotropic porous media constructed using the Voronoi tessellation method. This construction method enabled the introduction of anisotropy to the media at the particle level in a random and yet controllable way. Simulations were carried out for media with different degrees of anisotropy through varying the mean aspect ratio of grain particles. The simulation results were then analyzed using the Kozeny-Carman (KC) model. The KC model describes the permeability of the anisotropic media in a tensor form with the anisotropy represented by different tortuosities along the three principal directions. The tortuosity tensor was found to be a complex function of the particle morphology, which is yet to be fully determined. However, the results presented have established the starting point for further theoretical development to formulate such a function and to build closed-form analytical permeability models for anisotropic porous media based on first principles.
Steady dissolution rate due to convective mixing in anisotropic porous media
NASA Astrophysics Data System (ADS)
Green, Christopher P.; Ennis-King, Jonathan
2014-11-01
Enhanced dissolution of CO2 into a saline aquifer due to convective mixing is an important physical process for the secure long-term storage of significant quantities of CO2. Numerical simulations have previously shown that the dissolution rate of CO2 into reservoir brine will stabilise after a certain time period, with only small oscillations about a long-term average. A theoretical estimate for this average long-term mass flux in an isotropic homogeneous reservoir has previously appeared in the literature. In this paper, an estimate for the steady dissolution rate in anisotropic homogenous porous media is developed using a simple theoretical argument. Detailed numerical simulations confirm that the steady dissolution rate scales as (kvkh) 1 / 2 in an anisotropic homogeneous porous media, where kv and kh are the vertical and horizontal permeabilities, respectively. The scaling is also shown to be appropriate for heterogeneous models where vertical heterogeneity is introduced by including a random distribution of impermeable barriers.
An Elastic Stress-Strain Relationship for Porous Rock Under Anisotropic Stress Conditions
NASA Astrophysics Data System (ADS)
Zhao, Yu; Liu, Hui-Hai
2012-05-01
A stress-strain relationship within porous rock under anisotropic stress conditions is required for modeling coupled hydromechanical processes associated with a number of practical applications. In this study, a three-dimensional stress-strain relationship is proposed for porous rock under elastic and anisotropic stress conditions. This relationship is a macroscopic-scale approximation that uses a natural-strain-based Hooke's law to describe deformation within a fraction of pores and an engineering-strain-based Hooke's law to describe deformation within the other part. This new relationship is evaluated using data from a number of uniaxial and triaxial tests published in the literature. Based on this new stress-strain relationship, we also develop constitutive relationships among stress, strain, and related stress-dependent hydraulic/mechanical properties (such as compressibility, shear modulus, and porosity). These relationships are demonstrated to be consistent with experimental observations.
Laha, P. Terryn, H.; Ustarroz, J.; Nazarkin, M. Y. Gavrilov, S. A.; Volkova, A. V.; Simunin, M. M.
2015-03-09
ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.
Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian
2015-06-01
Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications.
Method of determining interwell oil field fluid saturation distribution
Donaldson, Erle C.; Sutterfield, F. Dexter
1981-01-01
A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.
Anisotropic multi-spot DBR porous silicon chip for the detection of human immunoglobin G.
Cho, Bomin; Um, Sungyong; Sohn, Honglae
2014-07-01
Asymmetric porous silicon multilayer (APSM)-based optical biosensor was developed to specify human Immunoglobin G (Ig G). APSM chip was generated by an electrochemical etching of silicon wafer using an asymmetric electrode configuration in aqueous ethanolic HF solution and constituted with nine arrayed porous silicon multilayer. APSM prepared from anisotropic etching conditions displayed a sharp reflection resonance in the reflectivity spectrum. Each spot displayed single reflection resonance at different wavelengths as a function of the lateral distance from the Pt counter electrode. The sensor system was consisted of the 3 x 3 spot array of APSM modified with protein A. The system was probed with an aqueous human Ig G. Molecular binding and specificity was monitored as a shift in wavelength of reflection resonance.
Haussener, Sophia; Steinfeld, Aldo
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039
Haussener, Sophia; Steinfeld, Aldo
2012-01-19
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.
NASA Astrophysics Data System (ADS)
Degan, Gérard; Sanya, Arthur; Akowanou, Christian
2016-10-01
This work analytically investigates the problem of steady film condensation along a vertical surface embedded in an anisotropic porous medium filled with a dry saturated vapor. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction which is oblique to the gravity vector. On the basis of the generalized Darcy's law and within the boundary layer approximations, similar solutions have been obtained for the temperature and flow patterns in the condensate. Moreover, closed form solutions for the boundary layer thickness and heat transfer rate have been obtained in terms of the governing parameters of the problem.
Theoretical and numerical aspects of fluid-saturated elasto-plastic soils
Ehlers, W.
1995-12-31
The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution, theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.
Simulation of flow of mixtures through anisotropic porous media using a lattice Boltzmann model.
Mendoza, M; Wittel, F K; Herrmann, H J
2010-08-01
We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, advection-diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by advection-diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, solid interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.
Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus
2017-07-01
Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors that quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, for example, of trabecular bone in medical physics. We analyze the orientation-biased Boolean model, a versatile stochastic model that represents microstructures as overlapping grains with an orientation bias towards a preferred direction. This model is an extension of the isotropic Boolean model, which has been shown to truthfully reproduce multi-functional properties of isotropic porous media. We explain the close relationship between the concept of intersections with test lines to the elaborate mathematical theory of queues, and how explicit results from the latter can be directly applied to characterize microstructures. In this series of two papers, we provide analytic formulas for the anisotropic Boolean model and demonstrate often overlooked conceptual shortcomings of this approach. Queuing theory is used to derive simple and illustrative formulas for the mean intercept length. It separates into an intensity-dependent and an orientation-dependent factor. The global average of the mean intercept length can be expressed by local characteristics of a single grain alone. We thus identify which shape information about the random process the mean intercept length contains. The connection between global and local quantities helps to interpret observations and provides insights into the possibilities and limitations of the analysis. In the second paper of this series, we discuss, based on the findings in this paper, short-comings of the mean intercept analysis for (bone-)microstructure characterization. We will suggest alternative and better defined sensitive anisotropy measures from integral
Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane.
Wang, Zuyong; Teoh, Swee Hin; Hong, Minghui; Luo, Fangfang; Teo, Erin Yiling; Chan, Jerry Kok Yen; Thian, Eng San
2015-06-24
Human endothelial basement membrane (BM) plays a pivotal role in vascular development and homeostasis. Here, a bioresponsive film with dual-microstructured geometries was engineered to mimic the structural roles of the endothelial BM in developing vessels, for vascular tissue engineering (TE) application. Flexible poly(ε-caprolactone) (PCL) thin film was fabricated with microscale anisotropic ridges/grooves and through-holes using a combination of uniaxial thermal stretching and direct laser perforation, respectively. Through optimizing the interhole distance, human mesenchymal stem cells (MSCs) cultured on the PCL film's ridges/grooves obtained an intact cell alignment efficiency. With prolonged culturing for 8 days, these cells formed aligned cell multilayers as found in native tunica media. By coculturing human umbilical vein endothelial cells (HUVECs) on the opposite side of the film, HUVECs were observed to build up transmural interdigitation cell-cell contact with MSCs via the through-holes, leading to a rapid endothelialization on the PCL film surface. Furthermore, vascular tissue construction based on the PCL film showed enhanced bioactivity with an elevated total nitric oxide level as compared to single MSCs or HUVECs culturing and indirect MSCs/HUVECs coculturing systems. These results suggested that the dual-microstructured porous and anisotropic film could simulate the structural roles of endothelial BM for vascular reconstruction, with aligned stromal cell multilayers, rapid endothelialization, and direct cell-cell interaction between the engineered stromal and endothelial components. This study has implications of recapitulating endothelial BM architecture for the de novo design of vascular TE scaffolds.
Variational Principles for Dynamics of Linear Elastic Fluid-Saturated Soils.
1985-07-01
Include S cuty Clawfication, Variational Principl s 61102F 2307 C1 for Dynamics of Linear Elastic Fluid-Saturated Soils I _ II 12. PERSONALAUTHOR(S) Ranbir...RD-At75 92 VARIATIONAL PRINCIPLES FOR DYNAMICS OF LINEAR ELASTIC t/l FLUID-SATURATED SOI (U) OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS R S SANDHU...Sa* distribution unlimited. VARIATIONAL PRINCIPLES FOR DYNAMICS OF LINEAR ELASTIC FLUID-SATURATED SOILS 7 . Ranbir S. Sandhu and S. J. Hong L
Calibration of Gurson-type models for porous sheet metals with anisotropic non-quadratic plasticity
NASA Astrophysics Data System (ADS)
Gologanu, M.; Kami, A.; Comsa, D. S.; Banabic, D.
2016-08-01
The growth and coalescence of voids in sheet metals are not only the main active mechanisms in the final stages of fracture in a necking band, but they also contribute to the forming limits via changes in the normal directions to the yield surface. A widely accepted method to include void effects is the development of a Gurson-type model for the appropriate yield criterion, based on an approximate limit analysis of a unit cell containing a single spherical, spheroidal or ellipsoidal void. We have recently [2] obtained dissipation functions and Gurson-type models for porous sheet metals with ellipsoidal voids and anisotropic non-quadratic plasticity, including yield criteria based on linear transformations (Yld91 and Yld2004-18p) and a pure plane stress yield criteria (BBC2005). These Gurson-type models contain several parameters that depend on the void and cell geometries and on the selected yield criterion. Best results are obtained when these key parameters are calibrated via numerical simulations using the same unit cell and a few representative loading conditions. The single most important such loading condition corresponds to a pure hydrostatic macroscopic stress (pure pressure) and the corresponding velocity field found during the solution of the limit analysis problem describes the expansion of the cavity. However, for the case of sheet metals, the condition of plane stress precludes macroscopic stresses with large triaxiality or ratio of mean stress to equivalent stress, including the pure hydrostatic case. Also, pure plane stress yield criteria like BBC2005 must first be extended to 3D stresses before attempting to develop a Gurson-type model and such extensions are purely phenomenological with no due account for the out- of-plane anisotropic properties of the sheet. Therefore, we propose a new calibration method for Gurson- type models that uses only boundary conditions compatible with the plane stress requirement. For each such boundary condition we use
A Computer Program for Consolidation and Dynamic Response Analysis of Fluid-Saturated Media.
1983-06-01
Codes Avail and/or Geotechnical Engineering Report No. 14 Dist I Special The Ohio State University Research Foundation 1314 Kinnear Road, Columbus, Ohio...CONSOLIDATION AND DYNAMIC RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering ...RESPONSE ANALYSIS OF FLUID-SATURATED MEDIA By Ranbir S. Sandhu, B. Aboustit, S. J. Hong and M. S. Hiremath Department of Civil Engineering June 1984 Acce
Mézière, Fabien; Muller, Marie; Bossy, Emmanuel; Derode, Arnaud
2014-07-01
This article quantitatively investigates ultrasound propagation in numerical anisotropic porous media with finite-difference simulations in 3D. The propagation media consist of clusters of ellipsoidal scatterers randomly distributed in water, mimicking the anisotropic structure of cancellous bone. Velocities and attenuation coefficients of the ensemble-averaged transmitted wave (also known as the coherent wave) are measured in various configurations. As in real cancellous bone, one or two longitudinal modes emerge, depending on the micro-structure. The results are confronted with two standard theoretical approaches: Biot's theory, usually invoked in porous media, and the Independent Scattering Approximation (ISA), a classical first-order approach of multiple scattering theory. On the one hand, when only one longitudinal wave is observed, it is found that at porosities higher than 90% the ISA successfully predicts the attenuation coefficient (unlike Biot's theory), as well as the existence of negative dispersion. On the other hand, the ISA is not well suited to study two-wave propagation, unlike Biot's model, at least as far as wave speeds are concerned. No free fitting parameters were used for the application of Biot's theory. Finally we investigate the phase-shift between waves in the fluid and the solid structure, and compare them to Biot's predictions of in-phase and out-of-phase motions. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Karra, S.; Nakshatrala, K. B.
2016-12-01
Fundamental to enhancement and control of the macroscopic spreading, mixing, and dilution of solute plumes in porous media structures is the topology of flow field and underlying heterogeneity and anisotropy contrast of porous media. Traditionally, in literature, the main focus was limited to the shearing effects of flow field (i.e., flow has zero helical density, meaning that flow is always perpendicular to vorticity vector) on scalar mixing [2]. However, the combined effect of anisotropy of the porous media and the helical structure (or chaotic nature) of the flow field on the species reactive-transport and mixing has been rarely studied. Recently, it has been experimentally shown that there is an irrefutable evidence that chaotic advection and helical flows are inherent in porous media flows [1,2]. In this poster presentation, we present a non-intrusive physics-based model-order reduction framework to quantify the effects of species mixing in-terms of reduced-order models (ROMs) and scaling laws. The ROM framework is constructed based on the recent advancements in non-negative formulations for reactive-transport in heterogeneous anisotropic porous media [3] and non-intrusive ROM methods [4]. The objective is to generate computationally efficient and accurate ROMs for species mixing for different values of input data and reactive-transport model parameters. This is achieved by using multiple ROMs, which is a way to determine the robustness of the proposed framework. Sensitivity analysis is performed to identify the important parameters. Representative numerical examples from reactive-transport are presented to illustrate the importance of the proposed ROMs to accurately describe mixing process in porous media. [1] Lester, Metcalfe, and Trefry, "Is chaotic advection inherent to porous media flow?," PRL, 2013. [2] Ye, Chiogna, Cirpka, Grathwohl, and Rolle, "Experimental evidence of helical flow in porous media," PRL, 2015. [3] Mudunuru, and Nakshatrala, "On
Earth science: role of fO2 on fluid saturation in oceanic basalt.
Scaillet, Bruno; Pichavant, Michel
2004-07-29
Assessing the conditions under which magmas become fluid-saturated has important bearings on the geochemical modelling of magmas because volatile exsolution may profoundly alter the behaviour of certain trace elements that are strongly partitioned in the coexisting fluid. Saal et al. report primitive melt inclusions from dredged oceanic basalts of the Siqueiros transform fault, from which they derive volatile abundances of the depleted mantle, based on the demonstration that magmas are not fluid-saturated at their eruption depth and so preserve the mantle signature in terms of their volatile contents. However, in their analysis, Saal et al. consider only fluid-melt equilibria, and do not take into account the homogeneous equilibria between fluid species, which, as we show here, may lead to a significant underestimation of the pressure depth of fluid saturation.
Relations between drained and undrained moduli in anisotropic poroelasticity
NASA Astrophysics Data System (ADS)
Loret, Benjamin; Rizzi, Egidio; Zerfa, Zohra
2001-11-01
Although the knowledge of the drained moduli is often assumed to define the material coefficients of elastic fluid-saturated porous media, it is not sufficient. Resorting to the properties of the constituents is possible but may not be satisfactory due to lack of accuracy. On the other hand, the mechanical information contained in the undrained moduli is complementary to that provided by the drained moduli but is also overabundant. The compatibility relations between these two types of moduli are examined for several classes of anisotropic solid skeletons and the information required from the undrained moduli is exactly defined through a spectral analysis of the dyadic difference in tensor compliances. A switch of the results is possible if the undrained moduli are given instead of the drained moduli. An incomplete data set of material coefficients for a transverse isotropic shale is treated as an example. Considerable simplifications arise for a particular form of anisotropy defined by a second order fabric tensor.
Cuenca, Jacques; Göransson, Peter
2012-08-01
This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke's law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.
Flow and dispersion in anisotropic porous media: A lattice-Boltzmann study
NASA Astrophysics Data System (ADS)
Maggiolo, D.; Picano, F.; Guarnieri, M.
2016-10-01
Given their capability of spreading active chemical species and collecting electricity, porous media made of carbon fibers are extensively used as diffusion layers in energy storage systems, such as redox flow batteries. In spite of this, the dispersion dynamics of species inside porous media is still not well understood and often lends itself to different interpretations. Actually, the microscopic design of efficient porous media, which can potentially and effectively improve the performances of flow batteries, is still an open challenge. The present study aims to investigate the effect of fibrous media micro-structure on dispersion, in particular the effect of fiber orientation on drag and dispersion dynamics. Several lattice-Boltzmann simulations of flows through differently oriented fibrous media coupled with Lagrangian simulations of particle tracers have been performed. Results show that orienting fibers preferentially along the streamwise direction minimizes the drag and maximizes the dispersion, which is the most desirable condition for diffusion layers in flow batteries' applications.
Donius, Amalie E; Liu, Andong; Berglund, Lars A; Wegst, Ulrike G K
2014-09-01
Directionally solidified nanofibrillated cellulose (NFC)-sodium-montmorillonite (MMT) composite aerogels with a honeycomb-like pore structure were compared with non-directionally frozen aerogels with equiaxed pore structure and identical composition and found to have superior functionalities. To explore structure-property correlations, three different aerogel compositions of 3wt% MMT, and 0.4wt%, 0.8wt%, and 1.2wt% NFC, respectively, were tested. Young׳s modulus, compressive strength and toughness were found to increase with increasing NFC content for both architectures. The modulus increased from 25.8kPa to 386kPa for the isotropic and from 2.13MPa to 3.86MPa for the anisotropic aerogels, the compressive yield strength increased from 3.3kPa to 18.0kPa for the isotropic and from 32.3kPa to 52.5kPa for the anisotropic aerogels, and the toughness increased from 6.3kJ/m(3) to 24.1kJ/m(3) for the isotropic and from 22.9kJ/m(3) to 46.2kJ/m(3) for the anisotropic aerogels. The great range of properties, which can be achieved through compositional as well as architectural variations, makes these aerogels highly attractive for a large range of applications, for which either a specific composition, or a particular pore morphology, or both are required. Finally, because NFC is flammable, gasification experiments were performed, which revealed that the inclusion of MMT increased the heat endurance and shape retention functions of the aerogels dramatically up to 800°C while the mechanical properties were retained up to 300°C.
On the micromechanics of slip events in sheared, fluid-saturated fault gouge
NASA Astrophysics Data System (ADS)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan
2017-06-01
We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-01-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330
NASA Astrophysics Data System (ADS)
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-06-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-06-08
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.
NASA Astrophysics Data System (ADS)
Badiey, M.; Yamamoto, T.
1986-01-01
Propogation of acoustic normal modes at excitation frequencies of 50 to 50000 Hz in a shallow stratified ocean overlaying a transverse isotropic poro-elastic sediment bed is modeled. The Biot-Willis stiffness matrix of the poro-elastic anisotropy is defined in terms of physical properties of sediments to model the bed. Propagator matrix method is used to solve the differential equations for the motion stress vectors in both layered sediment and water. The effects of sediment properties on the dispersion and attenuation of acoustic waves are examined numerically. Using the relaxation principle it is observed that the energy loss is maximum at frequency referred to as relaxation frequency of the porous media given by f sub ri = (beta)(nu)/3 pi k (sub si), where beta is the porosity, nu is the kinematic viscosity of the pore fluid and k (sub si) is the anisotropic permeability coefficient. The phase speed of compressional and shear waves in the sediment becomes highly dispersive around this frequency. The sandy bottom's relaxation frequency is the range of several hundred hertz to several kilo hertz. This report presents the derivation of the mathematical expressions used in the model and a complete description of the computer program. Four examples of numerical calculations are provided.
Tunable anisotropic thermal expansion of a porous zinc(II) metal-organic framework.
Grobler, Ilne; Smith, Vincent J; Bhatt, Prashant M; Herbert, Simon A; Barbour, Leonard J
2013-05-01
A novel three-dimensional metal-organic framework (MOF) that displays anisotropic thermal expansion has been prepared and characterized by single-crystal X-ray diffraction (SCD) and thermal analysis. The as-prepared MOF has one-dimensional channels containing guest molecules that can be removed and/or exchanged for other guest molecules in a single-crystal to single-crystal fashion. When the original guest molecules are replaced there is a noticeable effect on the host mechanics, altering the thermal expansion properties of the material. This study of the thermal expansion coefficients of different inclusion complexes of the host MOF involved systematic alteration of guest size, i.e., methanol, ethanol, n-propanol, and isopropanol, showing that fine control over the thermal expansion coefficients can be achieved and that the coefficients can be correlated with the size of the guest. As a proof of concept, this study demonstrates the realizable principle that a single-crystal material with an exchangeable guest component (as opposed to a composite) may be used to achieve a tunable thermal expansion coefficient. In addition, this study demonstrates that greater variance in the absolute dimensions of a crystal can be achieved when one has two variables that affect it, i.e., the host-guest interactions and temperature.
Seismic tomography in the lab-interferometry in a porous, scattering medium under pressure
NASA Astrophysics Data System (ADS)
Boschi, Lapo; Latour, Soumaya; Colombi, Andrea; Schubnel, Alexandre
2015-04-01
Our laboratory experiments and numerical simulations aim at determining the accuracy and reliability of seismic interferometry as an imaging and monitoring tool. In our analogue experiments, seismic waves are transmitted, via transducers, into rock samples under pressure, or are generated as the samples crack along a fault. We record the resulting signal at a number of receivers over the sample, and analyze those data via seismic inteferometry. Our samples include porous, scattering rocks, both dry and fluid-saturated, isotropic and anisotropic. The experimental apparatus we utilize allows to reproduce pressure and temperature conditions found in the Earth's crust. We so evaluate the role of isotropic and/or anisotropic cracking and fluid saturation (depending, in turn, on the fluid's viscosity) on wave propagation and, specifically, on the system's impulse response (Green's function). Whether the Green's function is correctly reconstructed by interferometry is in itself a signficant theoretical question that we also address. Numerical (spectral-element via SPECFEM) modeling allows to disentangle the role of various parameters who affect Green's function reconstructuon, e.g. source distribution which is particularly hard to control in analogue experiments.
An H2O-CO2 mixed fluid saturation model compatible with rhyolite-MELTS
NASA Astrophysics Data System (ADS)
Ghiorso, Mark S.; Gualda, Guilherme A. R.
2015-06-01
A thermodynamic model for estimating the saturation conditions of H2O-CO2 mixed fluids in multicomponent silicate liquids is described. The model extends the capabilities of rhyolite-MELTS (Gualda et al. in J Petrol 53:875-890, 2012a) and augments the water saturation model in MELTS (Ghiorso and Sack in Contrib Mineral Petrol 119:197-212, 1995). The model is internally consistent with the fluid-phase thermodynamic model of Duan and Zhang (Geochim Cosmochim Acta 70:2311-2324, 2006). It may be used independently of rhyolite-MELTS to estimate intensive variables and fluid saturation conditions from glass inclusions trapped in phenocrysts. The model is calibrated from published experimental data on water and carbon dioxide solubility, and mixed fluid saturation in silicate liquids. The model is constructed on the assumption that water dissolves to form a hydroxyl melt species, and that carbon dioxide both a molecular species and a carbonate ion, the latter complexed with calcium. Excess enthalpy interaction terms in part compensate for these simplistic assumptions regarding speciation. The model is restricted to natural composition liquids over the pressure range 0-3 GPa. One characteristic of the model is that fluid saturation isobars at pressures greater than ~100 MPa always display a maximum in melt CO2 at nonzero H2O melt concentrations, regardless of bulk composition. This feature is universal and can be attributed to the dominance of hydroxyl speciation at low water concentrations. The model is applied to four examples. The first involves estimation of pressures from H2O-CO2-bearing glass inclusions found in quartz phenocrysts of the Bishop Tuff. The second illustrates H2O and CO2 partitioning between melt and fluid during fluid-saturated equilibrium and fractional crystallization of MORB. The third example demonstrates that the position of the quartz-feldspar cotectic surface is insensitive to melt CO2 contents, which facilitates geobarometry using phase
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.
2016-07-01
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.
Quantify fluid saturation in fractures by light transmission technique and its application
NASA Astrophysics Data System (ADS)
Ye, S.; Zhang, Y.; Wu, J.
2016-12-01
The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.
Preparation of asymmetric porous materials
Coker, Eric N [Albuquerque, NM
2012-08-07
A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.
Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.
2010-01-01
Magnetic Resonance Poroelastography (MRPE) is introduced as an alternative to single-phase model-based elastographic reconstruction methods. A three-dimensional (3D) finite element poroelastic inversion algorithm was developed to recover the mechanical properties of fluid-saturated tissues. The performance of this algorithm was assessed through a variety of numerical experiments, using synthetic data to probe its stability and sensitivity to the relevant model parameters. Preliminary results suggest the algorithm is robust in the presence of noise and capable of producing accurate assessments of the underlying mechanical properties in simulated phantoms. Further, a 3D time-harmonic motion field was recorded for a poroelastic phantom containing a single cylindrical inclusion and used to assess the feasibility of MRPE image reconstruction from experimental data. The elastograms obtained from the proposed poroelastic algorithm demonstrate significant improvement over linearly elastic MRE images generated using the same data. In addition, MRPE offers the opportunity to estimate the time-harmonic pressure field resulting from tissue excitation, highlighting the potential for its application in the diagnosis and monitoring of disease processes associated with changes in interstitial pressure. PMID:20199912
The effect of fluid saturation on the dynamic shear modulus of tight sandstones
NASA Astrophysics Data System (ADS)
Li, Dongqing; Wei, Jianxin; Di, Bangrang; Ding, Pinbo; Shuai, Da
2017-10-01
Tight sandstones have become important targets in the exploration of unconventional oil and gas reservoirs. However, due to low porosity, low permeability, complex pore structure and other petrophysical properties of tight sandstones, the applicability of Gassmann’s fluid substitution procedure becomes debatable. Aiming at this problem, this paper attempts to explore the applicability of Gassmann’s theory in tight sandstones. Our focus is to investigate the sensitivity of dynamic shear modulus to fluid saturation and the possible mechanism. Ultrasonic velocity in dry and saturated tight sandstone samples was measured in the laboratory under an effective pressure within the range of 1-60 MPa. This study shows that the shear modulus of the water-saturated samples appears to either increase or decrease, and the soft porosity model (SPM) can be used to quantitatively estimate the variation of shear modulus. Under the condition of in situ pressure, samples dominated by secondary pores and microcracks are prone to show shear strengthening with saturation, which is possibly attributed to the local flow dispersion. Samples that mainly have primary pores are more likely to show shear weakening with saturation, which can be explained by the surface energy mechanism. We also find good correlation between changes in shear modulus and inaccurate Gassmann-predicted saturated velocity. Therefore, understanding the variation of shear modulus is helpful to improving the applicability of Gassmann’s theory in tight sandstones.
On wavemodes at the interface of a fluid and a fluid-saturated poroelastic solid.
van Dalen, K N; Drijkoningen, G G; Smeulders, D M J
2010-04-01
Pseudo interface waves can exist at the interface of a fluid and a fluid-saturated poroelastic solid. These waves are typically related to the pseudo-Rayleigh pole and the pseudo-Stoneley pole in the complex slowness plane. It is found that each of these two poles can contribute (as a residue) to a full transient wave motion when the corresponding Fourier integral is computed on the principal Riemann sheet. This contradicts the generally accepted explanation that a pseudo interface wave originates from a pole on a nonprincipal Riemann sheet. It is also shown that part of the physical properties of a pseudo interface wave can be captured by loop integrals along the branch cuts in the complex slowness plane. Moreover, it is observed that the pseudo-Stoneley pole is not always present on the principal Riemann sheet depending also on frequency rather than on the contrast in material parameters only. Finally, it is shown that two additional zeroes of the poroelastic Stoneley dispersion equation, which are comparable with the P-poles known in nonporous elastic solids, do have physical significance due to their residue contributions to a full point-force response.
NASA Astrophysics Data System (ADS)
Sadovskii, Vladimir; Sadovskaya, Oxana
2017-04-01
A thermodynamically consistent approach to the description of linear and nonlinear wave processes in a blocky medium, which consists of a large number of elastic blocks interacting with each other via pliant interlayers, is proposed. The mechanical properties of interlayers are defined by means of the rheological schemes of different levels of complexity. Elastic interaction between the blocks is considered in the framework of the linear elasticity theory [1]. The effects of viscoelastic shear in the interblock interlayers are taken into consideration using the Pointing-Thomson rheological scheme. The model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. On the basis of the Biot equations for a fluid-saturated porous medium, a new mathematical model of a blocky medium is worked out, in which the interlayers provide a convective fluid motion due to the external perturbations. The collapse of pores is modeled within the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact [2], which is used to describe the behavior of materials with different resistance to tension and compression. Thermodynamic consistency of the equations in interlayers with the equations in blocks guarantees fulfillment of the energy conservation law for a blocky medium in a whole, i.e. kinetic and potential energy of the system is the sum of kinetic and potential energies of the blocks and interlayers. As a result of discretization of the equations of the model, robust computational algorithm is constructed, that is stable because of the thermodynamic consistency of the finite difference equations at a discrete level. The splitting method by the spatial variables and the Godunov gap decay scheme are used in the blocks, the
Joint Inversion of Marine Seismic and CSEM Data for Fluid Saturation Prediction
NASA Astrophysics Data System (ADS)
Hoversten, G. M.; Gasperikova, E.; Chen, J.; Newman, G.
2005-12-01
Recent developments in the application of controlled source marine electromagnetic (CSEM) data in petroleum exploration have brought this technology to the attention of many in exploration and production within the oil and gas industry. These developments are founded on more than two decades of research carried out in academia and at U.S. national laboratories. The commercial availability of CSEM data now makes it possible to consider integrating this new data with existing seismic data in ways that will add considerable value. In particular, the sensitivity of CSEM data to water saturation (Sw), when combined with the spatial and reservoir parameter sensitivity (porosity, Sw, gas saturation [Sg], and oil saturation [So]) of seismic data, can provide enhanced prediction of fluid saturations within existing or prospective reservoirs. There are many ways in which CSEM and seismic data can be combined to estimate reservoir parameters. The possibilities range from what we term cooperative inversion, in which both data sets are used without any formal linkage in the inversion of either, to fully coupled joint inversion, in which both data sets are inverted simultaneously to directly estimate reservoir parameters. Hoversten et al. (2003) present an example of the former, in which crosswell EM and seismic travel-time tomography are used to estimate reservoir parameters using time-lapse changes in shear velocity, electrical conductivity, and acoustic velocity to sequentially strip off the effects of pressure and water saturation before estimating oil and CO2 saturations. Direct reservoir parameter estimation by joint inversion was demonstrated by Hoversten et al. (2004) and Chen et al. (2004), where marine CSEM and AVA data were used in a formal joint inverse to estimate reservoir Sw, So, Sg, and porosity (φ). The formal joint inversion is currently being extended to replace the 1D CSEM solution with full 3D. While the development and testing of more computationally
Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom
2002-06-10
This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected
NASA Astrophysics Data System (ADS)
Schmidt, Max W.; Ulmer, Peter
2004-04-01
Fluid saturated high-pressure experiments often result in strongly zoned experimental charges, this hinders experimentation in chemically homogeneous systems which in turn has serious consequences on equilibration, reaction progress, and (apparent) phase stabilities. In order to overcome these problems, a 600-ton press accommodating either a multianvil or end-loaded piston cylinder module has been mounted in such a way that it can be turned by 180°, thus inverting its position in the gravity field. During turning, hydraulic pressure, heating power, and cooling water remain connected allowing fully controlled pressures and temperatures during experiments. A series of experiments at 13 GPa, 950°C, on a serpentine bulk composition in the MgO-SiO 2-H 2O system demonstrates that continuous turning at a rate of 2 turns/min results in a nearly homogeneous charge composed of phase E + enstatite. The same experiment at static conditions resulted in four mineral zones: quench phase E, enstatite, enstatite + phase E, and phase E + phase A. Phase A disappears in experiments at a turning rate ≥1 turn/min. A static 15-min experiment shows that zonation already forms within this short time span. Placing two short capsules within a single static experiment reveals that the fluid migrates to the hot spot in each capsule and is not gravitationally driven toward the top. The zonation pattern follows isotherms within the capsule, and the degree of zonation increases with temperature gradient (measured as 10 °C within a capsule) and run time. Our preferred interpretation is that Soret diffusion causes a density-stratified fluid within the capsule that does not convect in a static experiment and results in temperature dependant chemical zonation. The aggravation of zonation and appearance of additional phases with run time can be explained with a dissolution-reprecipitation process where the cold spot of the capsule is relatively MgO enriched and the hot spot relatively SiO 2 and H
NASA Astrophysics Data System (ADS)
Druhan, Jennifer; Lawrence, Corey; Oster, Jessica; Rempe, Daniella; Dietrich, William
2017-04-01
Shallow soils from a wide range of ecosystems demonstrate a clear and consistent relationship between effective fluid saturation and the rate at which organic carbon is converted to CO2. While the underlying mechanisms contributing to this dependence are diverse, a consistent pattern of maximum CO2 production at intermediate soil moisture supports a generalized functional relationship, which may be incorporated into a quantitative reactive transport framework. A key result of this model development is a prediction of the extent to which the inorganic carbon content of water in biologically active soils varies as a function of hydrologic parameters (i.e. moisture content and residence time), and in turn influences weathering reactions. Deeper in the CZ, the consistency of this relationship and the influence of hydrologically - regulated CO2 production on the rates of water - rock interaction are largely unknown. Here, we use a novel reactive transport model incorporating this functional relationship to consider how variations in the reactive potential of water entering the vadose zone influences subsurface weathering rates. We leverage two examples of variably saturated natural systems to consider (1) CO2 production and associated weathering potential regulated by seasonal hydrologic shifts and (2) the preservation of soil carbon signatures in the deep CZ over millennial timescales. First, at the Eel River CZ Observatory in Northern California, USA, a novel Vadose Zone Monitoring System (VMS) installed in a 14 - 20 m thick unsaturated section offers an unprecedented view into the physical, chemical and biological behavior of the depth profile separating soils from groundwater. Based on soil moisture, gas and fluid phase samples, we demonstrate a predictive relationship between seasonal hydrologic variations and the location and magnitude of geochemical weathering rates. Second, an environmental monitoring project in the Blue Springs Cave, Sparta, TN, USA, provides
Li, Yiju; Fu, Kun Kelvin; Chen, Chaoji; Luo, Wei; Gao, Tingting; Xu, Shaomao; Dai, Jiaqi; Pastel, Glenn; Wang, Yanbin; Liu, Boyang; Song, Jianwei; Chen, Yanan; Yang, Chunpeng; Hu, Liangbing
2017-05-23
Lithium-sulfur (Li-S) batteries have attracted much attention due to their high theoretical energy density in comparison to conventional state-of-the-art lithium-ion batteries. However, low sulfur mass loading in the cathode results in low areal capacity and impedes the practical use of Li-S cells. Inspired by wood, a cathode architecture with natural, three-dimensionally (3D) aligned microchannels filled with reduced graphene oxide (RGO) were developed as an ideal structure for high sulfur mass loading. Compared with other carbon materials, the 3D porous carbon matrix has several advantages including low tortuosity, high electrical conductivity, and good structural stability, which make it an excellent 3D lightweight current collector. The Li-S battery assembled with the wood-based sulfur electrode can deliver a high areal capacity of 15.2 mAh cm(-2) with a sulfur mass loading of 21.3 mg cm(-2). This work provides a facile but effective strategy to develop 3D porous electrodes for Li-S batteries, which can also be applied to other cathode materials to achieve a high areal capacity with uncompromised rate and cycling performance.
Micro-poromechanics model of fluid-saturated chemically active fibrous media
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2014-01-01
We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill’s volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete. PMID:25755301
Micro-poromechanics model of fluid-saturated chemically active fibrous media.
Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette
2015-02-01
We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.
NASA Astrophysics Data System (ADS)
Li, Yang; David, Emmanuel; Nakagawa, Seiji; Kneafsey, Timothy; Schmitt, Douglas; Jackson, Ian
2017-04-01
In order to better understand the frequency dependence or dispersion of seismic-wave speeds and associated strain-energy dissipation in cracked and fluid-saturated crustal rocks, we have conducted a broadband laboratory study of synthetic glass media. The glass materials were prepared either from dense soda-lime-silica glass rod or by sintering glass beads of similar chemical composition. Along with sub-equant pores contributing either 2 or 5% porosity for the sintered-bead specimens, quantifiable densities of cracks, generally of very low aspect ratio, were introduced by controlled thermal cracking. Permeability was measured under selected conditions of confining and pore pressure either by transient decay with argon pore fluid or with the steady-flow method and water pore fluid. The water permeability of the cracked glass-rod specimen decreased strongly with increasing differential pressure Pd to 10-18 m2 near 10 MPa. Further increase of differential pressure towards 100 MPa resulted in modest reductions of permeability to specimen-specific values in the range (0.5 - 2) × 10-19 m2. The characteristic frequencies for the draining of cylindrical specimens of such low permeability are estimated to be < 10 mHz, so that undrained conditions can be expected even at the 10-300 mHz frequencies of the forced-oscillation tests. The same or similarly prepared glass specimens were mechanically tested with sub-Hz forced-oscillation methods, a kHz-frequency resonant bar technique, and MHz-frequency ultrasonic wave propagation, before and after thermal cracking. The cracked specimens were successively measured under dry, argon- (or nitrogen-) saturated and water-saturated conditions. The shear and Young's moduli measured on the cracked materials typically increase strongly with increasing differential pressure below a threshold of 30 MPa beyond which the pressure sensitivity becomes substantially milder. This behaviour is quantitatively interpreted in terms of pressure
NASA Technical Reports Server (NTRS)
Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.
1994-01-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
Koontz, S.L.; Leger, L.J.; Wu, C.; Cross, J.B.; Jurgensen, C.W. |
1994-05-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen `spin-off` or `dual use` technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
NASA Technical Reports Server (NTRS)
Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.
1994-01-01
Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.
A Transverse Dynamic Deflection Model for Thin Plate Made of Saturated Porous Materials
NASA Astrophysics Data System (ADS)
Feng-xi, Zhou; Xiao-lin, Cao
2016-10-01
In this article, a transverse dynamic deflection model is established for thin plate made of saturated porous materials. Based on the Biot's model for fluid-saturated porous media, using the Love-Kirchhoff hypothesis, the governing equations of transverse vibrations of fluid-saturated poroelastic plates are derived in detail, which take the inertial, fluid viscous, mechanical couplings, compressibility of solid, and fluid into account. The free vibration and forced vibration response of a simply supported poroelastic rectangular plate is obtained by Fourier series expansion method. Through numerical examples, the effect of porosity and permeability on the dynamic response, including the natural frequency, amplitude response, and the resonance areas is assessed.
Cuenca, Jacques Van der Kelen, Christophe; Göransson, Peter
2014-02-28
This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.
NASA Astrophysics Data System (ADS)
Cuenca, Jacques; Van der Kelen, Christophe; Göransson, Peter
2014-02-01
This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.
Ran, Jiabing; Zeng, Hao; Pathak, Janak Lal; Jiang, Pei; Bai, Yi; Yan, Pan; Sun, Guanglin; Shen, Xinyu; Tong, Hua; Shi, Bin
2017-10-09
In bone tissue engineering (BTE), most of the currently developed scaffolds still lack the ability to demonstrate high porosity and high mechanical strength simultaneously or the ability to maintain bioactivity and sustained release of loaded biofactors. In this work, we constructed an anisotropic triple-pass tubular framework within a lyophilized porous GEL scaffold using FP, which was prepared by coating DEX-covered Whatman paper (WP) using silk fibroin (SF) membrane with β-sheet conformation. This novel structural design endowed the functionalized paper frame (FPF)/scaffold implant high porosity, high mechanical strength, and sustained DEX delivery capability. Specifically, its porosity was as high as 88.2%, approximating to that of human cancellous bone. The pore diameters of the implant ranged from 50 to 350 μm with an average pore diameter of 127.7 μm, indicating proper pore sizes for successful diffusion of essential nutrients/oxygen and bone tissue-ingrowth. Owing to the construction of double-network-like structure, the FPF/scaffold implant demonstrated excellent mechanical properties both in dry (174.7 MPa in elastic modulus and 14.9 MPa in compressive modulus) and wet states (59.0 MPa in elastic modulus and 3.3 MPa in compressive modulus), indicating its feasibility for in vivo implantation. Besides, the FPF/scaffold implant exhibited long-term DEX releasing behavior (over 50 days) with constant release rate in phosphate buffered saline (PBS). Murine osteoblasts MC3T3-E1 cultured in the porous FPF/scaffold implant had excellent viability. Furthermore, the cells co-cultured with the FPF/scaffold implant showed positive proliferation, osteogenic differentiation, and calcium deposition. Twenty-eight days after implantation, extensive osteogenesis was observed in the rats treated with the FPF/scaffold implants. The Anisotropic triple-pass tubular framework of the FPF/scaffold implant demonstrates structural similarities to the long bone. Therefore, this
Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun
2014-06-01
Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.
NASA Astrophysics Data System (ADS)
Rubino, J. Germán.; Caspari, Eva; Müller, Tobias M.; Milani, Marco; Barbosa, Nicolás. D.; Holliger, Klaus
2016-09-01
The presence of stiffness contrasts at scales larger than the typical pore sizes but smaller than the predominant seismic wavelengths can produce seismic attenuation and velocity dispersion in fluid-saturated porous rocks. This energy dissipation mechanism is caused by wave-induced fluid pressure diffusion among the different components of the probed geological formations. In many cases, heterogeneities have elongated shapes and preferential orientations, which implies that the overall response of the medium is anisotropic. In this work, we propose a numerical upscaling procedure that permits to quantify seismic attenuation and phase velocity considering fluid pressure diffusion effects as well as generic anisotropy at the sample's scale. The methodology is based on a set of three relaxation tests performed on a 2-D synthetic rock sample representative of the medium of interest. It provides a complex-valued frequency-dependent equivalent stiffness matrix through a least squares procedure. We also derive an approach for computing various poroelastic fields associated with the considered sample in response to the propagation of a seismic wave with arbitrary incidence angle. Using this approach, we provide an energy-based estimation of seismic attenuation. A comprehensive numerical analysis indicates that the methodology is suitable for handling complex media and different levels of overall anisotropy. Comparisons with the energy-based estimations demonstrate that the dynamic-equivalent viscoelastic medium assumption made by the numerical upscaling procedure is reasonable even in the presence of high levels of overall anisotropy. This work also highlights the usefulness of poroelastic fields for the physical interpretation of seismic wave phenomena in strongly heterogeneous and complex media.
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Liang, Jianwen; Wu, Chengqing
2016-06-01
Two dimensional diffraction of Rayleigh waves by a fluid-saturated poroelastic alluvial valley of arbitrary shape in a poroelastic half-space is investigated using the method of fundamental solutions (MFS). To satisfy the free surface boundary conditions exactly, Green's functions of compressional (PI and PII) and shear (SV) wave sources buried in a fluid-saturated poroelastic half-space are adopted. Next, the procedure for solving the scattering wave field is presented. It is verified that the MFS is of excellent accuracy and numerical stability. Numerical results illustrate that the dynamic response strongly depends on such factors as the incident frequency, the porosity of alluvium, the boundary drainage condition, and the valley shape. There is a significant difference between the diffraction of Rayleigh waves for the saturated soil case and for the corresponding dry soil case. The wave focusing effect both on the displacement and pore pressure can be observed inside the alluvial valley and the amplification effect seems most obvious in the case of higher porosity and lower frequency. Additionally, special attention should also be paid to the concentration of pore pressure, which is closely related to the site liquefaction in earthquakes.
NASA Astrophysics Data System (ADS)
Ciz, Radim; Gurevich, Boris
2005-03-01
Spatial heterogeneity of hydrocarbon reservoirs causes significant attenuation and dispersion of seismic waves due to wave-induced flow of the pore fluid between more compliant and less compliant areas. This paper investigates the interaction between a plane elastic wave in a poroelastic medium with a spherical inhomogeneity of another porous material. The behaviour of both the inclusion and the background medium is described by the low-frequency variant of Biot's equations of poroelasticity with the standard boundary conditions at the inclusion surface, and for the inclusion size much smaller than the wavelength of the fast compressional wave. The scattering problem is formulated as a series expansion of displacements expressed in the spherical harmonics. The resulting scattered wavefield consists of the scattered normal compressional and shear waves and Biot's slow wave, which attenuates rapidly with distance from the inclusion and represents the main difference from the elastic case. This study concentrates on the attenuation effects caused by the mode conversion into Biot's slow wave. The solution obtained for Biot's slow wave is well described by the two terms of order n= 0 and n= 2 of the scattering series. The scattering amplitude for the term of order n= 0 is given by a simple expression. The full expression for the term of order n= 2 is very complicated, but can be simplified assuming that the amplitude of the scattered fast (normal) compressional and shear waves are well approximated by the solution of the equivalent elastic problem. This assumption yields a simple approximation for the amplitude of the scattered slow wave, which is accurate for a wide range of material properties and is sufficient for the analysis of the scattering amplitude as a function of frequency. In the low-frequency limit the scattering amplitude of the slow wave scales with ω3/2, and reduces to the asymptotic long-wavelength solution of Berryman (1985), which is valid for
NASA Astrophysics Data System (ADS)
Kechavarzi, C.; Soga, K.; Wiart, P.
2000-12-01
The need for measuring dynamic fluid saturation distribution in multi-dimensional three-fluid phase flow experiments is hampered by lack of appropriate techniques to monitor full field transient flow phenomena. There is no conventional technique able to measure dynamic three-fluid phase saturation at several array points of the flow field at the same time. A multispectral image analysis technique was developed to determine dynamic NAPL, water and air saturation distribution in two-dimensional three-fluid phase laboratory experiments. Using a digital near-infrared camera, images of sand samples with various degrees of NAPL, water and air saturation were taken, under constant lighting conditions and within three narrow spectral bands of the visible and near-infrared spectrum. It was shown that the optical density defined for the reflected luminous intensity was a linear function of the NAPL and the water saturation for each spectral band and for any two and three-fluid phase systems. This allowed the definition of dimensionless lump reflection coefficients for the NAPL and the water phase within each spectral band. Consequently, at any given time, two images taken within two different spectral bands provided two linear equations which could be solved for the water and the NAPL saturation. The method was applied to two-dimensional three-phase flow experiments, which were conducted to investigate the migration and the distribution of LNAPL in the vadose zone. The method was used to obtain continuous, quantitative and dynamic full field mapping of the NAPL saturation as well as the variation of the water and the air saturation during NAPL flow. The method provides a non-destructive and non-intrusive tool for studying multiphase flow for which rapid changes in fluid saturation in the entire flow domain is difficult to measure using conventional techniques.
NASA Astrophysics Data System (ADS)
Raoof, A.; Nick, H. M.; Hassanizadeh, S. M.; Spiers, C. J.
2013-12-01
This study introduces PoreFlow, a pore-network modeling tool capable of simulating fluid flow and multi-component reactive and adsorptive transport under saturated and variably saturated conditions. PoreFlow includes a variety of modules, such as: pore network generator, drainage simulator, calculation of pressure and velocity distributions, and modeling of reactive solute transport accounting for advection and diffusion. The pore space is represented using a multi-directional pore-network capable of capturing the random structure of a given porous media with user-defined directional connectivities for anisotropic pore structures. The chemical reactions can occur within the liquid phase, as well as between the liquid and solid phases which may result in an evolution of porosity and permeability. Under variably saturated conditions the area of interfaces changes with degree of the fluid saturation. PoreFlow uses complex formulations for more accurate modeling of transport problems in presence of the nonwetting phase. This is done by refining the discretization within drained pores. An implicit numerical scheme is used to solve the governing equations, and an efficient substitution method is applied to considerably minimize computational times. Several examples are provided, under saturated and variably saturated conditions, to demonstrate the model applicability in hydrogeology problems and petroleum fields. We show that PoreFlow is a powerful tool for upscaling of flow and transport in porous media, utilizing different pore scale information such as various interfaces, phase distributions and local fluxes and concentrations to determine macro scale properties such as average saturation, relative permeability, solute dispersivity, adsorption coefficients, effective diffusion and tortuosity. Such information can be used as constitutive relations within continuum scale governing equations to model physical and chemical processes more accurately at the larger scales.
Study of acoustic radiation during air stream filtration through a porous medium
NASA Astrophysics Data System (ADS)
Zaslavskii, Yu. M.; Zaslavskii, V. Yu.
2012-11-01
The paper presents results of laboratory experiments on studying the characteristics of acoustic emission generated by a flow of compressed air, which is filtered by porous pumice samples with and without partial fluid saturation. The construction features of the laboratory setup and details of the experiments are described. Porous samples with dry and partially fluid-filled pores are used. The visual patterns of the acoustic emission spectrum, which occurs under stationary filtration of the compressed air, are presented, and its amplitude-frequency distribution characteristic for different sample porosities and different degrees of their fluid saturation is shown. It is demonstrated that the relaxation times of the emission noise level differ. This is revealed during the sharp elimination of the drop in pressure from such samples, i.e., in the nonstationary filtration mode.
Anisotropic universe with anisotropic sources
Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in
2013-12-01
We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.
Homogenization of two fluid flow in porous media
Daly, K. R.; Roose, T.
2015-01-01
The macroscopic behaviour of air and water in porous media is often approximated using Richards' equation for the fluid saturation and pressure. This equation is parametrized by the hydraulic conductivity and water release curve. In this paper, we use homogenization to derive a general model for saturation and pressure in porous media based on an underlying periodic porous structure. Under an appropriate set of assumptions, i.e. constant gas pressure, this model is shown to reduce to the simpler form of Richards' equation. The starting point for this derivation is the Cahn–Hilliard phase field equation coupled with Stokes equations for fluid flow. This approach allows us, for the first time, to rigorously derive the water release curve and hydraulic conductivities through a series of cell problems. The method captures the hysteresis in the water release curve and ties the macroscopic properties of the porous media with the underlying geometrical and material properties. PMID:27547073
NASA Astrophysics Data System (ADS)
Besedina, A. N.; Vinogradov, E. A.; Gorbunova, E. M.; Kabychenko, N. V.; Svintsov, I. S.; Pigulevskiy, P. I.; Svistun, V. K.; Shcherbina, S. V.
2015-01-01
The first part of this work is dedicated to the response of different-age structures to lunisolar tides, which can be considered as a sounding signal for monitoring the state of fluid-saturated reservoirs. The complex approach to processing the data obtained at the testing sites of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Institute of Geophysics of the National Academy of Sciences of Ukraine, and KIEV station of the IRIS seismic network is applied for recognizing the tides against the hydrogeological, barometric, and seismic series. The comparative analysis of the experimental and theoretical values of the diurnal and semidiurnal tidal components in the time series of ground displacements is carried out. The tidal variations in the groundwater level are compared with the tidal components revealed in the ground displacement of the different-age structure of the Moscow Basin and Ukrainian Shield, which are parts of the East European artesian region. The differences in the tidal responses of the groundwater level and ground displacement probably suggest that the state of the massif is affected by certain additional factors associated, e.g., with the passage of earthquake-induced seismic waves and the changes in the hydrogeodynamic environment.
Anisotropic and Hierarchical Porosity in Multifunctional Ceramics
NASA Astrophysics Data System (ADS)
Lichtner, Aaron Zev
The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.
Directional wetting in anisotropic inverse opals.
Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna
2014-07-01
Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.
Natural thermal convection in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
NASA Astrophysics Data System (ADS)
Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih
2016-04-01
Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate
NASA Astrophysics Data System (ADS)
Jishi, Fu; Jinchang, Mao; En, Wu; Yongqiang, Jia; Borui, Zhang; Lizhu, Zhang; Guogang, Qin; Yuhua, Zhang; Genshuan, Wui
1994-12-01
An anisotropic EPR signal was observed in porous Si. According to its symmetry and g value, the EPR signal can be attributed to silicon dangling bonds located on the surface of a porous Si skeleton. The evolution of the EPR signal at room temperature in air was measured. The annealing temperature dependence of the EPR and the PL of porous Si in oxygen and the effects of gamma irradiation on the EPR and the PL spectra of porous Si were studied. The changes of the EPR signal and the PL intensity induced in atmosphere by ethyl alcohol and acetone were discovered. The dangling bond is only one of the factors which affect the PL.
1987-06-01
4! / D 0 ra CL (7 L n~ J &~~P~~MA, APPENDIX A .’ETHOD OF SOLUTION OF THE DISPERSION RELATION AND ITS IMPLEMENTATION The mehtod used to find the roots...Constant and Characteristic Impedance of Porous Acoustical Material", J . Acoust. Soc. Am., Vol. 54, pp. 1138-1142, 1973. 6. Chung, J . Y. and Blaser, D . A...Press, 1968. 14. Johnson, D . L., Koplik, J . and Dashen, R., "Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media", submitted
Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir
2016-01-01
The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387
Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir
2016-01-01
The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems.
NASA Astrophysics Data System (ADS)
Baccheschi, P.; Pastori, M.; Margheriti, L.; Piccinini, D.
2016-03-01
The Abruzzi region is located in the Central Apennines Neogene fold-and-thrust belt and has one of the highest seismogenic potential in Italy, with high and diffuse crustal seismicity related to NE-SW oriented extension. In this study, we investigate the detailed spatial variation in shear wave splitting providing high-resolution anisotropic structure beneath the L'Aquila region. To accomplish this, we performed a systematic analysis of crustal anisotropic parameters: fast polarization direction (ϕ) and delay time (δt). We benefit from the dense coverage of seismic stations operating in the area and from a catalogue of several accurate earthquake locations of the 2009 L'Aquila seismic sequence, related to the Mw 6.1 2009 L'Aquila main shock, to describe in detail the geometry of the anisotropic volume around the active faults that ruptured. The spatial variations both in ϕ and δt suggest a complex anisotropic structure beneath the region caused by a combination of both structural- and stress-induced mechanisms. The average ϕ is NNW-SSE oriented (N141°), showing clear similarity both with the local fault strike and the SHmax. In the central part of the study area fast axes are oriented NW-SE, while moving towards the northeastern and northwestern sectors the fast directions clearly diverge from the general trend of NW-SE and rotate accordingly to the local fault strikes. The above-mentioned fault-parallel ϕ distribution suggests that the observed anisotropy is mostly controlled by the local fault-related structure. Toward the southeast fast directions become orthogonal both to strike of the local mapped faults and to the SHmax. Here, ϕ are predominantly oriented NE-SW; we interpret this orientation as due to the presence of a highly fractured and overpressurized rock volume which should be responsible of the 90° flips in ϕ and the increase in δt. Another possible mechanism for NE-SW orientation of ϕ in the southeastern sector could be ascribed to the
Magnetohydrodynamic stability of natural convection in a vertical porous slab
NASA Astrophysics Data System (ADS)
Shankar, B. M.; Kumar, Jai; Shivakumara, I. S.
2017-01-01
The stability of the conduction regime of natural convection in an electrically conducting fluid saturated porous vertical slab is investigated in the presence of a uniform external transverse magnetic field. The flow in the porous medium is described by modified Brinkman-extended Darcy equation with fluid viscosity different from effective viscosity. The boundaries of the vertical porous slab are assumed to be rigid-isothermal and electrically non-conducting. The resulting stability equations are solved numerically using Galerkin method. The critical Grashof number Gc, the critical wave number αc and the critical wave speed cc are computed for a wide range of porous parameter σp, the ratio of effective viscosity to the fluid viscosity Λ, the Prandtl number Pr and the Hartmann number M. Based on these parameters, the stability characteristics of the system are discussed in detail. The presence of advective inertia is to instill instability on the flow in a porous medium and found that the magnetic field, porous parameter and ratio of viscosities have a stabilizing effect on both stationary and oscillatory wave instabilities. Besides, the value of Pr at which transition occurs from stationary to oscillatory mode of instability decreases with increasing M ,σp and Λ .
Active chimney effect using heated porous layers: optimum heat transfer
NASA Astrophysics Data System (ADS)
Mehiris, Abdelhak; Ameziani, Djamel-Edine; Rahli, Omar; Bouhadef, Khadija; Bennacer, Rachid
2017-05-01
The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method
NASA Astrophysics Data System (ADS)
Qiao, W.
2015-12-01
The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the
Numerical solutions for steady thermal convection from a concentrated source in a porous medium
Hickox, C.E.; Watts, H.A.
1980-06-01
Solutions for the steady, axisymmetric velocity and temperature fields associated with a point source of thermal energy in a fluid-saturated porous medium are obtained numerically through use of similarity transformations. The two cases considered are those of a point source located on the lower, insulated boundary of a semi-infinite region and a point source embedded in an infinite region. Numerical results are presented from which complete descriptions of the velocity and temperature fields can be constructed for Rayleigh numbers ranging from 10/sup -3/ to 10/sup 2/.
Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Xu, You-Sheng; Zhong, Yi-Jun; Huang, Guo-Xiang
2004-07-01
Based on the lattice Boltzmann method and general theory of fluids flowing in porous media, a numerical model is presented for the diffusion-reaction-transport (DRT) processes in porous media. As a test, we simulate a DRT process in a two-dimensional horizontal heterogeneous porous medium. The influence of gravitation in this case can be neglected, and the DRT process can be described by a strongly heterogeneous diagnostic test strip or a thin confined piece of soil with stochastically distributing property in horizontal directions. The results obtained for the relations between reduced fluid saturation S, concentration c1, and concentration c2 are shown by using the visualization computing technique. The computational efficiency and stability of the model are satisfactory.
Mixed Convection Opposing Flow in a Vertical Porous Annulus-Two Temperature Model
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. AA; J, Salman Ahmed N.; Khaleed, H. M. T.; Yunus Khan, T. M.; NazimAhamed, K. S.
2016-09-01
The opposing flow in a porous medium refers to a condition when the forcing velocity flows in opposite direction to thermal buoyancy obstructing the buoyant force. The present research refers to the effect of opposing flow in a vertical porous annulus embedded with fluid saturated porous medium. The thermal non-equilibrium approach with Darcy modal is considered. The boundary conditions are such that the inner radius is heated with constant temperature Tw the outer radius is maintained at constant temperature Tc. The coupled nonlinear partial differential equations such as momentum equation, energy equation for fluid and energy equation for solid are solved using the finite element method. The opposing flow variation of average Nusselt number with respect to radius ratio Rr, Aspect ratioAr and Radiation parameter Rd for different values of Peclet number Pe are investigated. It is found that the flow behavior is quite different from that of aiding flow.
Birefringent porous silicon membranes for optical sensing.
Alvarez, Jesús; Bettotti, Paolo; Suárez, Isaac; Kumar, Neeraj; Hill, Daniel; Chirvony, Vladimir; Pavesi, Lorenzo; Martínez-Pastor, Juan
2011-12-19
In this work anisotropic porous silicon is investigated as a material for optical sensing. Birefringence and sensitivity of the anisotropic porous silicon membranes are thoroughly studied in the framework of Bruggeman model which is extended to incorporate the influence of environment effects, such as silicon oxidation. The membranes were also characterized optically demonstrating sensitivity as high as 1245 nm/RIU at 1500 nm. This experimental value only agrees with the theory when it takes into consideration the effect of silicon oxidation. Furthermore we demonstrate that oxidized porous silicon membranes have optical parameters with long term stability. Finally, we developed a new model to determine the contribution of the main depolarization sources to the overall depolarization process, and how it influences the measured spectra and the resolution of birefringence measurements.
Anisotropic Artificial Impedance Surfaces
NASA Astrophysics Data System (ADS)
Quarfoth, Ryan Gordon
Anisotropic artificial impedance surfaces are a group of planar materials that can be modeled by the tensor impedance boundary condition. This boundary condition relates the electric and magnetic field components on a surface using a 2x2 tensor. The advantage of using the tensor impedance boundary condition, and by extension anisotropic artificial impedance surfaces, is that the method allows large and complex structures to be modeled quickly and accurately using a planar boundary condition. This thesis presents the theory of anisotropic impedance surfaces and multiple applications. Anisotropic impedance surfaces are a generalization of scalar impedance surfaces. Unlike the scalar version, anisotropic impedance surfaces have material properties that are dependent on the polarization and wave vector of electromagnetic radiation that interacts with the surface. This allows anisotropic impedance surfaces to be used for applications that scalar surfaces cannot achieve. Three of these applications are presented in this thesis. The first is an anisotropic surface wave waveguide which allows propagation in one direction, but passes radiation in the orthogonal direction without reflection. The second application is a surface wave beam shifter which splits a surface wave beam in two directions and reduces the scattering from an object placed on the surface. The third application is a patterned surface which can alter the scattered radiation pattern of a rectangular shape. For each application, anisotropic impedance surfaces are constructed using periodic unit cells. These unit cells are designed to give the desired surface impedance characteristics by modifying a patterned metallic patch on a grounded dielectric substrate. Multiple unit cell geometries are analyzed in order to find the setup with the best performance in terms of impedance characteristics and frequency bandwidth.
Anisotropic Nanoparticles and Anisotropic Surface Chemistry.
Burrows, Nathan D; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Lin, Wayne; Li, Ji; Dennison, Jordan M; Hinman, Joshua G; Murphy, Catherine J
2016-02-18
Anisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules. Anisotropic particles have long fascinated scientists, and their properties and assembly behavior have been the subjects of many theoretical studies over the years. However, only recently has experiment caught up with theory. We have begun to witness tremendous diversity in the synthesis of nanoparticles with controlled anisotropy. In this Perspective, we highlight the synthetic achievements that have galvanized the field, presenting a comprehensive discussion of the mechanisms and products of both seed-mediated and alternative growth methods. We also address recent breakthroughs and challenges in regiospecific functionalization, which is the next frontier in exploiting nanoparticle anisotropy.
NASA Astrophysics Data System (ADS)
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
Full waveform inversion of seismic waves reflected in a stratified porous medium
NASA Astrophysics Data System (ADS)
De Barros, Louis; Dietrich, Michel; Valette, Bernard
2010-09-01
In reservoir geophysics applications, seismic imaging techniques are expected to provide as much information as possible on fluid-filled reservoir rocks. Since seismograms are, to some degree, sensitive to the mechanical parameters and fluid properties of porous media, inversion methods can be devised to directly estimate these quantities from the waveforms obtained in seismic reflection experiments. An inversion algorithm that uses a generalized least-squares, quasi-Newton approach is described to determine the porosity, permeability, interstitial fluid properties and mechanical parameters of porous media. The proposed algorithm proceeds by iteratively minimizing a misfit function between observed data and synthetic wavefields computed with the Biot theory. Simple models consisting of plane-layered, fluid-saturated and poro-elastic media are considered to demonstrate the concept and evaluate the performance of such a full waveform inversion scheme. Numerical experiments show that, when applied to synthetic data, the inversion procedure can accurately reconstruct the vertical distribution of a single model parameter, if all other parameters are perfectly known. However, the coupling between some of the model parameters does not permit the reconstruction of several model parameters at the same time. To get around this problem, we consider composite parameters defined from the original model properties and from a priori information, such as the fluid saturation rate or the lithology, to reduce the number of unknowns. Another possibility is to apply this inversion algorithm to time-lapse surveys carried out for fluid substitution problems, such as CO2 injection, since in this case only a few parameters may vary as a function of time. We define a two-step differential inversion approach which allows us to reconstruct the fluid saturation rate in reservoir layers, even though the medium properties are poorly known.
Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer
2015-01-01
An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number. PMID:26657931
Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer
2015-01-01
An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.
Nonlinear Behavior Of Saturated Porous Media Under External Impact
NASA Astrophysics Data System (ADS)
Perepechko, Y.
2005-12-01
This paper deals with nonlinear behavior of liquid saturated porous media in gravity filed under external impact. The continuum is assumed to be a two-velocity medium; it consists of a deformable porous matrix (with Maxwell's reology) and a Newtonian liquid that saturates this matrix. The energy dissipation in this model takes place due the interface friction between the solid matrix and saturating liquid, and also through relaxation of inelastic shear stress in the porous matrix. The elaborated nonisothermal mathematical model for this kind of medium is a thermodynamically consistent and closed model. Godunov's explicit difference scheme was used for computer simulation; the method implies numerical simulation for discontinuity decay in flux calculations. As an illustrative example, we consider the formation of dissipation structures in a plain layer of that medium after pulse or periodic impact on the background of liquid filtration through the porous matrix. At the process beginning, one can observe elastic behavior of the porous matrix. Deformation spreading through the saturated porous matrix occurs almost without distortions and produces a channel-shaped zone of stretching with a high porosity. Later on, dissipation processes and reology properties of porous medium causes the diffusion of this channel. We also observe a correlation between the liquid distribution (porosity for the solid matrix) and dilatancy fields; this allows us to restore the dilatancy field from the measured fluid saturation of the medium. This work was supported by the RFBR (Grant No. 04-05-64107), the Presidium of SB RAS (Grant 106), the President's Grants (NSh-2118.2003.5, NSh-1573.2003.5).
Anisotropic contrast optical microscope
NASA Astrophysics Data System (ADS)
Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Molecular anisotropic magnetoresistance
NASA Astrophysics Data System (ADS)
Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy
2015-12-01
Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.
Anisotropic contrast optical microscope.
Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm(2) object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Thermal effects in orthotropic porous elastic beams
NASA Astrophysics Data System (ADS)
Iaşan, D.
2009-01-01
This paper is concerned with the linear theory of anisotropic porous elastic bodies. The extension and bending of orthotropic porous elastic cylinders subjected to a plane temperature field is investigated. The work is motivated by the recent interest in the using of the orthotropic porous elastic solid as model for bones and various engineering materials. First, the thermoelastic deformation of inhomogeneous beams whose constitutive coefficients are independent of the axial coordinate is studied. Then, the extension and bending effects in orthotropic cylinders reinforced by longitudinal rods are investigated. The three-dimensional problem is reduced to the study of two-dimensional problems. The method is used to solve the problem of an orthotropic porous circular cylinder with a special kind of inhomogeneity.
Modeling anisotropic flow and heat transport by using mimetic finite differences
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik
2016-08-01
Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.
Anisotropic eddy viscosity models
NASA Technical Reports Server (NTRS)
Carati, D.; Cabot, W.
1996-01-01
A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.
Seismoelectric Phenomena in Fluid-Saturated Sediments
Block, G I; Harris, J G
2005-04-22
Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.
NASA Astrophysics Data System (ADS)
Pharoah, J. G.; Karan, K.; Sun, W.
This paper reviews the approach taken in the literature to model the effective transport coefficients - mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability - of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.
Fractures in anisotropic media
NASA Astrophysics Data System (ADS)
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Parallel Anisotropic Tetrahedral Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.
Anisotropic Total Variation Filtering
Grasmair, Markus; Lenzen, Frank
2010-12-15
Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.
Textured silicon nitride: processing and anisotropic properties
Zhu, Xinwen; Sakka, Yoshio
2008-01-01
Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the
Textured silicon nitride: processing and anisotropic properties.
Zhu, Xinwen; Sakka, Yoshio
2008-07-01
Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the
Bullien, F.A.L. . Dept. of Chemical Engineering)
1992-01-01
The unique property of a porous medium, the one that distinguishes it from other solid bodies on the one hand and from simple conduits on the other, is its complicated pore structure. Fluid flow, diffusion, and electrical conduction in porous media take place within extremely complicated microscopic boundaries that in the past made a rigorous solution of the equations of change in the capillary network practically impossible. The past state of affairs is one of the reasons why some of the brilliant and successful practitioners in the field of flow through porous media have tried, as much as possible, to stick with the continuum approach in which no attention is paid to pores or pore structure. Another reason is that the continuum approach is often adequate for the phenomenological description of macroscopic transport processes in porous media. This book has been written with the primary purpose of presenting in an organized manner the most pertinent information available on the role of pore structure and then putting it to use in the interpretation of experimental data and the results of model calculations.
Brusseau, M.L.; Narter, M.; Schnaar, G.; Marble, J.
2009-06-01
The objective of this study was to quantitatively characterize the impact of porous-medium texture on interfacial area between immiscible organic liquid and water residing within natural porous media. Synchrotron X-ray microtomography was used to obtain high-resolution, three-dimensional images of solid and liquid phases in packed columns. The image data were processed to generate quantitative measurements of organic-liquid/water interfacial area and of organic-liquid blob sizes. Ten porous media, comprising a range of median grain sizes, grain-size distributions, and geochemical properties, were used to evaluate the impact of porous-medium texture on interfacial area. The results show that fluid-normalized specific interfacial area (A{sub f}) and maximum specific interfacial area (A{sub m}) correlate very well to inverse median grain diameter. These functionalities were shown to result from a linear relationship between effective organic-liquid blob diameter and median grain diameter. These results provide the basis for a simple method for estimating specific organic-liquid/water interfacial area as a function of fluid saturation for a given porous medium. The availability of a method for which the only parameter needed is the simple-to-measure median grain diameter should be of great utility for a variety of applications.
Bioinspired Strong and Highly Porous Glass Scaffolds.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2011-03-22
The quest for more efficient energy-related technologies is driving the development of porous and high-performance structural materials with exceptional mechanical strength. Natural materials achieve their strength through complex hierarchical designs and anisotropic structures that are extremely difficult to replicate synthetically. We emulate nature's design by direct-ink-write assembling of glass scaffolds with a periodic pattern, and controlled sintering of the filaments into anisotropic constructs similar to biological materials. The final product is a porous glass scaffold with a compressive strength (136 MPa) comparable to that of cortical bone and a porosity (60%) comparable to that of trabecular bone. The strength of this porous glass scaffold is ~100 times that of polymer scaffolds and 4-5 times that of ceramic and glass scaffolds with comparable porosities reported elsewhere. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for a broad array of applications, including tissue engineering, filtration, lightweight composites, and catalyst support.
Anisotropic Weyl symmetry and cosmology
Moon, Taeyoon; Oh, Phillial; Sohn, Jongsu E-mail: ploh@skku.edu
2010-11-01
We construct an anisotropic Weyl invariant theory in the ADM formalism and discuss its cosmological consequences. It extends the original anisotropic Weyl invariance of Hořava-Lifshitz gravity using an extra scalar field. The action is invariant under the anisotropic transformations of the space and time metric components with an arbitrary value of the critical exponent z. One of the interesting features is that the cosmological constant term maintains the anisotropic symmetry for z = −3. We also include the cosmological fluid and show that it can preserve the anisotropic Weyl invariance if the equation of state satisfies P = zρ/3. Then, we study cosmology of the Einstein-Hilbert-anisotropic Weyl (EHaW) action including the cosmological fluid, both with or without anisotropic Weyl invariance. The correlation of the critical exponent z and the equation of state parameter ω-bar provides a new perspective of the cosmology. It is also shown that the EHaW action admits a late time accelerating universe for an arbitrary value of z when the anisotropic conformal invariance is broken, and the anisotropic conformal scalar field is interpreted as a possible source of dark energy.
On the relativistic anisotropic configurations
NASA Astrophysics Data System (ADS)
Shojai, F.; Kohandel, M.; Stepanian, A.
2016-06-01
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.
Anisotropic multiple bounce models
NASA Astrophysics Data System (ADS)
Bacalhau, Anna Paula; Peter, Patrick; Vitenti, Sandro D. P.
2017-07-01
We analyze the Galileon ghost condensate implementation of a bouncing cosmological model in the presence of a non-negligible anisotropic stress. We exhibit its structure, which we find to be far richer than previously thought. In particular, even restricting attention to a single set of underlying microscopic parameters, we obtain, numerically, many qualitatively different regimes: depending on the initial conditions on the scalar field leading the dynamics of the Universe, the contraction phase can evolve directly towards a singularity, avoid it by bouncing once, or even bounce many times before settling into an ever-expanding phase. We clarify the behavior of the anisotropies in these various situations.
Dickakian, G. B.
1985-11-05
An improved process for preparing an optically anisotropic pitch which comprises heating a pitch feed material at a temperature within the range of about 350/sup 0/ C. to 450/sup 0/ C. while passing an inert gas therethrough at a rate of at least 2.5 SCFH/lb of pitch feed material and agitating said pitch feed material at a stirrer rate of from about 500 to 600 rpm to obtain an essentially 100% mesophase pitch product suitable for carbon production.
Anisotropic spinfoam cosmology
NASA Astrophysics Data System (ADS)
Rennert, Julian; Sloan, David
2014-01-01
The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.
Heterogeneous porous media in hydrology
NASA Astrophysics Data System (ADS)
Ababou, Rachid
In natural geologic formations, flow and transport-related processes are perturbed by multidimensional and anisotropic material heterogeneities of diverse sizes, shapes, and origins (bedding, layering, inclusions, fractures, grains, for example). Heterogeneity tends to disperse and mix transported quantities and may initiate new transfer mechanisms not seen in ideally homogeneous porous media. Effective properties such as conductivity and dispersivity may not be simple averages of locally measured quantities.The special session, “Effective Constitutive Laws for Heterogeneous Porous Media,” convened at AGU's 1992 Fall Meeting in San Francisco, addressed these issue. Over forty-five contributions, both oral and poster, covering a broad range of physical phenomena were presented. The common theme was the macroscale characterization and modeling of flow and flow-related processes in geologic media that are heterogeneous at various scales (from grain size or fracture aperture, up to regional scales). The processes analyzed in the session included coupled hydro-mechanical processes; Darcy-type flow in the saturated, unsaturated, or two-phase regimes; tracer transport, dilution, and dispersion. These processes were studied for either continuous (porous) or discontinuous (fractured) media.
Not Available
1994-06-01
Calculations showed that capillary forces can easily produce closed- pore boundary conditions at interface between nonwetting fluid (air) and a porous solid saturated by a wetting fluid (water). The direct excitation technique was used to measure surface wave velocity and attenuation on both wet and dry rocks. The strong correlation between the observed surface wave velocity change caused by water saturation and the formation permeability can be used for ultrasonic assessment of the dynamic permeability. The experimental system was improved further by introducing laser interferometric detection, which was adapted to surface wave inspection of fluid-saturated permeable materials. In a separate effort, the surface stiffness of different water-saturated porous solids was studied by a novel acoustical method. Areas for further study are described.
Laboratory investigation of longitudinal dispersion in anisotropic porous media
Silliman, S.E.; Konikow, L.F.; Voss, C.I.
1987-01-01
In this study, laboratory experiments were used to investigate mechanisms that may cause anisotropy in the dispersion coefficient and to investigate the relation between anisotropy in hydraulic conductivity and anisotropy in longitudinal dispersion. Measurements of sodium chloride concentration (used as a tracer) were made at 105 in situ sampling locations in a new type of sand box designed to allow flow in either of two perpendicular directions. Two types of hydraulic anisotropy were examined. The first consisted of structured zones of increased hydraulic conductivity within a lower-conductivity medium. The second type involved low-conductivity platelike inclusions within a homogeneous, isotropic medium. The plates were aligned such that the tortuosity was increased only in one principal direction of permeability. Results using two examples of the first type of media showed that the apparent longitudinal dispersivities for flow parallel to the high-conductivity direction were greater than those perpendicular to this direction. Two examples of the second type of media produced smaller apparent longitudinal dispersivities for flow parallel to the high-conductivity direction. The results suggest that the mechanisms causing dispersive anisotropy can be related, conceptually, to the factors causing hydraulic anisotropy.
Chaotic advection in 2D anisotropic porous media
NASA Astrophysics Data System (ADS)
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
Inhomogeneous anisotropic cosmology
NASA Astrophysics Data System (ADS)
Kleban, Matthew; Senatore, Leonardo
2016-10-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less
Inhomogeneous anisotropic cosmology
Kleban, Matthew; Senatore, Leonardo
2016-10-12
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Anisotropic Particles in Turbulence
NASA Astrophysics Data System (ADS)
Voth, Greg A.; Soldati, Alfredo
2017-01-01
Anisotropic particles are common in many industrial and natural turbulent flows. When these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field. This system has proven to be a fascinating application of the fundamental properties of velocity gradients in turbulence. When particles are not neutrally buoyant, they experience preferential concentration and very different preferential alignment than neutrally buoyant tracer particles. A vast proportion of the parameter range of anisotropic particles in turbulence is still unexplored, with most existing research focusing on the simple foundational cases of axisymmetric ellipsoids at low concentrations in homogeneous isotropic turbulence and in turbulent channel flow. Numerical simulations and experiments have recently developed a fairly comprehensive picture of alignment and rotation in these cases, and they provide an essential foundation for addressing more complex problems of practical importance. Macroscopic effects of nonspherical particle dynamics include preferential concentration in coherent structures and drag reduction by fiber suspensions. We review the models used to describe nonspherical particle motion, along with numerical and experimental methods for measuring particle dynamics.
Beckermann, C.; Ramadhyani, S.; Viskanta, R. )
1987-05-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra {times} Da, the flow takes place primarily in the fluid layers, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.
Anisotropic power-law inflation
Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp
2010-12-01
We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.
Synthesis and characterization of nanowire-based anisotropic conductors.
Sykes, E Charles H; Andreu, Aja; Deadwyler, Dan A; Daneshvar, Kasra; El-Kouedi, Mahnaz
2006-04-01
We investigated the potential of commercially available porous templates to be used for the fabrication of functional anisotropic conductors. A galvanostatic deposition technique was used to fabricate arrays consisting of 200 nm diameter nanowires inside the pores of polycarbonate membranes. A tape lift-off procedure allowed the complete removal of any residual metal from both sides of the polymer membrane to form an anisotropic conductive film. The 10 microm thick film has roughly 3 x 10(8) nanowires per cm2, and it showed near zero electrical resistance perpendicular to the surface while appearing completely open to circuits between any points on the surface. The preparation of the film, characterization using SEM, AFM, and resistance measurements are presented. The 1D conductivity of these membranes may have many potential applications for microelectronic interconnects for packaging technologies.
Anisotropic Kepler and anisotropic two fixed centres problems
NASA Astrophysics Data System (ADS)
Maciejewski, Andrzej J.; Przybylska, Maria; Szumiński, Wojciech
2017-02-01
In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton's law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.
Thermodynamics of anisotropic branes
NASA Astrophysics Data System (ADS)
Ávila, Daniel; Fernández, Daniel; Patiño, Leonardo; Trancanelli, Diego
2016-11-01
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Optical trapping of anisotropic nanocylinder
NASA Astrophysics Data System (ADS)
Bareil, Paul B.; Sheng, Yunlong
2013-09-01
The T-matrix method with the Vector Spherical Wave Function (VSWF) expansions represents some difficulties for computing optical scattering of anisotropic particles. As the divergence of the electric field is nonzero in the anisotropic medium and the VSWFs do not satisfy the anisotropic wave equations one questioned whether the VSWFs are still a suitable basis in the anisotropic medium. We made a systematic and careful review on the vector basis functions and the VSWFs. We found that a field vector in Euclidean space can be decomposed to triplet vectors {L, M, N}, which as non-coplanar. Especially, the vector L is designed to represent non-zero divergence component of the vector solution, so that the VSWF basis is sufficiently general to represent the solutions of the anisotropic wave equation. The mathematical proof can be that when the anisotropic wave equations is solved in the Fourier space, the solution is expanded in the basis of the plan waves with angular spectrum amplitude distributions. The plane waves constitute an orthogonal and complete set for the anisotropic solutions. Furthermore, the plane waves are expanded into the VSWF basis. These two-step expansions are equivalent to the one-step direct expansion of the anisotropic solution to the VSWF basis. We used direct VSWF expansion, along with the point-matching method in the T-matrix, and applied the boundary condition to the normal components displacement field in order to compute the stress and the related forces and torques and to show the mechanism of the optical trap of the anisotropic nano-cylinders.
Nanocellulose-assisted formation of porous hematite nanostructures.
Ivanova, Alesja; Fominykh, Ksenia; Fattakhova-Rohlfing, Dina; Zeller, Patrick; Döblinger, Markus; Bein, Thomas
2015-02-02
We report the formation of porous iron oxide (hematite) nanostructures via sol-gel transformations of molecular precursors in the confined space of self-organized nanocrystalline cellulose (NCC) used as a shape-persistent template. The obtained structures are highly porous α-Fe(2)O(3) (hematite) morphologies with a well-defined anisotropic porosity. The character of the porous nanostructure depends on the iron salt used as the precursor and the heat treatment. Moreover, a postsynthetic hydrothermal treatment of the NCC/iron salt composites strongly affects the crystal growth as well as the porous nanomorphology of the obtained hematite scaffolds. We demonstrate that the hydrothermal treatment alters the crystallization mechanism of the molecular iron precursors, which proceeds via the formation of anisotropic iron oxyhydroxide species. The nanocellulose templating technique established here enables the straightforward fabrication of a variety of mesoporous crystalline iron oxide scaffolds with defined porous structure and is particularly attractive for the processing of porous hematite films on different substrates.
Porous to Nonporous Transition in the Morphology of Metal Assisted Etched Silicon Nanowires
NASA Astrophysics Data System (ADS)
Lotty, Olan; Petkov, Nikolay; Georgiev, Yordan M.; Holmes, Justin D.
2012-11-01
A single step metal assisted etching (MAE) process, utilizing metal ion-containing HF solutions in the absence of an external oxidant, has been developed to generate heterostructured Si nanowires with controllable porous (isotropically etched) and non-porous (anisotropically etched) segments. Detailed characterisation of both the porous and non-porous sections of the Si nanowires was provided by transmission electron microscopy studies, enabling the mechanism of nanowire roughening to be ascertained. The versatility of the MAE method for producing heterostructured Si nanowires with varied and controllable textures is discussed in detail.
Vortex dynamics in anisotropic traps
McEndoo, S.; Busch, Th.
2010-07-15
We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.
Cracking on anisotropic neutron stars
NASA Astrophysics Data System (ADS)
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Actuation performances of anisotropic gels
NASA Astrophysics Data System (ADS)
Nardinocchi, P.; Teresi, L.
2016-12-01
We investigated the actuation performances of anisotropic gels driven by mechanical and chemical stimuli, in terms of both deformation processes and stroke-curves, and distinguished between the fast response of gels before diffusion starts and the asymptotic response attained at the steady state. We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely isotropic extensions.
Anisotropic assembly and pattern formation
NASA Astrophysics Data System (ADS)
von Brecht, James H.; Uminsky, David T.
2017-01-01
We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.
Berryman, J.G.
2010-06-01
The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated
The Time-Dependency of Deformation in Porous Carbonate Rocks
NASA Astrophysics Data System (ADS)
Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.
2016-12-01
Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.
Instability of fluid flow over saturated porous medium
NASA Astrophysics Data System (ADS)
Lyubimova, Tatyana; Kolchanova, Ekaterina; Lyubimov, Dmitry
2013-04-01
We investigate the stability of a fluid flow over a saturated porous medium. The problem is of importance due to the applications to washing out of contaminants from the bottom layer of vegetation, whose properties are similar to the properties of porous medium. In the case of porous medium with the relatively high permeability and porosity the flow involves a part of the fluid saturating the porous medium, with the tangential fluid velocity drop occurring because of the resistance of the solid matrix. The drop leads to the instability analogous to Kelvin-Helmholtz one accompanied by the formation of travelling waves. In the present paper we consider a two-layer system consisting of a pure fluid layer and a porous layer saturated by the fluid located underneath. The system is bounded by a rigid surface at the bottom and a non-deformable free surface at the top. It is under the gravity and inclined at a slight angle to the horizontal axis. The boundary conditions at the interface between the fluid and porous layers are the continuity of fluid velocities and the balance of normal and tangential stresses taking into account the resistance of the solid matrix with respect to the fluid flow near the interface [1-2]. The problem is solved in the framework of the Brinkman model applying the classical shooting algorithm with orthogonalization. The stability boundaries of the stationary fluid flow over the saturated porous medium with respect to the small oscillatory perturbations are obtained for the various values of the Darcy number and the ratio of the porous layer thickness to the full thickness of the system d. It was shown that at the d > 0.5 with increasing the porous layer thickness (or with decreasing of the fluid layer thickness) the stability threshold rises. This is because of the fact that the instability is primarily caused by perturbations located in the fluid layer. At the d < 0.5 the reduction of the porous layer thickness leads to the stability threshold
Numerical simulation and rational design of optically anisotropic columnar films
NASA Astrophysics Data System (ADS)
Leontyev, Viktor A.; Hawkeye, Matthew M.; Wakefield, Nicholas G.; Tabunshchyk, Kyrylo; Sit, Jeremy C.; Kovalenko, Andriy; Brett, Michael J.
2011-03-01
Optical anisotropy is an inherent property of columnar dielectric films, such as those fabricated by the glancing angle deposition (GLAD) technique. This process utilizes physical vapor deposition combined with computer-controlled substrate motion to finely tune the direction of column growth and vital morphological parameters such as column cross-section and inter-columnar spacing. Control over the anisotropic properties of the porous film provides an opportunity to design polarization-selective photonic devices and films with improved band gap properties. Anisotropic defects in multilayer films also result in a polarization-sensitive position of resonant transmission modes. We employed the finite-difference time-domain and frequency-domain methods to theoretically analyze and design columnar films with unique band-gap properties. The following morphologies were considered: (i) S-shaped columnar films with polarization-dependent band-gap position and width. Using numerical simulations we have shown that the competitive effect of different sources of anisotropy can be used to engineer photonic band gaps with strong selectivity to linearly-polarized light; (ii) Rugate thin films with an anisotropic defect, which exhibit resonant mode splitting. Optical devices were fabricated using titanium dioxide because it has good transparency in the visible range of the optical spectrum and a large bulk refractive index. Experimental results were compared to simulations to verify the designs and understand the limitations of the fabrication process.
Coefficient adaptive triangulation for strongly anisotropic problems
D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.
1996-01-01
Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.
Light propagation through anisotropic turbulence.
Toselli, Italo; Agrawal, Brij; Restaino, Sergio
2011-03-01
A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).
Freeze Tape Casting of Functionally Graded Porous Ceramics
NASA Technical Reports Server (NTRS)
Sofie, Stephen W.
2007-01-01
Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.
Numerical modeling of anisotropic fiber bundle behavior in oxygenators.
Bhavsar, Sonya S; Schmitz-Rode, Thomas; Steinseifer, Ulrich
2011-11-01
Prediction of flow patterns through oxygenator fiber bundles can allow shape optimization so that efficient gas exchange occurs with minimal thrombus formation and hemolysis. Computational fluid dynamics (CFD) simulations can be used to predict three-dimensional flow velocities and flow distribution from spatially dependent variables and they allow estimations of erythrocyte residence time within the fiber bundle. This study builds upon previous work to develop an accurate numerical model for oxygenators, which would allow for accelerated iterations in oxygenator shape and diffuser plate design optimization. Hollow fiber flow channels were developed to permit experimental calculation of fluid permeability in two directions: main flow along the hollow fiber and perpendicular to the hollow fibers. Commercial software was used to develop three-dimensional CFD models of the experimental flow channels and an anisotropic porous media model for oxygenators from these experimental results. The oxygenator model was used to predict pressure loss throughout the device, visualize blood distribution within the fiber bundle, and estimate erythrocyte residence time within the bundle. Experimental flow channels measurements produced a streamwise permeability of 1.143e(-8) m(2) and transverse permeability of 2.385e(-9) m(2) . These permeabilities, coupled with previous work with volume porosity, were used to develop the numerical model of anisotropic behavior through porous fiber bundles, which indicated a more uniform flow field throughout the oxygenator. Incorporation of known anisotropic fiber bundle behavior in previous numerical models more accurately represents fluid behavior through an oxygenator fiber bundle. CFD coupled with experimental validation can produce a powerful tool for oxygenator design and development.
Quantifying solid-fluid interfacial phenomena in porous rocks with proton nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Schmidt, Ehud J.; Velasco, Katherine K.; Nur, Amos M.
1986-04-01
The three order-of-magnitude variation in the proton nuclear magnetic resonance (NMR) longitudinal relaxation time T1 of water adsorbed on silica surfaces versus that of bulk water makes proton NMR studies of porous materials powerful tools to study the effects of adsorption. Recent theory permits the utilization of this different response to obtain pore space surface-to-volume (S/V) distribution functions by inverting the decay of the z component of magnetization of fully saturated porous rocks; information can likewise be obtained on the fluid distribution at partially saturated conditions. A computer program has been developed to invert the NMR relaxation curves for the S/V distribution function, assuming an isolated pore regime, the ramifications of which are examined. The program has been applied to experimental results from water, porous sandstones, and tight gas sands at various pore fluid saturations and varying electrolyte content. For the fully saturated case, the results show promise in the application of NMR to describing pore space geometries in rock samples with widely varying surface-to-volume ratios. For partially saturated rocks, the results reflect the preferential early draining of the large pores at high water saturations, connectivity percolation phenomena at intermediate saturations, and the dominating role of adsorbed water films at low water saturations. Experiments on rocks saturated with saline solutions disclose the importance of the effects of alteration of the active sites on the rock surfaces as well as the role of electrolytes in modifying the structural properties of bulk solution.
Streaming potential in porous media: 1. Theory of the zeta potential
NASA Astrophysics Data System (ADS)
Revil, A.; Pezard, P. A.; Glover, P. W. J.
1999-09-01
Electrokinetic phenomena are responsible for several electrical properties of fluid-saturated porous materials. Geophysical applications of these phenomena could include the use of streaming potentials for mapping subsurface fluid flow, the study of hydrothermal activity of geothermal areas, and in the context of earthquake prediction and volcanic activity forecasting, for example. The key parameter of electrokinetic phenomena is the ξ potential, which represents roughly the electrical potential at the mineral/water interface. We consider silica-dominated porous materials filled with a binary symmetric 1:1 electrolyte such as NaCl. When in contact with this electrolyte, the silica/water interface gets an excess of charge through chemical reactions. Starting with these chemical reactions, we derive analytical equations for the ξ potential and the specific surface conductance. These equations can be used to predict the variations of these parameters with the pore fluid salinity, temperature, and pH (within a /pH range of 6-8). The input parameters to these equations fall into two categories: (1) mineral/fluid interaction geochemistry (including mineral surface site density and surface equilibrium constants of mineral/fluid reactions), and (2) pore fluid /pH, salinity, and temperature. The ξ potential is shown to increase with increasing temperature and pH and to decrease with increasing salinity. The proposed model is in agreement with available experimental data. The application of this model to electric potentials generated in porous media by fluid flow is explored in the companion paper.
NASA Astrophysics Data System (ADS)
Aursjø, Olav; Knudsen, Henning Arendt; Flekkøy, Eirik G.; Måløy, Knut Jørgen
2010-08-01
We present a numerical study of the statistical behavior of a two-phase flow in a two-dimensional porous medium subjected to an oscillatory acceleration transverse to the overall direction of flow. A viscous nonwetting fluid is injected into a porous medium filled with a more viscous wetting fluid. During the whole process sinusoidal oscillations of constant amplitude and frequency accelerates the porous medium sideways, perpendicular to the overall direction of flow. The invasion process displays a transient behavior where the saturation of the defending fluid decreases, before it enters a state of irreducible wetting fluid saturation, where there is no net transport of defending fluid toward the outlet of the system. In this state the distribution of sizes of the remaining clusters are observed to obey a power law with an exponential cutoff. The cutoff cluster size is found to be determined by the flow and oscillatory stimulation parameters. This cutoff size is also shown to be directly related to the extracted amount of defending fluid. Specifically, the results show that the oscillatory acceleration of the system leads to potentially a large increase in extracted wetting fluid.
Aursjø, Olav; Knudsen, Henning Arendt; Flekkøy, Eirik G; Måløy, Knut Jørgen
2010-08-01
We present a numerical study of the statistical behavior of a two-phase flow in a two-dimensional porous medium subjected to an oscillatory acceleration transverse to the overall direction of flow. A viscous nonwetting fluid is injected into a porous medium filled with a more viscous wetting fluid. During the whole process sinusoidal oscillations of constant amplitude and frequency accelerates the porous medium sideways, perpendicular to the overall direction of flow. The invasion process displays a transient behavior where the saturation of the defending fluid decreases, before it enters a state of irreducible wetting fluid saturation, where there is no net transport of defending fluid toward the outlet of the system. In this state the distribution of sizes of the remaining clusters are observed to obey a power law with an exponential cutoff. The cutoff cluster size is found to be determined by the flow and oscillatory stimulation parameters. This cutoff size is also shown to be directly related to the extracted amount of defending fluid. Specifically, the results show that the oscillatory acceleration of the system leads to potentially a large increase in extracted wetting fluid.
On the anisotropic advection-diffusion equation with time dependent coefficients
Hernandez-Coronado, Hector; Coronado, Manuel; Del-Castillo-Negrete, Diego B.
2017-02-01
The advection-diffusion equation with time dependent velocity and anisotropic time dependent diffusion tensor is examined in regard to its non-classical transport features and to the use of a non-orthogonal coordinate system. Although this equation appears in diverse physical problems, particularly in particle transport in stochastic velocity fields and in underground porous media, a detailed analysis of its solutions is lacking. In order to study the effects of the time-dependent coefficients and the anisotropic diffusion on transport, we solve analytically the equation for an initial Dirac delta pulse. Here, we discuss the solutions to three cases: one based on power-law correlationmore » functions where the pulse diffuses faster than the classical rate ~t, a second case specically designed to display slower rate of diffusion than the classical one, and a third case to describe hydrodynamic dispersion in porous media« less
Fabrication, properties, and applications of porous metals with directional pores.
Nakajima, Hideo
2010-01-01
Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer.
Fabrication, properties, and applications of porous metals with directional pores
NAKAJIMA, Hideo
2010-01-01
Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zone melting, and continuous casting techniques. The last method is superior from the viewpoint of mass production of lotus metals. The observed anisotropic behaviors of the mechanical properties, sound absorption, and thermal conductivity are inherent to the anisotropic porous structure. In particular, the remarkable anisotropy in the mechanical strength is attributed to the stress concentration around the pores aligned perpendicular to the loading direction. Heat sinks are a promising application of lotus metals due to the high cooling performance with a large heat transfer. PMID:21084772
Anisotropic lattice models of electrolytes
NASA Astrophysics Data System (ADS)
Kobelev, Vladimir; Kolomeisky, Anatoly B.
2002-11-01
Systems of charged particles on anisotropic three-dimensional lattices are investigated theoretically using Debye-Huckel theory. It is found that the thermodynamics of these systems strongly depends on the degree of anisotropy. For weakly anisotropic simple cubic lattices, the results indicate the existence of order-disorder phase transitions and a tricritical point, while the possibility of low-density gas-liquid coexistence is suppressed. For strongly anisotropic lattices this picture changes dramatically: The low-density gas-liquid phase separation reappears and the phase diagram exhibits critical, tricritical, and triple points. For body-centered lattices, the low-density gas-liquid phase coexistence is suppressed for all degrees of anisotropy. These results show that the effect of anisotropy in lattice models of electrolytes amounts to reduction of spatial dimensionality.
Fluctuation relations for anisotropic systems
NASA Astrophysics Data System (ADS)
Villavicencio-Sanchez, R.; Harris, R. J.; Touchette, H.
2014-02-01
Currents of particles or energy in driven non-equilibrium steady states are known to satisfy certain symmetries, referred to as fluctuation relations, determining the ratio of the probabilities of positive fluctuations to negative ones. A generalization of these fluctuation relations has been proposed recently for extended non-equilibrium systems of dimension greater than one, assuming, crucially, that they are isotropic (Hurtado P. I., Pérez-Espigares C., del Pozo J. J. and Garrido P. L., Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 7704). Here we relax this assumption and derive a fluctuation relation for d-dimensional systems having anisotropic bulk driving rates. We test the validity of this anisotropic fluctuation relation by calculating the particle current fluctuations in the 2d anisotropic zero-range process, using both exact and fluctuating hydrodynamic approaches.
Okada, Kiyoshi; Isobe, Toshihiro; Katsumata, Ken-ichi; Kameshima, Yoshikazu; Nakajima, Akira; MacKenzie, Kenneth J D
2011-01-01
Porous ceramics with unidirectionally oriented pores have been prepared by various methods such as anodic oxidation, templating using wood, unidirectional solidification, extrusion, etc. The templating method directly replicates the porous microstructure of wood to prepare porous ceramics, whereas the extrusion method mimics the microstructures of tracheids and xylems in trees. These two methods are therefore the main focus of this review as they provide good examples of the preparation of functional porous ceramics with properties replicating nature. The well-oriented cylindrical through-hole pores prepared by the extrusion method using fibers as the pore formers provide excellent permeability together with high mechanical strength. Examples of applications of these porous ceramics are given, including their excellent capillary lift of over 1 m height which could be used to counteract urban heat island phenomena, and other interesting properties arising from anisotropic unidirectional porous structures. PMID:27877451
Okada, Kiyoshi; Isobe, Toshihiro; Katsumata, Ken-Ichi; Kameshima, Yoshikazu; Nakajima, Akira; MacKenzie, Kenneth J D
2011-12-01
Porous ceramics with unidirectionally oriented pores have been prepared by various methods such as anodic oxidation, templating using wood, unidirectional solidification, extrusion, etc. The templating method directly replicates the porous microstructure of wood to prepare porous ceramics, whereas the extrusion method mimics the microstructures of tracheids and xylems in trees. These two methods are therefore the main focus of this review as they provide good examples of the preparation of functional porous ceramics with properties replicating nature. The well-oriented cylindrical through-hole pores prepared by the extrusion method using fibers as the pore formers provide excellent permeability together with high mechanical strength. Examples of applications of these porous ceramics are given, including their excellent capillary lift of over 1 m height which could be used to counteract urban heat island phenomena, and other interesting properties arising from anisotropic unidirectional porous structures.
Anisotropically structured magnetic aerogel monoliths
NASA Astrophysics Data System (ADS)
Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus
2014-10-01
Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and
Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.
2013-01-01
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038
BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.
1999-11-09
Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.
Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C; Wilson, Thomas S; Maitland, Duncan J
2013-02-04
Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use.
Mechanistic models of biofilm growth in porous media
NASA Astrophysics Data System (ADS)
Jaiswal, Priyank; Al-Hadrami, Fathiya; Atekwana, Estella A.; Atekwana, Eliot A.
2014-07-01
Nondestructive acoustics methods can be used to monitor in situ biofilm growth in porous media. In practice, however, acoustic methods remain underutilized due to the lack of models that can translate acoustic data into rock properties in the context of biofilm. In this paper we present mechanistic models of biofilm growth in porous media. The models are used to quantitatively interpret arrival times and amplitudes recorded in the 29 day long Davis et al. (2010) physical scale biostimulation experiment in terms of biofilm morphologies and saturation. The model pivots on addressing the sediment elastic behavior using the lower Hashin-Shtrikman bounds for grain mixing and Gassmann substitution for fluid saturation. The time-lapse P wave velocity (VP; a function of arrival times) is explained by a combination of two rock models (morphologies); "load bearing" which assumes the biofilm as an additional mineral in the rock matrix and "pore filling" which assumes the biofilm as an additional fluid phase in the pores. The time-lapse attenuation (QP-1; a function of amplitudes), on the other hand, can be explained adequately in two ways; first, through squirt flow where energy is lost from relative motion between rock matrix and pore fluid, and second, through an empirical function of porosity (φ), permeability (κ), and grain size. The squirt flow model-fitting results in higher internal φ (7% versus 5%) and more oblate pores (0.33 versus 0.67 aspect ratio) for the load-bearing morphology versus the pore-filling morphology. The empirical model-fitting results in up to 10% increase in κ at the initial stages of the load-bearing morphology. The two morphologies which exhibit distinct mechanical and hydraulic behavior could be a function of pore throat size. The biofilm mechanistic models developed in this study can be used for the interpretation of seismic data critical for the evaluation of biobarriers in bioremediation, microbial enhanced oil recovery, and CO2
NASA Astrophysics Data System (ADS)
Ouattara, B.; Khouzam, A.; Mojtabi, A.; Charrier-Mojtabi, M. C.
2012-06-01
The aim of this study was to investigate the effect of conducting boundaries on the onset of convection in a binary fluid-saturated porous layer. The isotropic saturated porous layer is bounded by two impermeable but thermally conducting plates, subjected to a constant heat flux. These plates have identical conductivity. Moreover, the conductivity of the plates is generally different from the porous layer conductivity. The overall layer is of large extent in both horizontal directions. The problem is governed by seven dimensionless parameters, namely the normalized porosity of the medium ɛ, the ratio of plates over the porous layer thickness δ and their relative thermal conductivities ratio d, the separation ratio δ, the Lewis number Le and thermal Rayleigh number Ra. In this work, an analytical and numerical stability analysis is performed. The equilibrium solution is found to lose its stability via a stationary bifurcation or a Hopf bifurcation depending on the values of the dimensionless parameters. For the long-wavelength mode, the critical Rayleigh number is obtained as Racs=12(1+2dδ )/[1+ψ (2dδLe+Le+1)] and kcs=0 for ψ> ψ uni> 0. This work extends an earlier paper by Mojtabi and Rees (2011 Int. J. Heat Mass Transfer 54 293-301) who considered a configuration where the porous layer is saturated by a pure fluid.
Multiscale modeling of turbulent channel flow over porous walls
NASA Astrophysics Data System (ADS)
Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin
2016-11-01
We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.
Optimizing the sensitivity of porous thin film optical sensors
NASA Astrophysics Data System (ADS)
Mackay, Tom G.
2012-10-01
We considered a porous thin film as a platform for optical sensing. It is envisaged that the porous thin filmbecomes infiltrated by a fluid containing an agent to be sensed. The basis for detection of this agent to besensed is provided by changes in the optical properties of the infiltrated porous thin film. Provided that thepore sizes are much smaller than the wavelengths involved, the infiltrated porous thin film may be regardedas a homogenized composite material. Using the well-established Bruggeman homogenization formalism, thesensitivity of such an optical sensor was investigated theoretically. The sensitivity was considered in relation tothe optical properties of the porous thin film and the infiltrating fluid, the porosity of the thin film, and theshape of the pores. For the case of an isotropic dielectric porous thin film of relative permittivity ɛa and anisotropic dielectric fluid of relative permittivity ɛb, the sensitivity was found to be maximized if: (i) the contrast between ɛa and ɛb was maximized; (ii) mid-range values of porosity were used; (iii) the regime 0 < ɛb < 1 with ɛa » 1 pertained, for example; and (iv) pores which have elongated spheroidal shapes were incorporated.
Experimental study of seismic attenuation in partially saturated porous media
NASA Astrophysics Data System (ADS)
Barrière, Julien; Bordes, Clarisse; Sénéchal, Pascale
2010-05-01
Nowadays, it is well admitted that hydrogeological properties of the porous media (porosity, fluid saturation and permeability) can influence seismic properties. In geophysics, the major theory which links hydrogeological and seismic parameters is poroelasticity proposed by Biot (1956). The Biot relaxation process is due to the relative displacement of fluid in comparison to the solid which causes a significant attenuation of seismic waves, notably in unconsolidated medium. In partially saturated medium, pore fluids are considered as a perfect mixture and so called 'effective fluid'. However, in more consolidated rocks, the Biot theory is not sufficient to explain the attenuation level as measured from field seismic and sonic log data. In the last decade, some authors provide new theories to understand the attenuation caused by the interaction of the different fluids. Most experiments are done in the ultrasonic frequency range, where sources of attenuation (like scattering or local fluid flow) are different as in the low frequency range where the wavelength is greater than heterogeneities size. In this way, we propose a forward-looking experiment with the use of a vertical impulsionnal seismic source which have a strong amplitude spectrum ranging from 100Hz to 8kHz. We study three different unconsolidated porous media at atmospheric pressure: fine-grained sand, coarsed-grained sand and coarse gravel. Water content is measured with a calibrated capacitance probe and temperature effects are corrected. Seismic wave propagation is recorded by piezoelectric accelerometers designed for frequencies below 10kHz. The water injection is done by imbibition. We propose to analyse the attenuation in the [100Hz-1.5kHz] frequency range for the studied media with various water saturation levels. The attenuation varies according to the porous medium and the water content and appears more significant at dry condition and at high saturation level. The weak cohesion at dry condition
Anisotropic ripple deformation in phosphorene
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; Chen, Changfeng
2015-04-07
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS_{2}. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Anisotropic ripple deformation in phosphorene
Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...
2015-04-07
Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticitymore » theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less
Yield surfaces for anisotropic plates
NASA Astrophysics Data System (ADS)
Walker, J. D.; Thacker, B. H.
2000-04-01
Aerospace systems are incorporating composite materials into their structures. The composite materials are often anisotropic in mechanical response due to their geometric layout. For many years, the failure surfaces of anisotropic materials were thought to be characterizable by a quadratic function in the stress, referred to as a Tsai-Wu yield surface, or, in a more restrictive form, a Tsai-Hill yield surface. Such a representation does not work for materials that are strong in two directions and weak in one direction, which is the case of most interest since it represents fiber/epoxy composite plates. This paper demonstrates the impossibility of modeling the failure surface with either the Tsai-Wu or Tsai-Hill failure surfaces. A yield surface is presented based on the lemniscate, which is quartic in the stress. This new yield surface addresses the case of strong in two directions and weak in one.
Conductivity in an anisotropic background
Lee, Bum-Hoon; Nam, Siyoung; Pang, Da-Wei; Park, Chanyong
2011-03-15
By using the gauge/gravity duality, we investigate the dual field theories of the anisotropic backgrounds, which are exact solutions of Einstein-Maxwell-dilaton theory with a Liouville potential. When we turn on the bulk gauge field fluctuation A{sub x} with a nontrivial dilaton coupling, the AC conductivity of this dual field theory is proportional to the frequency with an exponent depending on parameters of the anisotropic background. In some parameter regions, we find that this conductivity can have the negative exponent like the strange metal. In addition, we also investigate another U(1) gauge field fluctuation, which is not coupled with a dilaton field. We classify all possible conductivities of this system and find that the exponent of the conductivity is always positive.
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Cracking in charged anisotropic cylinder
NASA Astrophysics Data System (ADS)
Sharif, M.; Sadiq, Sobia
2017-06-01
In this paper, we study the stability of static charged anisotropic cylindrically symmetric compact object through cracking. The Einstein-Maxwell field equations and conservation equation are formulated. We then apply local density perturbation and study the behavior of force distribution function. Finally, the cracking is explored for two models satisfying specific form of Chaplygin equation of state. It is found that these models exhibit cracking and the instability increases as the value of charge parameter is increased.
NASA Astrophysics Data System (ADS)
Liang, Dan
Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.. The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer approach (HBLA) and anisotropic Bruggeman effective medium approximation (AB-EMA), to determine the changes in structural and optical properties of highly porous SCTFs upon polymer infiltration. Via spin-coating, poly(-methyl methacrylate) (PMMA) was infiltrated into the permalloy SCTFs prepared by glancing angle deposition (GLAD). The Mueller matrix GE measurements were conducted on the SCTFs before and after PMMA infiltration. The obtained film thickness and columnar slanting angle show changes due to infiltration which are in good agreement with scanning electron microscopy (SEM) analysis. The method effectively identifies the changes in birefringence and dichroism upon infiltration, and provides constituent fractions consistent with the performed experiments. GE analysis is further utilized to characterize the biaxial optical responses of the porous polymer thin films. The porous polymer films with inverse columnar structure (PMMA iSCTFs) were prepared via infiltrating polymer into the voids of the SCTF templates and selectively removing the columns. The AB-EMA was employed to analyze the GE data of the porous polymer films and SCTF templates to determine the structural and anisotropic optical properties. The structural
Viscoacoustic anisotropic full waveform inversion
NASA Astrophysics Data System (ADS)
Qu, Yingming; Li, Zhenchun; Huang, Jianping; Li, Jinli
2017-01-01
A viscoacoustic vertical transverse isotropic (VTI) quasi-differential wave equation, which takes account for both the viscosity and anisotropy of media, is proposed for wavefield simulation in this study. The finite difference method is used to solve the equations, for which the attenuation terms are solved in the wavenumber domain, and all remaining terms in the time-space domain. To stabilize the adjoint wavefield, robust regularization operators are applied to the wave equation to eliminate the high-frequency component of the numerical noise produced during the backward propagation of the viscoacoustic wavefield. Based on these strategies, we derive the corresponding gradient formula and implement a viscoacoustic VTI full waveform inversion (FWI). Numerical tests verify that our proposed viscoacoustic VTI FWI can produce accurate and stable inversion results for viscoacoustic VTI data sets. In addition, we test our method's sensitivity to velocity, Q, and anisotropic parameters. Our results show that the sensitivity to velocity is much higher than that to Q and anisotropic parameters. As such, our proposed method can produce acceptable inversion results as long as the Q and anisotropic parameters are within predefined thresholds.
Yield Surfaces for Anisotropic Plates
NASA Astrophysics Data System (ADS)
Walker, J. D.; Thacker, B. H.
1999-06-01
Modern aerospace systems are incorporating composite materials into their structures. Often, the composite materials are anisotropic in their mechanical response due to the geometric layout of fibers. For many years, the failure surfaces of anisotropic materials were thought to be characterizable by a quadratic function in the stress, often referred to as a Tsai-Wu yield surface, or, in a more restrictive form, a Tsai-Hill yield surface. Such a representation does not work for materials that are strong in two directions and weak in one direction, which, unfortunately, is the case of most interest since it represents most composite plates. This paper demonstrates the impossibility of modeling the failure surface with both the Tsai-Wu and Tsai-Hill failure surfaces. We then present a yield surface based on the lemniscate, which is quartic in the stress. This new yield surface addresses the case of strong in two directions and weak in one. Calculations with a fragment impacting a composite plate modeled with the new yield surface are presented. Modifications of the yield surface are presented to allow, in a limited way, materials that are both anisotropic and have differing strengths in tension and compression.
Anisotropic characterization of magnetorheological materials
NASA Astrophysics Data System (ADS)
Dohmen, E.; Modler, N.; Gude, M.
2017-06-01
For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.
Hsieh, P.A.; Neuman, S.P.; Stiles, G.K.; Simpson, E.S.
1985-01-01
The analytical solutions developed in the first paper can be used to interpret the results of cross-hole tests conducted in anisotropic porous or fractured media. Test results from a granitic rock near Oracle in southern Arizona are presented to illustrate how the method works for fractured rocks. At the site, the Oracle granite is shown to respond as a near-uniform, anisotropic medium, the hydraulic conductivity of which is strongly controlled by the orientations of major fracture sets. The cross-hole test results are shown to be consistent with the results of more than 100 single- hole packer tests conducted at the site. -from Authors
NASA Astrophysics Data System (ADS)
Holst, James R.; Trewin, Abbie; Cooper, Andrew I.
2010-11-01
Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.
Characterization of an Anisotropic Hydrogel Tissue Substrate for Infusion Testing.
Lee, Sung Jin; Pishko, Gregory L; Astary, Garret W; Mareci, Thomas H; Sarntinoranont, Malisa
2009-11-15
Artificial tissue models that capture specific transport properties are useful for investigating physical phenomena important to drug delivery. In this study, an in vitro tissue model was developed and characterized with the goal of mimicking aligned tissue. An anisotropic porous medium was developed by the construction of a 1% agarose hydrogel implanted with different volume fractions (~ 5, 10, and 20%) of 10-μm-diameter glass fibers. The developed substrate was able to capture anisotropic transport after the direct infusion of a macromolecular tracer, Evans blue albumin (EBA). To further characterize the test substrate, the diffusion tensor of water was measured by diffusion tensor imaging, and the ratios of the diffusivities in the directions parallel and perpendicular to the glass fibers were 1.16, 1.20, and 1.26 for 5, 10, and 20% fiber volume fractions, respectively. The hydraulic conductivity was estimated by the measurement of pressure gradients across samples under controlled microflow conditions in the direction parallel to implanted fibers. The hydraulic conductivities at various hydrogel concentrations without fibers and in a 1% hydrogel with various fiber volume fractions were measured; for example, K(||) = 1.20 × 10(-12) m(4) N(-1) s(-1) (where K(||) is the conductivity component in the direction parallel to the glass fibers) for 20% fiber volume fractions. Also, EBA distributions were fit to porous medium transport models to estimate hydraulic conductivity in the direction perpendicular to glass fibers. The estimated ratio of directional hydraulic conductivity, K(||)/K(⊥) (where K(⊥) is the conductivity component in the direction perpendicular to the glass fibers), ranged from approximately 3 to 5, from 6 to 10, and from 40 to 90 for 5, 10, and 20% fiber volume fractions, respectively. These agarose hydrogel models provided convenient media for quantifying infusion protocols at low flow rates.
Non-Darcian effects in open-ended cavities filled with a porous medium
Ettefagh, J.; Vafai, K.; Kim, S.J. )
1991-08-01
The importance and relevance of non-Darcian associated with the bouyancy driven convection in open-ended cavities filled with fluid-saturated porous medium is analyzed in this work. Several different flow models for porous media, such as Brinkman-extended Darcy, Forchheimer-extended Darcy, and generalized flow models, are considered. The significance of inertia and boundary effects, and their crucial influence on the prediction of buouancy-induced flow and heat transfer in open-ended cavities, are investigated. Analysis is made on the proper choice of parameters that can fully determine the criteria for the range of validity of Darcy's law in this type of configuration. Critical values of the inertial parameter, {Lambda}{sub crit}, below which, for any given modified Rayleigh number, the Darcy flow model breaks down, have been investigated. Is is shown that the critical value of the inertial parameter depends on the modified Rayleigh number and that this critical value increases as Ra* increases. It is also observed that for higher modified Rayleigh number, the deviation from a Darcian formulation appears at Darcy numbers greater than 1 {times} 10{sup {minus}4}. The Prandtl number effects on convective flow and heat transfer are shown to be quite significant for small values of Pr. The Prandtl number effects are reduced significantly for higher values of the Prandtl number.
Convective instability in a porous enclosure with a horizontal conducting baffle
Chen, F.; Wang, C.Y. )
1993-08-01
The study of heat transfer in a fluid-saturated porous medium is essential in a variety of practical situations, including thermal insulation design and geothermal energy utilization. The present paper studies the convective instability in a two-dimensional porous enclosure with a horizontal baffle protruding from one of the side walls. The vertical side walls are insulated, while the top and bottom surfaces are maintained at lower and higher constant temperatures, respectively. The present work considers a baffle of high conductivity. We assume the baffle temperature can be considered constant throughout. We ask, for a given enclosure aspect ratio, is the addition of another physical constraint (such as lengthening a baffle) always stabilizing Is there an optimum baffle location and length such that the critical Rayleigh number is maximized In summary, several concluding remarks can be drawn in the following: (1) Other dimensions being same, a centered baffle always results in a more stable state than an off-centered baffle. (2) A full-length baffle, i.e., [beta]/[sigma] = 1, does not necessarily lead to greater stability. Instead, the value of ([beta]/[sigma])[sub max] is usually less than unity. For a centered baffle, the maximum R[sup c] occurs for [beta]/[sigma] [ge] ([beta]/[sigma])[sub max]; while for an off-centered baffle, the maximum R[sup c] occurs at ([beta]/[sigma])[sub max]. (3) The value of ([beta]/[sigma])[sub max] increases with [sigma]. 6 refs., 4 figs., 1 tab.
Radiation effect on natural convection over a vertical cylinder embedded in porous media
Yih, K.A.
1999-02-01
Study of buoyancy-induced convection flow and heat transfer in a fluid-saturated porous medium has recently attracted considerable interest because of a number of important energy-related engineering and geophysical applications such as thermal insulation of buildings, geothermal engineering, enhanced recovery of petroleum resources, filtration processes, ground water pollution and sensible heat storage beds. In this paper numerical solutions are presented for the effect of radiation on natural convection about an isothermal vertical cylinder embedded in a saturated porous medium. These partial differential equations are transformed into the nonsimilar boundary layer equations which are solved by an implicit finite-difference method (Keller box method). Numerical results for the dimensionless temperature profiles and the local Nusselt number are presented for the transverse curvature parameter {xi}, conduction-radiation parameter R{sub d} and surface temperature excess ratio H. In general, the local Nusselt number increases as the transverse curvature parameter {xi} increases. Furthermore, decreasing the conduction-radiation parameter R{sub d} and increasing surface temperature excess ratio H augments the local heat transfer rate.
Isotherms Around a Heated Horizontal Cylinder Embedded in a Porous Medium
NASA Astrophysics Data System (ADS)
Torres Victoria, Áyax Hernando; Sanchez Rosas, Mario; Aragón Rivera, Fernando; Sánchez Cruz, Fausto Alejandro; Medina Ovando, Abraham
2014-11-01
This work presents an experimental study of free and forced convection phenomena that occur in the vicinity of a heated cylinder embedded in a fluid saturated porous medium. The characteristic distribution of the conformed temperature gradients in the porous medium due to pure free convection, and under the action of a continuous and uniform stream were investigated through the use of four different configurations: first by inducing an air stream from below the heated cylinder, second, by placing an air stream on the left hand side of the heat source, third by an air stream acting from the top of the heat source, and fourth by varying the injection angles. The resulting conformation of the buoyant plumes surrounding the heated cylinder when all phenomena reach the steady state were analyzed with an infrared camera. Correspondence is found with the theoretical and numerical solutions proposed by Kurdyumov and Liñán (2000). We wish to thank to the Mexican Petroleum Institute for the unconditional support given to this project. We also thank the Instituto Politécnico Nacional through the SIP Project No. 20141404.
Natural convection heat transfer from a horizontal wavy surface in a porous enclosure
Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.
1997-02-07
The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.
Constitutive Equation for Anisotropic Rock
NASA Astrophysics Data System (ADS)
Cazacu, O.
2006-12-01
In many rocks, due to the existence of well-defined fabric elements such as bedding, layering, foliation or lamination planes, or due to the existence of linear structures, anisotropy can be important. The symmetries most frequently encountered are: transverse isotropy and orthotropy. By adopting both theoretical and experimental approaches, many authors have investigated the effect of the presence within the rock of pronounced anisotropic feature on the mechanical behavior in the elastic regime and on strength properties. Fewer attempts however have been made to capture the anisotropy of rocks in the plastic range. In this paper an elastic/viscoplastic non-associated constitutive equation for an initially transversely isotropic material is presented. The model captures the observed dependency of the elastic moduli on the stress state. The limit of the elastic domain is given by an yield function whose expression is a priori unknown and is determined from data. The basic assumption adopted is that the type of anisotropy of the rock does not change during the deformation process. The anisotropy is thus described by a fourth order tensor invariant with respect to any transformation belonging to the symmetry group of the material. This tensor is assumed to be constant: it does not depend on time nor on deformation; A is involved in the expression of the flow rule, of the yield function, and of the failure criterion in the form of a transformed stress tensor. The components of the anisotropic tensor A are determined from the compressive strengths in conjunction with an anisotropic short- term failure The irreversibility is supposed to be due to transient creep, the irreversible stress work per unit volume being considered as hardening parameter. The adequacy of the model is demonstrated by applying it to a stratified sedimentary rock, Tournemire shale.
Van der Kelen, Christophe; Göransson, Peter
2013-12-01
The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of porous materials used in acoustic treatments. Due to the manufacturing processes involved, these porous materials are most often geometrically anisotropic on a microscopic scale, and for demanding applications, there is a need for improved characterization methods. This paper discusses recent refinements of a method for the identification of the anisotropic flow resistivity tensor. The inverse estimation is verified for three fictitious materials with different degrees of anisotropy. Measurements are performed on nine glass wool samples and seven melamine foam samples, and the anisotropic flow resistivity tensors obtained are validated by comparison to measurements performed on uni-directional cylindrical samples, extracted from the same, previously measured cubic samples. The variability of flow resistivity in the batch of material from which the glass wool is extracted is discussed. The results for the melamine foam suggest that there is a relation between the direction of highest flow resistivity, and the rise direction of the material.
Neeper, Donald A.
1994-01-01
Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.
Neeper, D.A.
1994-02-22
Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.
Hierarchical Porous Structures
Grote, Christopher John
2016-06-07
Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.
Anisotropic inflation from vector impurity
Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp
2008-08-15
We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.
Anisotropic Geometrodynamics in Cosmological Problems
NASA Astrophysics Data System (ADS)
Siparov, Sergey
2010-10-01
Anisotropic geometrodynamics (AGD) is the GRT modification that takes into account the dependence of metric on the velocities of the sources which follows from the equivalence principle and from the inseparability of the field equations and geodesics equations. The AGD provides the explanation for the flat character of the rotation curves of spiral galaxies, for Tully-Fisher law, for some specific features of globular clusters behavior and for the essential excess of the observable gravitational lens effect over the predicted one. Neither dark matter nor arbitrary change of dynamics equations as in known approaches appears to be needed. Important cosmological consequences are discussed.
Light Propagation through Anisotropic Turbulence
2011-03-01
Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). 5. B. E . Stribling, B. M . Welsh, and M . C. Roggemann...746407 (2009). 10. M . Chang, C. O. Font, F. Santiago, Y. Luna, E . Roura, and S. Restaino, “Marine environment optical propagation measure- ments,” Proc...Anisotropic factor as a function of alpha for several zeta values. Toselli et al. Vol. 28, No. 3 / March 2011 / J. Opt. Soc. Am. A 487 14. M . S
Granular Segregation with Anisotropic Particles
NASA Astrophysics Data System (ADS)
Sykes, Tim
2005-11-01
The results from experimental investigations of horizontally vibrated mixtures of anisotropic poppy seeds and long chains of linked spheres will be presented. A critical packing fraction was observed to be required to initiate a transition to segregation. The average size of the resulting patterns was measured and the concentration ratio of the mixtures was varied by changing the number of chains present in the mixtures. A change in the order of the transition, from second to first order with associated hysteresis, was observed as the chain number was reduced. This gave rise to three distinct regions of behaviour: segregated, mixed and a bi-stable state.
Signature of anisotropic bubble collisions
Salem, Michael P.
2010-09-15
Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.
Tsuo, Y.S.; Menna, P.; Al-Jassim, M.
1995-08-01
We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.
NASA Astrophysics Data System (ADS)
El-Aziz, Mohamed Abd; Yahya, Aishah S.
2017-09-01
Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.
Anisotropic water reorientation around ions.
Tielrooij, K J; van der Post, S T; Hunger, J; Bonn, M; Bakker, H J
2011-11-03
We study the reorientation dynamics of water molecules around ions using terahertz dielectric relaxation spectroscopy and polarization-resolved femtosecond infrared pump-probe spectroscopy. The results are discussed in relation to the ion-specific Hofmeister series and the concomitant "structure-making" and "structure-breaking" effects of ions on water. We show that when a dissolved salt consists of a strongly hydrated ion with a weakly hydrated counterion the reorientation of water molecules around the strongly hydrated ion is anisotropic, in the sense that differently charged ions affect reorientation along different molecular axes: cations mainly slow the reorientation dynamics of the water dipole vectors, and anions mainly slow down the reorientation dynamics of the hydroxyl group that points toward the anion. In both cases, motion along only one molecular axis is impeded, so that the hydration shell is best described as semirigid. In this semirigid hydration picture, water molecules in the first hydration shell show anisotropic reorientation, whereas water molecules outside the first hydration shell remain unaffected. The inferred anisotropy in molecular motion explains why terahertz dielectric relaxation spectroscopy, which probes dipolar relaxation, is more sensitive to cation hydration effects while femtosecond infrared pump-probe spectroscopy, which is sensitive to reorientation of hydroxyl groups, is more sensitive to anion hydration effects. We also show that dissolution of CsI-a salt for which both cation and anion are weakly hydrated-has little effect on water reorientation dynamics, with hydration water displaying dynamics that are similar to those in bulk water.
Anisotropic Plasticity of BN Nanotubes
NASA Technical Reports Server (NTRS)
Madhu, Menon; Srivastava, Deepak; Woo, Alex (Technical Monitor)
1999-01-01
Plastic collapse of compressed BN nanotubes are investigated and compared with carbon nanotubes of similar nature. Using a generalized tight-binding molecular dynamics (GTBMD) method for system containing B, N and C atoms we compute stiffness and plastic collapse of BN and C nanotubes under axial compression. For small compressional strain, BN nanotubes are found to be about 92% as stiff as similar C nanotubes. Due to BN bond buckling effect, however, the elastic limit of BN nanotubes is found to be more than C nanotubes. A route to plasticity is explored in which we find that at elastic limit the accumulated strain is released by a local plastic deformation of the nanotube. The mechanism of strain release and the resulting plastic deformation, however. are anisotropic in nature. The strain is released preferentially towards N as leading edge of a buckled BN bond and the tube, compressed at both ends, plastically collapses preferentially towards one end. Details of the anisotropic plasticity and prospective applications will be discussed in this presentation.
NASA Astrophysics Data System (ADS)
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Recent progress in anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Strickland, Michael
2017-03-01
The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, < pL2> ≪ < pT2>. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.
Postbuckling of laminated anisotropic panels
NASA Technical Reports Server (NTRS)
Jeffrey, Glenda L.
1987-01-01
A two-part study of the buckling and postbuckling of laminated anisotropic plates with bending-extensional coupling is presented. The first part involves the development and application of a modified Rayleigh-Ritz analysis technique. Modifications made to the classical technique can be grouped into three areas. First, known symmetries of anisotropic panels are exploited in the selection of approximation functions. Second, a reduced basis technique based on these same symmetries is applied in the linear range. Finally, geometric boundary conditions are enforced via an exterior penalty function approach, rather than relying on choice of approximation functions to satisfy these boundary conditions. Numerical results are presented for both the linear and nonlinear range, with additional studies made to determine the effect of variation in penalty parameter and number of basis vectors. In the second part, six panels possessing anisotropy and bending-extensional coupling are tested. Detailed comparisons are made between experiment and finite element results in order to gain insight into the postbuckling and failure characteristics of such panels. The panels are constructed using two different lamination sequences, and panels with three different aspect ratios were constructed for each lamination sequence.
2-D solution for drying with internal vaporization of anisotropic media
Perre, P.; Passard, J.
1999-01-01
A set of physical assumptions for a straightforward and efficient simulation of the drying of a porous medium submitted to a convective and/or radiative heating is proposed. All of the parameters used are physical (liquid migration coefficient, permeability values along the thickness and the length, thermal conductivity, and external changes), but the relevant geometrical properties (length and thickness of the slab) were also included in the analysis. The 2-D pressure field generated within the medium during the drying process is obtained by using an analytical expression. The treatment of the pressure field, especially for a strongly anisotropic medium, is an important feature of the model, which allows an analytical model for such a complicated porous medium as wood to be used across a wide range of drying conditions. The computer code developed from the proposed formulation permits a complete simulation of the drying process within a few seconds on a personal computer. Different configurations have been tested for both anisotropic (wood) and isotropic (light concrete) porous media. Agreement with the experimental results is reasonable in terms of the observed physical phenomena. For instance, the model highlights dependence of the duration of the first drying rate on both material properties and drying conditions. This new model can be used for a global physical characterization of products by curve fitting and the collated information for the design of dryers.
Stability analysis of dissolution-driven convection in porous media
NASA Astrophysics Data System (ADS)
Emami-Meybodi, Hamid
2017-01-01
We study the stability of dissolution-driven convection in the presence of a capillary transition zone and hydrodynamic dispersion in a saturated anisotropic porous medium, where the solute concentration is assumed to decay via a first-order chemical reaction. While the reaction enhances stability by consuming the solute, porous media anisotropy, hydrodynamic dispersion, and capillary transition zone destabilize the diffusive boundary layer that is unstably formed in a gravitational field. We perform linear stability analysis, based on the quasi-steady-state approximation, to assess critical times, critical wavenumbers, and neutral stability curves as a function of anisotropy ratio, dispersivity ratio, dispersion strength, material parameter, Bond number, Damköhler number, and Rayleigh number. The results show that the diffusive boundary layer becomes unstable in anisotropic porous media where both the capillary transition zone and dispersion are considered, even if the geochemical reaction is significantly large. Using direct numerical simulations, based on the finite difference method, we study the nonlinear dynamics of the system by examining dissolution flux, interaction of convective fingers, and flow topology. The results of nonlinear simulations confirm the predictions from the linear stability analysis and reveal that the fingering pattern is significantly influenced by combined effects of reaction, anisotropy, dispersion, and capillarity. Finally, we draw conclusions on implications of our results on carbon dioxide sequestration in deep saline aquifers.
Characterization of anisotropic acoustic metamaterial slabs
NASA Astrophysics Data System (ADS)
Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young
2016-01-01
In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.
Ultrasonic Modeling of Bounded Beam Reflection from Anisotropic Media
NASA Astrophysics Data System (ADS)
Schmitt, D. R.; Malehmir, R.; Kazemi, N.
2016-12-01
In this contribution, we try to physically model and understand the physics behind directional dependency of reflectivity from an anisotropic medium as a test of existing theory. One aspect of this is to motivate researchers to look beyond the simplifying assumptions that have been widely employed in the analysis of azimuthally varying seismic reflectivity. To do this, we are making laboratory measurements of the acoustic reflectivity from an orthorhombic medium cut at a variety of orientations in order to expose surfaces with differing anisotropy. The laboratory experiments employ a large aperture transmitter and a small, near-point-source, receiver placed within a goniometer that allows for rotation of the transducers and of the sample, this system was developed in earlier studies of reflectivity from porous media. This enables us to measure reflectivity from any azimuth and over a large range of incidence angles. We used Aluminum with known elastic properties for calibration and comparing the reflectivity results with Zoepprtiz solution. The successful correlation with reflectivity data enables us to go one step ahead and replace the sample with any anisotropic sample. The samples are machined from a `phenolic' material created with fibre cloth layers embedded within an epoxy resin, this material is known to be weakly orthorhombic. Blocks fo this material are cut such that the reflecting surfaces lie at a variety of angles with respect to the layering. These results suggest that some care should be employed in azimuthal seismic studies as it may be difficult to detect the differences in the reflectivity before the P-wave critical angle. However, this critical angle displays substantial change with azimuth and may provide important information for seismic investigations.The reflectivity variations are being modelled using a code called ARTc (Anisotropic Reflection and Transmission code) that provides the plane-wave reflectivity and transmissivity for the general
Kim, Hahn; Van Dung Doan; Cho, Woo Jong; Madhav, Miriyala Vijay; Kim, Kwang S.
2014-01-01
Although group (IV–VII) nonmetallic elements do not favor interacting with anionic species, there are counterexamples including the halogen bond. Such binding is known to be related to the charge deficiency because of the adjacent atom's electron withdrawing effect, which creates σ/π-holes at the bond-ends. However, a completely opposite behavior is exhibited by N2 and O2, which have electrostatically positive/negative character around cylindrical-bond-surface/bond-ends. Inspired by this, here we elucidate the unusual features and origin of the anisotropic noncovalent interactions in the ground and excited states of the 2nd and 3rd row elements belonging to groups IV–VII. The anisotropy in charge distributions and van der Waals radii of atoms in such molecular systems are scrutinized. This provides an understanding of their unusual molecular configuration, binding and recognition modes involved in new types of molecular assembling and engineering. This work would lead to the design of intriguing molecular systems exploiting anisotropic noncovalent interactions. PMID:25059645
Fabricating porous silicon carbide
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1994-01-01
The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.
NASA Astrophysics Data System (ADS)
Lee, Bum Han; Lee, Sung Keun
2017-10-01
The effect of the structural heterogeneity of porous networks on the water distribution in porous media, initially saturated with immiscible fluid followed by increasing durations of water injection, remains one of the important problems in hydrology. The relationship among convergence rates (i.e., the rate of fluid saturation with varying injection time) and the macroscopic properties and structural parameters of porous media have been anticipated. Here, we used nuclear magnetic resonance (NMR) micro-imaging to obtain images (down to ∼50 μm resolution) of the distribution of water injected for varying durations into porous networks that were initially saturated with silicone oil. We then established the relationships among the convergence rates, structural parameters, and transport properties of porous networks. The volume fraction of the water phase increases as the water injection duration increases. The 3D images of the water distributions for silica gel samples are similar to those of the glass bead samples. The changes in water saturation (and the accompanying removal of silicone oil) and the variations in the volume fraction, specific surface area, and cube-counting fractal dimension of the water phase fit well with the single-exponential recovery function { f (t) = a [ 1 -exp (- λt) ] } . The asymptotic values (a, i.e., saturated value) of the properties of the volume fraction, specific surface area, and cube-counting fractal dimension of the glass bead samples were greater than those for the silica gel samples primarily because of the intrinsic differences in the porous networks and local distribution of the pore size and connectivity. The convergence rates of all of the properties are inversely proportional to the entropy length and permeability. Despite limitations of the current study, such as insufficient resolution and uncertainty for the estimated parameters due to sparsely selected short injection times, the observed trends highlight the first
Anisotropic invariance in minisuperspace models
NASA Astrophysics Data System (ADS)
Chagoya, Javier; Sabido, Miguel
2016-06-01
In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski-Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann-Robertson-Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.
Anisotropic Decomposition of Energetic Materials
Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang, Wenge; Hooks, Daniel
2008-01-17
Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.
Anisotropic decomposition of energetic materials
Pravica, Michael; Quine, Zachary; Romano, Edward; Bajar, Sean; Yulga, Brian; Yang Wenge; Hooks, Daniel
2007-12-12
Using a white x-ray synchrotron beam, we have dynamically studied radiation-induced decomposition in single crystalline PETN and TATB. By monitoring the integrated intensity of selected diffraction spots via a CCD x-ray camera as a function of time, we have found that the decomposition rate varies dramatically depending upon the orientation of the crystalline axes relative to polarized x-ray beam and for differing diffracting conditions (spots) within the same crystalline orientation. We suggest that this effect is due to Compton scattering of the polarized x-rays with electron clouds that is dependent upon their relative orientation. This novel effect may yield valuable insight regarding anisotropic detonation sensitivity in energetic materials such as PETN.
Anisotropic grid adaptation in LES
NASA Astrophysics Data System (ADS)
Toosi, Siavash; Larsson, Johan
2016-11-01
The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.
Mechanics of anisotropic spring networks
NASA Astrophysics Data System (ADS)
Zhang, T.; Schwarz, J. M.; Das, Moumita
2014-12-01
We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, px and py, for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of px and py. We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.
Modeling of Anisotropic Inelastic Behavior
Nikkel, D.J.; Nath, D.S.; Brown, A.A.; Casey, J.
2000-02-25
An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is being used to study the yield behavior of elastic-plastic materials. The objective of our research is to develop better constitutive equations for polycrystalline metals. We are experimentally determining the multidimensional yield surface of the material, both in its initial state and as it evolves during large inelastic deformations. These experiments provide a more complete picture of material behavior than can be obtained from traditional uniaxial tests. Experimental results show that actual material response can differ significantly from that predicted by simple idealized models. These results are being used to develop improved constitutive models of anisotropic plasticity for use in continuum computer codes.
Thermodynamics of soft anisotropic interfaces.
Rey, Alejandro D
2004-01-22
The Gibbs-Duhem equation for interfaces between nematic liquid crystals and isotropic fluids is formulated and shown to be a generic equation for soft anisotropic surfaces. The one-to-one correspondence between the nematic and crystalline surface Gibbs-Duhem equations is established. Consistency between the surface Gibbs-Duhem equation and the classical equations of interfacial nematostatics is shown. Using a phase space that takes into account thermodynamics, liquid crystalline order, and geometric variables, the generalized nematic surface Gibbs-Duhem equation reveals the presence of couplings between shape, adsorption, temperature, and average molecular orientation. Merging the thermodynamic analysis with nematostatics results in a model for morphactancy, that is, adsorption-induced interfacial shape selection. The specific roles of gradient bulk Frank elasticity, interfacial tension, and anchoring energy are elucidated by analyzing particular paths in the thermodynamic-geometric phase space.
Anisotropic microstructure near the sun
NASA Astrophysics Data System (ADS)
Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.
1996-07-01
Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar
Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.
2011-03-22
A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.
Seismic wave propagation in cracked porous media
NASA Astrophysics Data System (ADS)
Pointer, Tim; Liu, Enru; Hudson, John A.
2000-07-01
The movement of interstitial fluids within a cracked solid can have a significant effect on the properties of seismic waves of long wavelength propagating through the solid. We consider three distinct mechanisms of wave-induced fluid flow: flow through connections between cracks in an otherwise non-porous material, fluid movement within partially saturated cracks, and diffusion from the cracks into a porous matrix material. In each case the cracks may be aligned or randomly oriented, leading, respectively, to anisotropic or isotropic wave speeds and attenuation factors. In general, seismic velocities exhibit behaviour that is intermediate between that of empty cracks and that of isolated liquid-filled cracks if fluid flow is significant. In the range of frequencies for which considerable fluid flow occurs there is high attenuation and dispersion of seismic waves. Fluid flow may be on either a wavelength scale or a local scale depending on the model and whether the cracks are aligned or randomly oriented, resulting in completely different effects on seismic wave propagation. A numerical analysis shows that all models can have an effect over the exploration seismic frequency range.
Anisotropic inflation in Gauss-Bonnet gravity
Lahiri, Sayantani
2016-09-19
We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.
Shaped beam scattering by an anisotropic particle
NASA Astrophysics Data System (ADS)
Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang
2017-03-01
An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.
Finite-volume scheme for anisotropic diffusion
Es, Bram van; Koren, Barry; Blank, Hugo J. de
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Anisotropic superfluidity in a dipolar Bose gas.
Ticknor, Christopher; Wilson, Ryan M; Bohn, John L
2011-02-11
We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend strongly on the direction of the probe's motion. This anisotropy emerges because of the anisotropic manifestation of a rotonlike mode in the system.
Anisotropic Superfluidity in a Dipolar Bose Gas
Ticknor, Christopher; Wilson, Ryan M.; Bohn, John L.
2011-02-11
We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend strongly on the direction of the probe's motion. This anisotropy emerges because of the anisotropic manifestation of a rotonlike mode in the system.
Dilution and reactive mixing in three-dimensional helical flows in porous media
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Ye, Yu; Grathwohl, Peter; Cirpka, Olaf A.; Rolle, Massimo
2016-04-01
Dilution under steady-state flow and transport conditions in porous media occurs primarily by lateral mass exchange at the fringe of solute plumes. This process controls the fate and transport of scalars in groundwater and in chemical reactors and it is fundamental for the understanding of many reactive processes. Three-dimensional flow fields can be characterized by a complex topological structure, which may greatly influence dilution and dilution enhancement of dissolved plumes, which is quantified by the exponential of the Shannon entropy [1]. In previous works, we identified the necessary conditions to obtain helical flow fields in non-stationary anisotropic heterogeneous porous media [2, 3]. To prove our theoretical findings, we perform steady-state bench-scale experiments with a conservative tracer and we provide a model-based investigation of the results [4]. The relevance of transverse mixing enhancement for the case of reactive solute transport is computed numerically using, as metrics of mixing, the length of a reactive plume undergoing an instantaneous complete bimolecular reaction and its critical dilution index. [1] Cirpka O.A., Chiogna G., Rolle M. and A. Bellin (2015). Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI: 10.1002/2014WR015331. [2] Chiogna G., Cirpka O.A., Rolle M. and A. Bellin (2015). Helical flow streamlines in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI:10.1002/2014WR015330. [3] Chiogna G., Rolle M., Bellin A. and O.A. Cirpka (2014). Helicity and flow topology in three dimensional porous media. Advances in Water Resources, 73, 134-143, DOI: 10.1016/j.advwatres.2014.06.017. [4] Ye Y., Chiogna G., Cirpka O.A., Grathwohl P., and M. Rolle (2015). Experimental evidence of helical flow in porous media. Phys. Rev. Lett., 115, 194502, DOI: 10.1103/PhysRevLett.115.194502
Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides
Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei
2016-01-01
Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228
Solidus of carbonated fertile peridotite under fluid-saturated conditions
Falloon, T.J.; Green, D.H. )
1990-03-01
The solidus for a fertile peridotite composition (Hawaiian pyrolite) in the presence of a CO{sub 2}-H{sub 2}O fluid phase has been determined from 10 to 35 kbar. The intersection of the decarbonation reaction (olivine + diopside + CO{sub 2} {l reversible} orthopyroxene + dolomite) with the pyrolite solidus defines the point Q{prime}, located at 22 kbar and 940 C. At pressures less than Q{prime}, the solidus passes through a temperature maximum at kbar, 1060 C. The solidus is coincident with amphibole breakdown at pressures less than 16 kbar. At pressures above Q{prime}, the solidus is defined by the dissolution of crystalline carbonate into a sodic, dolomitic carbonatite melt. The solidus is at a temperature of 925 C at {approximately} 28 kbar. The solidus temperature above the point Q{prime} is similar to the solidus determined for Hawaiian pyrolite-H{sub 2}O-CO{sub 2} for small contents of H{sub 2}O (<0.3 wt%) and CO{sub 2} (<5 wt%), thus indicating that the primary sodic dolomitic carbonatite melt at both solidi has a very low and limited H{sub 2}O solubility. The new data clarify the roles of carbonatite melt, carbonated silicate melt, and H{sub 2}O-rich fluid in mantle conditions that are relatively oxidized (f{sub O{sub 2}} {approximately} MW to FMQ). In particular, a carbonatite melt + garnet lherzolite region is intersected by continental shield geothermal gradients, but such geotherms only intersect regions with carbonated silicate melt if perturbed to higher temperatures (kinked geotherm).
Discrimination of porosity and fluid saturation using seismic velocity analysis
Berryman, James G.
2001-01-01
The method of the invention is employed for determining the state of saturation in a subterranean formation using only seismic velocity measurements (e.g., shear and compressional wave velocity data). Seismic velocity data collected from a region of the formation of like solid material properties can provide relatively accurate partial saturation data derived from a well-defined triangle plotted in a (.rho./.mu., .lambda./.mu.)-plane. When the seismic velocity data are collected over a large region of a formation having both like and unlike materials, the method first distinguishes the like materials by initially plotting the seismic velocity data in a (.rho./.lambda., .mu./.lambda.)-plane to determine regions of the formation having like solid material properties and porosity.
Forced oscillation measurements of seismic attenuation in fluid saturated sandstone
NASA Astrophysics Data System (ADS)
Subramaniyan, Shankar; Quintal, Beatriz; Saenger, Erik H.
2017-02-01
Adopting the method of forced oscillation, attenuation was studied in Fontainebleau sandstone (porosity 10%, permeability 10 mD) at seismic frequencies (1-100 Hz). Confining pressures of 5, 10, and 15 MPa were chosen to simulate reservoir conditions. First, the strain effect on attenuation was investigated in the dry sample for 11 different strains across the range 1 × 10-6-8 × 10-6, at the confining pressure of 5 MPa. The comparison showed that a strain of at least 5 × 10-6 is necessary to obtain a good signal to noise ratio. These results also indicate that nonlinear effects are absent for strains up to 8 × 10-6. For all the confining pressures, attenuation in the dry rock was low, while partial (90%) and full (100%) saturation with water yielded a higher magnitude and frequency dependence of attenuation. The observed high and frequency dependent attenuation was interpreted as being caused by squirt flow.
Seismic attenuation: Laboratory measurements in fluid saturated rocks
NASA Astrophysics Data System (ADS)
Subramaniyan, Shankar; Madonna, Claudio; Tisato, Nicola; Saenger, Erik; Quintal, Beatriz
2014-05-01
Seismic wave attenuation could be used as an indicator of reservoir fluids due to its dependence on rock and fluid properties. Over the past 30 years, many laboratory methodologies to study attenuation in rocks have been employed, such as ultrasonic (MHz), resonant bar (kHz) and forced oscillation methods in the low frequency range (0.01-100Hz) (Tisato & Madonna 2012; Madonna & Tisato 2013). Forced oscillation methods have gained prominence over time as the frequency range of measurements correspond to that of field seismic data acquired for oil/gas exploration. These experiments measure attenuation as the phase shift between the applied stress (sinusoidal) and measured strain. Since the magnitudes of measured phase shifts are quite low (Q-1 ~0.01-0.1) and the amplitudes of strain applied to the rock samples are of the order ~10-6 (i.e., similar orders of magnitude to seismic waves), it is challenging. A comparison of such forced oscillation setups will be presented to provide an overview of the various possibilities of design and implementation for future setups. In general, there is a lack of laboratory data and most of the published data are for sandstones. Currently, attenuation measurements are being carried out on carbonate and sandstone samples. We employ the Seismic Wave Attenuation Module (SWAM, Madonna & Tisato 2013) to measure seismic attenuation in these samples for different saturation degrees (90% and 100% water) and under three different confining pressures (5, 10 and 15MPa). Preliminary results from these investigations will be discussed. REFERENCES Madonna, C. & Tisato, N. 2013: A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, doi: 10.1111/1365-2478.12015. Tisato, N. & Madonna, C. 2012: Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86, 44-53.
The Melt Transition in Mature, Fluid-Saturated Gouge
NASA Astrophysics Data System (ADS)
Rempel, A. W.
2006-12-01
Mechanisms that link the evolution of fault strength and temperature during earthquakes have been studied extensively, with accumulating constraints from theoretical, field and laboratory investigations promoting increased confidence in our understanding of the dominant physical interactions. In mature fault zones that have accommodated many large earthquakes and are characterized by gouge layers that greatly exceed the thickness of the ~ mm-scale "principal slip surfaces" in which shear is localized, the thermal pressurization of pore fluids is expected to be particularly important for reducing the fault strength and limiting the extent of shear heating. Nevertheless, for sufficiently large slip distances and reasonable estimates of hydraulic transport properties and other controlling variables, the predicted temperature increases are sometimes able to reach the onset of melting, particularly at mid to lower seismogenic depths (e.g. 10km). Reported field observations of quenched glassy melt products, known as pseudotachylytes, are much more common on young faults, particularly where slip is initiated between coherent rock surfaces, rather than in exhumed mature fault zones, where thermal pressurization is likely to be more important and macroscopic melting appears to be rare. Those pseudotachylyte layers that are recovered from mature fault zones display a range of thicknesses and crystal contents, which indicate that significant shear heating continued long after the onset of melting, with work performed against the viscous resistance of a partially molten slurry. Models that describe the transition to melting in a finite shear zone that is initially saturated with pore fluids are presented with two main conceptual challenges: 1. the energy input for frictional heating is generally assumed to be proportional to the effective stress, which vanishes when macroscopic melt layers are produced and thermodynamic considerations require that the melt pressure balance the normal stress; 2. the typical initial crystal content of a finite shear zone at melt onset almost certainly exceeds the critical solids fraction (~ 50%) that allows for slurry mobilization at a finite effective viscosity and provides the viscous heat source necessary for the melt fraction to increase subsequently. The former consideration motivates a closer examination of the homogenization used to describe the pore pressure, much as the recognized mechanism of "flash-weakening" relies on a parameterized description to account for the effects of localized thermal anomalies at the asperity (μm) scale. The latter consideration suggests both the potential importance of "viscous braking" as a mechanism for transferring slip to adjacent shear zones, and the likely roll of melt onset as a mechanism for extreme localization, requiring slip in a finite zone to actually be accommodated on a series of short-lived effective shear surfaces between adjacent melting gouge particles. Here, we focus on how the melting transition can be placed within the larger context of continuum descriptions for the evolution of fault strength and temperature during earthquakes.
Negative refraction in anisotropic composites
NASA Astrophysics Data System (ADS)
Chui, S. T.
2004-03-01
Left-handed materials (LHM) are materials in which the direction of wave propagation S is opposite to the wave vector k . S <0 .[1,2,3] LHM exhibit nagative refraction. Experiments have been carried out on a medium consisting of arrays of metallic rings and wrires.[3] An example of a different class of anisotropic left-handed materials are metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix, it may be possible to prepare a composite medium of low eddy current loss which is left-handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency.[4,5] This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally. The physics involved seems to be different from the original argument.[1,2] In our argument[5], the imaginary part of the dielectric constant of the metal is much larger than the real part, opposite to the original argument. In anisotropic materials so that some of the susceptibilities are negative, the criterion for LHM may not be the same as that for negative refraction.[6] Ansiotropic materials exhibit a richer manifold of anomlous behaviour[6,7,8] and offers more flexibility in apllications.[8] More recently it was found that negative refraction can occur in anisotropic materials where all the susceptibilities are positive.[9] We found that the range of applicability of this effect is much larger than originally thought.[10] S. T. Chui was supported in part by the Office of Naval Research, by the Army Research Laboratory through the Center of Composite Materials at the University of Delaware, by DARPA and by the NSF. [1] J.B.Pendry, A.J.Holden, W.J.Stewart, and I.Youngs, Phys. Rev. Lett 76, 4773 (1996). [2] V.G.Veselago, Sov. Phys. Usp. 10, 509
NASA Astrophysics Data System (ADS)
Stewart, Robert A.; Shaw, J. M.
2015-09-01
The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.
Stewart, Robert A; Shaw, J M
2015-09-01
The development and baseline operation of an acoustic view cell for observing fluids, and fluid-fluid and fluid-solid interfaces in porous media over the frequency range of 10-5000 Hz is described. This range includes the industrially relevant frequency range 500-5000 Hz that is not covered by existing devices. Pressure waveforms of arbitrary shape are generated in a 17.46 mm ID by 200 mm and 690.5 mm long glass tubes at flow rates up to 200 ml/min using a syringe pump. Peak-to-peak amplitudes exceeding 80 kPa are readily realized at frequencies from 10 to 5000 Hz in bubble free fluids when actuated with 20 Vpp as exemplified using castor oil. At resonant frequencies, peak-to-peak pressure amplitudes exceeding 500 kPa were obtained (castor oil at 2100 Hz when actuated with 20 Vpp). Impacts of vibration on macroscopic liquid-liquid and liquid-vapour interfaces and interface movement are illustrated. Pressure wave transmission and attenuation in a fluid saturated porous medium, randomly packed 250-330 μm spherical silica beads, is also demonstrated. Attenuation differences and frequency shifts in resonant peaks are used to detect the presence and generation of dispersed micro-bubbles (<180 μm diameter), and bubbles within porous media that are not readily visualized. Envisioned applications include assessment of the impacts of vibration on reaction, mass transfer, and flow/flow pattern outcomes. This knowledge will inform laboratory and pilot scale process studies, where nuisance vibrations may affect the interpretation of process outcomes, and large scale or in situ processes in aquifers or hydrocarbon reservoirs where imposed vibration may be deployed to improve aspects of process performance. Future work will include miscible interface observation and quantitative measurements in the bulk and in porous media where the roles of micro-bubbles comprise subjects of special interest.
Anisotropic wettability on imprinted hierarchical structures.
Zhang, Fengxiang; Low, Hong Yee
2007-07-03
A series of two-level hierarchical structures on polystyrene (PS) and poly(methyl methacrylate) (PMMA) were fabricated using sequential nanoimprinting lithography (NIL). The hierarchical structures consist of micrometer and sub-micrometer scale grating imprinted with varying orientations. Through water contact angle measurements, these surface hierarchical structures showed a wide range of anisotropic wettabilities on PMMA and PS, with PMMA having an anisotropic wettability from 6 degrees to 54 degrees and PS having an anisotropic wettability from 8 degrees to 32 degrees. At the same time, the water contact angle of PMMA and PS can be tuned to nearly 120 degrees without modifying the surface chemistry. A tunable anisotropic wettability is beneficial for applications where controlling the direction of liquid flow is important, such as in microfluidic devices.
NASA Astrophysics Data System (ADS)
Alsabery, A. I.; Chamkha, A. J.; Saleh, H.; Hashim, I.; Chanane, B.
2017-03-01
The effects of finite wall thickness and sinusoidal heating on convection in a nanofluid-saturated local thermal non-equilibrium (LTNE) porous cavity are studied numerically using the finite difference method. The finite thickness vertical wall of the cavity is maintained at a constant temperature and the right wall is heated sinusoidally. The horizontal insulated walls allow no heat transfer to the surrounding. The Darcy law is used along with the Boussinesq approximation for the flow. Water-based nanofluids with Cu nanoparticles are chosen for investigation. The results of this study are obtained for various parameters such as the Rayleigh number, periodicity parameter, nanoparticles volume fraction, thermal conductivity ratio, ratio of wall thickness to its height and the modified conductivity ratio. Explanation for the influence of the various above-mentioned parameters on the streamlines, isotherms, local Nusselt number and the weighted average heat transfer is provided with regards to the thermal conductivities of nanoparticles suspended in the pure fluid and the porous medium. It is shown that the overall heat transfer is significantly increased with the relative non-uniform heating. Further, the convection heat transfer is shown to be inhibited by the presence of the solid wall. The results have possible applications in the heat-storage fluid-saturated porous systems and the applications of the high power heat transfer.
Inflation in anisotropic scalar-tensor theories
NASA Technical Reports Server (NTRS)
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Anisotropic Interactions between Cold Rydberg Atoms
2015-09-28
AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...34Anisotropic Interactions Between Cold Rydberg Atoms " 5a. CONTRACT NUMBER FA9550-12-1-0434 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...processes in an atomic sample trapped in a CO2 optical dipole trap. The process was investigated as a function of: i) atomic density; ii) dc electric
Phase space analysis in anisotropic optical systems
NASA Technical Reports Server (NTRS)
Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo
1995-01-01
From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.
On the anisotropic elastic properties of hydroxyapatite.
NASA Technical Reports Server (NTRS)
Katz, J. L.; Ukraincik, K.
1971-01-01
Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.
Method of porous diamond deposition on porous silicon
NASA Astrophysics Data System (ADS)
Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.
2001-12-01
In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.
SAR Segmentation using Anisotropic Diffusion
NASA Astrophysics Data System (ADS)
Intajag, Sathit; Tipsuwanporn, Vittaya; Cheevasuwit, Fusak
Speckle effects are commonly observed in synthetic aperture radar (SAR) images. The human eye is capable of deriving meaningful information from SAR images; however, an automatic or semi-automatic processing algorithm has difficulty in distinguishing objects in the images because of noise effects present in those images. This paper presents a segmentation method for SAR images, which employs an anisotropic diffusion algorithm. In the proposed scheme, a SAR image is transformed into a logarithmic domain where the diffusion process is used to grow homogeneous regions in the noise environment until the regions reach some criteria for homogeneity; consequently, the segmented image in the logarithm domain is converted to the intensity domain by an exponential function. To grow homogeneous regions the adaptive diffusion method is introduced with a tensor technique in which tensor data are varied with the neighboring pixels. The diffusion algorithm will stop itself by a standard deviation divided by the mean, which is provided according to the homogeneity criteria. Results are shown on both synthetic and satellite SAR images. The evaluation of the proposed method employs the theoretical gain of equivalent numbers of looks (ENL).
Magnetospheric equilibrium with anisotropic pressure
Cheng, C.Z.
1991-07-01
Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.
Spin precession in anisotropic media
NASA Astrophysics Data System (ADS)
Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.
2017-02-01
We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.
SAW imaging in anisotropic media
NASA Astrophysics Data System (ADS)
Clark, M.; Sharples, S. D.; Somekh, M. G.
2000-05-01
We have developed a non-contact laser ultrasound SAW microscope operating at 82 MHz and harmonics thereof, which is capable of rapid image acquisition. Conventional acoustic microscopy is largely immune to the effects of aberration because of the very short acoustic path length that is imposed by the presence of the couplant. The couplant also limits the sensitivity of contacting acoustic microscopy. In laser ultrasound systems the absence of couplant means that longer path lengths are possible but the anisotropy and grain structure of the material can aberrate the passage of the acoustic wave limiting the performance of the system and producing acoustic speckle. We show that even weakly aberrating materials (e.g. aluminum) can produce significant speckle effects. We present experimental non-contacting imaging results on isotropic and textured anisotropic samples; together with simulated images. The results demonstrate that the speckle statistics of the experimental and simulated results agree well; thus demonstrating the cause of the speckle in the experimental images. We demonstrate how a wavefront sensor and adaptation of the optical excitation profile offers a solution to the problem of texture in non-contacting SAW imaging. Finally, we discuss how some material properties may be inferred from the speckle.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measures of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
An adaptive lattice Boltzmann scheme for modeling two-fluid-phase flow in porous medium systems
NASA Astrophysics Data System (ADS)
Dye, Amanda L.; McClure, James E.; Adalsteinsson, David; Miller, Cass T.
2016-04-01
We formulate a multiple-relaxation-time (MRT) lattice-Boltzmann method (LBM) to simulate two-fluid-phase flow in porous medium systems. The MRT LBM is applied to simulate the displacement of a wetting fluid by a nonwetting fluid in a system corresponding to a microfluidic cell. Analysis of the simulation shows widely varying time scales for the dynamics of fluid pressures, fluid saturations, and interfacial curvatures that are typical characteristics of such systems. Displacement phenomena include Haines jumps, which are relatively short duration isolated events of rapid fluid displacement driven by capillary instability. An adaptive algorithm is advanced using a level-set method to locate interfaces and estimate their rate of advancement. Because the displacement dynamics are confined to the interfacial regions for a majority of the relaxation time, the computational effort is focused on these regions. The proposed algorithm is shown to reduce computational effort by an order of magnitude, while yielding essentially identical solutions to a conventional fully coupled approach. The challenges posed by Haines jumps are also resolved by the adaptive algorithm. Possible extensions to the advanced method are discussed.
Tracking interface and common curve dynamics for two-fluid flow in porous media
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measures of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.
NASA Astrophysics Data System (ADS)
Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan
2015-09-01
This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an
Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng
2011-10-05
In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.
Porous material neutron detector
Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR
2012-04-10
A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.
Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng
2011-01-01
In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999
FLUID TRANSPORT THROUGH POROUS MEDIA
Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...
FLUID TRANSPORT THROUGH POROUS MEDIA
Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...
Modeling isothermal and non-isothermal flows in porous media
NASA Astrophysics Data System (ADS)
Mohseni Languri, Ehsan
2011-12-01
solutions obtained after applying the stress-continuity and stress-jump boundary conditions are found to work well at low porosities, which is in contradiction with the results achieved earlier by other researchers. The traditional approach of using averaged equations in the regions of sharp gradients in porous media to describe flow and transport is theoretically untenable and perhaps inaccurate. A novel ensemble averaging method is being proposed to test the accuracy of the volume averaged or smoothed description of flows in porous media in the regions of sharp gradients. In the new method, the flow in a certain arrangement of particles (called a realization) is averaged using a small unit cell, much smaller than the REV. Then such an averaged flow variable is further averaged over a whole gamut of randomly-generated particle realizations. First the accuracy of the ensemble averaging method was tested by comparing the permeability of an artificially generated porous medium obtained by the proposed method against the permeability predicted by some established theoretical models of permeability. The proposed method was found to be quite accurate. Later the ensemble average method was applied to the open-channel porous-medium interface region characterized by a sharp gradient in the flow velocities. It was discovered that the volume averaged description of such flows, characterized by the use of the Brinkman equation along with the stress-continuity and stress-jump conditions, is quite accurate for a range of Reynolds numbers. The non-isothermal transport during flow in porous media is examined next. The main focus in this area of research is the thermal dispersion term found in the heat transfer equation for single- and dual-scale porous media. Most of the previous efforts on modeling the heat transfer phenomena in porous media were devoted to isotropic porous media. However, for the anisotropic porous media widely in many industrial applications, not much research on the
Dynamic flow localization in porous rocks under combined pressure and shear loading
NASA Astrophysics Data System (ADS)
Yarushina, Viktoriya; Podladchikov, Yuri; Simon, Nina
2015-04-01
Flow localization occurs in deforming porous fluid saturated rocks. It exhibits itself as veins, pockmarks on the ocean floor or gas chimneys visible on seismic images from several chalk fields of the Central North Sea and from the Utsira formation at Sleipner in the Norwegian North Sea, which is one of the best documented CO2 storage sites. Porosity waves were repeatedly shown to be a viable mechanism of flow self-localization that does not require the pre-existence of a connected fracture network. Porosity waves result from an instability of the Darcy flow that occurs in porous rocks with time-dependent viscous or viscoelastoplastic rheology. Local fluid overpressure generated by fluid injection or chemical reactions aided by buoyancy force drives upward fluid migration. Viscous deformation delays pressure diffusion thus maintaining local overpressure for considerable periods of time. Development of an under-pressured region just below the over-pressured domain leads to separation of the fluid-filled high-porosity blob from the source and the background flow. The instability organizes the flow into separate vertical channels. Pressure distribution, shape and scaling of these channels are highly sensitive to the rheology of the porous rock. In this contribution, based on a micromechanical approach, we consider the complex rheology of brittle, ductile and transitional regimes of deformation of porous rocks in the presence of combined pressure and shear loading. Accurate description of transitional brittle-ductile deformation is a challenging task due to a large number of microscopic processes involved. We use elastoplastic and viscoplastic analytical solutions for the non-hydrostatic deformation of a singular cavity in the representative volume element in order to deduce expected behavior of the porous rock. The model provides micro-mechanisms for various failure modes (localized and homogeneous) and dilatancy onset. In particular, the model predicts that dilatancy
Porous block nanofiber composite filters
Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold
2016-08-09
Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).
Chemically Layered Porous Solids
NASA Technical Reports Server (NTRS)
Koontz, Steve
1991-01-01
Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.
Tsuo, Y.S.; Menna, P.; Pitts, J.R.
1996-05-01
The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.
Saturation-Dependent Hydraulic Conductivity Anisotropy for Multifluid Systems in Porous Media
Zhang, Z. F.; Oostrom, Mart; Ward, Andy L.
2007-11-01
The hydraulic conductivity of unsaturated anisotropic soils has recently been described with a tensorial connectivity-tortuosity (TCT) concept. We extend this concept to unsaturated porous media with two or three immiscible fluids. Mathematical expressions to describe the conductivity of each fluid in anisotropic porous media under unsaturated condition are derived in the form of symmetric second order tensors. The theory is applicable to the combination of any type of saturation-pressure formulation and a generalized hydraulic conductivity model. The extended model shows that the anisotropic coefficient of a fluid is independent of the saturation of other fluids. Synthetic Miller-similar soils having hypothetical anisotropy were defined by allowing the saturated hydraulic conductivity to have different correlation ranges for different directions of flow. The extended TCT concept was tested using synthetic soils with four levels of heterogeneity and four levels of anisotropy. Numerical experiments of infiltration of two liquid phases, i.e., water and the nonaqueous phase liquid (NAPL) carbon tetrachloride, were carried out to test the extended model. The results show that, similar to water in a two-fluid (air-water) system, NAPL retention curves in a three-fluid (air-NAPL-water) system were independent of flow direction but dependent on soil heterogeneity, while the connectivity-tortuosity coefficients are functions of both soil heterogeneity and anisotropy. The extended TCT model accurately describes unsaturated hydraulic functions of anisotropic soils and can be combined into commonly used relative permeability functions for use in multifluid flow and transport numerical simulations.
Anisotropic membranes for gas separation
Gollan, Arye Z.
1987-01-01
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.
Anisotropic membranes for gas separation
Gollan, A.Z.
1987-07-21
A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7--25 C and then air dried at ambient temperature, typically 10--30 C. 2 figs.
Direct Template Approach for the Formation of (Anisotropic shape) Hollow Silicate Microparticles
NASA Astrophysics Data System (ADS)
Rivera Virtudazo, R. V.; Watanabe, H.; Shirai, T.; Fuji, M.; Takahashi, M.
2011-10-01
Non-uniform bulk or surface morphology of hollow particles has been an emerging interest because of the potential applications involving chemical storage, delivery and self-assembly for novel functional materials. There had been reports that experimental anisotropic (non-uniform) particles are much more difficult than synthesizing particles with uniform bulk and surface. Hence, this study reported a simple direct approach for the formation of unique hollow anisotropic amorphous silicate microparticles (10 to 20 μm). This was successfully prepared at room temperature via hydrolysis and condensation of tetraethylorthosilicate (TEOS), with ammonia water (NH4OH) as catalyst, ethanol (EtOH) and inorganic micro-size calcium carbonate (CaCO3) as template. The molar ratio used was 1.88:28.85:1:2.85 (CaCO3: EtOH: TEOS: NH4OH), mixed/stirred (at room temperature for 2 h), then filtered/washed by ethanol/water, after then dried and acid treated (3.0 mole/L) to obtained a micro-sized hollow SiO2 particles. This simple approach for the formation of unique anisotropic shape hollow silicate micro-sized particles can be a good alternative for a possible application as large porous carrier for nanoparticles (large drug delivery (LPP's)).
Landingham, R.L.
1984-03-13
Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a
Hydrophobic, Porous Battery Boxes
NASA Technical Reports Server (NTRS)
Bragg, Bobby J.; Casey, John E., Jr.
1995-01-01
Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.
NASA Astrophysics Data System (ADS)
Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.
1985-06-01
Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.
Anisotropic nanomaterials: structure, growth, assembly, and functions
Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867
Anisotropic nanomaterials: structure, growth, assembly, and functions.
Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil
2011-01-01
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.
Quasiparticle anisotropic hydrodynamics for central collisions
NASA Astrophysics Data System (ADS)
Alqahtani, Mubarak; Nopoush, Mohammad; Strickland, Michael
2017-03-01
We use quasiparticle anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state (EoS). We compare results obtained by using the quasiparticle method with the standard method of imposing the EoS in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio η /s . We find that the three methods agree well for small shear viscosity to entropy density ratio η /s , but differ at large η /s , with the standard anisotropic EoS method showing suppressed production at low transverse-momentum compared with the other two methods considered. Finally, we demonstrate explicitly that, when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative at large pT. Such behavior is not seen in either anisotropic hydrodynamics approach, irrespective of the value of η /s .
Matter sourced anisotropic stress for dark energy
NASA Astrophysics Data System (ADS)
Chang, Baorong; Lu, Jianbo; Xu, Lixin
2014-11-01
Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.
Leith diffusion model for homogeneous anisotropic turbulence
NASA Astrophysics Data System (ADS)
Rubinstein, Robert; Clark, Timothy; Kurien, Susan
2016-11-01
A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.
Leith diffusion model for homogeneous anisotropic turbulence
Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan
2017-06-01
Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numericalmore » simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.« less
Elliptical-anisotropic eikonal phase velocity tomography
NASA Astrophysics Data System (ADS)
de Ridder, S. A. L.; Biondi, B. L.; Nichols, D.
2015-02-01
We formulated an anisotropic eikonal tomography approach for phase velocities based on a two-dimensional elliptical-anisotropic wave equation. We can fit the parameters of the ellipse directly from measured first-order traveltime surface gradients and constrain these parameters to vary smoothly over space. The method is applied to Scholte waves in virtual seismic sources from stations in the Life of Field Seismic Ocean Bottom Cable array installed over the Ekofisk field. The fast directions of the azimuthally anisotropic Scholte wave velocities form a large circular pattern over the Ekofisk field. This pattern dominates the Scholte wave phase velocities at Ekofisk between 0.7 and 1.1 Hz. It results from the overburden stress state and from seafloor subsidence induced by decades of hydrocarbon extraction.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Hilton, Harry H.
2012-01-01
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated. PMID:28817038
Azimuthally Anisotropic 3D Velocity Continuation
Burnett, William; Fomel, Sergey
2011-01-01
We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less
Elastic properties of spherically anisotropic piezoelectric composites
NASA Astrophysics Data System (ADS)
Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming
2010-09-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.
Gravitational stresses in anisotropic rock masses
Amadei, B.; Savage, W.Z.; Swolfs, H.S.
1987-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.
Magnetization of anisotropic Type II superconductors
Mints, R.G.
1989-04-10
Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.
Anisotropic Failure Modeling for HY-100 Steel
NASA Astrophysics Data System (ADS)
Harstad, E. N.; Maudlin, P. J.; McKirgan, J. B.
2004-07-01
HY-100 steel is a material that behaves isotropically in the elastic and plastic region and acts anisotropically in failure. Since HY-100 is a ductile metal, a more gradual failure process is observed as opposed to the nearly instantaneous failure in brittle materials. We extend our elasto-plastic-damage constitutive model by including of a decohesion model to describe material behavior between the onset of failure and fracture. We also develop an anisotropic failure surface to account for directionality in material failure. Both the anisotropic failure and decohesion models have been implemented into a finite element code, where the effects of these models are studied in a uniaxial stress simulations, a plate impact simulations, and a quasistatic notched round bar tensile test simulations.
Infrared properties of an anisotropically stirred fluid
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Barton, J. Michael
1987-01-01
A renormalization group is developed for the Navier-Stokes equations driven by an anisotropically correlated random stirring force. The stirring force generates homogeneous turbulence with a preferred direction. The force correlation is the sum of a small anisotropic perturbation and an isotropic correlation chosen, so that the fixed point of renormalization group has a k exp -5/3 energy spectrum. Fixed points for the anisotropic correlation are found near this isotropic fixed point. Two types of anisotropy are analyzed. when the additional stirring is in the plane perpendicular to the preferred direction, the renormalized viscosity is increased. When it is aligned with the preferred direction, the viscosity is decreased. A possible connection with the inverse energy cascade of two-dimensional turbulence is discussed.
Leith diffusion model for homogeneous anisotropic turbulence
Rubinstein, Robert; Clark, Timothy T.; Kurien, Susan
2016-07-19
Here, a proposal for a spectral closure model for homogeneous anisotropic turbulence. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Here, numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.
Isotropic versus anisotropic modeling of photorefractive solitons.
Belić, M R; Vujić, D; Stepken, A; Kaiser, F; Calvo, G F; Agulló-López, F; Carrascosa, M
2002-06-01
The question of the isotropic versus anisotropic modeling of incoherent spatial screening solitons in photorefractive crystals is addressed by a careful theoretical and numerical analysis. Isotropic, or local, models allow for an extended spiraling of two interacting scalar solitons, and for a prolonged propagation of vortex vector solitons, whereas anisotropic, nonlocal, models prevent such phenomena. In the context of Kukhtarev's material equations, the difference in behavior is traced to the continuity equation for the current density. We further show that neither an indefinite spiraling of two solitons nor stable propagation of vortex vector solitons is generally possible in both isotropic and anisotropic models. Such systems do not conserve angular momentum, even in the case of an isotropic change in the index of refraction.
Forming Limits for Anisotropic Sheet Metals
NASA Astrophysics Data System (ADS)
Kim, Youngsuk; Kim, Chul; Lee, Sangryong; Won, Sungyeun; Hwang, Sangmoo
Most failures of ductile materials in metal forming processes occurred due to material damage evolution-void nucleation, growth and coalescence. In this paper, modified version of Gurson-Tvergaard's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion is studied to clarify the plastic deformation characteristic of voided anisotropic sheet metals. The void growth of an anisotropic sheet under biaxial tensile loading and damage effect of void growth on forming limits of sheet metals are investigated. Also the characteristic length defining the neck geometry is introduced in M-K model to incorporate the effect of triaxial stress in necked region on forming limits. The forming limits theoretically predicted are compared with some experimental data. Satisfactory agreement was obtained between the predictions and experimental data.
Anisotropic Hanle line shape via magnetothermoelectric phenomena
NASA Astrophysics Data System (ADS)
Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.
2016-11-01
We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.
Modeling of nanostructured porous thermoelastic composites with surface effects
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.
2017-01-01
The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.
Modeling Geodynamic Mobility of Anisotropic Lithosphere
NASA Astrophysics Data System (ADS)
Perry-Houts, J.; Karlstrom, L.
2016-12-01
The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.
Foam front propagation in anisotropic oil reservoirs.
Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N
2016-04-01
The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does.
The family of anisotropically scaled equatorial waves
NASA Astrophysics Data System (ADS)
RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo
2011-04-01
In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.
An Anisotropic Multiphysics Model for Intervertebral Disk
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-01-01
Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402
Evolution of multidimensional flat anisotropic cosmological models
Beloborodov, A. ); Demianski, M. Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw International Center for Relativistic Astrophysics , Universita di Roma I, La Sapienza, Rome ); Ivanov, P.; Polnarev, A.G. )
1993-07-15
We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means.
Inverse moments equilibria for helical anisotropic systems
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Hirshman, S. P.; Depassier, M. C.
1987-11-01
An energy functional is devised for magnetic confinement schemes that have anisotropic plasma pressure. The minimization of this energy functional is demonstrated to reproduce components of the magnetohydrodynamic (MHD) force balance relation in systems with helical symmetry. An iterative steepest descent procedure is applied to the Fourier moments of the inverse magnetic flux coordinates to minimize the total energy and thus generate anisotropic pressure MHD equilibria. Applications to straight ELMO Snaky Torus (NTIS Document No. DE-84002406) configurations that have a magnetic well on the outermost flux surfaces have been obtained.
On cracking of charged anisotropic polytropes
NASA Astrophysics Data System (ADS)
Azam, M.; Mardan, S. A.
2017-01-01
Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways (i) by perturbing polytropic constant, anisotropy and charge parameter (ii) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.
Raman Tensor Formalism for Optically Anisotropic Crystals.
Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius
2016-03-25
We present a formalism for calculating the Raman scattering intensity dependent on the polarization configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large scattering depth, the observed Raman intensities converge and can be described by an effective Raman tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is demonstrated.
Optical Activity of Anisotropic Achiral Surfaces
Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |
1996-08-01
Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}
Anisotropic superconductors in tilted magnetic fields
Vlasko-Vlasov, V. K.; Glatz, A.; Koshelev, A. E.; Welp, U.; Kwok, W. K.
2015-06-01
We present images of magnetic flux structures in a single crystal of YBa2Cu3O7-d during remagnetization by fields tilted from the basal plane of the crystal. Depending on the magnitude and angle of the applied field we observe anisotropic flux penetration along and across the in-plane field component and emergence of vortex instabilities resulting in modulated flux distributions. We associate the observed patterns with flux cutting effects and with tilted vortex structures intrinsic for layered superconductors. Time dependent Ginzburg-Landau simulations show preferential vortex motion across the c-axis and reveal the flux structure evolution in anisotropic superconductors under tilted magnetic fields.
Differential matrix formalism for depolarizing anisotropic media.
Ossikovski, Razvigor
2011-06-15
Azzam's differential matrix formalism [J. Opt. Soc. Am. 68, 1756 (1978)], originally developed for longitudinally inhomogeneous anisotropic nondepolarizing media, is extended to include depolarizing media. The generalization is physically interpreted in terms of means and uncertainties of the elementary optical properties of the medium, as well as of three anisotropy absorption parameters introduced to describe the depolarization. The formalism results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generally depolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix. The approach is illustrated on literature data and the conditions of its validity are identified and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Kai
Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a
Nonlinear Stability of Convection in a Porous Layer with Solid Partitions
NASA Astrophysics Data System (ADS)
Straughan, B.
2014-07-01
We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1989-03-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculations assume local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
MAGNUM2D. Radionuclide Transport Porous Media
Langford, D.W.; Baca, R.G.
1988-08-01
MAGNUM2D was developed to analyze thermally driven fluid motion in the deep basalts below the Paco Basin at the Westinghouse Hanford Site. Has been used in the Basalt Waste Isolation Project to simulate nonisothermal groundwater flow in a heterogeneous anisotropic medium and heat transport in a water/rock system near a high level nuclear waste repository. Allows three representations of the hydrogeologic system: an equivalent porous continuum, a system of discrete, unfilled, and interconnecting fractures separated by impervious rock mass, and a low permeability porous continuum with several discrete, unfilled fractures traversing the medium. The calculation assumes local thermodynamic equilibrium between the rock and groundwater, nonisothermal Darcian flow in the continuum portions of the rock, and nonisothermal Poiseuille flow in discrete unfilled fractures. In addition, the code accounts for thermal loading within the elements, zero normal gradient and fixed boundary conditions for both temperature and hydraulic head, and simulation of the temperature and flow independently. The Q2DGEOM preprocessor was developed to generate, modify, plot and verify quadratic two dimensional finite element geometries. The BCGEN preprocessor generates the boundary conditions for head and temperature and ICGEN generates the initial conditions. The GRIDDER postprocessor interpolates nonregularly spaced nodal flow and temperature data onto a regular rectangular grid. CONTOUR plots and labels contour lines for a function of two variables and PARAM plots cross sections and time histories for a function of time and one or two spatial variables. NPRINT generates data tables that display the data along horizontal or vertical cross sections. VELPLT differentiates the hydraulic head and buoyancy data and plots the velocity vectors. The PATH postprocessor plots flow paths and computes the corresponding travel times.
Graded/Gradient Porous Biomaterials
Miao, Xigeng; Sun, Dan
2009-01-01
Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Porous electrode preparation method
Arons, R.M.; Dusek, J.T.
1983-10-18
A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.
Porous electrode preparation method
Arons, Richard M.; Dusek, Joseph T.
1983-01-01
A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.
Strong, Lightweight, Porous Materials
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi
2007-01-01
A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.
Shepodd, Timothy J.
2002-01-01
Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
Electrochemically Formed Porous Silica
Chazalviel, Jean-Noël; Ozanam, François
2011-01-01
Controlled electrochemical formation of porous silica can be realized in dilute aqueous, neutral-pH, fluoride medium. Formation of a porous film is initiated by sweeping the potential applied to silicon to values higher than 20 V. Film formation, reaching a steady state, may be pursued in a wide range of potentials, including lower potentials. The origin of a threshold potential for porous film initiation has been explained quantitatively. All of the films appear mesoporous. Films grown at high potentials exhibit a variety of macrostructures superimposed on the mesoporosity. These macrostructures result from selective dissolution of silica induced by local pH lowering due to oxygen evolution. Films grown at potentials lower than 15 V appear uniform on the micrometer scale. However, all of the films also exhibit a stratified structure on the scale of a few tens of nanometres. This periodic structure can be traced back to the oscillatory behavior observed during the electrochemical dissolution of silicon in fluoride medium. It suggests that periodic breaking of the growing film may be responsible for this morphology. PMID:28879953
An Engineered Anisotropic Nanofilm with Unidirectional Wetting Properties
2010-01-01
ARTICLES PUBLISHED ONLINE: 10 OCTOBER 2010 | DOI: 10.1038/NMAT2864 An engineered anisotropic nanofilm with unidirectional wetting properties Niranjan...body3. Engineering synthetic materials with such anisotropic adhesive properties has led to advances in digitalmicrofluidic devices5,6 andmedicine7,8...The anisotropic wetting properties of existing engineered surfaces are derived either from spatial gradients (for example, temperature, surface
Data-driven imaging in anisotropic media
Volker, Arno; Hunter, Alan
2012-05-17
Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.
Thermal D mesons from anisotropic lattice QCD
NASA Astrophysics Data System (ADS)
Kelly, Aoife; Skullerud, Jon-Ivar
2017-03-01
We present results for correlators and spectral functions of open charm mesons using 2+1 flavours of clover fermions on anisotropic lattices. The D mesons are found to dissociate close to the deconfinement crossover temperature Tc. Our preliminary results suggest a shift in the thermal D meson mass below Tc. Mesons containing strange quarks exhibit smaller thermal modifications than those containing light quarks.
Casimir interactions for anisotropic magnetodielectric metamaterials
Da Rosa, Felipe S; Dalvit, Diego A; Milonni, Peter W
2008-01-01
We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.
Purpose-Built Anisotropic Metal Oxide Nanomaterials
2001-01-01
Proceedings Volume 635. Anisotropic Nanoparticles - Synthesis , Characterization and Applications To order the complete compilation report, use...for instance, to the oxidation of sedimentary organic matter [11]. In its various allotropic forms, iron oxides and oxyhydroxides represent important...16-18] and photocatalysts [19], for magnetic storage devices, cathodes for primary and secondary batteries [20], chemical flame suppressant [21] and
Wave propagation in anisotropic layered composites
NASA Astrophysics Data System (ADS)
Braga, Arthur Martins Barbosa
1990-08-01
The propagation of harmonic waves in laminated anisotropic composites is investigated. The analysis is carried out within the framework of the linear theory of elasticity. Two basic geometries are considered, namely, layered half-spaces and infinite laminated plates. The method employed in the description of the wave motion in the anisotropic composites is based on Stroh's sextic matrix formalism for anisotropic elasticity. An extension of this formalism to periodic media, in conjunction with Floquet's theorem, is applied when the layers are disposed periodically. The 'in vacuo' free motions of laminated composites are investigated. Particular attention is paid to Rayleigh and Rayleigh-Lamb wave propagation in layered media. The dynamic interaction of laminated composites with a surrounding acoustic fluid is also investigated. The concept of surface impedance tensor is introduced. It is shown that, for harmonic motions, this rank-two tensor completely characterizes the solid surface in contact with the fluid. An algorithm for the numerical computation of the surface impedance tensor of anisotropic layered composites is presented. This algorithm is numerically stable for a wide range of frequencies. Special attention is paid to the subsonic Sholte-Gogoladze-like wave, which propagates unattenuated along the planar fluid/solid interface.
Vibrations and stresses in layered anisotropic cylinders
NASA Technical Reports Server (NTRS)
Mulholland, G. P.; Gupta, B. P.
1976-01-01
An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.
THEORY OF COMPTON SCATTERING BY ANISOTROPIC ELECTRONS
Poutanen, Juri; Vurm, Indrek E-mail: indrek.vurm@oulu.f
2010-08-15
Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, relativistic jets, and clusters of galaxies, as well as the early universe. In most of the calculations, it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or where there is anisotropic cooling by synchrotron radiation or an anisotropic source of seed soft photons. Here we develop an analytical theory of Compton scattering by anisotropic distribution of electrons that can significantly simplify the calculations. Assuming that the electron angular distribution can be represented by a second-order polynomial over the cosine of some angle (dipole and quadrupole anisotropies), we integrate the exact Klein-Nishina cross section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describing Compton scattering of photons with arbitrary angular distribution by anisotropic electrons. The analytical expressions for the corresponding photon scattering cross section on such electrons, as well as the mean energy of scattered photons, its dispersion, and radiation pressure force are also derived. We apply the developed formalism to the accurate calculations of the thermal and kinematic Sunyaev-Zeldovich effects for arbitrary electron distributions.
Anisotropic MHD model and some solutions
Kuznetsov, V. D.; Dzhalilov, N. S.
2010-09-15
MHD waves and instabilities in a collisionless anisotropic-pressure plasma are analyzed in an anisotropic MHD model based on the 16-moment approximation, and the results are found to agree well with those obtained in the low-frequency limit of the kinetic model. It is shown that accounting for heat fluxes leads to an asymmetry in the phase velocities of the wave modes with respect to the heat flux direction and also to a strong interaction between the modes, especially between the backward ones (those that propagate in a direction opposite to that of the heat flux). A correct description of the mirror instability is given. The resonant interaction of three backward modes-fast acoustic, fast magnetosonic, and slow acoustic-under the conditions for the onset of the classical firehose instability triggers a new type of instability the growth rate of which is faster than the maximum growth rate of the conventional firehose instability. The results prove that, in contrast to the familiar Chew-Goldberger-Low approximate model, the anisotropic MHD approach provides a correct description of the large-scale dynamics of collisionless anisotropic plasmas (such as solar corona, solar wind, and ionospheric and magnetospheric plasmas).
Porous microsphere and its applications
Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien
2013-01-01
Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359
Porous Molecular Solids and Liquids.
Cooper, Andrew I
2017-06-28
Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal-organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods.
Dynamic Compaction of Porous Beds
1985-12-26
NSWVC TR 83-246 00 00 SDYNAMIC COMPACTION OF POROUS B3EDS BY H. W. SANDUSKY T. P. LIDDIARD RESEARCH AND TECHNOLOGY DEPARTMENT D I 26 DECEMBER 1985...RIOBA4313 11. TITLE (Include Security Classfication3 Dynamic Compaction of Porous Beds 12. PERSONAL AUTHOR(S) Sandusky, H. W., and Liddiard, T. P. 13a... Porous Bed Compaction Wave Velocity Oeflaaration-to-Detonation Transition Particle Velocity ABSTRACT (Continue on reverse if necessary and identify
Porous Materials by Powder Metallurgy
1998-04-30
generally determine porosity and pore size of the resulting porous material. The beads can be microballoons, which are hollow inside, or they can be...proved jYi- --*;V--, - one QUALITY INSPECTED 0 Applicant: Everett Patent Application Serial Number: Navy Case Number: 78,529 5 Porous Materials...By Powder Metallurgy Background of Invention Field of Invention: This invention pertains to porous material fabrication by controlling pore size
Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour
NASA Astrophysics Data System (ADS)
Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick
2010-05-01
Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Jones (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Fu, Li-Yun; Zhang, Luxin; Wei, Wei; Guan, Xizhu
2014-05-01
Ultrasonic wave propagation in heterogeneous porous cores under laboratory studies is an extremely complex process involved with strong scattering by microscale heterogeneous structures. The resulting coda waves, as an index to measure scattering attenuation, are recorded as continuous waveforms in the tail portion of wavetrains. Because of the contamination of reflections from the side ends and reverberations between the sample surfaces, it is difficult to extract pure coda waves from ultrasonic measurements for the estimation of the P- and S-coda attenuation quality factors. Comparisons of numerical and experimental ultrasonic wave propagation in heterogeneous porous cores can give important insight into understanding the effect of boundary reflections on the P- and S-codas in the laboratory experiment. It challenges numerical modeling techniques by three major issues: the creation of a digital core model to map heterogeneous rock properties in detail, the perfect simulation with a controllable and accurate absorbing boundary, and overcoming the numerical dispersions resulting from high-frequency propagation and strong heterogeneity in material. A rotated staggered-grid finite-difference method of Biot's poroelastic equations is presented with an unsplit convolutional perfectly matched layer (CPML) absorbing boundary to simulate poroelastic wave propagation in isotropic and fluid-saturated porous media. The contamination of boundary reflections on coda waves is controlled by the CPML absorbing coefficients for the comparison between numerical and experimental ultrasonic waveforms. Numerical examples with a digital porous core demonstrate that the boundary reflections contaminate coda waves seriously, causing much larger coda quality factors and thus underestimating scattering attenuation.
Elliptical silicon arrays with anisotropic optical and wetting properties.
Wang, Tieqiang; Li, Xiao; Zhang, Junhu; Wang, Xianzhe; Zhang, Xuemin; Zhang, Xun; Zhu, Difu; Hao, Yudong; Ren, Zhiyu; Yang, Bai
2010-08-17
We demonstrate a facile etching method to fabricate silicon elliptical pillar arrays (Si-EPAs) with unique anisotropic optical and wetting characters using polystyrene elliptical hemisphere arrays (EHAs) as mask. The EHAs were fabricated via a modified micromolding method. By varying the experimental conditions in the fabrication process, the morphology of the resulting microstructures can be controlled exactly. Because of the anisotropic morphology of the elliptical pillar, the Si-EPA shows unique anisotropic properties, such as anisotropic surface reflection and anisotropic wetting property. Additionally, through oblique evaporation deposition of Au and selective chemical modification to turn the elliptical pillars into "Janus" elliptical pillars, the "Janus" Si-EPA shows more peculiar anisotropic properties owing to the further increased asymmetry. We believe that the Si-EPAs will have potential applications in anisotropic optical and electronic devices.
Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.
2014-07-15
Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.
NASA Astrophysics Data System (ADS)
Kim, Min Chan
2014-11-01
To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.
Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Jones, Matthew Robert
In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores
Anisotropic electronic states in the fractional quantum Hall regime
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2017-05-01
Recent experiments indicate the presence of new anisotropic fractional quantum Hall states at regimes not anticipated before. These experiments raise many fundamental questions regarding the inner nature of the electronic system that leads to such anisotropic states. Interplay between electron mass anisotropy and electron-electron correlation effects in a magnetic field can create a rich variety of possibilities. Several anisotropic electronic states ranging from anisotropic quantum Hall liquids to anisotropic Wigner solids may stabilize due to such effects. The electron mass anisotropy in a two-dimensional electron gas effectively leads to an anisotropic Coulomb interaction potential between electrons. An anisotropic interaction potential may strongly influence the stability of various quantum phases that are close in energy since the overall stability of an electronic system is very sensitive to local order. As a result there is a possibility that various anisotropic electronic phases may emerge even in the lowest Landau level in regimes where one would not expect them. In this work we study the state with filling factor 1/6 in the lowest Landau level, a state which is very close to the critical filling factor where the liquid-solid transition takes place. We investigate whether an anisotropic Coulomb interaction potential is able to stabilize an anisotropic electronic liquid state at this filling factor. We describe such an anisotropic state by means of a liquid crystalline wave function with broken rotational symmetry which can be adiabatically connected to the actual wave function for the corresponding isotropic phase. We perform quantum Monte Carlo simulations in a disk geometry to study the properties of the anisotropic electronic liquid state under consideration. The findings indicate stability of liquid crystalline order in presence of an anisotropic Coulomb interaction potential. The results are consistent with the existence of an anisotropic electronic
Small, porous polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)
1977-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Tortuosity of porous particles.
Barrande, M; Bouchet, R; Denoyel, R
2007-12-01
Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained
Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.
2000-01-01
The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
Why engineer porous materials?
Kelly, A
2006-01-15
A number of specific examples are briefly given for the use of pores in engineering materials: a porous ceramic to produce minimum thermal conduction; thin skeleton walls in silicon to produce photoluminescence; low dielectric constant materials. The desirable nature of the pores in fuel cell electrodes and sieves is described. Further examples are given in orthopaedics, prosthetic scaffolds and sound deadening and impact resistance materials. An attempt is made to describe the desirable pore size, whether open or closed, and the useful volume fraction. This short review does not deal with flexible foams.
Photoactive porous silicon nanopowder.
Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J
2013-04-24
Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.
Crosslinked, porous, polyacrylate beads
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)
1976-01-01
Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.
Anisotropic singularities in modified gravity models
NASA Astrophysics Data System (ADS)
Figueiró, Michele Ferraz; Saa, Alberto
2009-09-01
We show that the common singularities present in generic modified gravity models governed by actions of the type S=∫d4x-gf(R,ϕ,X), with X=-(1)/(2)gab∂aϕ∂bϕ, are essentially the same anisotropic instabilities associated to the hypersurface F(ϕ)=0 in the case of a nonminimal coupling of the type F(ϕ)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface (∂f)/(∂R)=0 is attained. Some examples are explicitly discussed.
Birefringent light propagation on anisotropic cosmological backgrounds
NASA Astrophysics Data System (ADS)
Asenjo, Felipe A.; Hojman, Sergio A.
2017-08-01
Exact electromagnetic wave solutions to Maxwell equations on anisotropic Bianchi I cosmological spacetime backgrounds are studied. The waves evolving on Bianchi I spacetimes exhibit birefringence (associated with linear polarization) and dispersion. The particular case of a vacuum-dominated anisotropic Universe, which reproduces a Friedmann-Robertson-Walker Universe (for late times)—while, for earlier times, it matches a Kasner Universe—is studied. The electromagnetic waves do not, in general, follow null geodesics. This produces a modification of the cosmological redshift, which is then dependent on light polarization, its dispersion, and its non-null geodesic behavior. New results presented here may help to tackle some issues related to the "horizon" problem.
Rainbow metric from quantum gravity: Anisotropic cosmology
NASA Astrophysics Data System (ADS)
Assanioussi, Mehdi; Dapor, Andrea
2017-03-01
In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.
Method of caustics for anisotropic materials
NASA Astrophysics Data System (ADS)
Rossmanith, H. P.
1991-12-01
During the past 25 years the optical method of caustics has matured to a very powerful tool for application in fracture mechanics for the determination of stress intensity factors or the J- integral, in contact mechanics for the determination of contact forces, etc. The technique is applicable to two-dimensional static or dynamic problems and works for any kind of stress- strain relationship. The method displays its full power when employed in conjunction with interactive numerical data reduction and evaluation procedures. Recently, the industrial application of high strength-low weight composite materials has boomed. Application of the method of caustics to anisotropic materials requires the development of the theoretical background. This contribution focuses on the theoretical development of the method of caustics and its applicability to anisotropic materials.
Nonorthogonal polarisation eigenstates in anisotropic cavities
Mamaev, Yu A; Khandokhin, Pavel A
2011-06-30
The Jones matrix method is used to analyse the polarisation eigenmodes of a solid-state laser with an anisotropic Fabry - Perot cavity containing amplitude and phase anisotropic elements. The results demonstrate that, when the axes of these elements do not coincide, the eigenpolarisations become elliptical and nonorthogonal. The ellipticities and azimuths of the polarisation modes and the magnitude and phase of the nonorthogonality parameter are determined as functions of polariser angle at different relationships between the amplitude and phase anisotropies, and the effect is shown to be strongest at a polariser angle of 45{sup 0}. There is critical phase anisotropy, dependent on amplitude anisotropy, at which the magnitude of the nonorthogonality parameter and ellipticity of the polarisation modes approach unity. (resonators)
Fluctuations in a Primordial Anisotropic ERA
NASA Astrophysics Data System (ADS)
Novello, Mário; de Freitas, Luciane R.
The primordial Universe is treated in terms of a nonperfect fluid configuration endowed with an anisotropic expansion. The deGennes-Landau mechanism of phase transition acts as a very efficient process to provide the elimination of the previous anisotropy and to set the universe in the current isotropic FRW stage. The entropy produced, as a consequence of the phase transition, depends on the strength of the previous shear. We suggest the hypothesis that the germinal perturbations that will grow into the observed system of galaxies occurring in the anisotropic era. We present a model to deal with this idea that provides a power spectrum of fluctuations of the form δ 2k ˜ 1/(a +bk2). We compare this prediction of our model to the current knowledge on the galaxy formation process.
Anisotropic stellar models admitting conformal motion
NASA Astrophysics Data System (ADS)
Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali
2017-04-01
We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.
Anisotropic properties of tracheal smooth muscle tissue.
Sarma, P A; Pidaparti, R M; Meiss, R A
2003-04-01
The anisotropic (directional-dependent) properties of contracting tracheal smooth muscle tissue are estimated from a computational model based on the experimental data of length-dependent stiffness. The area changes are obtained at different muscle lengths from experiments in which stimulated muscle undergoes unrestricted shortening. Then, through an interative process, the anisotropic properties are estimated by matching the area changes obtained from the finite element analysis to those derived from the experiments. The results obtained indicate that the anisotropy ratio (longitudinal stiffness to transverse stiffness) is about 4 when the smooth muscle undergoes 70% strain shortening, indicating that the transverse stiffness reduces as the longitudinal stiffness increases. It was found through a sensitivity analysis from the simulation model that the longitudinal stiffness and the in-plane shear modulus are not very sensitive as compared to major Poisson's ratio to the area changes of the muscle tissue. Copyright 2003 Wiley Periodicals, Inc.
Optical sharper focusing in an anisotropic crystal.
Wang, Sicong; Xie, Xiangsheng; Gu, Min; Zhou, Jianying
2015-06-01
Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial crystal with the optic axis perpendicular to the interface under a tight focusing configuration are studied with rigorous theoretical and numerical analysis. The significant effect of the Poynting vector on the focal position introduces an obvious displacement of the focal spot formed by the extraordinary waves (e-ray). Moreover, a sharper focus with a lateral size of 0.22λ is obtained as a result of the effective separation of the ordinary waves (o-ray) and the e-ray. It provides a new tool to fabricate optical structures with higher resolutions than that in an isotropic medium through the far-field method.
Performance comparison of fundamental anisotropic diffusion algorithms
NASA Astrophysics Data System (ADS)
Bayraktar, Bulent; Analoui, Mostafa
2004-05-01
Anisotropic diffusion (AD), first introduced by Perona and Malik (PM), provides image enhancement a strong benefit as it favors intra-region over inter-region smoothing. Early updates on the original PM algorithm focused on the cures for its drawbacks. Later some authors provided their own versions of AD techniques with a wide variety of applications. We surveyed the pros and cons of many fundamental AD techniques. To put our purpose into perspective, we compared the performances of fundamental AD algorithms to simple traditional filters and to more sophisticated tools such as wavelets. Visual inspection and two mathematical criteria are used for performance comparison: Signal-to-noise ratio (SNR) and universal image quality index (UIQI). We believe that a good overview of its simplicity and power will show the rightful reason of so much interest in anisotropic diffusion since its introduction.
Nonminimal coupling in anisotropic teleparallel inflation
NASA Astrophysics Data System (ADS)
Abedi, Habib; Wright, Matthew; Abbassi, Amir M.
2017-03-01
We study an anisotropic inflationary scenario in teleparallel gravity. We consider a model where the inflaton is nonminimally coupled both to torsion and a vector field, which can lead to anisotropic inflation. In the weak-coupling limit, our results coincide with the results obtained in the general relativistic framework. However, in the strong-coupling regime of the Jordan frame, we show that the anisotropy shear to expansion ratio is a constant, and can be much larger than the slow-roll parameter. Applying a conformal transformation we then work in the Einstein frame, which in teleparallel gravity introduces a different form of coupling between the inflaton and torsion. In this frame we show that in the strong coupling regime the anisotropy shear to expansion ratio is a different constant, that can be made suitably small.
Anisotropic hydrodynamic function of dense confined colloids
NASA Astrophysics Data System (ADS)
Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy
2017-06-01
Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.
Formation of Anisotropic Block Copolymer Gels
NASA Astrophysics Data System (ADS)
Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk
2011-03-01
Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.
Wireless energy transfer between anisotropic metamaterials shells
Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José
2014-06-15
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.
The Impact of Anisotropic Error Correlation Modelling
NASA Technical Reports Server (NTRS)
Swinbank, R.; Riishojgaard, L. P.; Menard, R.
1999-01-01
Most data assimilation systems assume isotropic forecast error correlations, but results from two dimensional Kalman Filter experiments indicate that the correlations can be far from isotropic. In this paper we use a simple two-dimensional data assimilation system, which analyses trace chemical species such as ozone, to assess different approaches to modelling the error correlations. We compare assimilation results using isotropic correlations with results obtained using different approaches to modelling anisotropic correlations: first, using correlations based on the concentrations of the trace chemicals, and secondly using an advective correlation model. We show that these relatively cheap ways of modelling anisotropic correlations give objectively better results than using isotropic correlations. We discuss the possible extension of these approaches to a full 3-D meteorological data assimilation system.
Modeling anisotropic magnetoresistance in layered antiferromagnets
NASA Astrophysics Data System (ADS)
Santos, D. L. R.; Pinheiro, F. A.; Velev, J.; Chshiev, M.; Castro, J. d.'Albuquerque e.; Lacroix, C.
2017-06-01
We have investigated the electronic transport and the anisotropic magnetoresistance in systems consisting of pairs of antiferromagnetically aligned layers separated by a non-magnetic layer, across which an antiferromagnetic coupling between the double layers is established. Calculations have been performed within the framework of the tight-binding model, taking into account the exchange coupling within the ferromagnetic layers and the Rashba spin-orbit interaction. Conductivities have been evaluated in the ballistic regime, based on Kubo formula. We have systematically studied the dependence of the conductivity and of the anisotropic magnetoresistance on several material and structural parameters, such as the orientation of the magnetic moments relative to the crystalline axis, band filling, out-of-plane hopping and spin-orbit parameter.
Cosmological signatures of anisotropic spatial curvature
Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo E-mail: mena@iem.cfmac.csic.es
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Thermodynamics of soft anisotropic contact lines.
Rey, Alejandro D
2004-08-01
Contact lines arising from the intersection of interfaces between liquids and nematic liquid crystals are representative models of soft anisotropic contact lines. This paper presents the thermodynamics of soft anisotropic contact lines and the derivation of the one dimensional (1D) Gibbs-Duhem adsorption equation. Consistency between the 1D Gibbs-Duhem equation and the classical equations of lineal nematostatics is shown. Using a phase space that takes into account thermodynamics, liquid crystalline order, and geometric variables, the generalized nematic line Gibbs-Duhem equation reveals the presence of couplings between curvature, torsion, adsorption, temperature, and average molecular orientation. Merging the thermodynamic analysis with nematostatics results in a model for contact line shape and orientation selection. The ability of an adsorbed solute to orient the director and to bend and twist the contact line is predicted. The thermodynamic origin of preferred orientation at a straight contact line is established.
Observation of an Anisotropic Wigner Crystal
NASA Astrophysics Data System (ADS)
Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2016-09-01
We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.
Landingham, Richard L.
1985-01-01
Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides are heated in a confining container at a controlled rate to a temperature of about greater than the temperature at which the hydride decomposes. Hydrogen is removed from the container and the remaining metal is heated during a second stage to a temperature greater than the temperature at which it was previously heated but not greater than the temperature of 1/2 to 2/3 the temperature at which the metal melts at a controlled rate. The resulting porous metallic body produced has a density less than about 25 percent theoretical and a pore size of less than about 200 microns. The metallic particles of the present invention have high inner surface area and possess minimum resistance to gas flow.
Symmetry analysis for anisotropic field theories
Parra, Lorena; Vergara, J. David
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Continuous Observability for the Anisotropic Maxwell System
Eller, Matthias M.
2007-03-15
A boundary observability inequality for the homogeneous Maxwell system with variable, anisotropic coefficients is proved. The result implies uniqueness for an ill-posed Cauchy problem for Maxwell's system. Both results are so far known only in the special case of isotropic coefficients, i.e., when Maxwell's system reduces to a vector wave equation. Here the analysis has been carried out for the first-order system directly without references to the wave equation.
Slotted Antenna with Anisotropic Magnetic Loading
2016-07-26
10 SLOTTED ANTENNA WITH ANISOTROPIC MAGNETIC LOADING STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured...therefor. CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention ...of the VSWR curve, and modest bandwidth in each passband. SUMMARY OF THE INVENTION [0006] It is a first object of the present invention to provide
Anisotropic cosmological solutions in massive vector theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/H decreases with the decrease of v. As long as the conditions |Σ| ll H and v2 ll phi2 are satisfied around the onset of late-time cosmic acceleration, where phi is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state wDE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value wDE(iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Probabilistic Anisotropic Failure Criteria for Composite Materials.
1987-12-01
worksheets were based on Microsoft Excel software. 55 55 ’. 2.’ ..’. -.. ’-,’€’.’’.’ :2.,2..’..’.2.’.’.,’.." ... .2...analytically described the failure cri - terion and probabilistic failure states of a anisotropic composite in a combined stress state. Strength...APPENDIX F RELIABILITY/FAILURE FUNCTION WORKSHEET ........... 76 APPENDIX G PERCENTILE STRENGTH WORKSHEET ....................... 80 LIST OF
Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.
Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G
2015-12-22
The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.
Observational signatures of anisotropic inflationary models
Ohashi, Junko; Tsujikawa, Shinji; Soda, Jiro E-mail: jiro@phys.sci.kobe-u.ac.jp
2013-12-01
We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F{sub μν}F{sup μν} and (ii) a two-form kinetic term H{sub μνλ}H{sup μνλ}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g{sub *} are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n{sub s} in both models. In the light of the recent Planck bounds of n{sub s} and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector model the cross correlation does not vanish. The non-linear estimator f{sub NL} of scalar non-Gaussianities in the two-form model is generally smaller than that in the vector model for the same orders of |g{sub *}|, so that the former is easier to be compatible with observational bounds of non-Gaussianities than the latter.
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
A viscoplastic theory for anisotropic materials
NASA Technical Reports Server (NTRS)
Nouailhas, D.; Freed, A. D.
1992-01-01
The purpose of this work is the development of a unified, cyclic, viscoplastic model for anisotropic materials. The first part of the paper presents the foundations of the model in the framework of thermodynamics with internal variables. The second part considers the particular case of cubic symmetry, and addresses the cyclic behavior of a nickel-base single-crystal superalloy, CMSX-2, at high temperature (950 C).
Multidimensional reaction rate theory with anisotropic diffusion.
Berezhkovskii, Alexander M; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang
2014-11-28
An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.
Perspectives of anisotropic flow measurements at NICA
NASA Astrophysics Data System (ADS)
Korotkikh, V. L.; Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.
2016-08-01
High-accuracy and high-luminosity measurements of anisotropic flow for various hadron types over full NICA energy range will provide important constraints on the early dynamics of heavy-ion reactions under the conditions where a first-order quark-hadron phase transition may occur. The statistical reach for elliptic flow measurements at NICA is estimated with HYDJET++ heavy-ion event generator.
Effect of inflation on anisotropic cosmologies
Jensen, L.G.; Stein-Schabes, J.A.
1986-03-01
The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.
ARTc: Anisotropic reflectivity and transmissivity calculator
NASA Astrophysics Data System (ADS)
Malehmir, Reza; Schmitt, Douglas R.
2016-08-01
While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.
Active Damping Using Distributed Anisotropic Actuators
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Anisotropic hydrodynamics for conformal Gubser flow
NASA Astrophysics Data System (ADS)
Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw
2016-12-01
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Anisotropic impedance surfaces for enhanced antenna isolation
NASA Astrophysics Data System (ADS)
Miragliotta, Joseph A.; Shrekenhamer, David; Sievenpiper, Daniel F.
2015-09-01
Anisotropic impedance surfaces, which include metasurfaces and high impedance surfaces (HIS), can be designed to control the amplitude and propagation direction of surface electromagnetic waves and are an effective means to enhance the isolation between antennas that share a common ground plane. To date, the majority of metastructures that have been designed for antenna isolation have relied on an isotropic distribution of unit cells that possess a stop band that inhibits the propagation of surface waves between neighboring antennas. A less common approach to isolation has been through the design of a metasurface that enables the re-direction of surface waves away from the location of the antenna structure, which effectively limits the coupling. In this paper, we discuss results from our computational investigation associated with improving antenna isolation through the use of an anisotropic metastructure. Simulated results associated with the isolation performance of two simple, but similar, anisotropic structures are compared to the corresponding results from a broadband magnetic radar absorbing materials (magRAM).
Shock capturing by anisotropic diffusion oscillation reduction
NASA Astrophysics Data System (ADS)
Wei, G. W.
2002-04-01
This paper introduces an anisotropic diffusion oscillation reduction (ADOR) scheme for shock wave computations. The connection is made between digital image processing, in particular, image edge detection, and numerical shock capturing. Indeed, numerical shock capturing can be formulated on the lines of iterative digital edge detection. Various anisotropic diffusion and super diffusion operators originated from image edge detection are proposed for the treatment of hyperbolic conservation laws and near-hyperbolic hydrodynamic equations of change. The similarity between anisotropic diffusion and artificial viscosity is discussed. Physical origins and mathematical properties of the artificial viscosity are analyzed from the point of view of kinetic theory. A form of pressure tensor is derived from the first principles of the quantum mechanics. Quantum kinetic theory is utilized to arrive at macroscopic transport equations from the microscopic theory. Macroscopic symmetry is used to simplify pressure tensor expressions. The latter provides a basis for the design of artificial viscosity. The ADOR approach is validated by using (inviscid) Burgers' equation, the gas tube problems, the incompressible Navier-Stokes equation and the Euler equation. Both standard central difference schemes and a discrete singular convolution algorithm are utilized to illustrate the approach. Results are compared with those of third-order upwind scheme and essentially non-oscillatory (ENO) scheme.
Monotonic solution of heterogeneous anisotropic diffusion problems
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Tucciarelli, Tullio
2013-11-01
Anisotropic problems arise in various areas of science and engineering, for example groundwater transport and petroleum reservoir simulations. The pure diffusive anisotropic time-dependent transport problem is solved on a finite number of nodes, that are selected inside and on the boundary of the given domain, along with possible internal boundaries connecting some of the nodes. An unstructured triangular mesh, that attains the Generalized Anisotropic Delaunay condition for all the triangle sides, is automatically generated by properly connecting all the nodes, starting from an arbitrary initial one. The control volume of each node is the closed polygon given by the union of the midpoint of each side with the “anisotropic” circumcentre of each final triangle. A structure of the flux across the control volume sides similar to the standard Galerkin Finite Element scheme is derived. A special treatment of the flux computation, mainly based on edge swaps of the initial mesh triangles, is proposed in order to obtain a stiffness M-matrix system that guarantees the monotonicity of the solution. The proposed scheme is tested using several literature tests and the results are compared with analytical solutions, as well as with the results of other algorithms, in terms of convergence order. Computational costs are also investigated.
Anisotropic representations for superresolution of hyperspectral data
NASA Astrophysics Data System (ADS)
Bosch, Edward H.; Czaja, Wojciech; Murphy, James M.; Weinberg, Daniel
2015-05-01
We develop a method for superresolution based on anisotropic harmonic analysis. Our ambition is to efficiently increase the resolution of an image without blurring or introducing artifacts, and without integrating additional information, such as sub-pixel shifts of the same image at lower resolutions or multimodal images of the same scene. The approach developed in this article is based on analysis of the directional features present in the image that is to be superesolved. The harmonic analytic technique of shearlets is implemented in order to efficiently capture the directional information present in the image, which is then used to provide smooth, accurate images at higher resolutions. Our algorithm is compared to both a recent anisotropic technique based on frame theory and circulant matrices,1 as well as to the standard superresolution method of bicubic interpolation. We evaluate our algorithm on synthetic test images, as well as a hyperspectral image. Our results indicate the superior performance of anisotropic methods, when compared to standard bicubic interpolation.
Waveguide structures in anisotropic nonlinear crystals
NASA Astrophysics Data System (ADS)
Li, Da; Hong, Pengda; Meissner, Helmuth E.
2017-02-01
We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.
Longitudinal fluctuations and decorrelation of anisotropic flow
NASA Astrophysics Data System (ADS)
Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian
2016-12-01
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Anisotropic halo model: implementation and numerical results
NASA Astrophysics Data System (ADS)
Sgró, Mario A.; Paz, Dante J.; Merchán, Manuel
2013-07-01
In the present work, we extend the classic halo model for the large-scale matter distribution including a triaxial model for the halo profiles and their alignments. In particular, we derive general expressions for the halo-matter cross-correlation function. In addition, by numerical integration, we obtain instances of the cross-correlation function depending on the directions given by halo shape axes. These functions are called anisotropic cross-correlations. With the aim of comparing our theoretical results with the simulations, we compute averaged anisotropic correlations in cones with their symmetry axis along each shape direction of the centre halo. From these comparisons we characterize and quantify the alignment of dark matter haloes on the Λcold dark matter context by means of the presented anisotropic halo model. Since our model requires multidimensional integral computation we implement a Monte Carlo method on GPU hardware which allows us to increase the precision of the results and it improves the performance of the computation.
Anisotropic Self-Assembly of Nanoparticle Amphiphiles
NASA Astrophysics Data System (ADS)
Kumar, Sanat
2009-03-01
It is easy to understand the self-assembly of particles having anisotropic shapes or interactions, such as Co nanoparticles or proteins, into highly extended structures. However, there is no experimentally established strategy for creating anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles, uniformly grafted with macromolecules, robustly self-assemble into a range of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. This phenomenon is driven by the microphase separation between the inorganic nanoparticles and the (organic) polymeric chains grafted to their surfaces in a fashion similar to block copolymers. This microphase separation driven particle self-assembly provides a unique means of controlling the global nanoparticle dispersion state in polymer nanocomposites. The relationship between the state of particle dispersion and nanocomposite properties can thus be critically examined, and in particular we focus on the mechanical reinforcement afforded when particles are added to polymers. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications. With Pinar Akcora, Hongjun Liu, Yu Li, Brian Benicewicz, Linda Schadler, Thanos Panagiotopoulos, Jack Douglas, P. Thiyagarajan and Ralph Colby.
Anisotropic materials appearance analysis using ellipsoidal mirror
NASA Astrophysics Data System (ADS)
Filip, Jiří; Vávra, Radomír.
2015-03-01
Many real-world materials exhibit significant changes in appearance when rotated along a surface normal. The presence of this behavior is often referred to as visual anisotropy. Anisotropic appearance of spatially homogeneous materials is commonly characterized by a four-dimensional BRDF. Unfortunately, due to simplicity most past research has been devoted to three dimensional isotropic BRDFs. In this paper, we introduce an innovative, fast, and inexpensive image-based approach to detect the extent of anisotropy, its main axes and width of corresponding anisotropic highlights. The method does not rely on any moving parts and uses only an off-the-shelf ellipsoidal reflector with a compact camera. We analyze our findings with a material microgeometry scan, and present how results correspond to the microstructure of individual threads in a particular fabric. We show that knowledge of a material's anisotropic behavior can be effectively used in order to design a material-dependent sampling pattern so as the material's BRDF could be measured much more precisely in the same amount of time using a common gonioreflectometer.
Efficient Anisotropic Filtering of Diffusion Tensor Images
Xu, Qing; Anderson, Adam W.; Gore, John C.; Ding, Zhaohua
2009-01-01
To improve the accuracy of structural and architectural characterization of living tissue with diffusion tensor imaging, an efficient smoothing algorithm is presented for reducing noise in diffusion tensor images. The algorithm is based on anisotropic diffusion filtering, which allows both image detail preservation and noise reduction. However, traditional numerical schemes for anisotropic filtering have the drawback of inefficiency and inaccuracy due to their poor stability and first order time accuracy. To address this, an unconditionally stable and second order time accuracy semi-implicit Craig-Sneyd scheme is adapted in our anisotropic filtering. By using large step size, unconditional stability allows this scheme to take much fewer iterations and thus less computation time than the explicit scheme to achieve a certain degree of smoothing. Second order time accuracy makes the algorithm reduce noise more effectively than a first order scheme with the same total iteration time. Both the efficiency and effectiveness are quantitatively evaluated based on synthetic and in vivo human brain diffusion tensor images, and these tests demonstrate that our algorithm is an efficient and effective tool for denoising diffusion tensor images. PMID:20061113
Post-synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals
Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel
2016-01-01
Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, via acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, among these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution. PMID:26458081
Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.
Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel
2015-11-23
Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Ye, Yu; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2017-04-01
Lateral mass exchange at the fringe of solute plumes is a fundamental process leading to plume dilution and reactive mixing. Mass transfer between the plume and ambient water can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media [1-3]. We performed steady-state conservative tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution [4]. Helical flow was created by packing the porous medium in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity. The hydraulic conductivity of the blocks was varied in different experiments. Solute concentrations and flow rates were measured at high spatial resolution for samples collected at 49 outlet ports. This allowed us to quantify spreading and dilution of the solute plumes at the outlet cross section. Moreover, we collected direct evidence of plume spiraling and visual proof of helical flow by freezing and slicing the porous medium at different cross sections and observing the dye-tracer distribution. Model-based interpretation of the results allowed substantiating the effect of the helical flow field on plume dilution and on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. [1] Cirpka O.A., Chiogna G., Rolle M. and A. Bellin (2015). Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI: 10.1002/2014WR015331. [2] Chiogna G., Cirpka O.A., Rolle M. and A. Bellin (2015). Helical flow streamlines in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI:10.1002/2014WR015330. [3] Ye Y., Chiogna G., Cirpka O
Compression fatigue behavior and failure mechanism of porous titanium for biomedical applications.
Li, Fuping; Li, Jinshan; Huang, Tingting; Kou, Hongchao; Zhou, Lian
2017-01-01
Porous titanium and its alloys are believed to be one of the most attractive biomaterials for orthopedic implant applications. In the present work, porous pure titanium with 50-70% porosity and different pore size was fabricated by diffusion bonding. Compression fatigue behavior was systematically studied along the out-of-plane direction. It resulted that porous pure titanium has anisotropic pore structure and the microstructure is fine-grained equiaxed α phase with a few twins in some α grains. Porosity and pore size have some effect on the S-N curve but this effect is negligible when the fatigue strength is normalized by the yield stress. The relationship between normalized fatigue strength and fatigue life conforms to a power law. The compression fatigue behavior is characteristic of strain accumulation. Porous titanium experiences uniform deformation throughout the entire sample when fatigue cycle is lower than a critical value (NT). When fatigue cycles exceed NT, strain accumulates rapidly and a single collapse band forms with a certain angle to the loading direction, leading to the sudden failure of testing sample. Both cyclic ratcheting and fatigue crack growth contribute to the fatigue failure mechanism, while the cyclic ratcheting is the dominant one. Porous titanium possesses higher normalized fatigue strength which is in the range of 0.5-0.55 at 10(6) cycles. The reasons for the higher normalized fatigue strength were analyzed based on the microstructure and fatigue failure mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers
NASA Astrophysics Data System (ADS)
Teva, J.; Davis, Z. J.; Hansen, O.
2010-01-01
This work describes the characterization and optimization of anisotropic formation of porous silicon in large volumes (0.5-1 mm3) of silicon by an electroless wet etching technique. The main goal is to use porous silicon as a sacrificial volume for bulk micromachining processes, especially in cases where etching of the full wafer thickness is needed. The porous silicon volume is formed by a metal-assisted etching in a wet chemical solution composed of hydrogen peroxide (30%), hydrofluoric acid (40%) and ethanol. This paper focuses on optimizing the etching conditions in terms of maximizing the etching rate and reproducibility of the etching. In addition to that, a study of the morphology of the pore that is obtained by this technique is presented. The results from the characterization of the process are applied to the fabrication of boron-silica-glass cantilevers that serve as a platform for bio-chemical sensors. The porous silicon volume is formed in an early step of the fabrication process, allowing easy handling of the wafer during all of the micromachining processes in the process flow. In the final process step, the porous silicon is quickly etched by immersing the wafer in a KOH solution.
Shanjani, Yaser; De Croos, J N Amritha; Pilliar, Robert M; Kandel, Rita A; Toyserkani, Ehsan
2010-05-01
Solid freeform fabrication (SFF) enables the fabrication of anatomically shaped porous components required for formation of tissue engineered implants. This article reports on the characterization of a three-dimensional-printing method, as a powder-based SFF technique, to create reproducible porous structures composed of calcium polyphosphate (CPP). CPP powder of 75-150 microm was mixed with 10 wt % polyvinyl alcohol (PVA) polymeric binder, and used in the SFF machine with appropriate settings for powder mesh size. The PVA binder was eliminated during the annealing procedure used to sinter the CPP particles. The porous SFF fabricated components were characterized using scanning electron microscopy, micro-CT scanning, X-ray diffraction, and mercury intrusion porosimetry. In addition, mechanical testing was conducted to determine the compressive strength of the CPP cylinders. The 35 vol % porous structures displayed compressive strength on average of 33.86 MPa, a value 57% higher than CPP of equivalent volume percent porosity made through conventional gravity sintering. Dimensional deviation and shrinkage analysis was conducted to identify anisotropic factors required for dimensional compensation during SFF sample formation and subsequent sintering. Cell culture studies showed that the substrate supported cartilage formation in vitro, which was integrated with the top surface of the porous CPP similar to that observed when chondrocytes were grown on CPP formed by conventional gravity sintering methods as determined histologically and biochemically.
Fluid flow in porous media with rough pore-solid interface
NASA Astrophysics Data System (ADS)
Ghanbarian, Behzad; Hunt, Allen G.; Daigle, Hugh
2016-03-01
Quantifying fluid flow through porous media hinges on the description of permeability, a property of considerable importance in many fields ranging from oil and gas exploration to hydrology. A common building block for modeling porous media permeability is consideration of fluid flow through tubes with circular cross section described by Poiseuille's law in which flow discharge is proportional to the fourth power of the tube's radius. In most natural porous media, pores are neither cylindrical nor smooth; they often have an irregular cross section and rough surfaces. This study presents a theoretical scaling of Poiseuille's approximation for flow in pores with irregular rough cross section quantified by a surface fractal dimension Ds2. The flow rate is a function of the average pore radius to the power 2(3-Ds2) instead of 4 in the original Poiseuille's law. Values of Ds2 range from 1 to 2, hence, the power in the modified Poiseuille's approximation varies between 4 and 2, indicating that flow rate decreases as pore surface roughness (and surface fractal dimension Ds2) increases. We also proposed pore length-radius relations for isotropic and anisotropic fractal porous media. The new theoretical derivations are compared with standard approximations and with experimental values of relative permeability. The new approach results in substantially improved prediction of relative permeability of natural porous media relative to the original Poiseuille equation.
Solute mixing regulates heterogeneity of mineral precipitation in porous media
NASA Astrophysics Data System (ADS)
Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.; Buscarnera, Giuseppe
2017-07-01
Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flow simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.
Experimental investigation of transverse mixing in porous media under helical flow conditions.
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A; Grathwohl, Peter; Rolle, Massimo
2016-07-01
Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows.
Impact of space-time mesh adaptation on solute transport modeling in porous media
NASA Astrophysics Data System (ADS)
Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto
2015-02-01
We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.
Experimental investigation of transverse mixing in porous media under helical flow conditions
NASA Astrophysics Data System (ADS)
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2016-07-01
Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows.
NASA Astrophysics Data System (ADS)
Chiogna, Gabriele; Herrera, Paulo
2015-04-01
Several studies have demonstrated how plume deformation induced by flow heterogeneity in porous media can enhance mixing of reactants. This enhancement can have important impact on mixing controlled reactions such a biodegradation of plumes of organic compounds. On the other hand, recent studies have indicated the possibility of observing complex flow topology on groundwater flow that occurs in anisotropic yet homogenous porous media. Moreover, it has been demonstrated that those complex flow topologies can also enhance solute mixing. We study the effect of medium anisotropy on reactive solute transport for the case of a chemical reactor composed of two homogeneous anisotropic layers. We simulate different injection strategies for different chemical reactions that involve two reactants. We demonstrate the effect of the medium anisotropy by analyzing the results of the simulations and identify best strategies for the operation and design of the system to maximize reaction rates. These findings could have potential application in the design of new remediation systems for contaminated groundwater, chemical reactors and other engineering problems that involve flow through porous media.
Hsieh, Paul A.; Neuman, Shlomo P.
1985-01-01
A field method is proposed for determining the three-dimensional hydraulic conductivity tensor and specific storage of an anisotropic porous or fractured medium. The method, known as cross-hole testing (to distinguish it from conventional single-hole packer tests), consists of injecting fluid into (or withdrawing fluid from) packed-off intervals in a number of boreholes and monitoring the transient head response in similar intervals in neighboring boreholes. The directions of the principal hydraulic conductivities need not be known prior to the test, and the boreholes may have arbitrary orientations (e.g., they can all be vertical). An important aspect of the proposed method is that it provides direct field information on whether it is proper to regard the medium as being uniform and anisotropic on the scale of the test. The first paper presents theoretical expressions describing transient and steady state head response in monitoring intervals of arbitrary lengths and orientations, to constant-rate injection into (or withdrawal from) intervals having similar or different lengths and orientations. The conditions under which these intervals can be treated mathematically as points are investigated by an asymptotic analysis. The effect of planar no-flow and constant-head boundaries on the response is analyzed by the theory of images. The second paper describes the field methodology and shows how the proposed approach works in the case of fractured granitic rocks.
Biogenic Cracks in Porous Rock
NASA Astrophysics Data System (ADS)
Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.
2014-12-01
Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.
Large scale anisotropic bias from primordial non-Gaussianity
Baghram, Shant; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: mh.namjoo@ipm.ir
2013-08-01
In this work we study the large scale structure bias in models of anisotropic inflation. We use the Peak Background Splitting method in Excursion Set Theory to find the scale-dependent bias. We show that the amplitude of the bias is modified by a direction-dependent factor. In the specific anisotropic inflation model which we study, the scale-dependent bias vanishes at leading order when the long wavelength mode in squeezed limit is aligned with the anisotropic direction in the sky. We also extend the scale-dependent bias formulation to the general situations with primordial anisotropy. We find some selection rules indicating that some specific parts of a generic anisotropic bispectrum is picked up by the bias parameter. We argue that the anisotropic bias is mainly sourced by the angle between the anisotropic direction and the long wavelength mode in the squeezed limit.
Influence of anisotropic white matter modeling on EEG source localization.
Cuartas-Morales, E; Cardenas-Pena, D; Castellanos-Dominguez, G
2014-01-01
We study the influence of the anisotropic white matter within the ElectroEncephaloGraphy source localization problem. To this end, we consider three cases of the anisotropic white matter modeled in two concrete cases: by fixed or variable ratio. We extract information about highly anisotropic areas of the white matter from real Diffusion Weighted Imaging data. To validate the compared anisotropic models, we introduce the localization dipole and orientation errors. Obtained results show that the white matter model with a fixed anisotropic ratio leads to values of dipole localization error close to 1cm and may be enough in those cases avoiding localized analysis of neural brain activity. In contrast, modeling based on the anisotropic variable rate assumption becomes important in tasks regarding analysis and localization of deep sources neighboring the white matter tissue.
Comparison of the anisotropic behaviour of undeformed sandstones under dry and saturated conditions
NASA Astrophysics Data System (ADS)
Louis, Laurent; David, Christian; Robion, Philippe
2003-07-01
capturing the nature of the anisotropic behaviour of porous rocks.
NASA Astrophysics Data System (ADS)
Ikeda, Ryusuke
2015-05-01
Motivated by recent experiments on liquid 3He reporting emergence of novel superfluid phases in globally anisotropic aerogels, our previous theory on superfluid 3He in globally anisotropic aerogels is extended to incorporate the effects of anisotropy of the quasiparticle scattering cross section on the strong-coupling (SC) contributions to the Ginzburg-Landau (GL) free energy on the basis of the spin-fluctuation (paramagnon) approach to the SC contributions developed by Brinkman et al. [Phys. Rev. A 10, 2386 (1974), 10.1103/PhysRevA.10.2386]. In the globally isotropic case, impurity effects on the SC correction destabilize the A phase even at higher pressures of about 30 bar and make the B phase the only state in equilibrium, while SC contributions accompanied by a global stretched anisotropy to the GL quartic terms generally tend to broaden the stability region of the A phase compared with that of the B phase. In particular, in contrast to the cases in bulk and in the isotropic aerogel, the SC corrections to the GL quadratic terms are not negligible in the globally anisotropic case but may change the sign of the apparent anisotropy depending on the magnitude of the frequency cutoff of the normal paramagnon propagator. Based on this sign change of the apparent anisotropy, we discuss different strange observations on superfluid 3He in porous media such as the disappearance of the polar superfluid phase at higher pressures seen in nematically ordered aerogels and the absence of B and A phases with planar l ̂ vector in a stretched aerogel.
NASA Astrophysics Data System (ADS)
Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.
2015-05-01
Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.
Regeneratively Cooled Porous Media Jacket
NASA Technical Reports Server (NTRS)
Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)
2013-01-01
The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.
Light emission from porous silicon
NASA Astrophysics Data System (ADS)
Penczek, John
The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to
Porous Molecular Solids and Liquids
2017-01-01
Until recently, porous molecular solids were isolated curiosities with properties that were eclipsed by porous frameworks, such as metal–organic frameworks. Now molecules have emerged as a functional materials platform that can have high levels of porosity, good chemical stability, and, uniquely, solution processability. The lack of intermolecular bonding in these materials has also led to new, counterintuitive states of matter, such as porous liquids. Our ability to design these materials has improved significantly due to advances in computational prediction methods. PMID:28691065
Grooved organogel surfaces towards anisotropic sliding of water droplets.
Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei
2014-05-21
Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.
Fabrication and characterization of porous silicon nanowires
NASA Astrophysics Data System (ADS)
Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae
2016-01-01
We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.
Optimal illusion and invisibility of multilayered anisotropic cylinders and spheres.
Zhang, Lin; Shi, Yan; Liang, Chang-Hong
2016-10-03
In this paper, full-wave electromagnetic scattering theory is employed to investigate illusion and invisibility of inhomogeneous anisotropic cylinders and spheres. With the use of a shell designed according to Mie series theory for multiple piecewise anisotropic layers, radar cross section (RCS) of the coated inhomogeneous anisotropic object can be dramatically reduced or disguised as another object in the long-wavelength limit. With the suitable adjustment of the anisotropy parameters of the shell, optimal illusion and invisibility characteristics of the coated inhomogeneous anisotropic object can be achieved. Details of theoretical analysis and numerical examples are presented to validate the proposed methodology.
Retrieval procedure of effective conductivity for plasmonic resonant anisotropic metasurface
NASA Astrophysics Data System (ADS)
Yermakov, O. Y.; Porubaev, F.; Bogdanov, A. A.; Samusev, A. K.; Iorsh, I. V.
2017-09-01
In this work we introduce the effective surface conductivity retrieval procedure in order to describe the properties of plasmonic resonant anisotropic metasurface consisting of plasmonic elliptical nanodisks.
Stability conditions for the Bianchi type II anisotropically inflating universes
Kao, W.F.; Lin, Ing-Chen E-mail: g9522528@oz.nthu.edu.tw
2009-01-15
Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space.
Porous silicon as a neural electrode material.
Persson, Jörgen; Danielsen, Nils; Wallman, Lars
2007-01-01
The electrical properties of the solid state/fluid (Ringer solution) interface for phosphorous- and boron-doped porous silicon are reported and the benefits of using porous silicon as neural recording electrodes are discussed. The impedance, reactance and resistance for doped porous and planar silicon, in Ringer solution, were compared to gold electrodes. Planar silicon displayed approximately a three times higher reactance than porous electrodes. The phosphorous-doped porous electrodes displayed a similar reactance compared to the gold electrodes.
Harmut Spetzler
2005-11-28
This paper describes the culmination of a research project in which we investigated the complex modulus change in partially fluid saturated porous rocks. The investigation started with simple flow experiments over ''clean'' and ''contaminated'' surfaces, progressed to moduli measurements on partially filled single cracks, to measurements in ''clean'' and ''contaminated'' porous rocks and finally to a feasibility study in the field. For the experiments with the simple geometries we were able to measure fundamental physical properties such as contact angles of the meniscus and time dependent forces required to get the meniscus moving and to keep it moving at various velocities. From the data thus gathered we were able to interpret the complex elastic moduli data we measured in the partially saturated single cracks. While the geometry in real rocks is too complex to make precise calculations we determined that we had indeed identified the mechanisms responsible for the changes in the moduli we had measured. Thus encouraged by the laboratory studies we embarked on a field experiment in the desert of Arizona. The field site allowed for controlled irrigation. Instrumentation for fluid sampling and water penetration were already in place. The porous loosely consolidated rocks at the site were not ideal for finding the effects of the attenuation mechanism we had identified in the lab, but for logistic and cost constraint reasons we chose to field test the idea at that site. Tiltmeters and seismometers were installed and operated nearly continuously for almost 3 years. The field was irrigated with water in the fall of 2003 and with water containing a biosurfactant in the fall of 2004. We have indications that the biosurfactant irrigation has had a notable effect on the tilt data.
Interfacing porous silicon with biomolecules
NASA Astrophysics Data System (ADS)
Sweetman, Martin J.; Graney, Sean D.; Voelcker, Nicolas H.
2007-12-01
The control of protein binding into nanostructured porous surfaces is highly relevant to the development of advanced biosensors and other biodevices. Here, an investigation of the covalent immobilisation of a model protein (albumin) onto porous silicon (pSi) films was conducted using a new alkene linker, the synthesis of which was developed. This alkene linker contained both hydrophobic and hydrophilic (oligoethylene glycol) sections and terminated in a protected thiol. The alkene was attached to freshly etched porous silicon via thermal hydrosilylation, where further surface reactions resulted in the attachment of a maleimido N-hydroxysuccinimidyl (NHS) heterobifunctional crosslinker. Albumin was then covalently immobilised on the porous silicon layer through reaction of the protein's amine groups and the NHS functional group of the crosslinker. Surface modification reactions were monitored by infrared spectroscopy and interferometric reflectance spectroscopy. Protein binding was monitored by infrared spectroscopy, fluorescence imaging and atomic force microscopy.
Porous substrates filled with nanomaterials
Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael
2014-08-19
A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.
Computation of Large Anisotropic Seismic Heterogeneities (CLASH)
NASA Astrophysics Data System (ADS)
Beucler, Éric; Montagner, Jean-Paul
2006-05-01
A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.
Cui, Linyan; Xue, Bindang; Zhou, Fugen
2015-11-16
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.
Generalised model for anisotropic compact stars
NASA Astrophysics Data System (ADS)
Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Deb, Debabrata
2016-12-01
In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 ( SS1) and SAX J 1808.4-3658 ( SS2) are concerned.
Chromo-natural model in anisotropic background
Maleknejad, Azadeh; Erfani, Encieh E-mail: eerfani@ipm.ir
2014-03-01
In this work we study the chromo-natural inflation model in the anisotropic setup. Initiating inflation from Bianchi type-I cosmology, we analyze the system thoroughly during the slow-roll inflation, from both analytical and numerical points of view. We show that the isotropic FRW inflation is an attractor of the system. In other words, anisotropies are damped within few e-folds and the chromo-natural model respects the cosmic no-hair conjecture. Furthermore, we demonstrate that in the slow-roll limit, the anisotropies in both chromo-natural and gauge-flation models share the same dynamics.
Local thermodynamics of a magnetized, anisotropic plasma
Hazeltine, R. D.; Mahajan, S. M.; Morrison, P. J.
2013-02-15
An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic plasma is derived from first principles. The result is a function of entropy, particle density and magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all thermodynamic properties of the fluid element. In particular it provides equations of state for the magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law, and certain familiar stability and regularity conditions.
Anisotropic thermal expansion of strontium barium niobate
NASA Astrophysics Data System (ADS)
Qadri, Syed B.; Bellotti, Jeffrey A.; Garzarella, Anthony; Wu, Dong Ho
2005-06-01
Strontium barium niobate is a tungsten-bronze ferroelectric crystal having a tetragonal unit cell. Low-temperature x-ray diffraction studies were performed on a single crystal of Sr0.75Ba0.25Nb2O6 to determine the thermal expansivity along the a- and c-axes. Negative thermal expansion was observed along the c direction while a positive thermal expansion was measured along the a axis. The anisotropic thermal expansion behavior is explained as arising due to the geometry of the crystal structure.
Superscattering pattern shaping for radially anisotropic nanowires
NASA Astrophysics Data System (ADS)
Liu, Wei
2017-08-01
We achieve efficient shaping of superscattering by radially anisotropic nanowires relying on resonant multipolar interferences. It is shown that the radial anisotropy of refractive index can be employed to resonantly overlap electric and magnetic multipoles of various orders, and as a result, effective superscattering with different engineered angular patterns can be obtained. We further demonstrate that such superscattering shaping relying on unusual radial anisotropy parameters can be directly realized with isotropic multilayered nanowires, which may shed new light on much fundamental research and various applications related to scattering particles.
Capillary interactions between anisotropic colloidal particles.
Loudet, J C; Alsayed, A M; Zhang, J; Yodh, A G
2005-01-14
We report on the behavior of micron-sized prolate ellipsoids trapped at an oil-water interface. The particles experience strong, anisotropic, and long-ranged attractive capillary interactions which greatly exceed the thermal energy k(B)T. Depending on surface chemistry, the particles aggregate into open structures or chains. Using video microscopy, we extract the pair interaction potential between ellipsoids and show it exhibits a power law behavior over the length scales probed. Our observations can be explained using recent calculations, if we describe the interfacial ellipsoids as capillary quadrupoles.
Anisotropic Tribological Properties of Silicon Carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.
Creating an anisotropic plasma resistivity with waves
Fisch, N.J.; Boozer, A.H.
1980-05-01
An anisotropic plasma resistivity may be created by preferential heating of electrons traveling in one direction. This can result in a steady-state toroidal current in a tokamak even in the absence of net wave momentum. In fact, at high wave phase velocities, the current associated with the change in resistivity is greater than that associated with net momentum input. An immediate implication is that other waves, such as electron cyclotron waves, may be competitive with lower-hybrid waves as a means for generating current. An analytical expression is derived for the current generated per power dissipated which agrees remarkably well with numerical calculations.
Watertight Anisotropic Surface Meshing Using Quadrilateral Patches
NASA Technical Reports Server (NTRS)
Haimes, Robert; Aftosmis, Michael J.
2004-01-01
This paper presents a simple technique for generating anisotropic surface triangulations using unstructured quadrilaterals when the CAD entity can be mapped to a logical rectangle. Watertightness and geometric quality measures are maintained and are consistent with the CAPRI default tessellator. These triangulations can match user specified criteria for chord-height tolerance, neighbor triangle dihedral angle, and maximum triangle side length. This discrete representation has hooks back to the owning geometry and therefore can be used in conjunction with these entities to allow for easy enhancement or modification of the tessellation suitable for grid generation or other downstream applications.
Multidimensional Gravitational Model with Anisotropic Pressure
NASA Astrophysics Data System (ADS)
Grigorieva, O. A.; Sharov, G. S.
2013-08-01
We consider the gravitational model with additional spatial dimensions and anisotropic pressure which is nonzero only in these dimensions. Cosmological solutions of the Einstein equations in this model include accelerated expansion of the universe at late stage of its evolution and dynamical compactification of extra dimensions. This model describes observational data for Type Ia supernovae on the level or better than the ΛCDM model. We analyze two equations of state resulting in different predictions for further evolution, but in both variants the acceleration epoch is finite.
Laminated anisotropic reinforced plastic plates and shells
NASA Technical Reports Server (NTRS)
Korolev, V. I.
1981-01-01
Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.
Staggered Fermion Thermodynamics using Anisotropic Lattices
NASA Astrophysics Data System (ADS)
Levkova, L.
2003-05-01
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with 2-flavors of dynamical fermions where all bare parameters and hence the physics scales are kept constant while the temperature is changed in small steps by varying only the number of the time slices. The results from a series of zero-temperature scale setting simulations are used to determine the Karsch coefficients and the equation of state at finite temperatures.
Multichannel image regularization using anisotropic geodesic filtering
Grazzini, Jacopo A
2010-01-01
This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.
Tunable anisotropic thermal conduction in graphane nanoribbons
NASA Astrophysics Data System (ADS)
Li, Dengfeng; Xu, Yong; Chen, Xiaobin; Li, Bolin; Duan, Wenhui
2014-04-01
Graphane and graphene are both two-dimensional materials but of different bonding configurations, which can result in distinct thermal conduction properties. We simulate thermal conduction in graphane nanoribbons (GANRs) using the nonequilibrium Green's function method. We find anisotropic thermal conduction in GANRs, with zigzag GANRs giving higher thermal conductance than armchair ones. Compared to the graphene counterparts, GANRs show lower ballistic thermal conductance and stronger thermal conductance anisotropy. Furthermore, hydrogen vacancies of GANRs considerably suppress thermal conduction, accompanied by enhanced thermal conductance anisotropy. The tunable thermal conduction, realized by controlling the ribbon width, edge shape, and hydrogen vacancy concentration of GANRs, could be useful for thermal management and thermoelectric applications.
Anisotropic fiber alignment in composite structures
Graham, Alan L.; Mondy, Lisa A.; Guell, David C.
1993-01-01
High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.
Anisotropic bond percolation in two dimensions
NASA Astrophysics Data System (ADS)
Arovas, D.; Bhatt, R. N.; Shapiro, B.
1983-08-01
A new single-parameter renormalization-group equation is formulated for anisotropic bond percolation in two dimensions using a position-space renormalization approach. The new equation yields the exact critical line px+py=1 within both the Migdal-Kadanoff decimation and cell renormalization schemes. For large anisotropy, however, an additional critical line appears leading to a spurious divergence in the correlation-length critical exponent. An alternative scheme, which does not preserve the exact critical surface, but yields a correlation-length exponent relatively independent of anisotropy, is also examined.
Temperature and polarization patterns in anisotropic cosmologies
Sung, Rockhee; Coles, Peter E-mail: Peter.Coles@astro.cf.ac.uk
2011-06-01
We study the coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models. We show results for all Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V, VII{sub 0}, VII{sub h} and IX) to illustrate the range of possible behaviour. We discuss the role of spatial curvature, shear and rotation in the geodesic equations for each model and establish some basic results concerning the symmetries of the patterns produced. We also give examples of the time-evolution of these patterns in terms of the Stokes parameters I, Q and U.
Anisotropic elasticity of experimental colloidal Wigner crystals.
Russell, Emily R; Spaepen, Frans; Weitz, David A
2015-03-01
Colloidal particles interacting via a long-range repulsion can, in contrast to hard-sphere systems, exhibit crystalline ordering at low volume fraction. Here we experimentally investigate the structure and properties of such "colloidal Wigner crystals." We find a body-centered-cubic crystalline phase at volume fractions of ϕ≳15%, which exhibits large fluctuations of individual particles from their average positions. We determine the three independent crystalline elastic constants and find that these crystals are very compliant and highly anisotropic.
Porous light-emitting compositions
Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H
2012-04-17
Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.
Porous carbon EOS: numerical analysis
NASA Astrophysics Data System (ADS)
Aliverdiev, A.; Batani, D.; Dezulian, R.; Vinci, T.
2010-10-01
In this paper, we address the problem of direct simulation of laser-driven shock experiments aiming at determining the equation of state (EOS) of carbon using the "relative" impedance mismatch method. In particular, using tabulated carbon EOS (SESAME library, material number 7830), we have found some difficulties in reducing the initial density of the material in simulations with porous carbon. We have therefore calculated a new EOS for porous carbon with a reduced bulk modulus.
Steady Counterflow he II Heat Transfer Through Porous Media
NASA Astrophysics Data System (ADS)
Dalban-Canassy, M.; Van Sciver, S. W.
2010-04-01
We present steady state counterflow measurements performed on porous samples saturated in He II. The experiment is composed of a vacuum insulated open channel whose top extremity is closed to a Minco® heater. The temperature and pressure differences across the plug are measured by two germanium TTR-G Microsensors® thermometers and a Validyne DP10-20 differential pressure sensor. Applied heat fluxes range up to 0.5 kW/m2 of sample cross section. Measurements were performed at temperatures ranging from 1.7 to 2.1 K on highly anisotropic samples provided by Composite Technology Development Inc.: circular pellets (3.08 mm thick and 28.58 mm in diameter) of 20 compressed layers of pre-impregnated woven magnet insulation. In the laminar regime, the permeability is estimated from the pressure drop measurements for comparison with room temperature data. In the turbulent regime, the model based on tortuosity developed previously fails to describe the heat transfer behavior of He II in this type of porous medium.
STEADY COUNTERFLOW HE II HEAT TRANSFER THROUGH POROUS MEDIA
Dalban-Canassy, M.; Van Sciver, S. W.
2010-04-09
We present steady state counterflow measurements performed on porous samples saturated in He II. The experiment is composed of a vacuum insulated open channel whose top extremity is closed to a Minco registered heater. The temperature and pressure differences across the plug are measured by two germanium TTR-G Microsensors registered thermometers and a Validyne DP10-20 differential pressure sensor. Applied heat fluxes range up to 0.5 kW/m{sup 2} of sample cross section. Measurements were performed at temperatures ranging from 1.7 to 2.1 K on highly anisotropic samples provided by Composite Technology Development Inc.: circular pellets (3.08 mm thick and 28.58 mm in diameter) of 20 compressed layers of pre-impregnated woven magnet insulation. In the laminar regime, the permeability is estimated from the pressure drop measurements for comparison with room temperature data. In the turbulent regime, the model based on tortuosity developed previously fails to describe the heat transfer behavior of He II in this type of porous medium.
NASA Astrophysics Data System (ADS)
Ulven, Ole Ivar; Sun, WaiChing
2016-04-01
Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I
Transport of Graphene Oxide through Porous Media
NASA Astrophysics Data System (ADS)
Duster, T. A.; Na, C.; Bolster, D.; Fein, J. B.
2012-12-01
Graphene oxide (GO) is comprised of anisotropic nanosheets decorated with covalently-bonded epoxide, ketone, and hydroxyl functional groups on the basal planes, and carboxylic and phenolic functional groups at the edges. Individual GO nanosheets are generally two to three micrometers in width, with thicknesses depending on the degree of exfoliation and typically ranging from one to approximately 100 nanometers. As a result of this extraordinarily large surface area-to-mass ratio and the presence of numerous proton-active functional groups, GO nanosheets exhibit a tremendous capacity to adsorb metals and other contaminants from aqueous solutions and are thus often suggested for use in in situ remediation efforts. The potential importance of GO nanosheets as an adsorbent in soil and groundwater necessitates a detailed understanding of their mobility in environmental systems, but this topic remains largely unexplored. Hence, the objective of this study was to investigate the transport behavior of GO nanosheets through well-characterized saturated porous media. In this study, we used replicate glass columns packed with two different sand grain sizes, and within each treatment we varied pH (5.5 to 8.5), ionic strength (<0.01 M to 0.1 M), electrolyte composition (Na+ and Ca2+ salts), and GO nanosheet exfoliation extent (few-layered and many-layered) to determine the relative influence of both physical and electrochemical properties on GO nanosheet transport in these systems. The break-through of GO nanosheets from each treatment was continuously monitored using a flow-through quartz cuvette and UV-Vis absorbance at 230 nm. GO nanosheet transport through these systems was then modeled using distinct advection-dispersion equations to establish the relative influence of attachment, deposition, and detachment in the overall transport behavior, and a corresponding retardation coefficient was calculated for each treatment. Break-through curves displayed anomalous transport
Additively manufactured porous tantalum implants.
Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan
2015-03-01
The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of supermolecular structure on oil filtration in a porous medium
Gal`tsev, V.E.; Ametov, I.M.; Dzyubenko, E.M.
1995-09-01
The formation of supermolecular structures during the adsorption of a tar-asphaltene fraction on the surface of grains of rock-forming materials in a porous medium was studied. The effect of these structures on the character of oil filtration in a porous medium is established. The filamentary structures formed have a diameter of 20 to 40 {angstrom}, corresponding to the size of asphaltene associates, and exhibit preferred orientation with a tilt in the direction opposite to the direction of flow. Some residual orientation of filaments is retained upon a change in the direction of flow. On the basis of ENDOR data, a model of a spatially anisotropic asphaltene micelle in oil was developed, which explains the observed character of coagulation and the formation of filamentary structures.
Dynamics of Porous Dust Aggregates and Gravitational Instability of Their Disk
NASA Astrophysics Data System (ADS)
Michikoshi, Shugo; Kokubo, Eiichiro
2017-06-01
We consider the dynamics of porous icy dust aggregates in a turbulent gas disk and investigate the stability of the disk. We evaluate the random velocity of porous dust aggregates by considering their self-gravity, collisions, aerodynamic drag, turbulent stirring, and scattering due to gas. We extend our previous work by introducing the anisotropic velocity dispersion and the relaxation time of the random velocity. We find the minimum mass solar nebula model to be gravitationally unstable if the turbulent viscosity parameter α is less than about 4× {10}-3. The upper limit of α for the onset of gravitational instability is derived as a function of the disk parameters. We discuss the implications of the gravitational instability for planetesimal formation.
Building an anisotropic meniscus with zonal variations.
Higashioka, Michael M; Chen, Justin A; Hu, Jerry C; Athanasiou, Kyriacos A
2014-01-01
Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus.
Dynamic Smagorinsky model on anisotropic grids
NASA Technical Reports Server (NTRS)
Scotti, A.; Meneveau, C.; Fatica, M.
1996-01-01
Large Eddy Simulation (LES) of complex-geometry flows often involves highly anisotropic meshes. To examine the performance of the dynamic Smagorinsky model in a controlled fashion on such grids, simulations of forced isotropic turbulence are performed using highly anisotropic discretizations. The resulting model coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two extreme cases are considered: pancake-like grids, for which two directions are poorly resolved compared to the third, and pencil-like grids, where one direction is poorly resolved when compared to the other two. For pancake-like grids the dynamic model yields the results expected from the theory (increasing coefficient with increasing aspect ratio), whereas for pencil-like grids the dynamic model does not agree with the theoretical prediction (with detrimental effects only on smallest resolved scales). A possible explanation of the departure is attempted, and it is shown that the problem may be circumvented by using an isotropic test-filter at larger scales. Overall, all models considered give good large-scale results, confirming the general robustness of the dynamic and eddy-viscosity models. But in all cases, the predictions were poor for scales smaller than that of the worst resolved direction.
New formulation of leading order anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Tinti, Leonardo
2015-05-01
Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.
Radial stability of anisotropic strange quark stars
NASA Astrophysics Data System (ADS)
Arbañil, José D. V.; Malheiro, M.
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Gravothermal catastrophe in anisotropic spherical systems
NASA Astrophysics Data System (ADS)
Magliocchetti, Manuela; Pucacco, Giuseppe; Vesperini, Enrico
1998-11-01
In this paper we investigate the gravothermal instability of spherical stellar systems endowed with a radially anisotropic velocity distribution. We focus our attention on the effects of anisotropy on the conditions for the onset of instability and in particular we study the dependence of the spatial structure of critical models on the amount of anisotropy present in a system. The investigation has been carried out by the method of linear series which has already been used in the past to study the gravothermal instability of isotropic systems._ We consider models described by King, Wilson and Woolley-Dickens distribution functions. In the case of King and Woolley-Dickens models, our results show that, for quite a wide range of the amount of anisotropy in the system, the critical value of the concentration of the system (defined as the ratio of the tidal to the King core radius of the system) is approximately constant and equal to the corresponding value for isotropic systems. Only for very anisotropic systems does the critical value of the concentration start to change and it decreases significantly as the anisotropy increases and penetrates the inner parts of the system. For Wilson models the decrease of the concentration of critical models is preceded by an intermediate regime in which critical concentration increases, reaches a maximum and then starts to decrease. The critical value of the central potential always decreases as the anisotropy increases.
Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications.
Millon, L E; Mohammadi, H; Wan, W K
2006-11-01
Polyvinyl alcohol (PVA) is a hydrophilic polymer with various characteristics desired for biomedical applications and can be transformed into a solid hydrogel by physical crosslinking, using a low-temperature thermal cycling process. As with most polymeric materials, the mechanical properties of the resultant PVA are isotropic, as oppose to most soft tissues, which are anisotropic. The objective of this research is to develop a PVA-based hydrogel that not only mimics the nonlinear mechanical properties displayed by cardiovascular tissues, but also their anisotropic behavior. By applying a controlled strain to the PVA samples, while undergoing low-temperature thermal cycling, we were able to create oriented mechanical properties in PVA hydrogels. The oriented stress-strain properties of porcine aorta were matched simultaneously by a PVA hydrogel prepared (10% PVA, cycle 3, 75% initial strain). This novel technique allows the controlled introduction of anisotropy to PVA hydrogel, and gives a broad range of control of its mechanical properties, for specific medical device applications. (c) 2006 Wiley Periodicals, Inc.
Shear waves in acoustic anisotropic media
Grechka, Vladimir; Zhang, Linbin; Rector, James W.
2003-01-02
Acoustic transversely isotropic (TI) media are defined by artificially setting the shear-wave velocity in the direction of symmetry axis, VS0, to zero. Contrary to conventional wisdom that equating VS0 = 0 eliminates shear waves, we demonstrate their presence and examine their properties. Specifically, we show that SV-waves generally have finite nonzero phase and group velocities in acoustic TI media. In fact, these waves have been observed in full waveform modeling, but apparently they were not understood and labeled as numerical artifacts. Acoustic TI media are characterized by extreme, in some sense infinite strength of anisotropy. It makes the following unusual wave phenomena possible: (1) there are propagation directions, where the SV-ray is orthogonal to the corresponding wavefront normal, (2) the SV-wave whose ray propagates along the symmetry axis is polarized parallel to the P-wave propagating in the same direction, (3) P-wave singularities, that is, directions where P- and SV -wave phase velocities coincide might exist in acoustic TI media. We also briefly discuss some aspects of wave propagation in low-symmetry acoustic anisotropic models. Extreme anisotropy in those media creates bizarre phase- and group-velocity surfaces that might bring intellectual delight to an anisotropic guru.
Finite-difference schemes for anisotropic diffusion
Es, Bram van; Koren, Barry; Blank, Hugo J. de
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Anisotropic hydraulic permeability in compressed articular cartilage.
Reynaud, Boris; Quinn, Thomas M
2006-01-01
The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage.
Sheet Metal Formability Analysis for Anisotropic Materials
NASA Astrophysics Data System (ADS)
Stoughton, Thomas B.; Yoon, Jeong Whan
2004-06-01
Sheet metal formability is conventionally assessed in a two dimensional plot of principal strains or stresses in comparison to a forming limit curve. This method implicitly assumes that the forming limit is isotropic in the plane of the sheet, an assumption that is intrinsically inconsistent with the use of material models that are anisotropic. Since the trend today is to utilize models with full anisotropy in order to more accurately capture the physics of material behavior, the issue of anisotropy of forming limits must also be addressed. The challenge is that the forming limit is no longer defined by a curve but requires the definition of a surface in strain or stress space, and therefore it is no longer appropriate to view these limits with the convenience of the conventional two dimensional diagrams. Furthermore, recent developments in the characterization of sheet forming limits under nonproportional loading suggest that is advantageous to view forming limit behavior in terms of stresses rather than strains, a view that is adopted in this paper. A solution to the challenge of assessing formability for an anisotropic material is proposed and illustrated using an analysis of the 2-Stage Forming Benchmark highlighted in the Numisheet '99 Conference.
Anisotropic swelling behavior of the cornea.
Matsuura, Toyoaki; Ikeda, Hitoe; Idota, Naokazu; Motokawa, Ryuhei; Hara, Yoshiaki; Annaka, Masahiko
2009-12-24
The phase equilibrium property and structural and dynamical properties of pig cornea were studied by macroscopic observation of swelling behavior, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) under various conditions. It was found that the corneal gel collapses into a compact state isotropically or anisotropically depending on the external conditions. The corneal gel collapses uniformly into a compact state at a temperature above 55 degrees C because of the denaturation of collagen, whereas it collapses along an axis parallel to the optic axis with increasing NaCl concentration. Anisotropic deswelling was also observed during desiccation. SAXS measurements revealed that the periodicity of the collagen fiber of the cornea does not change even at higher NaCl concentration, which indicates that hydration and dehydration resulting from changes in salt concentration simply cause swelling and deswelling of the glycosaminoglycan (GAG), which is located between the regular two-dimensional lattices of collagen fibers, which obliges the change in thickness. From observations of the dynamics of light scattered by the corneal gel, intensity autocorrelation functions that revealed two independent diffusion coefficients were obtained. Divergent behavior in the measured total scattered light intensities and diffusion coefficients with varying temperature was observed. That is, a slowing of the dynamic modes accompanied by increased "static" scattered intensities was observed. This is indicative of the occurrence of a phase transition as a function of temperature.
Anisotropic diffusion phantoms based on microcapillaries
NASA Astrophysics Data System (ADS)
Vellmer, Sebastian; Edelhoff, Daniel; Suter, Dieter; Maximov, Ivan I.
2017-06-01
Diffusion MRI is an efficient and widely used technique for the investigation of tissue structure and organisation in vivo. Multiple phenomenological and biophysical diffusion models are intensively exploited for the analysis of the diffusion experiments. However, the verification of the applied diffusion models remains challenging. In order to provide a ;gold standard; and to assess the accuracy of the derived parameters and the limitations of the diffusion models, anisotropic diffusion phantoms with well known architecture are demanded. In the present work we built four anisotropic diffusion phantoms consisting of hollow microcapillaries with very small inner diameters of 5, 10 and 20 μ m and outer diameters of 90 and 150 μ m. For testing the suitability of these phantoms, we performed diffusion measurements on all of them and evaluated the resulting data with a set of popular diffusion models, such as diffusion tensor and diffusion kurtosis imaging, a two compartment model with intra- and extra-capillary water spaces using bi-exponential fitting, and time-dependent diffusion coefficients in Mitra's limit. The perspectives and limitations of these diffusion phantoms are presented and discussed.
Swisdak, M.; Drake, J. F.; Opher, M. E-mail: drake@umd.edu
2013-09-01
The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.
Anisotropic superfluidity in a dipolar Bose gas
Ticknor, Christopher; Wilson, Ryan M; Bohn, John L
2010-11-04
so that the in-plane interaction is anisotropic. By induding repulsive contact interactions to ensure a stable system, we perform direct numeric simulations of an obstacle moving through the system in directions parallel and perpendicular to the tilt of the dipoles. We observe a distinct anisotropic superfluid response in these cases, both for dissipation into quasipartides and topological excitations (vortices), in the form of an anisotropic critical velocity that is larger in the direction of the dipole tilt than in the perpendicular direction. Interestingly, we find that, while the roton displays an anisotropic character, the speed of sound in the systrm is isotropic. Thus, we characterize the DBEC as an fmisotropic superfluid while illuminating the crucial role that the roton plays in this anisotropic behavior.